Conventional electrical cable connectors include an electrically insulative connector housing and a plurality of electrical signal contacts that are supported by the connector housing. The electrical signal contacts define mating ends configured to mate with respective electrical signal contacts, and mounting ends that are configured to be mounted to a printed circuit board (PCB). The electrical cables can further be mated with a complementary data communication device, so as to put the data communication device in electrical communication with the electrical connector. In some architectures, the data communication device is configured as an optical transceiver. Further, an integrated circuit can be mounted to the PCB. The PCB can include electrical traces that place the electrical connector in communication with the integrated circuit.
System constraints are demanding high data transfer speeds in architectures where space is at a premium on the PCB. Thus, it is further desirable to provide electrical connectors that are sized to occupy less real estate on the PCB. Further, it can be desirable to route the electrical cables along a desired predetermined path.
One aspect of the present disclosure includes a low-profile connector that is configured to mate with at least one electrical cable. The electrical connector can be mounted to a printed circuit board (PCB) that defines at least one electrical trace in electrical communication with an integrated circuit (IC). When the electrical connector is mated with the electrical cable and mounted to the PCB, the electrical cable is placed in electrical communication with the IC. The low-profile connector can include a shroud and an electrical contact positioned at least partially within the shroud. The electrical contact is configured to be biased against a contact trace, pad or terminal of the PCB. An electrical cable can be electrically connected or mated to the compressible electrical contact, wherein the height of the shroud is at least 0.5 mm and less than 3 mm. The shroud can be electrically conductive. The electrical cable can be configured as a twin axial cable including a pair of electrical signal conductors, or a coaxial cable including a single electrical signal conductor. The electrical connector can include a biasing member which can be configured as a spring or spring finger configured to independently or in tandem apply a force to the connector housing, and thus to the electrical contact. The electrical contact can move in at least one direction within the shroud. The low-profile connector may further include forward ground arms or ground walls positioned on either side of the electrical contact. The electrical contact can include a pair of electrical contacts configured as a differential signal conductor pair. A dielectric spacer can be positioned between the differential signal conductor pair and an adjacent differential signal conductor pair. The height of the shroud can between at least 0.5 mm and 2 mm.
In another example, an electrical connector can be configured as a floating link between a host board and a PCB. The electrical connector can include a differential signal conductor pair, an overmolded connector housing and a flexible signal blade. The electrical connector can further include a ground shield. A plurality of the electrical connectors can each independently be held in place on a host board by a shroud and can translate or rotate as needed to accommodate mechanical tolerances to ensure electrical contact with electrical signal conductors of an electrical cable. Each electrical connector can define a height, as measured from a surface of a host PCB to the uppermost surface of the electrical connector, that can be greater than 0.5 mm and less than 3 mm, such as 2 mm±0.5 mm or any value between 0.5 mm and 3 mm.
In another example, a compression connector can establish electrical communication between the electrical cable and an integrated circuit (IC). Each compression connector can have a height, as measured from a surface of a host PCB to the uppermost surface of a compression connector housing, that can be greater than 0.5 mm and less than 3 mm, such as 2 mm±0.5 mm or any value between 0.5 mm and 3 mm such that a heat sink can be positioned on top of the IC.
In another aspect of the present disclosure, a tray can carry a baffle. The baffle can have two opposed ends, one of the two ends defining a taper defined by two converging curved lines. The baffle is generally closed to moving or forced air. Heat sink fins can protrude from the baffle. The two converging curved lines can be curved more or less to achieve a desired airflow over and past the baffle.
As shown in
Each electrical signal contact 40 and 40a of the differential signal pair 16 can each define opposed broadsides 32 and opposed edges 34. The edges 34 can be longer than the broadsides in a plane that intersects the respective signal contact along a direction perpendicular to the signal contact. A portion of a first opposed edge 36 of a first signal contact 40 of the differential signal pair 16 can be positioned adjacent and face a portion of a second opposed edge 38 of the second signal contact 40a of the differential signal pair 16. Thus, the differential signal pair 16 can be referred to as an edge coupled differential signal pair. That is, the first and second electrical signal contacts 40 and 40a of the differential signal pair 16 can be positioned edge-to-edge. It should be further appreciated that while the electrical connector is shown including the first and second electrical signal contacts 40 and 40a as defining a differential signal pair, the first and second electrical signal contacts 40 and 40a can alternatively be single ended. Further, the electrical connector can include only a single electrical signal contact in certain examples. Alternatively still, the electrical connector can include only any number of electrical signal contacts as desired.
In one example, each of the first and second electrical signal contacts 40 and 40a can define a compressible, flexible signal blade 30. The signal blade 30 can define a curved shape. In one example, the curve shape can define an arcuate shape. Each of the first and second electrical signal contacts 40 and 40a can also define a respective mating end 42. Each mating end 42 can be configured to mate with a complementary electrical device. For instance, each mating end 42 can define a cable contact pad 28 that is configured to contact a respective electrical signal conductor of an electrical cable, which can be configured as a twin axial electrical cable. Alternatively, each mating end 42 can mate with respective signal conductors of respective coaxial cables.
In one example, the cable contact pads 28 of the first and second electrical signal contacts 40 and 40a can be coplanar with each other. The first and second electrical contacts 40 and 40a can include intermediate regions 29 that extend from the signal blade 30 to the contact pads 28. The intermediate region 29 of the second electrical signal contact 40a can be longer than the intermediate region 29 of the first electrical signal contact 40, such that the cable contact pads 28 of the first and second electrical signal contacts 40 and 40a can be spaced from each other along a direction that is perpendicular to the underlying substrate when the electrical connector is mounted to the underlying substrate 14. The cable contact pads 28 can each define a respective first pad edge 44 and a second pad edge 46. The first and second pad edges 44 and 46 can be positioned edge-to-edge, such that the first and second pad edges 44 and 46 face each other. The cable contact pads 28 may be spaced apart from one another, with one cable contact pad 28 being spaced farther away from its respective flexible signal blade 30 a first distance, and the other cable contact pad 28 spaced from its respective flexible signal blade 30 a second distance that is less than the first distance.
Referring now to
The mating end and mounting end of the at least one signal contact can each extend out from the connector housing 18. For instance, the mating end can extend out from a mating interface of the connector housing, and the mounting end can extend out from the mounting interface of the connector housing 18. Thus, the cable contact pads 28 and the signal blades 30 can extend out from respective ends of the connector housing 18. The respective ends can be oriented perpendicular to each other. In this regard, the signal contacts 40 and 40a can be referred to as right angle contacts. The electrical connector 15 can thus be referred to as a right angle connector. It should be appreciated that the signal contact signal contacts 40 and 40a can be supported by the electrically insulative connector housing 18 in any suitable manner as desired.
During operation, the connector housing 18 and the flexible signal blades 30 can be slidable back and forth on respective electrical contact members 58 (
Referring to
As the electrical connectors 15 are mated and unmated with the respective electrical cables 100, the biasing member 50 can apply a reaction force to the contact pad 28 to counter the force that the signal conductor 48 applies to the contact pad 28. The blades 30 of each electrical connector 15 can be configured to slide along the traces 58 in the longitudinal direction with respect to at least one other electrical connector 15, thereby accommodating dimensional tolerance between adjacent channels, which can include a respective electrical cable 100, electrical contact member 58, and an electrical connector 15 that is mated to the electrical cable 100 and mounted to the electrical contact member 58 (and thus also in electrical communication with a complementary electrical device such as an integrated circuit).
Referring now to
The ground shield 22 may also ground mating ends that are configured to mate with a respective ground shield or drain wire of the electrical cable. The ground mating ends can be defined by respective flexible forward arms 54 of the ground shield that extend in a forward direction from a front surface 19 of the connector housing 18. The forward direction can be oriented opposite the rearward direction. The forward direction can extend toward the electrical cables, including the twin axial cables and the respective electrical signal conductors. Conversely, the rearward direction can extend away from the electrical cables, including the twin axial cables and the respective electrical signal conductors. The cable contact pads 28 can also extend out from the connector housing 18 so as to be configured to be placed in electrical contact with respective electrical signal conductors. The forward arms 54 can extend forward from the front surface 19 to a location spaced forward of the cable contact pads 28. The forward arms 54 can define respective forward arm broadsides 56 that face one another and define a gap therebetween. The forward arms 54 can be configured to provide electromagnetic shielding of signal conductors of adjacent electrical cables that are mated to adjacent electrical connectors 15.
Referring now to
Referring now to
Referring again to
The contact members 58 that establish an electrical connection with the shield mounting ends 52 can be referred to as ground contact members. The contact members 58 that establish an electrical connection with the flexible signal blades 30 can be referred to as signal contact members. In one example, a plurality of the electrical connectors 15 can include a single common first shroud 66. Alternatively, each of the plurality of electrical connectors 15 can include its own first shroud 60 separate from the others of the plurality of electrical connectors 15.
In one example, the connector housings 18 can be biased against the first shroud 60 by the flexible signal blades 30 (
As described above, the cable contact pads 28 (
The first shroud 60 can be electrically connected, physically connected, or both to the ground shield 22 of one or more electrical connectors 15, or electrically isolated from the ground shield 22. The first shroud 60, and in particular an upper wall of the shroud that is disposed above the electrical connector 15, may define a first engagement member, such as a protrusion 64, that engages a second engagement member, such as a corresponding depression 66 defined by an electrical connector 15, to resist rotation of the electrical connector 15 with respect to the first shroud about an axis that defines the insertion direction ID. The protrusion 64 can apply a downward force that biases the electrical connector 15 toward the underlying substrate 14. For instance, the protrusion 64 can interfere with the connector housing 18 so as to limit motion of the electrical connector 15 relative to the substrate 14 along the longitudinal direction. In one example, the protrusion 64 can contact an upper surface of the electrical connector 15. In particular, the protrusion 64 can bear directly against the connector housing 18. Alternatively, the protrusion 64 can bear against an intermediate structure that, in turn, bears against the connector housing 18. It should thus be appreciated that the connector housing 18 can be disposed between the upper wall of the first shroud 60 and the substrate 14.
Further, in some examples, an electrically insulative spacer can be positioned between adjacent ones of the electrical connector 15. The protrusion 64 and the depression 66 can also engage one another to create a biasing force that urges each respective electrical connector 15 against the contact members 58 of the underlying substrate 14. The contact members 58 can be arranged in a repeating S-S-G-G-S-S or S-S-G-S-S configuration, whereby “S” represents a signal contact member, and “G” represents a ground contact member. Thus, at least one ground contact member can be disposed between adjacent pair of signal contact members. For instance, a pair of adjacent ground contact members can be disposed between adjacent pair of signal contact members. Alternatively, a single ground contact member can be disposed between an adjacent pair of signal contact members. For instance, the ground shield 22 can include only a single ground mating end and ground mounting end.
The data communication system 71 can include a second shroud 68 that supports the electrical cables 100 so as to define an electrical cable connector 23. The electrical connector 15 is configured to mate with the electrical cable connector 23 to define a cable connector assembly 21. Alternatively, the electrical connector 15 can mate with the respective at least one signal conductor of at least one unsupported electrical cable so as to define the cable connector assembly 21. The cable contact pads 28 of the electrical cable connector 23 are mated with respective electrical signal conductors 48 of at least one electrical cable 100. The signal conductors 48 can be defined by a pair of coaxial cables. Alternatively, the signal conductors 48 can be defined by a twin axial cable.
When the electrical connector 15 is mated with the cable connector 23, the first shroud 60 is configured to engage the second shroud 68, thereby retaining the electrical signal conductors 48 as mated to the respective at least one electrical connector 15. In one example, the first and second shrouds 60 and 68 can releasably lock with each other. The connector housing 18, and thus the electrical signal contacts 40 and 40a, can be disposed beneath the shrouds 60 and 68. That is, the connector housing 18, and thus the electrical signal contacts 40 and 40a, between the substrate 14 and the shrouds 60 and 68. Otherwise stated, the first and second shrouds 60 and 68 can extend over the connector housing 18, and thus the electrical signal contacts 40 and 40a. As described above, the signal conductors 48 can be defined by a twin axial cable. The twin axial cable can include first and second twin axial cable conductors 48, a cable shield wrap or braid 72, a cable ground bus 74, and an outermost dielectric insulator 76 that surrounds the conductors 48, the shield wrap or braid 72 and the cable ground bus 74. Further, the twin axial cable can further include respective dielectric insulators that surround respective ones of the cable conductors 48 so as to electrically isolate the cable conductors 48 from each other. The cable ground bus 74 can electrically connect to, or common, the cable shield wraps or braids 72 of the twin axial cables 100 together. The twin axial cable conductors 48 of each twin axial cable 100 can be rotated so the twin axial cable conductors 48 are stacked on top of each other along a direction that is perpendicular to the mounting surface of the underlying substrate 14. The second shroud 68 can include a rearwardly projecting second shroud arm 78 that extends along a side of one of the electrical connectors 15 when the electrical connector 15 is mated with the respective electrical cable.
Referring now to
Referring again to
As illustrated in
Thus, it should be appreciated that the height of the low-profile electrical connector 15 can advantageously be less than the height of the gap 85. The height of the low-profile electrical connector 15 can be measured along the transverse direction T. Thus, the electrical connector 15 can be sized to be mounted to the substrate 14, such that at least a portion of the connector housing 18, and thus at least a portion of the electrical connector 15, is disposed in the gap 85. Thus, at least a portion of the electrical connector 15 can be aligned with both the substrate 14 and the heat sink 79 along the transverse direction T. The portion of the electrical connector 15 can include the connector housing 18 and the first shroud 60. Advantageously, it should be appreciated that the combination of the IC 75, the heat sink 79, and the electrical connector 15 can occupy a reduced footprint on the underlying substrate 14 with respect to a data communication system whose electrical connector is not sized to fit in the gap 85. In one example, the electrical connector 15 can be mounted to the substrate 14 such that an entirety of the connector housing 18 can be disposed in the gap 85. Further, an entirety of the electrical connector 15 can be mounted to the underlying substrate 14 and disposed in the gap 85. It should be appreciated that a method can include the step of mounting the electrical connector to the substrate 14, such that at least a portion of the electrical connector 15 is disposed in the gap 85. The method can further include the step of mating the electrical connector 15 with the electrical cable in the manner described herein. The gap 85 can extend from the substantially planar bottom surface or planar portion of the bottom surface of the overhang 87 to the substrate 14. Alternatively, the gap can extend from a channel of the overhang 87 to the substrate 14.
Further, the cable connector assembly 21 can advantageously define a low profile. In one example, when the electrical connector 15 is mounted to the underlying substrate 14 and mated with the electrical cable connector, the cable connector assembly 21 can define a height H2. The height H2 of the electrical cable connector 23 can be at least 0.5 mm and less than 3 mm, such as 2 mm±0.5 mm or any value between 0.5 mm and 3 mm, including 0.5 mm and 3 mm. That is, in one example, the cable connector assembly 21 can have a height of no more than substantially 3.5 mm. The height H2 of the electrical cable connector 23 can be defined from the highest location of the second shroud 68 to the mounting surface of the underlying substrate 14. Otherwise stated, the height H2 of the electrical cable connector 23 can be defined by the distance along the transverse direction T from the mounting surface of the underlying substrate 14 to an uppermost surface of the electrical cable connector 23. In one example, the uppermost surface of the electrical cable connector 23 can be defined by the second shroud, though it should be appreciated that other designs of the electrical cable connector 23 are contemplated. The height of the cable connector assembly 21 can be the greater of H1 and H2.
The height H2 of the electrical cable connector 23 can advantageously be less than the height of the gap 85. Thus, the electrical cable connector 23 can be sized to be mounted to the substrate 14, such that at least a portion of the electrical cable connector 23 is disposed in the gap 85. Thus, at least a portion of the electrical cable connector 23 can be aligned with both the substrate 14 and the heat sink 79 along the transverse direction T. The portion of the electrical cable connector 23 can include the second shroud 68. Advantageously, it should be appreciated that the combination of the IC 75, the heat sink 79, the electrical connector 15, and the electrical cable connector 23 can occupy a reduced footprint on the underlying substrate 14 with respect to a data communication system whose electrical cable connector is not sized to fit in the gap 85.
It should further be appreciated that a portion of the cable connector assembly 21 can be disposed in the gap 85. Thus, at least a portion of the cable connector assembly 21 can be aligned with both the substrate 14 and the heat sink 79 along the transverse direction T. The portion of the cable connector assembly 21 can include at least a portion of the electrical connector 15 and a portion of the electrical cable connector 23. For instance, the portion of the electrical cable connector 23 can be defined by or otherwise include the second shroud 68. In one example, the portion of the cable connector assembly 21 can include an entirety of the electrical connector 15 and the portion of the electrical cable connector 23. Alternatively still, the portion of the cable connector assembly can include an entirety of the electrical connector 15 and an entirety of the portion of the electrical cable connector 23. The portion of the cable connector assembly can further include the electrical cables. The electrical cables can be configured as coaxial cables or twin axial cables as described above. The electrical cables can have any suitable height as desired. In one example, the electrical cables can have a height between substantially 1 mm and substantially 4 mm. In one example, the height of the twin axial cables can be substantially 1.5 mm.
Referring now to
Referring to
Alternatively, the mating ends of the signal contacts can be spaced from each other along the lateral direction. Thus, one of the mating ends can be spaced from the other of the mating ends in a direction parallel to the underlying substrate 14 when the electrical connector is mounted to the underlying substrate 14. In one example, the mating ends can be aligned with each other along the lateral direction. Thus, the signal conductors can similarly be spaced from each other along the lateral direction. In particular, one of the signal conductors can be spaced from the other of the signal conductors in a direction parallel to the underlying substrate 14 when the electrical connector is mated to the signal conductors and mounted to the underlying substrate 14. In one example, the signal conductors can be aligned with each other along the lateral direction.
Alternatively still, the mating ends of the signal contacts can be spaced from each other along an angled direction. The angled direction can define a non-perpendicular angle with each of the transverse direction T and the lateral direction A. The non-perpendicular angle can be disposed in a plane that is defined by the transverse direction T and the lateral direction A. In one example, the mating ends can be aligned with each other along the angled direction. Thus, the signal conductors can similarly be spaced from each other along the angled direction when the electrical connector is mated to the signal conductors and mounted to the underlying substrate 14. In one example, the signal conductors can be aligned with each other along the angled direction.
Further, the electrical signal contacts 40 and 40a and the signal conductors 100 can be designed to maintain a predetermined impedance, or minimize deviations from the predetermined impedance. In one example, the predetermined impedance can be substantially 80 Ohms, substantially 100 Ohms, or any suitable alternative impedance as desired. The impedance of substantially 80 Ohms or substantially 100 Ohms can be particularly applicable for differential signal pairs, though it should be appreciated that the predetermined impedance for differential signal pairs can vary as desired. Further, impedance of 80 Ohms or 100 Ohms can also be used when the at least one electrical contact of the electrical connector is single ended. In another example, the predetermined impedance can be substantially 50 Ohms, or any suitable alternative impedance as desired. The impedance of substantially 50 Ohms can be particularly applicable for single ended contacts, though it should be appreciated that the predetermined impedance for single ended contacts can vary as desired. Further, impedance of substantially 50 Ohms can also be used for differential signal contacts. In this regard, it should be appreciated that the impedance values described above are by way of example only.
Referring now to
The electrical connector 82 can further include a first or articulated ground shield 86 that is configured to bias the signal contacts 88 against respective contact members 58 of the underlying substrate 14. The electrical connector 82 can further include a second ground shield 108, and at least one ground wall 90 that is in electrical communication with the second ground shield 108. As is described in more detail below, the ground shield and the at least one ground wall 90 can be in physical contact with each other. The ground wall 90 can be configured to contact a corresponding ground contact member of the underlying substrate. The electrical connector 82 can further include a cover or shroud 92. The electrical connector 82 can be attached directly to the underlying substrate 14 via mounting hardware such as a bracket with fasteners, or by being received in a shroud that biases the electrical signal contacts 88 and the ground walls 90 against the contact members 58 of the underlying substrate 14.
Referring now to
The first ground shield 86 can include a biasing member configured as one or more spring fingers 104 that is configured to apply a mounting force to the differential signal contacts 88. For instance, the spring fingers can be configured to bias the dielectric spacer 84 against the differential signal contacts 88, which in turn biases the differential signal contacts 88 against respective contact members 58 of the underlying substrate 14. Thus, the spring fingers 104 can define biasing members that provide a force that urges the differential signal contacts 88 toward the respective contact members 58. While the dielectric spacer 84 is shown separate from the spring fingers 104, it should be appreciated that the dielectric spacer 84 can alternatively be carried by the spring fingers 104. The first ground shield 86 can be further configured to electrically contact the cable shield wrap or braid 72. The spring fingers 104 can also be configured to bias the dielectric spacer 84, and thus the differential signal contacts 88, toward the underlying substrate 14.
The electrical connector 82 can further include a first elastic electrically conductive ground gasket 106 that is configured to provide electrical ground/reference continuity between the articulated ground shield 86 and the cover 92 of the electrical connector 82. The cover 92 can be formed from an electrically conductive plastic, metal, or electrically conductive lossy material. As described above with respect to the electrical connector 15, the electrical connector 82 can define a height that can be at least 0.5 mm and less than 3 mm, such as 2 mm 0.5 mm or any value between 0.5 mm and 3 mm, including 0.5 mm and 3 mm.
Referring now to
It should be appreciated that the electrical connector can define at least one electrical ground cage around the signal contacts. For instance, one or more up to all of the ground wall 90, the base section 110, the first ground shield 86, the cover 92, and the gasket 106 all be grounded, and can combine so as to define at least one electrical ground cage around the signal contacts 88. The electrical ground cage can be configured as a Faraday cage that provides shielding to the signal contacts 88 and to the interface between the signal contacts 88 and the signal conductors of the electrical cable.
Referring now to
The electrical connector 101 can further include a cover or shroud 93 and a biasing member 116 that is braced against the cover. The biasing member 116 can be configured as a cantilevered or leaf spring. The biasing member 116 can be electrically conductive. The biasing member 116 can bear against the cable shield wrap or braid 72 of the electrical cable 100, or otherwise bear against the electrical cable 100. The electrical cable 100, including the signal conductor and cable shield wrap or braid 72 can bend elastically and/or plastically, for instance under the force provided by the biasing member 116.
The biasing member 116 can be positioned between the cover 92 and the electrical cable 100, and in particular the cable shield wrap or braid 72. In this regard, the biasing member 116 can also be referred to as a ground beam that is in electrical communication with the cable shield wrap or braid 72. The ground beam can be in contact with the cover 93 at least at one location. For instance, the ground beam can be in contact with the cover 93 at a plurality of locations, such as two locations, that are spaced apart from each other along the length of the ground beam. Thus, the ground beam can define a reliable ground reference, while minimizing the formation of antennas. Further, the biasing force of the cover 93 against the ground beam at more than one location can allow the ground beam to have a thin construction, while maintaining an appropriate biasing force, thereby contributing to the low profile of the electrical connector 101.
The electrical connector 101 can further include an electrically insulative spacer 114 positioned between the biasing member 116 and the respective signal conductor 48. The biasing member 116 can provide a force that urges the electrically insulative spacer 114 against the signal conductor 48. The force, in turn, can bias the signal conductor 48 against the electrically conductive spacer 118, which biases the electrically conductive spacer against the respective signal contact member 58. Thus, the biasing member 116 can provide a force that places the signal conductor 48 in electrical communication with the respective signal contact member 58. In one example, the electrically insulative spacer 114 can be attached to the signal conductor 48. It should be appreciated that in one example, the force applied by the biasing member 116 can be separate from the signal conductor 48. Thus, the biasing force that urges the electrically conductive spacer 118 against the signal contact member 58 is not defined by the stiffness of the spacer 118, the signal conductor 48, or the cable shield wrap or braid 72. Rather, the biasing force is provided by the biasing member 116 that is separate from each of the spacer 18, the signal conductor 48, and the cable shield wrap or braid 72. Further, the biasing member 116 can be elongate along a length that can at least partially overlap the cable 100 in a plane that is defined by the lateral direction and the transverse direction. In one example, a majority of the length of the biasing member 116 can overlap the cable 100. Thus, the length of the biasing member 116 that extends out from the cable 100 is minimized, thereby minimizing the occupied real estate on the substrate 114.
As illustrated in
As illustrated in
Referring now to
The electrical connector 101 can include the signal contact 120 can be supported by an electrically insulative connector housing 18 (see
Referring now to
As shown in
Referring now also to
It should be appreciated that the electrical connector can define at least one electrical ground cage around the signal contacts 120. For instance, one or more up to all of the ground contact 134, the ground bus 132, and the spring fingers 104 can all be grounded, and can combine so as to define at least one electrical ground cage around the signal contacts 120. The electrical ground cage can be configured as a Faraday cage that provides shielding to the signal contacts 120 and to the interface between the signal contacts 120 and the signal conductors of the electrical cable.
Referring now to
The cover 92 is configured to mate and releasably lock with the first shroud 60 of the electrical connector 101. The spring fingers 104 of the second cable ground bus 132 can brace against the cover 92 so as to bias the signal pins 120 and the compressible ground contacts 134 against the respective contact members 56 of the underlying substrate 14. The electrical connector can define a height from the uppermost surface of the first shroud 60 and the mounting surface of the substrate 14 that can be at least 0.5 mm and less than 3 mm, such as 2 mm±0.5 mm or any value between 0.5 mm and 3 mm, including 0.5 mm and 3 mm and all 0.5 mm intervals therebetween. Thus, the electrical connector 101 can be mounted to the substrate 14 such that a portion of the electrical connector 101 is disposed in the gap 85 (see
Referring now to
Further, the data communication system 71 can further include a heat sink 154 that is in thermal contact, or otherwise in thermal communication, with the transceiver 77 (see
In one example, the thermal management system 141 can include a baffle 144 that at least partially defines the at least one airflow path in combination with at least one wall of the system tray 150. The baffle 144 can be configured to direct airflow through the system tray 150 in a predetermined manner. The baffle can be generally closed with respect to airflow therethrough. In one example, the baffle 144 includes a first or top baffle wall 162a and a second or bottom baffle wall 162b opposite the first baffle wall 162a along the transverse direction T. The first and second baffle walls 162a and 162b can define a plenum 164 that contains one or more up to all of the substrate 14, the integrated circuit 75, at least one electrical connector 208, a low speed printed circuit board 166. In this regard, it should be appreciated that the substrate 14 can be configured as a high speed printed circuit board, so as to route signals to and from the integrated circuit 75 at high speeds. The low speed printed circuit board 166 of the data communication system 71 can be configured to transmit data at lower speeds to other data communication components that are mounted to the PCB 166. The at least one electrical connector 208 can be configured as the electrical connector 15, the electrical connector 101, the electrical connector 82, or any suitable alternatively constructed low-profile connector.
The at least one electrical connector 208 can be mounted to a respective mounting surface of the substrate 14, as described above. For instance, a first or top plurality of electrical connectors 208 can be mounted to a first or top surface of the substrate 14, such that a respective first or top plurality of electrical cables 100 place respective ones of the first or top plurality of electrical connectors 208 in electrical communication with the first or top transceivers 77. A second or bottom plurality of electrical connectors 208 can be mounted to a second or bottom surface of the substrate 14, such that a respective second or bottom plurality of electrical cables 100 place respective ones of the second or bottom plurality of electrical connectors 208 in electrical communication with the second or bottom transceivers 77. The first plurality of electrical connectors 208 can be arranged along a respective first row that extends along a lateral direction that is perpendicular to each of the longitudinal direction L and the transverse direction T. Similarly, the second plurality of electrical connectors 208 can be arranged along a respective second row that extends along the lateral direction.
A first airflow path 158a can be defined between the first baffle wall 162a and the first enclosure wall 148a. In particular, the first airflow path 158a can be defined between an outer surface of the first baffle wall 162a and an inner surface of the first enclosure wall 148a. At least one or both of the outer surfaces of the first baffle wall 162a and the inner surface of the first enclosure wall 148a can be polished to reduce frictional forces with the fluid as the fluid flows across the respective surfaces. Further, the outer surface of the first baffle wall 162a can define any suitable shape as desired. In one example, the outer surface can have a drag coefficient less than or equal to 0.04 to 1, including any value there between plus/minus 0.01, such as 0.8 and 0.09.
The first airflow path 158a can extend across the heat sink 154 of the first transceiver 77, such that forced air traveling through the first airflow path 158a can remove heat produced by the first transceiver 77. A second airflow path 158b can be defined between the second baffle wall 162b and the second enclosure wall 148b. In particular, the second airflow path 158b can be defined between an outer surface of the second baffle wall 162b and an inner surface of the second enclosure wall 148b. At least one or both of the outer surfaces of the second baffle wall 162b and the inner surface of the second enclosure wall 148b can be polished to reduce frictional forces with the fluid as the fluid flows across the respective surfaces. Further, the outer surface of the second baffle wall 162b can define any suitable shape as desired. In one example, the outer surface can have a drag coefficient less than or equal to 0.04 to 1, including any value there between plus/minus 0.01, such as 0.8 and 0.09.
Forced air traveling through the second airflow path 158b removes heat from the substrate 14. The second airflow path 158b can further extend across the heat sink 154 of the second transceiver 77, such that forced air traveling through the second airflow path 158b removes heat produced by the second transceiver 77. The heat sink 79 can extend through an aperture 167 of the first baffle wall 162a and into the corresponding first airflow path 158a. Thus, at least a portion up to an entirety of the heat dissipation members 81 can be disposed in the first airflow path 158a. The heat dissipation members 81 can extend toward the respective first enclosure wall 148a.
The thermal management system 141 can further include at least one air mover 142 that is in communication with each of the first and second airflow paths 158a and 158b. The air mover 142 can be housed in an air mover enclosure of the tray enclosure 160. The at least one air mover 142 can be configured to draw or otherwise induce forced air to flow through the enclosure 160 that is bifurcated by the baffle 144. In one example, the at least one air mover 142 can be configured as a fan. The forced air can flow in the first and second airflow paths 158a and 158b around the baffle 144. The first and second airflow paths can extend generally parallel to each other along the longitudinal direction L. Each airflow path 158a and 158b can extend between the baffle 144 and opposed top and bottom enclosure walls 148a and 148b, respectively, of the system tray 150. It should be appreciated that the at least one air mover 142 can be positioned equidistantly between the first and second airflow paths 158a and 158b.
Alternatively, the at least one air mover can be positioned more in alignment with the first airflow path 158a, as the cooling demands in the first airflow path 158 can be greater than those in the second airflow path 158b. In particular, as described above, the heat sink 79 of the integrated circuit 75 can extend into the first airflow path 158a. Alternatively or additionally, the data communication system 71 can be positioned in the system tray 150 offset with respect to a midline between the first and second enclosure walls 148a and 148b, such that the first airflow path 158a has a greater cross-sectional area than the first airflow path 158b.
Further, in some examples, an auxiliary baffle can be positioned in the first airflow path 158a that directs the airflow in the first airflow path 158a through the heat dissipation members 81. For instance, the auxiliary baffle can be positioned between the heat dissipation members 81 and the first enclosure wall 148a to direct forced air through the heat dissipation members 81. In one example, the auxiliary baffle can extend from the heat dissipation members to the first baffle wall 162a. The auxiliary baffle can be thermally conductive to assist with heat dissipation from the heat dissipation members 81. Further, the auxiliary baffle can be a compliant structure to absorb forces from the first baffle wall 162a, thereby isolating the forces from the heat sink 79. In one example, the auxiliary baffle can be configured as a thermally conductive foam.
Each of the baffle walls 162a and 162b, and thus the baffle 144, can define a first end 145 and a second end 147 opposite the first end 145. The first end 145 can be a tapered end. That is, the first and second baffle walls 162a and 162b can converge toward each other in the direction of airflow of the forced air. The tapered first end can have a shape that is defined by two converging curved lines, each defined be respective ones of the baffle walls 162a and 162b. The two converging curved lines can be curved more or less to achieve a desired airflow over and past the tapered end 145. While the first end 145 can be tapered as described above in one example, it should be appreciated that the end 145 can define any suitable alternative shape as desired, so as to adjust the corresponding airflow characteristics as the airflow travels over the first end 145. For instance, the first end 145 can be curved, triangular, rectangular, or can define any suitable alternative shape as desired. As illustrated in
The second ends 147 of the baffle walls 162a and 162b can abut respective ones of the cages 163 or the transceivers 77 so as to prevent the flow of air into the plenum 164. In this regard, the baffle walls 162a and 162b can be thermally conductive, thereby dissipating heat produced by the transceivers 77, which can be removed as the forced air travels along the baffle walls 162a and 162b. Alternatively, the second ends 157 of the baffle walls 162a and 162b can be spaced from the respective ones of the cages 163. It should be appreciated that the baffle walls 162a and 162b can be made of any suitable thermally conductive or nonconductive material as desired.
The at least one air mover 142 can be disposed in a neutral position so as to induce substantially equal volumetric airflow rates through the first and second airflow paths 158a and 158b. However, it is recognized that it may be desirable to adjust the volumetric airflow rates of the airflow traveling along the first and second airflow paths 158a and 158b depending on the heat dissipation needs of the data communication system 71. For instance, if it is desired to remove more heat from the first or top components of the data communication system 71 or the second or bottom components of the data communication system 71, the airflow induced by the at least one air mover 142 in the first and second airflow paths 158a and 158b can be adjustable accordingly. For instance, in a first adjusted position, the air mover 142 is more aligned with the first airflow path 158a than the second airflow path 158b. Thus, the air mover 142 in the first adjusted position induces greater airflow in the first airflow path 158 than in the second airflow path 158b. Alternatively, if it is desired to remove more heat from the second or bottom components of the data communication system 71 as opposed to the first or top components of the data communication system 71, the air mover 142 can move to a second adjusted position that is more aligned with the second airflow path 158b than the first airflow path 158a. Thus, the air mover 142 in the first adjusted position induces greater airflow in the first airflow path 158a than in the second airflow path 158b. The air mover 142 can be movable in a first direction toward the first position, and a second direction toward the second position. The first and second positions can be opposite each other. Further, the air mover can be positioned anywhere between and including the first and second positions so as to control the ratio of the volumetric air flow between the first and second air flow paths.
The first and second positions can be angulated positions of the at least one air mover 142. That is, the at least one air mover 142 can angulate between the first and second adjusted positions. Alternatively or additionally, the first and second positions can be translated positions of the at least one air mover 142. That is, the at least one air mover 142 can translate between the first and second adjusted positions.
Thus, the data communication system 71 can include at least one temperature sensor that is configured to output an indication of the temperature in the enclosure 160. For instance, at least one first temperature sensor 170 can output an indication of the temperature in the first airflow path 158a, of a corresponding at least one of the components of the data communication system in thermal communication with the first airflow path 158a, or both. Examples of components of the data communication system 71 in thermal communication with the first airflow path 158a can include the first transceiver 77, the first plurality of electrical connectors 208, the integrated circuit 75, or combinations thereof. The data communication system can further include at least one second temperature sensor 172 that is configured to output an indication of the temperature in the second airflow path 158b, of a corresponding at least one of the components of the data communication system 71 in thermal communication with the second airflow path 158b, or both. Examples of components of the data communication system 71 in thermal communication with the second airflow path 158b can include the second transceiver 77, the second plurality of electrical connectors 208, the substrate 14, or combinations thereof.
The data communication system 71 can further include a controller that is in communication with the at least one temperature sensor in the enclosure. The controller can be configured to receive an output from the at least one temperature sensor and adjust a volumetric flow rate of the airflow through at least one of the first and second airflow paths based on the output from the at least one temperature sensor. The at least one temperature sensor can include the at least one first temperature sensor 170 and the at least one second temperature sensor 172. The controller is configured to modulate a volumetric flow rate of the airflow through the first and second airflow paths depending on an output from the at least one temperature sensor 172. The data communication system 71 can further include at least one actuator that is in communication with the controller, and configured to urge the corresponding at least one actuator to move between the neutral position, the first adjusted position, and the second adjusted position. When the controller receives inputs from either of the first and second temperature sensors that a sensed temperature is above a first predetermined threshold, the controller can cause the actuator to move the actuator to one of the first and second adjusted positions accordingly. If the controller receives inputs from the first and second temperature sensors that all of the sensed temperatures are below a second predetermined threshold, the controller can reduce the speed of the air mover 142, for instance if the air mover 142 includes a variable speed drive. In this regard, the data communication system 71 can produce energy savings while maintaining the electrical components at desired operating temperatures. The second predetermined threshold can be less than the first predetermined threshold. Alternatively, the second predetermined threshold can be equal to the first predetermined threshold.
Alternatively or additionally, referring to
Alternatively or additionally still, referring now to
When the adjustable baffle arm 178 is in the first position, the baffle arm 178 can define a necked-down region in the second airflow path 158b. Alternatively or additionally, when the adjustable baffle arm 178 is in the first position, the baffle arm 178 can induce turbulence in the airflow of the second airflow path 158b. Thus, a majority of the airflow induced by the air mover 142 will flow through the first airflow path 158a when the baffle arm 178 is in the first position. When the temperature in the first airflow path 158a is above a respective first predetermined threshold, the adjustable baffle arm 178 can be moved to the first position.
When the adjustable baffle arm 178 is in the second position, the baffle arm 178 can define a necked-down region in the first airflow path 158a. Alternatively or additionally, when the adjustable baffle arm 178 is in the second position, the baffle arm 178 can induce turbulence in the airflow of the first airflow path 158a. Thus, a majority of the airflow induced by the air mover 142 will flow through the second airflow path 158b when the baffle arm 178 is in the second position. When the temperature in the second airflow path 158b is above a respective second predetermined threshold, the adjustable baffle arm 178 can be moved to the second position. The adjustable baffle arm 178 can be in a neutral position between the first and second positions, whereby the baffle arm 178 does not affect either of the first and second airflow paths 158a and 158b relative to the other of the first and second airflow paths 158a and 158b.
It should be appreciated that while the data communication system 71 has been described as including various examples of systems and methods that are configured to modulate the volumetric airflow rates in the first and second airflow paths 158a and 158b, the described systems ad methods are not exhaustive. It is recognized, however, that the systems and methods can include any suitable alternative system or method for modulating the volumetric airflow rates through one or both of the airflow paths 158a and 158b.
Referring now to
Referring now to
The data communication cables 181 can be routed along a predetermined path between the first and second data communication devices 182 and 183, respectively, and placed in the uncured adhesive 188. The adhesive can then be allowed to cure, thereby fixing the position of the data communication cables 181 that extend through the adhesive 188. In this regard, the adhesive is configured to adhere to both the first and second substrates 184 and 192, and can further adhere to an outermost dielectric insulator of the data communication cables 81. The data communication cables 181 that extend through the adhesive 188 are thereby positionally fixed with respect to each other. Advantageously, the data communication cables 181 can be routed as desired and then permanently fixed in the laminate 179. The cured adhesive 188 prevents a user from unintentionally removing or repositioning the data communication cables 181, as the cured adhesive 188 is bonded to both the first substrate 184 and the data communication cables 181. The data communication cables 181 extending through the adhesive 188 can be spaced from each other as desired. Alternatively, the data communication cables 181 can intersect each other in the adhesive 188.
The second outer surface 186 of the substrate 184 can define a first outer surface 187 of the laminate 179. Accordingly, the first outer surface 187 of the laminate 179 can be flexible before the adhesive is cured. The first outer surface 187 of the laminate 179 can be rigid after the adhesive 188 has cured. It should be appreciated, of course, that the laminate 179 can be flexible or rigid before curing, and flexible or rigid after curing depending on the desired end application. In this regard, the cured adhesive 188 can be rigid after it has been cured. Alternatively, the adhesive 188 can be flexible after it has been cured. The cured adhesive 188 can at least partially define a second outer surface 189 of the laminate 179 that is opposite the first surface. In one example illustrated in
Alternatively, referring to
Referring now to
Next, the first substrate 184 can be positioned on a support surface, such that the first attachment surface 185 is exposed. In this regard, it should be appreciated that the first attachment surface 185 and the second outer surface 186 can be monolithic with each other, and thus made of the same material. Thus, the first attachment surface 185 can be defined by whichever of the surfaces of the first substrate 184 is exposed. Alternatively, the first attachment surface 185 can be pretreated with a bonding agent that can increase the adherence to the adhesive 188.
Next, a first portion of a layer 191 of uncured adhesive 188 can be applied to the first attachment surface 185 of the first substrate 184. For instance, the uncured adhesive 188 can be expelled from a dispenser 193 onto the first substrate 184. Next, the cables 181 can be routed onto the first substrate 184 along respective routing paths. Thus, the cables can be at least partially embedded in the first layer of adhesive 188 as they extend along the first substrate 184. The cables 181 can be routed manually or with a cable routing machine. Next, a second portion of the layer 191 of uncured adhesive 188 can be applied to the cables 181 so as to embed a greater portion of the cables 181, which can include a portion up to an entirety of the outer perimeter of the cables 181. Alternatively, a single application of adhesive 188 can be applied before or after the cables 181 are placed along the first substrate 184 on their respective routing paths.
Next, the adhesive 188 can be allowed to cure, thereby defining the laminate 179. Alternatively, the second substrate 190 can be applied to the adhesive 188 prior to the curing step. In particular, the first attachment surface 192 of the second substrate 190 can engage against the adhesive 188. In this regard, it should be appreciated that the first attachment surface 192 and the second outer surface 194 can be monolithic with each other, and thus made of the same material. Thus, the first attachment surface 192 can be defined by whichever of the surfaces of the second substrate 194 is placed against the adhesive 188. Alternatively, the first attachment surface 192 can be pretreated with a bonding agent that can increase the adherence to the adhesive 188. Thus, it should be appreciated that the same adhesive 188 that bonds to the first substrate 184 also bonds to the second substrate 190.
Next, the adhesive 188 can be allowed to cure, thereby solidifying the adhesive 188 around at least a portion of the cables 181 and fixing the cables 181 in place, and also bonding the first and second substrates to each other. In one example, the assembly of the first and second substrates 184 and 190, adhesive 188, and cables can be laminated in a vacuum, thereby removing air bubbles before the adhesive cures 188. In this regard, if one or both of the first and second substrates 184 and 190 is a mesh fabric, the porosity of the mesh fabric can allow air to escape therethrough, assisting in the removal of air bubbles. The adhesive 188 can be allowed to cure. Next, the opposed first and second ends of the cables 181 can be prepared for termination, such that the respective signal conductors and drain wire, if applicable, are exposed and configured to be attached to the first and second data communication devices 182 and 183, respectively. Finally, the first ends of each cable 181 can be attached to a respective first one of the first and second data communication devices 182 and 183, and the second end of each cable 181 can be attached to a respective second one of the first and second data communication devices 182 and 183.
It should be appreciated that the cables 181 can be bent both in-plane with respect to the at least one substrate and out of plane with respect to the at least one substrate when the cables 181 are routed. The flexibility of the at least one substrate before the adhesive has cured can allow the at least one substrate to conform to the bent cables 181 that are routed according to their desired routing path. Once the adhesive 188 has cured, the laminate 179 can have the structural rigidity of a rigid or flexible printed circuit board, but can also have the signal performance of the cables 181. The rigid at least one substrate can have a predetermined shape that corresponds to the respective routing paths of the cables 181. The routing paths of the cables 181 can be the same as each other or different than each other. For instance, the cables 181 can extend parallel with each other through the laminate 179 along a common routing path. Alternatively, the cables 181 can extend in different directions so as to define respective different routing paths. Further, the routing paths cables 181 can be individually adjustable through the laminate 179 prior to curing of the adhesive. In on example, one or more of the cables 181 can cross over one or more others of the cables 181 in the laminate 179 as the cables extend along their respective routing paths. In examples where the laminate 179 is rigid, the routing paths of the respective cables 181 can be fixed. In examples where the laminate is flexible, the routing paths of the respective cables can be fixed with respect to either or both of the substrates 184 and 192. Thus, a routing path as described herein can be fixed when the laminate 179 is rigid, such that the cables are not movable in the laminate 179. A routing path as described herein can also be fixed when the laminate is flexible, and the routing path is fixed with respect to either or both of the first and second substrates 184 and 190. In some example, when the laminate 179 is flexible after the adhesive 188 has cured, the laminate 179 can be bendable such that the routing paths of at least one or more of the cables 181 is constant relative to the routing path of at least one or more other ones of the cables. Further, respective middle portions of the cables 181 can extend through the laminate 179, such that opposed lengths of the cables 181 extend from the laminate toward the respective communication devices that electrically connect with their opposed respective terminations. Alternatively, the laminate 179 can extend to one or both of the communication devices that electrically connect with the opposed respective terminations of the cables 181.
As illustrated in
It should be appreciated that the laminate 179 can include any number of substrates as desired that are stacked on top of each other and attached to each other by an adhesive, wherein at least one data communication cable 181 is routed through the adhesive in the manner described above. Further, it should be appreciated that a plurality of laminates can be arranged in series with each other. Thus, the laminates can extend along different respective lengths of at least one cable 181. The laminates 179 arranged in series with each other can define air gaps therebetween. Thus, the at least one cable 181 can be routed through a plurality of different laminates 179 in the manner described above. The at least one data communication cable 181 can include a plurality of data communication cables 181 in the manner described above.
Referring now to
Referring now to
The electrical connectors 208 can be configured as cable connector assemblies 21. Thus, the electrical connectors 208 can include an electrically insulative connector housing, and a plurality of electrical contacts supported by the connector housing. The electrical contacts can be placed in electrical communication with the integrated circuit 206. The electrical contacts can further be placed in electrical communication with at least one electrical cable in any suitable manner as desired, including any manner described herein, such as a plurality of electrical cables that extend out from the connector housing. The electrical connectors 208 can be mounted to the first surface 202 of the substrate 14. The electrical connectors 208 can further be arranged so as to surround that integrated circuit 206 along a plane that is oriented normal to the select direction. In one example, the electrical connectors 208 can be configured identical to each other. It should be appreciated, of course, that the electrical connectors 208 can be alternatively configured in accordance with any suitable embodiment as desired.
When the electrical connectors 208 are mounted to the first surface 202 of the substrate 14, the electrical connectors 208 can be arranged in a plurality of rows 220. Some of the rows 220 can intersect one or more others of the rows 220. The rows 220 can be linear along a direction that is perpendicular to the select direction. Alternatively, the rows 220 can be curved along a plane that is perpendicular to the select direction. The rows 220 can include a first row 220a and a second row 220b that are opposite each other along a first direction that is perpendicular to the select direction. The rows 220 can further include a third row 220c and a fourth row 220d that are opposite each other along a second direction that is perpendicular to each of the select direction and the first direction.
The rows 220a-220d can be arranged along respective lines that intersect the lines of respective others of the rows at respective intersections 221. For instance, the line defined by the first row 220a can intersect the lines defined by the third and fourth rows 220c-d. The line defined by the second row 220b can also intersect the lines defined by the third and fourth rows 220c-d. The line defined by the third row 220c can intersect the lines defined by the first and second rows 220a-b. Similarly, the line defined by the fourth row 220cd can intersect the lines defined by the first and second rows 220a-b. The integrated circuit 206 can be centrally disposed with respect to the rows 220 (and thus the lines that are defined by the rows 220) in a respective plane that is perpendicular to the select direction. The lines can define any suitable geometric shape as desired. For instance, in one example, the lines can define a square.
The electrical component 200 can further include a second plurality of electrical connectors 209 that are mounted to the second surface 204 of the substrate 14. The second plurality of electrical connectors 209 can be configured as the electrical connector 15, the electrical connector 101, the electrical connector 82, or any suitably constructed low-profile connector. The second plurality of electrical connectors 209 can be in electrical communication with the integrated circuit 206 in the manner described above with respect to the electrical connectors 208. The electrical connectors 208 can be referred to as a first plurality of electrical connectors. The second electrical connectors 209 can be constructed identical to each other and to the electrical connectors 208. Thus, the second electrical connectors 209 can be configured as electrical cable connectors. The second electrical connectors 209 can be mounted to the second surface 204 of the substrate 14. Further, the electrical connectors 208 can be aligned with respective ones of the second electrical connectors 209 along the select direction. It should be appreciated, of course, that the electrical connectors 208 can be alternatively configured in accordance with any suitable embodiment as desired.
It is recognized that the integrated circuit 206 can generate heat during operation, and that it can be desirable to dissipate the generated heat from the electrical component 200. Thus, the electrical component 200 can include a heat sink 210 that is configured to be placed in thermal communication with the integrated circuit 206 so as to dissipate heat from the electrical component. The heat sink 210 can comprise any suitable thermally conductive material. For instance, the heat sink 210 can be metallic. Further, the heat sink 210 can include a plurality of fins that project outward in the select direction. In one example, the heat sink 210 can be placed in conductive thermal communication with the integrated circuit 206. For instance, the heat sink 210 can be placed in physical contact with the integrated circuit 206. Alternatively, the heat sink 210 can be placed in conductive thermal communication with the integrated circuit 206 through an intermediate structure that is disposed between the integrated circuit 206 and the heat sink 210 in the select direction.
In one example, the heat sink 210 can define a surface 212 that faces an opposed direction that is opposite the first direction. Thus, the surface 212 can face one or both of the substrate 14 and the integrated circuit 206. The heat sink 210 can define a first region 214 that is configured to be placed in thermal communication with the integrated circuit 206, and a second region 216 that is both offset from the first region 214 along a direction perpendicular to the select direction, and recessed from the first region 214 in the select direction. Respective portions of the surface 212 can be defined by both the first region 214 and the second region 216. In particular, the first region 214 can transfer heat from the integrated circuit 206 to the heat sink 210 by way of thermal conduction. The first region 214 can be configured to transfer heat by way of thermal conduction from a surface of the integrated circuit 206 that faces the select direction. In one example, the first region 214 can be configured to physically contact the surface of the integrated circuit 206. Alternatively, the first region 214 can be configured to physically contact an intermediate structure that, in turn, physically contacts the integrated circuit 206. The surface 212 at each of the first and second regions 214 and 216, respectively, can be substantially planar. For instance, the surface 212 at each of the first and second regions 214 and 216, respectively, can be oriented along respective planes that are substantially perpendicular to the select direction. The plane defined by the surface 212 at the second region 216 can be offset with respect to the plane defined by the surface 212 at the first region 214 in the select direction. The term “substantially” as used herein can reflect manufacturing tolerances, otherwise reflect measurements within 10%, or both.
The second region 216 of the heat sink 210 can be spaced from the first surface 202 of the substrate 14 in the select direction when the first region 214 is in thermal communication with the integrated circuit 206. For instance, in one example, the second region 216 can rest against at least one or more of the electrical connectors 208. Alternatively, the second region 216 can be spaced from the electrical connectors 208 in the select direction. In one example, as described in more detail below, the second region 216 can define channels that receive respective ones of the electrical connectors 208. For instance, the channels can receive respective rows of the electrical connectors 208. The second region 216 can continuously surround an entirety of an outer perimeter of the first region 214 with respect to a plane that is normal to the select direction. In one example, the second region 216 can be substantially planar along the plane that is normal to the select direction.
The heat sink 210 can be configured to be secured relative to the substrate 14 such that the heat sink 210 is in thermal communication with the integrated circuit 206 in the manner described above. When the heat sink 210 is secured relative to the substrate 14, the heat sink 210 can be secured with respect to movement relative to the substrate 14. In one example, the electrical component 200 can include a bracket 218 that is configured to mechanically fasten to the heat sink 210 so as to secure the heat sink 210 to the substrate 14. The bracket 218 can be positioned such that the substrate 14 is disposed between the bracket 218 and the heat sink 210 in the select direction. Thus, the substrate 14 can be captured between the heat sink 210 and the bracket 218. The electrical component 200 can further include a plurality of mechanical fasteners 222 that extend from the heat sink 210 to the bracket 218 so as to mechanically secure the heat sink 210 relative to the substrate 14 such that the first region 214 is in thermal communication with the integrated circuit 206. For instance, the mechanical fasteners 222 can be configured as screws that extend from the heat sink 210 through the substrate 14 and threadedly mate with the bracket 218. In one example, the mechanical fasteners 222 can extend through the substrate 14 at the intersections 221. Thus, the substrate 14 can define through holes at the intersections 221, the through holes sized to receive respective ones of the fasteners 222.
It should be appreciated that the present disclosure includes methods for constructing the electrical component 200, including the step of securing the heat sink 210 relative to the substrate 14, such that the first region 214 is in thermal communication with the integrated circuit 206, and the second region 216 is spaced from the substrate 14 in the select direction. The present disclosure further includes methods for dissipating heat from the integrated circuit 206 through the heat sink 210.
Referring now to
The second region 216 can define a plurality of channels 217 that are configured to receive respective ones of the electrical connectors when the first region 214 is in thermal communication with the integrated circuit 206, and the second region 216 abuts the first surface 202 of the substrate 14. Further, the channels 217 can receive at least a portion of a length of cables that extend out from the respective electrical connectors 208 that are received by respective ones of the channels 217. The channels 217 can extend into the surface 212 at the second region 216 in the select direction. In one example, the channels 217 terminate in the heat sink 210 without extending through the heat sink 210 in the select direction. In one example, the heat sink 210 can include a number of channels that is equal to the number of rows defined by the electrical connectors 208. The heat sink 210 can further include at least one divider wall 219 disposed in the channels 217 that separate respective adjacent ones of the electrical connectors 208 along the respective row. During operation, when the fasteners are attached to the bracket 218, the surface 212 of the heat sink 210 at the second region 216 can bear against the first surface 202 of the substrate 14 while the bracket 218 bears against the second surface 204 of the substrate 14, thereby reducing or minimizing warping of the substrate 14 under forces provided by the fasteners. Further, in one example, the divider walls 219 can bear against the first surface 202 of the substrate 14 when the heat sink 210 is secured relative to the substrate 14.
It will thus be appreciated that the method of constructing the electrical component 200 can include the step of securing the heat sink 210 relative to the substrate 14, such that the first region 214 is in thermal communication with the integrated circuit 206, and the second region 216 abuts the substrate 14.
Although there has been shown and described the preferred embodiment of the present disclosure, it will be readily apparent to those skilled in the art that modifications may be made thereto which do not exceed the scope of the appended claims. The embodiments described in connection with the illustrated embodiments have been presented by way of illustration, and the present invention is therefore not intended to be limited to the disclosed embodiments. Furthermore, the structure and features of each the embodiments described above can be applied to the other embodiments described herein. Accordingly, those skilled in the art will realize that the invention is intended to encompass all modifications and alternative arrangements included within the spirit and scope of the invention, as set forth by the appended claims.
This is a continuation of U.S. patent application Ser. No. 16/764,142 filed May 14, 2020, which is the National Stage Application of International Patent Application No. PCT/US2018/060923, filed Nov. 14, 2018, which claims priority to U.S. Patent Application Ser. No. 62/586,135 filed Nov. 14, 2017, U.S. Patent Application Ser. No. 62/614,626 filed Jan. 8, 2018, U.S. Patent Application Ser. No. 62/726,833 filed Sep. 4, 2018, U.S. Patent Application Ser. No. 62/727,227 filed Sep. 5, 2018, and U.S. Patent Application Ser. No. 62/704,025 filed Oct. 9, 2018, the disclosure of each of which is hereby incorporated by reference as if set forth in its entirety herein.
Number | Date | Country | |
---|---|---|---|
62586135 | Nov 2017 | US | |
62614626 | Jan 2018 | US | |
62726833 | Sep 2018 | US | |
62727227 | Sep 2018 | US | |
62704025 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16764142 | May 2020 | US |
Child | 17936013 | US |