Data compression and communication using machine learning

Information

  • Patent Grant
  • 11468355
  • Patent Number
    11,468,355
  • Date Filed
    Wednesday, October 6, 2021
    4 years ago
  • Date Issued
    Tuesday, October 11, 2022
    3 years ago
Abstract
A method of communicating information, comprising modeling a stream of sensor data, to produce parameters of a predictive statistical model; communicating information defining the predictive statistical model from a transmitter to a receiver; and after communicating the information defining the predictive statistical model to the receiver, communicating information characterizing subsequent sensor data from the transmitter to the receiver, dependent on an error of the subsequent sensor data with respect to a prediction of the subsequent sensor data by the statistical model. A corresponding method is also encompassed.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This Application relates to provisional U.S. Application No. 62/813,664, filed Mar. 4, 2019 and entitled “SYSTEM AND METHOD FOR DATA COMPRESSION AND PRIVATE COMMUNICATION OF MACHINE DATA BETWEEN COMPUTERS USING MACHINE LEARNING,” which is hereby incorporated by reference in its entirety.


BACKGROUND
Technical Field

The present disclosure relates to the field of data compression, and more particularly to lossy compression of data based on statistical properties, e.g., for storage and communication of sensor data.


Description of the Related Art

In order to continuously transfer machine data time series between computers (e.g., from an edge device that is collecting one or more machine's data and sending to one or more cloud servers) one computer typically transfers all of the sensor data values collected from the machine(s) at each timestamp along with timestamp data and optionally position data (e.g., GPS location) or other context information, to another computer, which may be in the cloud. This communication burden is one of the main challenges in Internet of things (IoT) data transfer, due of the cost of transferring the large volume of data. Further, latency may increase and communication reliability may decrease with increasing data volume.


The process of reducing the size of a data file is often referred to as data compression. In the context of data transmission, it is called source coding; encoding done at the source of the data before it is stored or transmitted.


In signal processing, data compression, source coding, or bit-rate reduction typically involves encoding information using fewer bits than the original representation. Compression can be either lossy or lossless. Lossless compression reduces bits by identifying and eliminating redundancy. This reduction may be deterministic, i.e., reduction in bits is assured, or statistical, i.e., a particular type of redundancy reduction under most circumstances leads to a net reduction in bit required for encoding. No information is lost in lossless compression.


Lossless data compression algorithms usually exploit statistical redundancy to represent data without losing any information, so that the process is reversible. Lossless compression relies on the fact that real world data typically has redundancy (lack of entropy). Therefore, by reencoding the data to increase the entropy of the expression, the amount of data (bits) may be reduced. The Lempel-Ziv (LZ) compression methods employ run-length encoding. For most LZ methods, a table of previous strings is generated dynamically from earlier data in the input. The table itself is often Huffman encoded. Grammar-based codes like this can compress highly repetitive input extremely effectively, for instance, a biological data collection of the same or closely related species, a huge versioned document collection, internet archival, etc. The basic task of grammar-based codes is constructing a context-free grammar deriving a single string. Other practical grammar compression algorithms include Sequitur and Re-Pair.


Some lossless compressors use probabilistic models, such as prediction by partial matching. The Burrows-Wheeler transform can also be viewed as an indirect form of statistical modeling. In a further refinement of the direct use of probabilistic modeling, statistical estimates can be coupled to an algorithm called arithmetic coding, which uses the mathematical calculations of a finite-state machine to produce a string of encoded bits from a series of input data symbols. It uses an internal memory state to avoid the need to perform a one-to-one mapping of individual input symbols to distinct representations that use an integer number of bits, and it clears out the internal memory only after encoding the entire string of data symbols. Arithmetic coding applies especially well to adaptive data compression tasks where the statistics vary and are context-dependent, as it can be easily coupled with an adaptive model of the probability distribution of the input data.


Lossy compression typically reduces the number of bits by removing unnecessary or less important information. This can involve predicting which signal aspects may be considered noise, and/or which signal aspects have low importance for the ultimate use of the data. Lossy data compression is, in one aspect, the converse of lossless data compression, which loses information. However, subject to loss of information, the techniques of lossless compression may also be employed with lossy data compression.


There is a close connection between machine learning and compression: a system that predicts the posterior probabilities of a sequence given its entire history can be used for optimal data compression (by using arithmetic coding on the output distribution) while an optimal compressor can be used for prediction (by finding the symbol that compresses best, given the previous history).


Compression algorithms can implicitly map strings into implicit feature space vectors, and compression-based similarity measures used to compute similarity within these feature spaces. For each compressor C(.) we define an associated vector space custom character, such that C(.) maps an input string x, corresponds to the vector norm ∥˜x∥.


In lossless compression, and typically lossy compression as well, information redundancy is reduced, using methods such as coding, pattern recognition, and linear prediction to reduce the amount of information used to represent the uncompressed data. Due to the nature of lossy algorithms, quality suffers when a file is decompressed and recompressed (digital generation loss). (Lossless compression may be achieved through loss of non-redundant information, so increase in entropy is not assured.)


In lossy compression, the lost information is, or is treated as, noise. One way to filter noise is to transform the data to a representation where the supposed signal is concentrated in regions of the data space, to form a sparse distribution. The sparse regions of the distribution may be truncated, e.g., by applying a threshold, and the remaining dense regions of the distribution may be further transformed or encoded. Multiple different methods may be employed, to reduce noise based on different criteria.


See, U.S. Pat. Nos. 10,003,794; 10,028,706; 10,032,309; 10,063,861; 10,091,512; 5,243,546; 5,486,762; 5,515,477; 5,561,421; 5,659,362; 6,081,211; 6,219,457; 6,223,162; 6,300,888; 6,356,363; 6,362,756; 6,389,389; 6,404,925; 6,404,932; 6,490,373; 6,510,250; 6,606,037; 6,664,902; 6,671,414; 6,675,185; 6,678,423; 6,751,354; 6,757,439; 6,760,480; 6,774,917; 6,795,506; 6,801,668; 6,832,006; 6,839,003; 6,895,101; 6,895,121; 6,927,710; 6,941,019; 7,006,568; 7,050,646; 7,068,641; 7,099,523; 7,126,500; 7,146,053; 7,246,314; 7,266,661; 7,298,925; 7,336,720; 7,4748,05; 7,483,871; 7,504,970; 7,518,538; 7,532,763; 7,538,697; 7,564,383; 7,578,793; 7,605,721; 7,612,692; 7,629,901; 7,630,563; 7,645,984; 7,646,814; 7,660,295; 7,660,355; 7,719,448; 7,743,309; 7,821,426; 7,881,544; 7,885,988; 7,936,932; 7,961,959; 7,961,960; 7,970,216; 7,974,478; 8,005,140; 8,017,908; 8,112,624; 8,160,136; 8,175,403; 8,178,834; 8,185,316; 8,204,224; 8,238,290; 8,270,745; 8,306,340; 8,331,441; 8,374,451; 8,411,742; 8,458,457; 8,480,110; 8,509,555; 8,540,644; 8,644,171; 8,694,474; 8,718,140; 8,731,052; 8,766,172; 8,964,727; 9,035,807; 9,111,333; 9,179,147; 9,179,161; 9,339,202; 9,478,224; 9,492,096; 9,705,526; 9,812,136; 9,940,942; 20010024525; 20010031089; 20020028021; 20020076115; 20020090139; 20020131084; 20020175921; 20020176633; 20030018647; 20030059121; 20030086621; 20030098804; 20040001543; 20040001611; 20040015525; 20040027259; 20040085233; 20040165527; 20040221237; 20050069224; 20050147172; 20050147173; 20050276323; 20060053004; 20060061795; 20060111635; 20060143454; 20060165163; 20060200709; 20070083491; 20070216545; 20070217506; 20070223582; 20070278395; 20070297394; 20080031545; 20080037880; 20080050025; 20080050026; 20080050027; 20080050029; 20080050047; 20080055121; 20080126378; 20080152235; 20080154928; 20080189545; 20090041021; 20090138715; 20090140893; 20090140894; 20090212981; 20090232408; 20090234200; 20090262929; 20090284399; 20090289820; 20090292475; 20090294645; 20090322570; 20100114581; 20100187414; 20100202442; 20110019737; 20110032983; 20110176606; 20110182524; 20110200266; 20110263967; 20110299455; 20120014435; 20120051434; 20120069895; 20120143510; 20120259557; 20130013574; 20130080073; 20130289424; 20140010288; 20140025342; 20140184430; 20140303944; 20140307770; 20140370836; 20140376827; 20150086013; 20150100244; 20150341643; 20150381994; 20160042744; 20160055855; 20160256112; 20160261997; 20160292589; 20160372123; 20170046615; 20170105004; 20170105005; 20170310972; 20170310974; 20170337711; 20170359584; 20180124407; 20180176556; 20180176563; 20180176582; 20180211677; 20180293778; and 20180295375.


Wireless Sensor Networks (WSN) typically consist of a large number of sensors distributed in a sensing area to serve different tasks, such as continuous environmental monitoring. These networks are intended to continuously sense an area of interest and transmit the sensed data to a sink node. Due to the power consumption constraints, it is inefficient to directly transmit the raw sensed data to the sink, as they often exhibit a high correlation in the spatial and temporal domains and can be efficiently compressed to reduce power and bandwidth requirements, and reduce latency, and provide greater opportunity for error detection and correction (EDC) encoding. See:


U.S. Pat. Nos. 10,004,183; 10,006,779; 10,007,592; 10,008,052; 10,009,063; 10,009,067; 10,010,703; 10,020,844; 10,024,187; 10,027,397; 10,027,398; 10,032,123; 10,033,108; 10,035,609; 10,038,765; 10,043,527; 10,044,409; 10,046,779; 10,050,697; 10,051,403; 10,051,630; 10,051,663; 10,063,280; 10,068,467; 10,069,185; 10,069,535; 10,069,547; 10,070,321; 10,070,381; 10,079,661; 10,084,223; 10,084,868; 10,085,425; 10,085,697; 10,089,716; 10,090,594; 10,090,606; 10,091,017; 10,091,787; 10,103,422; 10,103,801; 10,111,169; 10,116,697; 10,121,338; 10,121,339; 10,122,218; 10,133,989; 10,135,145; 10,135,146; 10,135,147; 10,135,499; 10,136,434; 10,137,288; 10,139,820; 10,141,622; 10,142,010; 10,142,086; 10,144,036; 10,148,016; 10,149,129; 10,149,131; 10,153,823; 10,153,892; 10,154,326; 10,155,651; 10,168,695; 10,170,840; 10,171,501; 10,178,445; 10,187,850; 10,194,437; 10,200,752; 6,735,630; 6,795,786; 6,826,607; 6,832,251; 6,859,831; 7,020,701; 7,081,693; 7,170,201; 7,207,041; 7,231,180; 7,256,505; 7,328,625; 7,339,957; 7,361,998; 7,365,455; 7,385,503; 7,398,164; 7,429,805; 7,443,509; 7,487,066; 7,605,485; 7,609,838; 7,630,736; 7,660,203; 7,671,480; 7,710,455; 7,719,416; 7,764,958; 7,788,970; 7,797,367; 7,802,015; 7,805,405; 7,844,687; 7,873,673; 7,881,206; 7,908,928; 7,953,559; 7,957,222; 7,990,262; 7,996,342; 8,000,314; 8,010,319; 8,011,255; 8,013,731; 8,013,732; 8,024,980; 8,026,113; 8,026,808; 8,031,650; 8,035,511; 8,044,812; 8,064,412; 8,073,331; 8,086,864; 8,098,485; 8,104,993; 8,111,156; 8,112,381; 8,140,658; 8,171,136; 8,193,929; 8,193,930; 8,194,655; 8,194,858; 8,195,814; 8,199,635; 8,212,667; 8,214,082; 8,214,370; 8,219,848; 8,221,273; 8,223,010; 8,225,129; 8,233,471; 8,260,575; 8,264,401; 8,265,657; 8,279,067; 8,279,080; 8,280,671; 8,282,517; 8,289,184; 8,305,899; 8,325,030; 8,330,596; 8,335,304; 8,350,750; 8,359,347; 8,370,935; 8,373,576; 8,375,442; 8,379,564; 8,395,496; 8,410,931; 8,417,762; 8,421,274; 8,446,884; 8,451,766; 8,489,063; 8,493,601; 8,529,383; 8,533,473; 8,536,998; 8,544,089; 8,552,861; 8,559,271; 8,572,290; 8,582,481; 8,585,517; 8,585,606; 8,600,560; 8,615,374; 8,625,496; 8,630,965; 8,635,654; 8,638,217; 8,660,786; 8,666,357; 8,687,810; 8,688,850; 8,700,064; 8,704,656; 8,711,743; 8,733,168; 8,756,173; 8,776,062; 8,781,768; 8,787,246; 8,795,172; 8,805,579; 8,810,429; 8,812,007; 8,812,654; 8,816,850; 8,822,924; 8,832,244; 8,836,503; 8,855,011; 8,855,245; 8,867,309; 8,867,310; 8,873,335; 8,873,336; 8,879,356; 8,885,441; 8,892,624; 8,892,704; 8,922,065; 8,923,144; 8,924,587; 8,924,588; 8,930,571; 8,949,989; 8,954,377; 8,964,708; 8,971,432; 8,982,856; 8,983,793; 8,987,973; 8,990,032; 8,994,551; 9,004,320; 9,017,255; 9,026,273; 9,026,279; 9,026,336; 9,028,404; 9,032,058; 9,063,165; 9,065,699; 9,072,114; 9,074,731; 9,075,146; 9,090,339; 9,103,920; 9,105,181; 9,111,240; 9,115,989; 9,119,019; 9,129,497; 9,130,651; 9,141,215; 9,148,849; 9,152,146; 9,154,263; 9,164,292; 9,191,037; 9,202,051; 9,210,436; 9,210,938; 9,226,304; 9,232,407; 9,233,466; 9,239,215; 9,240,955; 9,282,029; 9,288,743; 9,297,915; 9,305,275; 9,311,808; 9,325,396; 9,356,776; 9,363,175; 9,372,213; 9,374,677; 9,386,522; 9,386,553; 9,387,940; 9,397,795; 9,398,576; 9,402,245; 9,413,571; 9,417,331; 9,429,661; 9,430,936; 9,439,126; 9,445,445; 9,455,763; 9,459,360; 9,470,809; 9,470,818; 9,492,086; 9,495,860; 9,500,757; 9,515,691; 9,529,210; 9,571,582; 9,576,404; 9,576,694; 9,583,967; 9,584,193; 9,585,620; 9,590,772; 9,605,857; 9,608,740; 9,609,810; 9,615,226; 9,615,269; 9,615,792; 9,621,959; 9,628,165; 9,628,286; 9,628,365; 9,632,746; 9,639,100; 9,640,850; 9,651,400; 9,656,389; 9,661,205; 9,662,392; 9,666,042; 9,667,317; 9,667,653; 9,674,711; 9,681,807; 9,685,992; 9,691,263; 9,699,768; 9,699,785; 9,701,325; 9,705,561; 9,705,610; 9,711,038; 9,721,210; 9,722,318; 9,727,115; 9,728,063; 9,729,197; 9,730,160; 9,735,833; 9,742,462; 9,742,521; 9,743,370; 9,746,452; 9,748,626; 9,749,013; 9,749,053; 9,749,083; 9,753,022; 9,753,164; 9,762,289; 9,766,320; 9,766,619; 9,768,833; 9,769,020; 9,769,128; 9,769,522; 9,772,612; 9,776,725; 9,780,834; 9,781,700; 9,787,412; 9,788,326; 9,788,354; 9,791,910; 9,793,951; 9,793,954; 9,793,955; 9,800,327; 9,806,818; 9,812,754; 9,816,373; 9,816,897; 9,820,146; 9,824,578; 9,831,912; 9,838,078; 9,838,736; 9,838,760; 9,838,896; 9,846,479; 9,847,566; 9,847,850; 9,853,342; 9,854,551; 9,854,994; 9,858,681; 9,860,075; 9,860,820; 9,863,222; 9,865,911; 9,866,276; 9,866,306; 9,866,309; 9,871,282; 9,871,283; 9,871,558; 9,874,923; 9,876,264; 9,876,570; 9,876,571; 9,876,587; 9,876,605; 9,878,138; 9,878,139; 9,882,257; 9,884,281; 9,887,447; 9,888,081; 9,891,883; 9,893,795; 9,894,852; 9,896,215; 9,900,177; 9,902,499; 9,904,535; 9,906,269; 9,911,020; 9,912,027; 9,912,033; 9,912,381; 9,912,382; 9,912,419; 9,913,006; 9,913,139; 9,917,341; 9,927,512; 9,927,517; 9,929,755; 9,930,668; 9,931,036; 9,931,037; 9,935,703; 9,946,571; 9,948,333; 9,948,354; 9,948,355; 9,948,477; 9,953,448; 9,954,286; 9,954,287; 9,957,052; 9,960,808; 9,960,980; 9,965,813; 9,967,002; 9,967,173; 9,969,329; 9,970,993; 9,973,299; 9,973,416; 9,973,940; 9,974,018; 9,980,223; 9,983,011; 9,990,818; 9,991,580; 9,997,819; 9,998,870; 9,998,932; 9,999,038; 20030107488; 20030151513; 20040083833; 20040090329; 20040090345; 20040100394; 20040128097; 20040139110; 20050017602; 20050090936; 20050210340; 20050213548; 20060026017; 20060029060; 20060175606; 20060206246; 20060243055; 20060243056; 20060243180; 20070038346; 20070090996; 20070101382; 20070195808; 20070210916; 20070210929; 20070221125; 20070224712; 20070239862; 20080031213; 20080074254; 20080122938; 20080129495; 20080215609; 20080219094; 20080253283; 20080256166; 20080256167; 20080256253; 20080256384; 20080256548; 20080256549; 20080309481; 20090007706; 20090009317; 20090009323; 20090009339; 20090009340; 20090058088; 20090058639; 20090059827; 20090070767; 20090146833; 20090149722; 20090161581; 20090168653; 20090196206; 20090198374; 20090210173; 20090210363; 20090296670; 20090303042; 20090322510; 20100031052; 20100039933; 20100054307; 20100074054; 20100100338; 20100109853; 20100125641; 20100148940; 20100152619; 20100152909; 20100176939; 20100201516; 20100211787; 20100254312; 20100278060; 20100312128; 20110035271; 20110035491; 20110045818; 20110101788; 20110137472; 20110158806; 20110176469; 20110191496; 20110248846; 20110293278; 20110310779; 20120014289; 20120089370; 20120092155; 20120106397; 20120123284; 20120127020; 20120127924; 20120173171; 20120178486; 20120190386; 20120215348; 20120218376; 20120250863; 20120257530; 20120262291; 20120265716; 20130016625; 20130016636; 20130041627; 20130044183; 20130046463; 20130048436; 20130076531; 20130076532; 20130078912; 20130097276; 20130107041; 20130113631; 20130148713; 20130153060; 20130155952; 20130176872; 20130180336; 20130201316; 20130207815; 20130244121; 20130258904; 20130265874; 20130265915; 20130265981; 20130314273; 20130320212; 20130332010; 20130332011; 20130332025; 20140010047; 20140062212; 20140114549; 20140124621; 20140153674; 20140191875; 20140192689; 20140216144; 20140225603; 20140253733; 20140263418; 20140263430; 20140263989; 20140264047; 20140266776; 20140266785; 20140268601; 20140273821; 20140275849; 20140299783; 20140301217; 20140312242; 20140349597; 20140350722; 20140355499; 20140358442; 20150046582; 20150049650; 20150078738; 20150081247; 20150082754; 20150094618; 20150119079; 20150139425; 20150164408; 20150178620; 20150192682; 20150249486; 20150268355; 20150280863; 20150286933; 20150288604; 20150294431; 20150316926; 20150330869; 20150338525; 20150343144; 20150351084; 20150351336; 20150363981; 20160000045; 20160012465; 20160025514; 20160044035; 20160051791; 20160051806; 20160072547; 20160081551; 20160081586; 20160082589; 20160088517; 20160091730; 20160100444; 20160100445; 20160152252; 20160173959; 20160174148; 20160183799; 20160189381; 20160202755; 20160260302; 20160260303; 20160300183; 20160314055; 20160323839; 20160323841; 20160338617; 20160338644; 20160345260; 20160353294; 20160356665; 20160356666; 20160378427; 20170006140; 20170013533; 20170021204; 20170072851; 20170078400; 20170106178; 20170116383; 20170126332; 20170135041; 20170151964; 20170167287; 20170169912; 20170171807; 20170171889; 20170172472; 20170172473; 20170173262; 20170177435; 20170177542; 20170180214; 20170181098; 20170181628; 20170183243; 20170195823; 20170201297; 20170213345; 20170217018; 20170222753; 20170223653; 20170228998; 20170259050; 20170259942; 20170264805; 20170268954; 20170276655; 20170281092; 20170284839; 20170287522; 20170289323; 20170289812; 20170295503; 20170296104; 20170302756; 20170330431; 20170331899; 20170346609; 20170347297; 20170353865; 20170374619; 20180017392; 20180019862; 20180024029; 20180034912; 20180039316; 20180049638; 20180058202; 20180077663; 20180078747; 20180078748; 20180124181; 20180129902; 20180132720; 20180148180; 20180148182; 20180162549; 20180164439; 20180166962; 20180170575; 20180181910; 20180182116; 20180212787; 20180213348; 20180222388; 20180246696; 20180271980; 20180278693; 20180278694; 20180293538; 20180310529; 20180317140; 20180317794; 20180326173; 20180338017; 20180338282; 20180343304; 20180343482; 20180375940; 20190014587; 20190015622; 20190020530; 20190036801; and 20190037558.


Spatial correlation in WSN refers to, e.g., the correlation between the sensed data at spatially adjacent sensor nodes. On the other hand, temporal correlation usually refers to the slow varying nature of the sensed data. Compressive sensing (CS) is a tool that provides a means to process and transport correlated data in an efficient manner by exploring the sparsity of these data. Temporal correlation can be modeled in the form of a multiple measurement vector (MMV), where it models the source as an auto regressive (AR) process and then incorporates such information into the framework of sparse Bayesian learning for sparse signal recovery and converts MMV to block single measurement vector (SMV) model. Compressive sensing theory provides an elegant mathematical framework to compress and recover signals using a small number of linear measurements. Under certain conditions on the measurement matrix, the acquired signal can be perfectly reconstructed from these measurements.


A mean is a commonly used measure of central tendency, and is influenced by every value in a sample according to the formula:






μ
=



X

N





where μ is population mean, and X is sample mean.


A standard deviation is a measure of variability, according to the formula:






σ
=






(

X
-
μ

)

2


N






(if μ is unknown, use X)


A small sample bias may be corrected by dividing by n−1, where n is the number of samples, i.e.:






σ
=






(

X
-

X
_


)

2



n
-
1







A normal distribution has a bell shaped curve, and is a reasonably accurate description of many (but not all) natural distributions introduced by a random process. It is unimodal, symmetrical, has points of inflection at μ±σ, has tails that approach x-axis, and is completely defined by its mean and standard deviation.


The standard error of the mean, is a standard deviation of sampling error of different samples of a given sample size. For a sampling error of (X−μ), as n increases, variability decreases:







σ

x
_


=

σ

n






“File Compression Possibilities”. A Brief guide to compress a file in 4 different ways.


“Intel labs berkeley data,” www.select.cs.cmu.edu/data/labapp3/.


Alwakeel, Ahmed S., Mohamed F. Abdelkader, Karim G. Seddik, and Atef Ghuniem. “Exploiting temporal correlation of sparse signals in wireless sensor networks.” In Vehicular Technology Conference (VTC Spring), 2014 IEEE 79th, pp. 1-6. IEEE, 2014.


Arcangel, Cory. “On Compression” (2013)


Baraniuk, R. G., “Compressive sensing [lecture notes],” IEEE, Signal Processing Magazine, vol. 24, no. 4, pp. 118-121, 2007.


Ben-Gal, I. (2008). “On the Use of Data Compression Measures to Analyze Robust Designs”, 54 (3). IEEE Transactions on Reliability: 381-388.


Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1-122.


Cai, J. F.; Candes, E. J.; Shen, Z. W. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20, 1956-1982.


Caione, C.; Brunelli, D.; Benini, L. Distributed compressive sampling for lifetime optimization in dense wireless sensor networks. IEEE Trans. Ind. Inf. 2012, 8, 30-40.


Candes, E. J., M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted 1 1 minimization,” Journal of Fourier Analysis and Applications, vol. 14, no. 5-6, pp. 877-905, 2008.


Candes, E.; Recht, B. Exact matrix completion via convex optimization. Commun. ACM 2012, 55, 111-119.


Candes, E. J.; Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9, 717-772.


Candes, E. J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489-509.


CCITT Study Group VIII and die Joint Photographic Experts Group (JPEG) von ISO/IEC Joint Technical Committee 1/Subcommittee 29/Working Group 10 (1993), “Annex D—Arithmetic coding”, in ITU-T (in German), Recommendation T.81: Digital Compression and Coding of Continuous-tone Still images—Requirements and guidelines, pp. 54 ff.


Cevher, V., A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa, “Compressive sensing for background subtraction,” in Computer Vision—ECCV 2008. Springer, 2008, pp. 155-168.


Chanda P, Bader J S, Elhaik E; Elhaik; Bader (27 Jul. 2012). “HapZipper: sharing HapMap populations just got easier”, Nucleic Acids Research. 40 (20): e159. doi:10.1093/nar/gks709. PMC 3488212. PMID 22844100.


Charbiwala, Z., Y. Kim, S. Zahedi, J. Friedman, and M. B. Srivastava, “Energy efficient sampling for event detection in wireless sensor networks,” in Proceedings of the 14th ACM/IEEE international symposium on Low power electronics and design. ACM, 2009, pp. 419-424.


Cheng, J.; Ye, Q.; Jiang, H.; Wang, D.; Wang, C. STCDG: An efficient data gathering algorithm based on matrix completion for wireless sensor networks. IEEE Trans. Wirel. Commun. 2013, 12, 850-861.


Christley S, Lu Y, Li C, Xie X; Lu; Li; Xie (Jan. 15, 2009). “Human genomes as email attachments”. Bioinformatics. 25 (2): 274-5. doi:10.1093/bioinformatics/btn582. PMID 18996942.


Claude Elwood Shannon (1948), Alcatel-Lucent, ed., “A Mathematical Theory of Communication” (in German), Bell System Technical Journal 27 (3-4)


Cliff Reader (Aug. 31, 2016), Society of Photo-Optical Instrumentation Engineers, ed., [Vortragsmitschnitt, ab 3:05:10 “Patent landscape for royalty-free video coding”], Applications of Digital Image Processing XXXIX (San Diego, Calif.)


Coalson, Josh. “FLAC Comparison”.


Donoho, D. L., “Compressed sensing,” IEEE Transactions on, Information Theory, vol. 52, no. 4, pp. 1289-1306, 2006.


Donoho, D. L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289-1306.


en.wikipedia.org/wiki/Data_compression


Faxin Yu; Hao Luo; Zheming Lu (2010). Three-Dimensional Model Analysis and Processing. Berlin: Springer. p. 47. ISBN 9783642126512.


Gleichman, S.; Eldar, Y. C. Blind compressed sensing. IEEE Trans. Inf. Theory 2011, 57, 6958-6975.


Goel, S., and T. Imielinski, “Prediction-based monitoring in sensor networks: taking lessons from mpeg,” ACM SIGCOMM Computer Communication Review, vol. 31, no. 5, pp. 82-98, 2001.


Goldstein, T.; O'Donoghue, B.; Setzer, S.; Baraniuk, R. Fast alternating direction optimization methods. SIAM J. Imaging Sci. 2014, 7, 1588-1623.


Golub, G. H.; Van Loan, C. F. Matrix Computations; JHU Press: Baltimore, Md., USA, 2012.


Graphics & Media Lab Video Group (2007). Lossless Video Codecs Comparison. Moscow State University.


Grimes, C. A., “Design of a wireless sensor network for long-term, in-situ monitoring of an aqueous environment,” Sensors, vol. 2, no. 11, pp. 455-472, 2002.


He, B.; Tao, M.; Yuan, X. Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optim. 2012, 22, 313-340.


Heinzelman, W. R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Siences, Maui, Hi., USA, 4-7 Jan. 2000; p. 223.


Hilbert, Martin; López, Priscila (1 Apr. 2011). “The World's Technological Capacity to Store, Communicate, and Compute Information”. Science. 332 (6025): 60-65. Bibcode:2011 Sci . . . 332 . . . 60H. doi:10.1126/science.1200970. PMID 21310967.


Hu, Y.; Zhang, D.; Ye, J.; Li, X.; He, X. Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2117-2130.


Huffman, David Albert (1952-09), “A method for the construction of minimum-redundancy codes” (in German), Proceedings of the IRE 40 (9): pp. 1098-1101, doi:10.1109/JRPROC.1952.273898


Jaiswal, R. C. (2009). Audio-Video Engineering. Pune, Maharashtra: Nirali Prakashan. p. 3.41. ISBN 9788190639675.


Kadkhodaie, M.; Christakopoulou, K.; Sanjabi, M.; Banerjee, A. Accelerated alternating direction method of multipliers. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10-13 Aug. 2015; pp. 497-506.


Kong, L.; Xia, M.; Liu, X. Y.; Chen, G.; Gu, Y.; Wu, M. Y.; Liu, X. Data loss and reconstruction in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 2818-2828.


Korn, D.; et al. “RFC 3284: The VCDIFF Generic Differencing and Compression Data Format”. Internet Engineering Task Force. (2002).


Korn, D. G.; Vo, K. P. (1995), B. Krishnamurthy, ed., Vdelta: Differencing and Compression, Practical Reusable Unix Software, New York: John Wiley & Sons, Inc.


Lachowski, R.; Pellenz, M. E.; Penna, M. C.; Jamhour, E.; Souza, R. D. An efficient distributed algorithm for constructing spanning trees in wireless sensor networks. Sensors 2015, 15, 1518-1536.


Lane, Tom. “JPEG Image Compression FAQ, Part 1”. Internet FAQ Archives. Independent JPEG Group.


Larsen, R. M. PROPACK-Software for Large and Sparse SVD Calculations. Available online: sun.stanford.edu/˜rmunk/PROPACK.


Li, S. X.; Gao, F.; Ge, G. N.; Zhang, S. Y. Deterministic construction of compressed sensing matrices via algebraic curves. IEEE Trans. Inf. Theory 2012, 58, 5035-5041.


Liu, X. Y.; Zhu, Y.; Kong, L.; Liu, C.; Gu, Y.; Vasilakos, A. V.; Wu, M. Y. CDC: Compressive data collection for wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 2188-2197.


Liu, Y.; He, Y.; Li, M.; Wang, J.; Liu, K.; Li, X. Does wireless sensor network scale? A measurement study on GreenOrbs. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 1983-1993.


Luo, C., F. Wu, J. Sun, and C. W. Chen, “Compressive data gathering for large-scale wireless sensor networks,” ACM Proceedings of the 15th annual international conference on Mobile computing and networking, pp. 145-156, 2009.


Luo, C., F. Wu, J. Sun, and C. W. Chen, “Efficient measurement generation and pervasive sparsity for compressive data gathering,” Wireless Communications, IEEE Transactions on, vol. 9, no. 12, pp. 3728-3738, 2010.


Luo, C.; Wu, F.; Sun, J.; Chen, C. W. Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th ACM International Conference on Mobile Computing and Networking, Beijing, China, 20-25 Sep. 2009; pp. 145-156.


M. Hosseini, D. Pratas, and A. Pinho. 2016. A survey on data compression methods for biological sequences. Information 7(4):(2016): 56


Mandi, O. A.; Mohammed, M. A.; Mohamed, A. J. (November 2012). “Implementing a Novel Approach an Convert Audio Compression to Text Coding via Hybrid Technique”. International Journal of Computer Science Issues. 9 (6, No. 3): 53-59.


Mahmud, Salauddin (March 2012). “An Improved Data Compression Method for General Data”. International Journal of Scientific & Engineering Research. 3(3):2.


Mahoney, Matt. “Rationale for a Large Text Compression Benchmark”. Florida Institute of Technology. (2006) cs.fit.edu/mmahoney/compression/rationale.htm


Marak, Laszlo. “On image compression” University of Marne la Vallee (2013).


Mittal, S.; Vetter, J. (2015), “A Survey Of Architectural Approaches for Data Compression in Cache and Main Memory Systems”, IEEE Transactions on Parallel and Distributed Systems, IEEE


Nasir Ahmed, T. Natarajan, Kamisetty Ramamohan Rao (1974-01), “Discrete Cosine Transform” (in German), IEEE Transactions on Computers C-23 (1): pp. 90-93, doi:10.1109/T-C.1974.223784


Navqi, Saud; Naqvi, R.; Riaz, R. A.; Siddiqui, F. (April 2011). “Optimized RTL design and implementation of LZW algorithm for high bandwidth applications” Electrical Review. 2011 (4): 279-285.


Pavlichin D S, Weissman T, Yona G; Weissman; Yona (September 2013). “The human genome contracts again”. Bioinformatics. 29 (17): 2199-202. doi:10.1093/bioinformatics/btt362. PMID 23793748.


Pham, N. D.; Le, T. D.; Park, K.; Choo, H. SCCS: Spatiotemporal clustering and compressing schemes for efficient data collection applications in WSNs. Int. J. Commun. Syst. 2010, 23, 1311-1333.


Pujar, J. H.; Kadlaskar, L. M. (May 2010). “A New Lossless Method of Image Compression and Decompression Using Huffman Coding Techniques” Journal of Theoretical and Applied Information Technology. 15 (1): 18-23.


Roughan, M.; Zhang, Y.; Willinger, W.; Qiu, L. L. Spatio-temporal compressive sensing and internet traffic matrices. IEEE ACM Trans. Netw. 2012, 20, 662-676.


Salomon, David (2008). A Concise Introduction to Data Compression. Berlin: Springer. ISBN 9781848000728.


Scully, D.; Carla E. Brodley (2006). “Compression and machine learning: A new perspective on feature space vectors” Data Compression Conference, 2006.


Shmilovici A.; Kahiri Y.; Ben-Gal I.; Hauser S. (2009). “Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm” 33(2). Computational Economics: 131-154.


Shuman, D. I.; Narang, S. K.; Frossard, P.; Ortega, A.; Vandergheynst, P. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 2013, 30, 83-98.


Silberstein, A., R. Braynard, and J. Yang, “Constraint chaining: on energy-efficient continuous monitoring in sensor networks,” in Proceedings of the 2006 ACM SIGMOD international conference on Management of data. ACM, 2006, pp. 157-168.


Sullivan, G. J.; Ohm, J.-R.; Han, W.-J.; Wiegand, T., (December 2012). “Overview of the High Efficiency Video Coding (HEVC) Standard” IEEE Transactions on Circuits and Systems for Video Technology. IEEE. 22 (12).


Tank, M. K. (2011). Implementation of Limpel-Ziv algorithm for lossless compression using VHDL. Thinkquest 2010: Proceedings of the First International Conference on Contours of Computing Technology. Berlin: Springer. pp. 275-283.


The Olympus WS-120 digital speech recorder, according to its manual, can store about 178 hours of speech-quality audio in .WMA format in 500 MB of flash memory.


Toh, K. C.; Yun, S. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. 2010, 6, 615-640.


U.S. Pat. No. 2,605,361, C. Chapin Cutler, “Differential Quantization of Communication Signals”, issued Jul. 29, 1952


Wade, Graham (1994). Signal coding and processing (2 ed.). Cambridge University Press. p. 34. ISBN 978-0-521-42336-6. “The broad objective of source coding is to exploit or remove ‘inefficient’ redundancy in the PCM source and thereby achieve a reduction in the overall source rate R.”


Wang, Donghao, Wan, Jiangwen, Nie, Zhipeng, Zhang, Qiang, and Fei, Zhijie, “Efficient Data Gathering Methods in Wireless Sensor Networks Using GBTR Matrix Completion”, Sensors 2016, 16(9), 1532; doi:10.3390/s1601532


William K. Pratt, Julius Kane, Harry C. Andrews: “Hadamard transform image coding”, in Proceedings of the IEEE 57.1 (1969): Seiten 58-68


Wolfram, Stephen (2002). A New Kind of Science. Wolfram Media, Inc. p. 1069. ISBN 1-57955-008-8.


Xiang, L., J. Luo, C. Deng, A. V. Vasilakos, and W. Lin, “Dual-level compressed aggregation: Recovering fields of physical quantities from incomplete sensory data,” arXiv preprint arXiv: 1107.4873, 2011.


Xiang, L.; Luo, J.; Rosenberg, C. Compressed data aggregation: Energy-efficient and high-fidelity data collection. IEEE ACM Trans. Netw. 2013, 21, 1722-1735.


Yang, X., K. G. Ong, W. R. Dreschel, K. Zeng, C. S. Mungle, and


Yoon, S.; Shahabi, C. The Clustered AGgregation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks. ACM Trans. Sens. Netw. 2007, 3, 3.


Zhang Z., and B. D. Rao, “Sparse signal recovery with temporally correlated source vectors using sparse bayesian learning,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, pp. 912-926, 2011.


Zheng, H., S. Xiao, X. Wang, and X. Tian, “Energy and latency analysis for in-network computation with compressive sensing in wireless sensor networks,” INFOCOM, pp. 2811-2815, 2012.


Zwicker, Eberhard; et al. (1967). The Ear As A Communication Receiver. Melville, N.Y.: Acoustical Society of America.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a block diagram of a system including a transmitter and a receiver according to some embodiments of the presently disclosed technology.



FIG. 2 shows a flowchart of actions performed by the transmitter and the receiver according to some embodiments of the presently disclosed technology.





DETAILED DESCRIPTION

The present disclosure concerns communicating sensor data. In accordance with some embodiments, the technique(s) disclosed significantly compresses the data volume by using a common machine learning based model on both send and receive sides, and sending only independent sensor variables and discrete standard error values of dependent sensor variables based on the prediction from the generated model instead of sending all the sensor data as continuous variables. Thus, the presently disclosed technology reduces data volume at the expense of loss of precision. The loss of precision can be designed carefully such that it serves the intended purpose of the data, e.g., human viewing. In some embodiments, various and applicable lossless data compression techniques (e.g., Huffman Encoding) can be implemented before, after, and/or otherwise in combination with the presently disclosed lossy compression technology. For example, after applying the presently disclosed technology, the independent parameter(s) (e.g., independent sensor variables) and/or contextual data (e.g., timestamps, latitudes, longitudes, or the like) can be compressed using other compression techniques before data transmission.


Consider a system where one or multiple machines are connected to an edge device. At the start of the system, the transmitting device (e.g., an edge computer) must transfer all of the machine data to the receiving device (e.g., a cloud server). When enough data are transmitted, both sides of the system generate an identical machine learning based model. Once the model generation is complete on both sides, the system synchronously switches to a reduced transmission mode, sending only computed error values, e.g., standard error values, as the dependent sensor variables' data.


Over time, the models may be updated; however, this updating must occur on the edge device due to the loss of precision introduced in compression. New models may be generated as needed and sent over a high bandwidth and/or cheap communication channel (e.g., LAN, WLAN, or cellular communication) when available, whereas lower data rate and/or expensive communication media (e.g., satellite communication, LoRaWAN, etc.) can be used for sending machine data. The model synchronization process may be scheduled for a period when the edge device has access to a high bandwidth and/or cheap communication medium (e.g., when a vehicle with a deployed edge device enters a certain geographic area). The system cannot start using the new model until both sender and receiver have synchronized the new model and new training error statistics at which point both sides must switch synchronously and begin sending and receiving compressed data according to the updated compression mechanism.


Due to the potentially large size of a machine learning based model, the model may be stored as a database lookup table, reducing the model size considerably at the expense of loss in precision. The model data rows may be restricted to the practical possible combinations of input independent variables and hence shrink the model's size. A typical model saved in table form and including a diesel engine's speed (i.e., Revolutions Per Minute) from 0 to 2000 and engine load 0 to 100%, will have 200001 rows (i.e., 2000×100 rows+one row for engine speed and engine load percent both zero). Thus, a 20 sensor model (2 independent and 18 dependent) would require around 16 MB space considering 4 bytes of storage per sensor.


In some embodiments, the edge device runs a machine learning based method on a training dataset collected over time from a machine and generate a model that represents the relationships between independent and dependent variables. Once the model is built, it would generate the error statistics (i.e., mean training error and standard deviation of training errors) for the training period from the difference between model predicted dependent sensor values and actual measured dependent sensor values, and save the sensor specific error statistics. Once the ML based model is built using training data and the error means and error standard deviations of dependent sensors are generated and stored on both sender and receiver side, at run time the edge device can measure all the independent and dependent sensor variables and compute the standard errors of all dependent sensor values from the difference between measured dependent sensor values and predicted sensor values and error mean and error standard deviations, and transmit only the standard errors of dependent sensor values. The receiving computer can generate the same model independently from the exact same data it received from edge before. When the receiving computer receives the standard error values for each sensor, it can compute the actual sensor data values back from the standard error values, using model predicted sensor value for the specific independent sensor variables and training error statistics.


It is therefore an object to provide a method of communicating information, comprising: modeling a stream of sensor data, to produce parameters of a predictive statistical model; communicating information defining the predictive statistical model from a transmitter to a receiver; and after communicating the information defining the predictive statistical model to the receiver, communicating information characterizing subsequent sensor data from the transmitter to the receiver, dependent on an error of the subsequent sensor data with respect to a prediction of the subsequent sensor data by the statistical model.


It is also an object to provide a method of synchronizing a state of a transmitter and a receiver, to communicate a stream of sensor data, comprising: modeling the stream of sensor data input to the transmitter, to produce parameters of a predictive statistical model; communicating information defining the predictive statistical model to the receiver; and communicating information characterizing subsequent sensor data from the transmitter to the receiver, as a statistically normalized differential encoding of the subsequent sensor data with respect to a prediction of the subsequent sensor data by the predictive statistical model.


It is a further object to provide a system for receiving communicated information, comprising: a predictive statistical model, stored in a memory, derived by modeling a stream of sensor data; a communication port configured to receive a communication from a transmitter; and at least one processor, configured to: receive information defining the predictive statistical model from the transmitter; and after reception of the information defining the predictive statistical model, receive information characterizing subsequent sensor data from the transmitter, dependent on an error of the subsequent sensor data with respect to a prediction of the subsequent sensor data by the statistical model.


It is another object to provide a system for communicating information, comprising: a predictive statistical model, stored in a memory, derived by modeling a stream of sensor data; a communication port configured to communicate with a receiver; and at least one processor, configured to: transmit information defining the predictive statistical model to the receiver; and after communication of the information defining the predictive statistical model to the receiver, communicate information characterizing subsequent sensor data to the receiver, dependent on an error of the subsequent sensor data with respect to a prediction of the subsequent sensor data by the statistical model.


A further object provides a system for synchronizing a state of a transmitter and a receiver, to communicate a stream of sensor data, comprising: a communication port configured to communicate with a receiver; and at least one automated processor, configured to: model the stream of sensor data, and to define parameters of a predictive statistical model; communicate the defined parameters of a predictive statistical model to the receiver; and communicate information characterizing subsequent sensor data to the receiver, comprising a series of statistically normalized differentially encoded subsequent sensor data with respect to a prediction of the series of subsequent sensor data by the predictive statistical model.


The method may further comprise calculating, at the receiver, the subsequent sensor data from the error of the sensor data and the prediction of the sensor data by statistical model.


The method may further comprise acquiring a time series of subsequent sensor data, and communicating from the transmitter to the receiver, information characterizing the time series of subsequent sensor data comprising a time series of errors of subsequent sensor data time-samples with respect to a prediction of the subsequent sensor data time-samples by the predictive statistical model.


The predictive statistical model may be adaptive to the communicated information characterizing subsequent sensor data.


The method may further comprise storing information dependent on the predictive statistical model in a memory of the transmitter and a memory of the receiver.


The method may further comprise determining a sensor data standard error based on a predicted sensor data error standard deviation.


The predictive statistical model may be derived from a machine learning based algorithm developed based on relationships between independent and dependent variables represented in the sensor data.


The predictive statistical model may generate error statistics comprising a mean training error and a standard deviation of the mean training error for a stream of sensor data of the training data set in a training period.


The predictive statistical model may comprise a linear model generated by machine learning.


The predictive statistical model may comprise a plurality of predictive statistical models, each provided for a subset of a range of at least one independent variable of the steam of sensor data.


The method may further comprise computing a predicted stream of sensor data, a predicted stream of sensor data error means, and a predicted stream of sensor data error standard deviations, based on the predictive statistical model.


The method may further comprise communicating the predicted stream of sensor data error means from the transmitter to the receiver. The method may further comprise receiving the predicted stream of sensor data error means at the receiver, and based on the predictive statistical model and the received stream of sensor data error means, reconstructing the stream of sensor data.


The method may further comprise approximately reconstructing a stream of subsequent sensor data based on the received predictive statistical model, at least one control variable, and the errors of stream of subsequent sensor data.


The method may further comprise transmitting a standard error of the prediction of the subsequent sensor data by the predictive statistical model from the transmitter to the receiver, and inferring the prediction of the subsequent sensor data by the predictive statistical model at the receiver from the received standard error of the prediction and the predictive statistical model.


The stream of sensor data may comprise sensor data from a plurality of sensors which are dependent on at least one common control variable, the predictive statistical model being dependent on a correlation of the sensor data from the plurality of sensors, further comprise calculating standard errors of the subsequent sensor data from the plurality of sensors with respect to the predictive statistical model dependent on a correlation of the sensor data, entropy encoding the standard errors based on at least the correlation, and transmitting the entropy encoded standard errors, and a representation of the at least one common control variable from the transmitter to the receiver.


The stream of sensor data comprises engine data. The engine data may comprise timestamped data comprise at least one of engine speed, engine load, coolant temperature, coolant pressure, oil temperature, oil pressure, fuel pressure, and fuel actuator state. The engine data may comprise timestamped data comprise engine speed, engine load percentage, and at least one of coolant temperature, coolant pressure, oil temperature, oil pressure, and fuel pressure. The engine may be a diesel engine, and the modeled stream of sensor data is acquired while the diesel engine is in a steady state within a bounded range of engine speed and engine load.


The predictive statistical model may be a spline model, a neural network, a support vector machine, and/or a Generalized Additive Model (GAM).


Various predictive modeling methods are known, including Group method of data handling; Naïve Bayes; k-nearest neighbor algorithm; Majority classifier; Support vector machines; Random forests; Boosted trees; CART (Classification and Regression Trees); Multivariate adaptive regression splines (MARS); Neural Networks and deep neural networks; ACE and AVAS; Ordinary Least Squares; Generalized Linear Models (GLM) (The generalized linear model (GLM) is a flexible family of models that are unified under a single method. Logistic regression is a notable special case of GLM. Other types of GLM include Poisson regression, gamma regression, and multinomial regression); Logistic regression (Logistic regression is a technique in which unknown values of a discrete variable are predicted based on known values of one or more continuous and/or discrete variables. Logistic regression differs from ordinary least squares (OLS) regression in that the dependent variable is binary in nature. This procedure has many applications); Generalized additive models; Robust regression; and Semiparametric regression. See:


Geisser, Seymour (September 2016). Predictive Inference: An Introduction. New York: Chapman & Hall. ISBN 0-412-03471-9.


Finlay, Steven (2014). Predictive Analytics, Data Mining and Big Data. Myths, Misconceptions and Methods (1st ed.). Basingstoke: Palgrave Macmillan. p. 237. ISBN 978-1137379276.


Sheskin, David J. (Apr. 27, 2011). Handbook of Parametric and Nonparametric Statistical Procedures. Boca Raton, FL: CRC Press. p. 109. ISBN 1439858012.


Marascuilo, Leonard A. (December 1977). Nonparametric and distribution-free methods for the social sciences. Brooks/Cole Publishing Co. ISBN 0818502029.


Wilcox, Rand R. (Mar. 18, 2010). Fundamentals of Modern Statistical Methods. New York: Springer. pp. 200-213. ISBN 1441955240.


Steyerberg, Ewout W. (Oct. 21, 2010). Clinical Prediction Models. New York: Springer. p. 313. ISBN 1441926488.


Breiman, Leo (August 1996). “Bagging predictors”. Machine Learning. 24 (2): 123-140. doi:10.1007/bf00058655.


Willey, Gordon R. (1953) “Prehistoric Settlement Patterns in the Virú Valley, Peru”, Bulletin 155. Bureau of American Ethnology


Heidelberg, Kurt, et al. “An Evaluation of the Archaeological Sample Survey Program at the Nevada Test and Training Range”, SRI Technical Report 02-16, 2002


Jeffrey H. Altschul, Lynne Sebastian, and Kurt Heidelberg, “Predictive Modeling in the Military: Similar Goals, Divergent Paths”, Preservation Research Series 1, SRI Foundation, 2004


forteconsultancy.wordpress.com/2010/05/17/wondering-what-lies-ahead-the-power-of-predictive-modeling/


“Hospital Uses Data Analytics and Predictive Modeling To Identify and Allocate Scarce Resources to High-Risk Patients, Leading to Fewer Readmissions”. Agency for Healthcare Research and Quality. Jan. 29, 2014. Retrieved Jan. 29, 2014.


Banerjee, Imon. “Probabilistic Prognostic Estimates of Survival in Metastatic Cancer Patients (PPES-Met) Utilizing Free-Text Clinical Narratives”. Scientific Reports. 8 (10037 (2018)). doi:10.1038/s41598-018-27946-5.


“Implementing Predictive Modeling in R for Algorithmic Trading”. Oct. 7, 2016. Retrieved Nov. 25, 2016.


“Predictive-Model Based Trading Systems, Part 1—System Trader Success”. System Trader Success. Jul. 22, 2013. Retrieved Nov. 25, 2016.


U.S. Pat. Nos. 10,061,887; 10,126,309; 10,154,624; 10,168,337; 10,187,899; 6,006,182; 6,064,960; 6,366,884; 6,401,070; 6,553,344; 6,785,652; 7,039,654; 7,144,869; 7,379,890; 7,389,114; 7,401,057; 7,426,499; 7,547,683; 7,561,972; 7,561,973; 7,583,961; 7,653,491; 7,693,683; 7,698,213; 7,702,576; 7,729,864; 7,730,063; 7,774,272; 7,813,981; 7,873,567; 7,873,634; 7,970,640; 8,005,620; 8,126,653; 8,152,750; 8,185,486; 8,401,798; 8,412,461; 8,498,915; 8,515,719; 8,566,070; 8,635,029; 8,694,455; 8,713,025; 8,724,866; 8,731,728; 8,843,356; 8,929,568; 8,992,453; 9,020,866; 9,037,256; 9,075,796; 9,092,391; 9,103,826; 9,204,319; 9,205,064; 9,297,814; 9,428,767; 9,471,884; 9,483,531; 9,534,234; 9,574,209; 9,580,697; 9,619,883; 9,886,545; 9,900,790; 9,903,193; 9,955,488; 9,992,123; 20010009904; 20010034686; 20020001574; 20020138012; 20020138270; 20030023951; 20030093277; 20040073414; 20040088239; 20040110697; 20040172319; 20040199445; 20040210509; 20040215551; 20040225629; 20050071266; 20050075597; 20050096963; 20050144106; 20050176442; 20050245252; 20050246314; 20050251468; 20060059028; 20060101017; 20060111849; 20060122816; 20060136184; 20060184473; 20060189553; 20060241869; 20070038386; 20070043656; 20070067195; 20070105804; 20070166707; 20070185656; 20070233679; 20080015871; 20080027769; 20080027841; 20080050357; 20080114564; 20080140549; 20080228744; 20080256069; 20080306804; 20080313073; 20080319897; 20090018891; 20090030771; 20090037402; 20090037410; 20090043637; 20090050492; 20090070182; 20090132448; 20090171740; 20090220965; 20090271342; 20090313041; 20100028870; 20100029493; 20100042438; 20100070455; 20100082617; 20100100331; 20100114793; 20100293130; 20110054949; 20110059860; 20110064747; 20110075920; 20110111419; 20110123986; 20110123987; 20110166844; 20110230366; 20110276828; 20110287946; 20120010867; 20120066217; 20120136629; 20120150032; 20120158633; 20120207771; 20120220958; 20120230515; 20120258874; 20120283885; 20120284207; 20120290505; 20120303408; 20120303504; 20130004473; 20130030584; 20130054486; 20130060305; 20130073442; 20130096892; 20130103570; 20130132163; 20130183664; 20130185226; 20130259847; 20130266557; 20130315885; 20140006013; 20140032186; 20140100128; 20140172444; 20140193919; 20140278967; 20140343959; 20150023949; 20150235143; 20150240305; 20150289149; 20150291975; 20150291976; 20150291977; 20150316562; 20150317449; 20150324548; 20150347922; 20160003845; 20160042513; 20160117327; 20160145693; 20160148237; 20160171398; 20160196587; 20160225073; 20160225074; 20160239919; 20160282941; 20160333328; 20160340691; 20170046347; 20170126009; 20170132537; 20170137879; 20170191134; 20170244777; 20170286594; 20170290024; 20170306745; 20170308672; 20170308846; 20180006957; 20180017564; 20180018683; 20180035605; 20180046926; 20180060458; 20180060738; 20180060744; 20180120133; 20180122020; 20180189564; 20180227930; 20180260515; 20180260717; 20180262433; 20180263606; 20180275146; 20180282736; 20180293511; 20180334721; 20180341958; 20180349514; 20190010554; and 20190024497.


In statistics, the generalized linear model (GLM) is a flexible generalization of ordinary linear regression that allows for response variables that have error distribution models other than a normal distribution. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value. Generalized linear models unify various other statistical models, including linear regression, logistic regression and Poisson regression, and employs an iteratively reweighted least squares method for maximum likelihood estimation of the model parameters. See:


10,002,367; 10,006,088; 10,009,366; 10,013,701; 10,013,721; 10,018,631; 10,019,727; 10,021,426; 10,023,877; 10,036,074; 10,036,638; 10,037,393; 10,038,697; 10,047,358; 10,058,519; 10,062,121; 10,070,166; 10,070,220; 10,071,151; 10,080,774; 10,092,509; 10,098,569; 10,098,908; 10,100,092; 10,101,340; 10,111,888; 10,113,198; 10,113,200; 10,114,915; 10,117,868; 10,131,949; 10,142,788; 10,147,173; 10,157,509; 10,172,363; 10,175,387; 10,181,010; 5,529,901; 5,641,689; 5,667,541; 5,770,606; 5,915,036; 5,985,889; 6,043,037; 6,121,276; 6,132,974; 6,140,057; 6,200,983; 6,226,393; 6,306,437; 6,411,729; 6,444,870; 6,519,599; 6,566,368; 6,633,857; 6,662,185; 6,684,252; 6,703,231; 6,704,718; 6,879,944; 6,895,083; 6,939,670; 7,020,578; 7,043,287; 7,069,258; 7,117,185; 7,179,797; 7,208,517; 7,228,171; 7,238,799; 7,268,137; 7,306,913; 7,309,598; 7,337,033; 7,346,507; 7,445,896; 7,473,687; 7,482,117; 7,494,783; 7,516,572; 7,550,504; 7,590,516; 7,592,507; 7,593,815; 7,625,699; 7,651,840; 7,662,564; 7,685,084; 7,693,683; 7,695,911; 7,695,916; 7,700,074; 7,702,482; 7,709,460; 7,711,488; 7,727,725; 7,743,009; 7,747,392; 7,751,984; 7,781,168; 7,799,530; 7,807,138; 7,811,794; 7,816,083; 7,820,380; 7,829,282; 7,833,706; 7,840,408; 7,853,456; 7,863,021; 7,888,016; 7,888,461; 7,888,486; 7,890,403; 7,893,041; 7,904,135; 7,910,107; 7,910,303; 7,913,556; 7,915,244; 7,921,069; 7,933,741; 7,947,451; 7,953,676; 7,977,052; 7,987,148; 7,993,833; 7,996,342; 8,010,476; 8,017,317; 8,024,125; 8,027,947; 8,037,043; 8,039,212; 8,071,291; 8,071,302; 8,094,713; 8,103,537; 8,135,548; 8,148,070; 8,153,366; 8,211,638; 8,214,315; 8,216,786; 8,217,078; 8,222,270; 8,227,189; 8,234,150; 8,234,151; 8,236,816; 8,283,440; 8,291,069; 8,299,109; 8,311,849; 8,328,950; 8,346,688; 8,349,327; 8,351,688; 8,364,627; 8,372,625; 8,374,837; 8,383,338; 8,412,465; 8,415,093; 8,434,356; 8,452,621; 8,452,638; 8,455,468; 8,461,849; 8,463,582; 8,465,980; 8,473,249; 8,476,077; 8,489,499; 8,496,934; 8,497,084; 8,501,718; 8,501,719; 8,514,928; 8,515,719; 8,521,294; 8,527,352; 8,530,831; 8,543,428; 8,563,295; 8,566,070; 8,568,995; 8,569,574; 8,600,870; 8,614,060; 8,618,164; 8,626,697; 8,639,618; 8,645,298; 8,647,819; 8,652,776; 8,669,063; 8,682,812; 8,682,876; 8,706,589; 8,712,937; 8,715,704; 8,715,943; 8,718,958; 8,725,456; 8,725,541; 8,731,977; 8,732,534; 8,741,635; 8,741,956; 8,754,805; 8,769,094; 8,787,638; 8,799,202; 8,805,619; 8,811,670; 8,812,362; 8,822,149; 8,824,762; 8,871,901; 8,877,174; 8,889,662; 8,892,409; 8,903,192; 8,903,531; 8,911,958; 8,912,512; 8,956,608; 8,962,680; 8,965,625; 8,975,022; 8,977,421; 8,987,686; 9,011,877; 9,030,565; 9,034,401; 9,036,910; 9,037,256; 9,040,023; 9,053,537; 9,056,115; 9,061,004; 9,061,055; 9,069,352; 9,072,496; 9,074,257; 9,080,212; 9,106,718; 9,116,722; 9,128,991; 9,132,110; 9,186,107; 9,200,324; 9,205,092; 9,207,247; 9,208,209; 9,210,446; 9,211,103; 9,216,010; 9,216,213; 9,226,518; 9,232,217; 9,243,493; 9,275,353; 9,292,550; 9,361,274; 9,370,501; 9,370,509; 9,371,565; 9,374,671; 9,375,412; 9,375,436; 9,389,235; 9,394,345; 9,399,061; 9,402,871; 9,415,029; 9,451,920; 9,468,541; 9,503,467; 9,534,258; 9,536,214; 9,539,223; 9,542,939; 9,555,069; 9,555,251; 9,563,921; 9,579,337; 9,585,868; 9,615,585; 9,625,646; 9,633,401; 9,639,807; 9,639,902; 9,650,678; 9,663,824; 9,668,104; 9,672,474; 9,674,210; 9,675,642; 9,679,378; 9,681,835; 9,683,832; 9,701,721; 9,710,767; 9,717,459; 9,727,616; 9,729,568; 9,734,122; 9,734,290; 9,740,979; 9,746,479; 9,757,388; 9,758,828; 9,760,907; 9,769,619; 9,775,818; 9,777,327; 9,786,012; 9,790,256; 9,791,460; 9,792,741; 9,795,335; 9,801,857; 9,801,920; 9,809,854; 9,811,794; 9,836,577; 9,870,519; 9,871,927; 9,881,339; 9,882,660; 9,886,771; 9,892,420; 9,926,368; 9,926,593; 9,932,637; 9,934,239; 9,938,576; 9,949,659; 9,949,693; 9,951,348; 9,955,190; 9,959,285; 9,961,488; 9,967,714; 9,972,014; 9,974,773; 9,976,182; 9,982,301; 9,983,216; 9,986,527; 9,988,624; 9,990,648; 9,990,649; 9,993,735; 20020016699; 20020055457; 20020099686; 20020184272; 20030009295; 20030021848; 20030023951; 20030050265; 20030073715; 20030078738; 20030104499; 20030139963; 20030166017; 20030166026; 20030170660; 20030170700; 20030171685; 20030171876; 20030180764; 20030190602; 20030198650; 20030199685; 20030220775; 20040063095; 20040063655; 20040073414; 20040092493; 20040115688; 20040116409; 20040116434; 20040127799; 20040138826; 20040142890; 20040157783; 20040166519; 20040265849; 20050002950; 20050026169; 20050080613; 20050096360; 20050113306; 20050113307; 20050164206; 20050171923; 20050272054; 20050282201; 20050287559; 20060024700; 20060035867; 20060036497; 20060084070; 20060084081; 20060142983; 20060143071; 20060147420; 20060149522; 20060164997; 20060223093; 20060228715; 20060234262; 20060278241; 20060286571; 20060292547; 20070026426; 20070031846; 20070031847; 20070031848; 20070036773; 20070037208; 20070037241; 20070042382; 20070049644; 20070054278; 20070059710; 20070065843; 20070072821; 20070078117; 20070078434; 20070087000; 20070088248; 20070123487; 20070129948; 20070167727; 20070190056; 20070202518; 20070208600; 20070208640; 20070239439; 20070254289; 20070254369; 20070255113; 20070259954; 20070275881; 20080032628; 20080033589; 20080038230; 20080050732; 20080050733; 20080051318; 20080057500; 20080059072; 20080076120; 20080103892; 20080108081; 20080108713; 20080114564; 20080127545; 20080139402; 20080160046; 20080166348; 20080172205; 20080176266; 20080177592; 20080183394; 20080195596; 20080213745; 20080241846; 20080248476; 20080286796; 20080299554; 20080301077; 20080305967; 20080306034; 20080311572; 20080318219; 20080318914; 20090006363; 20090035768; 20090035769; 20090035772; 20090053745; 20090055139; 20090070081; 20090076890; 20090087909; 20090089022; 20090104620; 20090107510; 20090112752; 20090118217; 20090119357; 20090123441; 20090125466; 20090125916; 20090130682; 20090131702; 20090132453; 20090136481; 20090137417; 20090157409; 20090162346; 20090162348; 20090170111; 20090175830; 20090176235; 20090176857; 20090181384; 20090186352; 20090196875; 20090210363; 20090221438; 20090221620; 20090226420; 20090233299; 20090253952; 20090258003; 20090264453; 20090270332; 20090276189; 20090280566; 20090285827; 20090298082; 20090306950; 20090308600; 20090312410; 20090325920; 20100003691; 20100008934; 20100010336; 20100035983; 20100047798; 20100048525; 20100048679; 20100063851; 20100076949; 20100113407; 20100120040; 20100132058; 20100136553; 20100136579; 20100137409; 20100151468; 20100174336; 20100183574; 20100183610; 20100184040; 20100190172; 20100191216; 20100196400; 20100197033; 20100203507; 20100203508; 20100215645; 20100216154; 20100216655; 20100217648; 20100222225; 20100249188; 20100261187; 20100268680; 20100272713; 20100278796; 20100284989; 20100285579; 20100310499; 20100310543; 20100330187; 20110004509; 20110021555; 20110027275; 20110028333; 20110054356; 20110065981; 20110070587; 20110071033; 20110077194; 20110077215; 20110077931; 20110079077; 20110086349; 20110086371; 20110086796; 20110091994; 20110093288; 20110104121; 20110106736; 20110118539; 20110123100; 20110124119; 20110129831; 20110130303; 20110131160; 20110135637; 20110136260; 20110137851; 20110150323; 20110173116; 20110189648; 20110207659; 20110207708; 20110208738; 20110213746; 20110224181; 20110225037; 20110251272; 20110251995; 20110257216; 20110257217; 20110257218; 20110257219; 20110263633; 20110263634; 20110263635; 20110263636; 20110263637; 20110269735; 20110276828; 20110284029; 20110293626; 20110302823; 20110307303; 20110311565; 20110319811; 20120003212; 20120010274; 20120016106; 20120016436; 20120030082; 20120039864; 20120046263; 20120064512; 20120065758; 20120071357; 20120072781; 20120082678; 20120093376; 20120101965; 20120107370; 20120108651; 20120114211; 20120114620; 20120121618; 20120128223; 20120128702; 20120136629; 20120154149; 20120156215; 20120163656; 20120165221; 20120166291; 20120173200; 20120184605; 20120209565; 20120209697; 20120220055; 20120239489; 20120244145; 20120245133; 20120250963; 20120252050; 20120252695; 20120257164; 20120258884; 20120264692; 20120265978; 20120269846; 20120276528; 20120280146; 20120301407; 20120310619; 20120315655; 20120316833; 20120330720; 20130012860; 20130024124; 20130024269; 20130029327; 20130029384; 20130030051; 20130040922; 20130040923; 20130041034; 20130045198; 20130045958; 20130058914; 20130059827; 20130059915; 20130060305; 20130060549; 20130061339; 20130065870; 20130071033; 20130073213; 20130078627; 20130080101; 20130081158; 20130102918; 20130103615; 20130109583; 20130112895; 20130118532; 20130129764; 20130130923; 20130138481; 20130143215; 20130149290; 20130151429; 20130156767; 20130171296; 20130197081; 20130197738; 20130197830; 20130198203; 20130204664; 20130204833; 20130209486; 20130210855; 20130211229; 20130212168; 20130216551; 20130225439; 20130237438; 20130237447; 20130240722; 20130244233; 20130244902; 20130244965; 20130252267; 20130252822; 20130262425; 20130271668; 20130273103; 20130274195; 20130280241; 20130288913; 20130303558; 20130303939; 20130310261; 20130315894; 20130325498; 20130332231; 20130332338; 20130346023; 20130346039; 20130346844; 20140004075; 20140004510; 20140011206; 20140011787; 20140038930; 20140058528; 20140072550; 20140072957; 20140080784; 20140081675; 20140086920; 20140087960; 20140088406; 20140093127; 20140093974; 20140095251; 20140100989; 20140106370; 20140107850; 20140114746; 20140114880; 20140120137; 20140120533; 20140127213; 20140128362; 20140134186; 20140134625; 20140135225; 20140141988; 20140142861; 20140143134; 20140148505; 20140156231; 20140156571; 20140163096; 20140170069; 20140171337; 20140171382; 20140172507; 20140178348; 20140186333; 20140188918; 20140199290; 20140200953; 20140200999; 20140213533; 20140219968; 20140221484; 20140234291; 20140234347; 20140235605; 20140236965; 20140242180; 20140244216; 20140249447; 20140249862; 20140256576; 20140258355; 20140267700; 20140271672; 20140274885; 20140278148; 20140279053; 20140279306; 20140286935; 20140294903; 20140303481; 20140316217; 20140323897; 20140324521; 20140336965; 20140343786; 20140349984; 20140365144; 20140365276; 20140376645; 20140378334; 20150001420; 20150002845; 20150004641; 20150005176; 20150006605; 20150007181; 20150018632; 20150019262; 20150025328; 20150031578; 20150031969; 20150032598; 20150032675; 20150039265; 20150051896; 20150051949; 20150056212; 20150064194; 20150064195; 20150064670; 20150066738; 20150072434; 20150072879; 20150073306; 20150078460; 20150088783; 20150089399; 20150100407; 20150100408; 20150100409; 20150100410; 20150100411; 20150100412; 20150111775; 20150112874; 20150119759; 20150120758; 20150142331; 20150152176; 20150167062; 20150169840; 20150178756; 20150190367; 20150190436; 20150191787; 20150205756; 20150209586; 20150213192; 20150215127; 20150216164; 20150216922; 20150220487; 20150228031; 20150228076; 20150231191; 20150232944; 20150240304; 20150240314; 20150250816; 20150259744; 20150262511; 20150272464; 20150287143; 20150292010; 20150292016; 20150299798; 20150302529; 20150306160; 20150307614; 20150320707; 20150320708; 20150328174; 20150332013; 20150337373; 20150341379; 20150348095; 20150356458; 20150359781; 20150361494; 20150366830; 20150377909; 20150378807; 20150379428; 20150379429; 20150379430; 20160010162; 20160012334; 20160017037; 20160017426; 20160024575; 20160029643; 20160029945; 20160032388; 20160034640; 20160034664; 20160038538; 20160040184; 20160040236; 20160042009; 20160042197; 20160045466; 20160046991; 20160048925; 20160053322; 20160058717; 20160063144; 20160068890; 20160068916; 20160075665; 20160078361; 20160097082; 20160105801; 20160108473; 20160108476; 20160110657; 20160110812; 20160122396; 20160124933; 20160125292; 20160138105; 20160139122; 20160147013; 20160152538; 20160163132; 20160168639; 20160171618; 20160171619; 20160173122; 20160175321; 20160198657; 20160202239; 20160203279; 20160203316; 20160222100; 20160222450; 20160224724; 20160224869; 20160228056; 20160228392; 20160237487; 20160243190; 20160243215; 20160244836; 20160244837; 20160244840; 20160249152; 20160250228; 20160251720; 20160253324; 20160253330; 20160259883; 20160265055; 20160271144; 20160281105; 20160281164; 20160282941; 20160295371; 20160303111; 20160303172; 20160306075; 20160307138; 20160310442; 20160319352; 20160344738; 20160352768; 20160355886; 20160359683; 20160371782; 20160378942; 20170004409; 20170006135; 20170007574; 20170009295; 20170014032; 20170014108; 20170016896; 20170017904; 20170022563; 20170022564; 20170027940; 20170028006; 20170029888; 20170029889; 20170032100; 20170035011; 20170037470; 20170046499; 20170051019; 20170051359; 20170052945; 20170056468; 20170061073; 20170067121; 20170068795; 20170071884; 20170073756; 20170074878; 20170076303; 20170088900; 20170091673; 20170097347; 20170098240; 20170098257; 20170098278; 20170099836; 20170100446; 20170103190; 20170107583; 20170108502; 20170112792; 20170116624; 20170116653; 20170117064; 20170119662; 20170124520; 20170124528; 20170127110; 20170127180; 20170135647; 20170140122; 20170140424; 20170145503; 20170151217; 20170156344; 20170157249; 20170159045; 20170159138; 20170168070; 20170177813; 20170180798; 20170193647; 20170196481; 20170199845; 20170214799; 20170219451; 20170224268; 20170226164; 20170228810; 20170231221; 20170233809; 20170233815; 20170235894; 20170236060; 20170238850; 20170238879; 20170242972; 20170246963; 20170247673; 20170255888; 20170255945; 20170259178; 20170261645; 20170262580; 20170265044; 20170268066; 20170270580; 20170280717; 20170281747; 20170286594; 20170286608; 20170286838; 20170292159; 20170298126; 20170300814; 20170300824; 20170301017; 20170304248; 20170310697; 20170311895; 20170312289; 20170312315; 20170316150; 20170322928; 20170344554; 20170344555; 20170344556; 20170344954; 20170347242; 20170350705; 20170351689; 20170351806; 20170351811; 20170353825; 20170353826; 20170353827; 20170353941; 20170363738; 20170364596; 20170364817; 20170369534; 20170374521; 20180000102; 20180003722; 20180005149; 20180010136; 20180010185; 20180010197; 20180010198; 20180011110; 20180014771; 20180017545; 20180017564; 20180017570; 20180020951; 20180021279; 20180031589; 20180032876; 20180032938; 20180033088; 20180038994; 20180049636; 20180051344; 20180060513; 20180062941; 20180064666; 20180067010; 20180067118; 20180071285; 20180075357; 20180077146; 20180078605; 20180080081; 20180085168; 20180085355; 20180087098; 20180089389; 20180093418; 20180093419; 20180094317; 20180095450; 20180108431; 20180111051; 20180114128; 20180116987; 20180120133; 20180122020; 20180128824; 20180132725; 20180143986; 20180148776; 20180157758; 20180160982; 20180171407; 20180182181; 20180185519; 20180191867; 20180192936; 20180193652; 20180201948; 20180206489; 20180207248; 20180214404; 20180216099; 20180216100; 20180216101; 20180216132; 20180216197; 20180217141; 20180217143; 20180218117; 20180225585; 20180232421; 20180232434; 20180232661; 20180232700; 20180232702; 20180232904; 20180235549; 20180236027; 20180237825; 20180239829; 20180240535; 20180245154; 20180251819; 20180251842; 20180254041; 20180260717; 20180263962; 20180275629; 20180276325; 20180276497; 20180276498; 20180276570; 20180277146; 20180277250; 20180285765; 20180285900; 20180291398; 20180291459; 20180291474; 20180292384; 20180292412; 20180293462; 20180293501; 20180293759; 20180300333; 20180300639; 20180303354; 20180303906; 20180305762; 20180312923; 20180312926; 20180314964; 20180315507; 20180322203; 20180323882; 20180327740; 20180327806; 20180327844; 20180336534; 20180340231; 20180344841; 20180353138; 20180357361; 20180357362; 20180357529; 20180357565; 20180357726; 20180358118; 20180358125; 20180358128; 20180358132; 20180359608; 20180360892; 20180365521; 20180369238; 20180369696; 20180371553; 20190000750; 20190001219; 20190004996; 20190005586; 20190010548; 20190015035; 20190017117; 20190017123; 20190024174; 20190032136; 20190033078; 20190034473; 20190034474; 20190036779; 20190036780; and 20190036816.


Ordinary linear regression predicts the expected value of a given unknown quantity (the response variable, a random variable) as a linear combination of a set of observed values (predictors). This implies that a constant change in a predictor leads to a constant change in the response variable (i.e., a linear-response model). This is appropriate when the response variable has a normal distribution (intuitively, when a response variable can vary essentially indefinitely in either direction with no fixed “zero value”, or more generally for any quantity that only varies by a relatively small amount, e.g., human heights). However, these assumptions are inappropriate for some types of response variables. For example, in cases where the response variable is expected to be always positive and varying over a wide range, constant input changes lead to geometrically varying, rather than constantly varying, output changes.


In a GLM, each outcome Y of the dependent variables is assumed to be generated from a particular distribution in the exponential family, a large range of probability distributions that includes the normal, binomial, Poisson and gamma distributions, among others.


The GLM consists of three elements: A probability distribution from the exponential family; a linear predictor η=Xβ; and a link function g such that E(Y)=μ=g−1(η). The linear predictor is the quantity which incorporates the information about the independent variables into the model. The symbol η (Greek “eta”) denotes a linear predictor. It is related to the expected value of the data through the link function. η is expressed as linear combinations (thus, “linear”) of unknown parameters β. The coefficients of the linear combination are represented as the matrix of independent variables X. η can thus be expressed as The link function provides the relationship between the linear predictor and the mean of the distribution function. There are many commonly used link functions, and their choice is informed by several considerations. There is always a well-defined canonical link function which is derived from the exponential of the response's density function. However, in some cases it makes sense to try to match the domain of the link function to the range of the distribution function's mean, or use a non-canonical link function for algorithmic purposes, for example Bayesian probit regression. For the most common distributions, the mean is one of the parameters in the standard form of the distribution's density function, and then is the function as defined above that maps the density function into its canonical form. A simple, very important example of a generalized linear model (also an example of a general linear model) is linear regression. In linear regression, the use of the least-squares estimator is justified by the Gauss-Markov theorem, which does not assume that the distribution is normal.


The standard GLM assumes that the observations are uncorrelated. Extensions have been developed to allow for correlation between observations, as occurs for example in longitudinal studies and clustered designs. Generalized estimating equations (GEEs) allow for the correlation between observations without the use of an explicit probability model for the origin of the correlations, so there is no explicit likelihood. They are suitable when the random effects and their variances are not of inherent interest, as they allow for the correlation without explaining its origin. The focus is on estimating the average response over the population (“population-averaged” effects) rather than the regression parameters that would enable prediction of the effect of changing one or more components of X on a given individual. GEEs are usually used in conjunction with Huber-White standard errors. Generalized linear mixed models (GLMMs) are an extension to GLMs that includes random effects in the linear predictor, giving an explicit probability model that explains the origin of the correlations. The resulting “subject-specific” parameter estimates are suitable when the focus is on estimating the effect of changing one or more components of X on a given individual. GLMMs are also referred to as multilevel models and as mixed model. In general, fitting GLMMs is more computationally complex and intensive than fitting GEEs.


In statistics, a generalized additive model (GAM) is a generalized linear model in which the linear predictor depends linearly on unknown smooth functions of some predictor variables, and interest focuses on inference about these smooth functions. GAMs were originally developed by Trevor Hastie and Robert Tibshirani to blend properties of generalized linear models with additive models.


The model relates a univariate response variable, to some predictor variables. An exponential family distribution is specified for (for example normal, binomial or Poisson distributions) along with a link function g (for example the identity or log functions) relating the expected value of univariate response variable to the predictor variables.


The functions may have a specified parametric form (for example a polynomial, or an un-penalized regression spline of a variable) or may be specified non-parametrically, or semi-parametrically, simply as ‘smooth functions’, to be estimated by non-parametric means. So a typical GAM might use a scatterplot smoothing function, such as a locally weighted mean. This flexibility to allow non-parametric fits with relaxed assumptions on the actual relationship between response and predictor, provides the potential for better fits to data than purely parametric models, but arguably with some loss of interpretability.


Any multivariate function can be represented as sums and compositions of univariate functions. Unfortunately, though the Kolmogorov-Arnold representation theorem asserts the existence of a function of this form, it gives no mechanism whereby one could be constructed. Certain constructive proofs exist, but they tend to require highly complicated (i.e., fractal) functions, and thus are not suitable for modeling approaches. It is not clear that any step-wise (i.e., backfitting algorithm) approach could even approximate a solution. Therefore, the Generalized Additive Model drops the outer sum, and demands instead that the function belong to a simpler class.


The original GAM fitting method estimated the smooth components of the model using non-parametric smoothers (for example smoothing splines or local linear regression smoothers) via the backfitting algorithm. Backfitting works by iterative smoothing of partial residuals and provides a very general modular estimation method capable of using a wide variety of smoothing methods to estimate the terms. Many modern implementations of GAMs and their extensions are built around the reduced rank smoothing approach, because it allows well founded estimation of the smoothness of the component smooths at comparatively modest computational cost, and also facilitates implementation of a number of model extensions in a way that is more difficult with other methods. At its simplest the idea is to replace the unknown smooth functions in the model with basis expansions. Smoothing bias complicates interval estimation for these models, and the simplest approach turns out to involve a Bayesian approach. Understanding this Bayesian view of smoothing also helps to understand the REML and full Bayes approaches to smoothing parameter estimation. At some level smoothing penalties are imposed.


Overfitting can be a problem with GAMs, especially if there is un-modelled residual auto-correlation or un-modelled overdispersion. Cross-validation can be used to detect and/or reduce overfitting problems with GAMs (or other statistical methods), and software often allows the level of penalization to be increased to force smoother fits. Estimating very large numbers of smoothing parameters is also likely to be statistically challenging, and there are known tendencies for prediction error criteria (GCV, AIC etc.) to occasionally undersmooth substantially, particularly at moderate sample sizes, with REML being somewhat less problematic in this regard. Where appropriate, simpler models such as GLMs may be preferable to GAMs unless GAMs improve predictive ability substantially (in validation sets) for the application in question.


Augustin, N. H.; Sauleau, E-A; Wood, S. N. (2012). “On quantile quantile plots for generalized linear models”. Computational Statistics and Data Analysis. 56: 2404-2409. doi:10.1016/j.csda.2012.01.026.


Brian Junker (Mar. 22, 2010). “Additive models and cross-validation”.


Chambers, J. M.; Hastie, T. (1993). Statistical Models in S. Chapman and Hall.


Dobson, A. J.; Barnett, A. G. (2008). Introduction to Generalized Linear Models (3rd ed.). Boca Raton, Fla.: Chapman and Hall/CRC. ISBN 1-58488-165-8.


Fahrmeier, L.; Lang, S. (2001). “Bayesian Inference for Generalized Additive Mixed Models based on Markov Random Field Priors”. Journal of the Royal Statistical Society, Series C. 50: 201-220.


Greven, Sonja; Kneib, Thomas (2010). “On the behaviour of marginal and conditional AIC in linear mixed models”. Biometrika. 97: 773-789. doi:10.1093/biomet/asq042.


Gu, C.; Wahba, G. (1991). “Minimizing GCV/GML scores with multiple smoothing parameters via the Newton method”. SIAM Journal on Scientific and Statistical Computing. 12. pp. 383-398.


Gu, Chong (2013). Smoothing Spline ANOVA Models (2nd ed.). Springer.


Hardin, James; Hilbe, Joseph (2003). Generalized Estimating Equations. London: Chapman and Hall/CRC. ISBN 1-58488-307-3.


Hardin, James; Hilbe, Joseph (2007). Generalized Linear Models and Extensions (2nd ed.). College Station: Stata Press. ISBN 1-59718-014-9.


Hastie, T. J.; Tibshirani, R. J. (1990). Generalized Additive Models. Chapman & Hall/CRC. ISBN 978-0-412-34390-2.


Kim, Y. J.; Gu, C. (2004). “Smoothing spline Gaussian regression: more scalable computation via efficient approximation”. Journal of the Royal Statistical Society, Series B. 66. pp. 337-356.


Madsen, Henrik; Thyregod, Poul (2011). Introduction to General and Generalized Linear Models. Chapman & Hall/CRC. ISBN 978-1-4200-9155-7.


Marra, G.; Wood, S. N. (2011). “Practical Variable Selection for Generalized Additive Models”. Computational Statistics and Data Analysis. 55: 2372-2387. doi:10.1016/j.csda.2011.02.004.


Marra, G.; Wood, S. N. (2012). “Coverage properties of confidence intervals for generalized additive model components”. Scandinavian Journal of Statistics. 39: 53-74. doi:10.1111/j.1467-9469.2011.00760.x.


Mayr, A.; Fenske, N.; Hofner, B.; Kneib, T.; Schmid, M. (2012). “Generalized additive models for location, scale and shape for high dimensional data—a flexible approach based on boosting”. Journal of the Royal Statistical Society, Series C. 61: 403-427. doi:10.1111/j.1467-9876.2011.01033.x.


McCullagh, Peter; Nelder, John (1989). Generalized Linear Models, Second Edition. Boca Raton: Chapman and Hall/CRC. ISBN 0-412-31760-5.


Nelder, John; Wedderburn, Robert (1972). “Generalized Linear Models”. Journal of the Royal Statistical Society. Series A (General). Blackwell Publishing. 135 (3): 370-384. doi:10.2307/2344614. JSTOR 2344614.


Nychka, D. (1988). “Bayesian confidence intervals for smoothing splines”. Journal of the American Statistical Association. 83. pp. 1134-1143.


Reiss, P. T.; Ogden, T. R. (2009). “Smoothing parameter selection for a class of semiparametric linear models”. Journal of the Royal Statistical Society, Series B. 71: 505-523. doi:10.1111/j.1467-9868.2008.00695.x.


Rigby, R. A.; Stasinopoulos, D. M. (2005). “Generalized additive models for location, scale and shape (with discussion)”. Journal of the Royal Statistical Society, Series C. 54: 507-554. doi:10.1111/j.1467-9876.2005.00510.x.


Rue, H.; Martino, Sara; Chopin, Nicolas (2009). “Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion)”. Journal of the Royal Statistical Society, Series B. 71: 319-392. doi:10.1111/j.1467-9868.2008.00700.x.


Ruppert, D.; Wand, M. P.; Carroll, R. J. (2003). Semiparametric Regression. Cambridge University Press.


Schmid, M.; Hothorn, T. (2008). “Boosting additive models using component-wise P-splines”. Computational Statistics and Data Analysis. 53: 298-311. doi:10.1016/j.csda.2008.09.009.


Senn, Stephen (2003). “A conversation with John Nelder”. Statistical Science. 18 (1): 118-131. doi:10.1214/ss/1056397489.


Silverman, B. W. (1985). “Some Aspects of the Spline Smoothing Approach to Non-Parametric Regression Curve Fitting (with discussion)”. Journal of the Royal Statistical Society, Series B. 47. pp. 1-53.


Umlauf, Nikolaus; Adler, Daniel; Kneib, Thomas; Lang, Stefan; Zeileis, Achim. “Structured Additive Regression Models: An R Interface to BayesX”. Journal of Statistical Software. 63 (21): 1-46.


Wahba, G. (1983). “Bayesian Confidence Intervals for the Cross Validated Smoothing Spline”. Journal of the Royal Statistical Society, Series B. 45. pp. 133-150.


Wahba, Grace. Spline Models for Observational Data. SIAM Rev., 33(3), 502-502 (1991).


Wood, S. N. (2000). “Modelling and smoothing parameter estimation with multiple quadratic penalties”. Journal of the Royal Statistical Society. Series B. 62 (2): 413-428. doi:10.1111/1467-9868.00240.


Wood, S. N. (2017). Generalized Additive Models: An Introduction with R (2nd ed). Chapman & Hall/CRC. ISBN 978-1-58488-474-3.


Wood, S. N.; Pya, N.; Saefken, B. (2016). “Smoothing parameter and model selection for general smooth models (with discussion)”. Journal of the American Statistical Association. 111: 1548-1575. doi:10.1080/01621459.2016.1180986.


Wood, S. N. (2011). “Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models”. Journal of the Royal Statistical Society, Series B. 73: 3-36.


Wood, Simon (2006). Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC. ISBN 1-58488-474-6.


Wood, Simon N. (2008). “Fast stable direct fitting and smoothness selection for generalized additive models”. Journal of the Royal Statistical Society, Series B. 70 (3): 495-518. arXiv:0709.3906. doi:10.1111/j.1467-9868.2007.00646.x.


Yee, Thomas (2015). Vector generalized linear and additive models. Springer. ISBN 978-1-4939-2817-0.


Zeger, Scott L.; Liang, Kung-Yee; Albert, Paul S. (1988). “Models for Longitudinal Data: A Generalized Estimating Equation Approach”. Biometrics. International Biometric Society. 44 (4): 1049-1060. doi:10.2307/2531734. JSTOR 2531734. PMID 3233245.


The stream of sensor data may comprise temporally averaged sensor data for a series of timestamps.


Communications between the transmitter to the receiver may be bandwidth constrained.


The transmitter and receiver may be asymmetric, wherein the transmitter is a data source and the receiver is a data sink, wherein the receiver is configured to receive communications from a plurality of transmitters.


The information characterizing subsequent sensor data may comprise the error of subsequent sensor data with respect to the prediction of the subsequent sensor data by the predictive statistical model comprises a standardized training error mean, standardized by subtracting a training error mean from an instantaneous error between subsequent sensor data and predicted subsequent sensor data, and dividing this difference by a training error standard deviation for a respective sensor, to produce a z-score of a prediction error.


The error of the subsequent sensor data with respect to the prediction of the subsequent sensor data may be statistically normalized and quantized with respect to units of standard deviation away from a predicted mean of the subsequent sensor data.


The error of the subsequent sensor data with respect to the prediction of the subsequent sensor data may be quantized in uneven steps with respect to units of standard deviation away from a predicted mean of the subsequent sensor data.


The error of the subsequent sensor data with respect to the prediction of the subsequent sensor data may be represented with higher resolution for smaller deviation away from a predicted mean of the subsequent sensor data than for higher deviation from the predicted mean of the subsequent sensor data.


The information defining the predictive statistical model communicated from the transmitter to the receiver may be encrypted.


The communicating of information characterizing subsequent sensor data may comprise communicating encrypted information representing independent variables and unencrypted information representing dependent variables.


The at least one processor may be further configured to calculate, the subsequent sensor data from the error of the sensor data and the prediction of the sensor data by statistical model.


The at least one processor may be further configured to acquire a time series of subsequent sensor data, and to communicate to the receiver information characterizing the time series of subsequent sensor data comprise a time series of errors of subsequent sensor data time samples with respect to a prediction of the subsequent sensor data time samples by the predictive statistical model.


The at least one processor may be configured to generate error statistics comprise a mean training error and a standard deviation of the mean training error for a stream of sensor data of the training data set in a training period based on the predictive statistical model.


The at least one processor may be configured to compute a predicted stream of sensor data, a predicted stream of sensor data error means, and a predicted stream of sensor data error standard deviations, based on the predictive statistical model.


The at least one processor may be configured to communicate the predicted stream of sensor data error means to the receiver.


The receiver may be configured to receive the predicted stream of sensor data error means, and based on the predictive statistical model and the received stream of sensor data error means, reconstruct the stream of sensor data.


The receiver may be configured to approximately reconstruct a stream of subsequent sensor data based on the received predictive statistical model, at least one control variable, and the errors of stream of subsequent sensor data.


The at least one processor may be configured to transmit a standard error of the prediction of the subsequent sensor data by the predictive statistical model to the receiver.


The receiver may be configured to infer the prediction of the subsequent sensor data by the predictive statistical model from the received standard error of the prediction and the predictive statistical model.


In accordance with some embodiments, the process of generating model and standard errors, and communicating data based on the generated model and training error statistics (error mean and standard deviation) is as follows.


An edge device collects machine data, such as an n-dimensional engine data time series that may include, but is not limited to, timestamps (ts) and the following engine parameters: engine speed (rpm), engine load percentage (load), coolant temperature (coolant temperature), coolant pressure (coolant pressure), oil temperature (oil temperature), oil pressure (oil pressure), fuel pressure (fuel pressure), and fuel actuator percentage (fuel actuator percentage). The edge device can be a computing node at the “edge” of an enterprise network, metropolitan network, or other network, in accordance with the geographic distribution of computing nodes in a network of, for example, IoT devices. In this aspect, edge computing is a distributed computing paradigm in which computation is largely or completely performed on distributed device nodes as opposed to primarily taking place in a centralized cloud environment.


For example, in accordance with some implementation of the presently disclosed technology, an edge computing device is installed on a vessel and interfaces with the electronic control units/modules (ECUs/ECMs) of all the diesel engines of the vessel. The edge computing device collects engine sensor data as a time series (e.g., all engines' RPMs, load percentages, fuel rates, oil pressures, oil temperatures, coolant pressures, coolant temperatures, air intake temperatures, bearing temperatures, cylinder temperatures, or the like), and collects vessel speed and location data from an internal GPS/DGPS of the edge device and/or the vessel's GPS/DGPS. The edge device can also interface and collect data from onboard PLC and other devices, systems, or assets such as generators, z-drives, tanks, or the like. Illustratively, the edge device collects the sensor data at an approximate rate of sixty samples per minute and aligns the data to every second's time-stamp (e.g., 12:00:00, 12:00:01, 12:00:02, . . . ) using its own clock that is synchronized via NTP service. For ships, this data is typically transmitted to shore office through satellite connectivity; and for vessels that operate near shore (e.g. inland tugboats) cellular data transmission is another option.


In an example vessel's edge device installation that has 1000 sensor data points, each day the edge device can collect, store and send 24*60*60*1000*4=345.6 MB of data at one second resolution (based on a configuration where each sensor data point is 4 bytes or 32 bits in size)! Even if the edge device sends minute's average data (i.e., average or arithmetic mean of every minute's data instead of every second's data), it will transmit 24*60*1000*4=5.76 MB a day over a low bandwidth connection (e.g., satellite or cellular), which can still strain low bandwidth network resources—especially when there are multiple vessels transmitting their respective data at the same time.


In various embodiments, the edge devices can reside on vessels, automobiles, aerial vehicles (e.g., planes, drones, etc.), Internet of Things (IoT) devices, or other mobile devices to collect data locally without transmitting the all of the collected data in explicit form to one or more servers, cloud storage, or other remote systems or devices. Referring back to machine data example above, in a variance analysis of diesel engine data, most of the engine parameters, including coolant temperature, are found to have strong correlation with engine RPM and engine load percentage in a bounded range of engine speed, when engine is in steady state, i.e., RPM and engine load is stable. Inside that bounded region of engine RPM (e.g., higher than idle engine RPM), there exists a function f1 such that:

coolant temperature=f1(rpm, load)


f1:custom charactern|→custom characterm. In this case n equals two (rpm and load) and m equals one (coolant temperature)


In other words, f1 is a map that allows for prediction of a single dependent variable from two independent variables. Similarly,

coolant pressure=f2(rpm, load) oil temperature=f3(rpm, load)
oil pressure=f4(rpm, load)
fuel pressure=f5(rpm, load)
fuel actuator percentage=f6(rpm, load) fuel rate=f7 (rpm, load)
intake temp=f8(rpm, load)
Grouping these maps into one map leads to a multi-dimensional map (i.e., the model) such that f:custom charactern|→custom characterm

where n equals two (rpm, load) and m equals eight (coolant temperature, coolant pressure, oil temperature, oil pressure, fuel pressure, fuel actuator percentage, fuel rate and intake temp) in this case. Critically, many maps are grouped into a single map with the same input variables, enabling potentially many correlated variables (i.e., a tensor of variables) to be predicted within a bounded range. Note that the specific independent variables need not be engine RPM and engine load and need not be limited to two variables. For example, engine operating hours could be added as an independent variable in the map to account for engine degradation with operating time.


In order to create an engine model, a training time period is selected in which the engine had no apparent operational issues. A machine learning-based method is used to generate the engine models on the edge device or in the cloud. For example, a modeling technique is selected that offers low model bias (e.g., spline, neural network or support vector machines (SVM), and/or a Generalized Additive Model (GAM)).


In some embodiments, the programming language ‘R’ is used as an environment for statistical computing and graphics and GAM for creating a low bias model. Error statistics and/or the z-scores of the predicted errors are used to further minimize prediction errors. The engine's operating ranges can be divided into multiple distinct ranges and multiple multi-dimensional models can be built to improve model accuracy.


The same set of training data that was used to build the model (or other applicable training data) is then passed as an input set to the model in order to create a predicted sensor value(s) time series. By subtracting the predicted sensor values from the measured sensor values, an error time series for all the dependent sensor values is created for the training data set. The error statistics, such as mean and standard deviations of the training period error series, are computed and saved as the training period error statistics.


In the event that the data does not comply with presumptions, such as normal distribution, a normalization process may be included. In other cases, alternate statistical techniques may be employed, so long as they are synchronized at transmitter and receiver.


Once the model is deployed to the edge device and the system is operational, the dependent and independent sensor values can be measured in near real-time, and average data (e.g., per minute) may be computed. The expected value for dependent engine sensors can be predicted by passing the independent sensor values to the engine model. The error (i.e., the difference) between the measured value of a dependent variable and its predicted value can then be computed. These errors are standardized by subtracting the training error mean from the instantaneous error and dividing this difference by the training error standard deviations for a given sensor, which is essentially a z-score of prediction errors. These z-scores of prediction error or standardized prediction error can be sent to a remote computer instead of the actual raw data as measured using a bit description table as described later.


Suppose Y is a set of measured values of a dependent sensor variable, at time-stamps T, where

T=t0, t1, t2, t3, t4, t5, . . .
Y=y0, y1, y2, y3, y4, y5, . . .


X0 and X1 are two independent variables whose values are measured at the same time stamps are

X0=x00, x01, x02, x03, x04, x05, . . .
X1=x10, x11, x12, x13, x14, x15, . . .


and a machine learning based model exists Ŷ=f (X0, X1)


such that the values of Y can be predicted at the same time-stamps by Ŷ where

{circumflex over (Y)}={circumflex over (y)}0, {circumflex over (y)}1, {circumflex over (y)}2, {circumflex over (y)}3, {circumflex over (y)}4, {circumflex over (y)}5, . . .


such that, ŷi=f(x0i, x1i)


suppose the training mean error for sensor Y is μY,


and training error's standard deviation for sensor Y is σY


so the computed standard error series or z-scores of prediction errors will be

εY=εy1, εy2, εy3, εy4, εy5, . . . ,

where εyi=((yi−ŷi)−μY)/νY


The transmitter (e.g., edge device or sending computer) sends these standard errors along with independent variables X0, X1 and time-stamp data series T. Once these data are received, the receiver computes the predicted sensor value ŷi at time ti
ŷi=f(x0i, x1i)

where f is the identical machine learning model on both sending and receiving sides. The receiving side can recover a given sensor's value provided that the receiver has the identical machine learning based model as the sender and the training error statistics:

yiiY+yi×σY


By introducing non-linear loss into the compression algorithm, the compression ratios can be greatly increased. As an example, consider the following buckets of standard errors, assigning unique standard error states to unique bit patterns, e.g.:

















Id
std. err.
Bits









 1
0 <= std. err < 1
 00



 2
0 > std. err > −1
 01



 3
1 <= std. err < 2
1000



 4
−1 >= std. err > −2
1100



 5
2 <= std. err < 3
1001



 6
−2 >= std. err > −3
1101



 7
std. err >= 3
1010



 8
std. err <= −3
1110



 9
Error
1011



10
Null
1111










Four bits represent the value of the standard error when the standard error is outside of the −1 to +1 range and two bits represent the value when standard error is within the −1 to +1 range. The receiver side algorithm can check if the most significant bit (i.e., the left most bit) is zero, thus identifying that the error will be within ±1 and be represented by two bits, otherwise the error will be greater than ±1 and represented by four bits. The second bit determines the polarity of the error quantity (positive or negative standard error) etc.


Using a typical diesel engine as an example, assume that a machine dataset containing 10 sensors must be transmitted. Assume that two of the sensors are independent and eight are dependent sensor variables. Given enough data, a machine learning based model can be generated such that the 8 dependent sensors values can be predicted from an input consisting of 2 independent variables.


Table 1 represents the output of the machine learning based model showing predictions of fuel pressure, fuel actuator percentage, oil temperature, oil pressure, coolant temperature, coolant pressure, fuel rate and intake temperature for an engine speed of 1454 RPM and various engine load percentages.









TABLE 1





sample engine data averaged every minute





















engine
engine
fuel
fuel
oil


time stamp
speed
percent load
pressure
actuator pct
temperature





2017 May 30 20:16:00
1454
56.93
737.00
38.39
365.34


2017 May 30 20:17:00
1454
56.77
737.00
38.38
365.34


2017 May 30 20:18:00
1454
56.37
737.00
38.34
365.34


2017 May 30 20:19:00
1454
56.97
737.00
38.49
365.34


2017 May 30 20:20:00
1454
56.83
737.00
38.37
365.34


2017 May 30 20:21:00
1454
56.71
737.00
38.32
365.34


2017 May 30 20:22:00
1454
56.40
737.00
38.37
365.34


2017 May 30 20:23:00
1454
56.70
737.00
38.37
365.34


2017 May 30 20:24:00
1454
56.92
737.00
38.40
365.34


2017 May 30 20:25:00
1454
56.44
737.00
38.35
365.34


2017 May 30 20:26:00
1454
56.43
737.00
38.34
365.34






oil
coolant
coolant
fuel
intake


time stamp
pressure
temp
pressure
rate
temp





2017 May 30 20:16:00
605.00
129.00
45.80
346.43
83.00


2017 May 30 20:17:00
605.00
129.00
44.54
346.33
83.00


2017 May 30 20:18:00
605.00
129.00
45.48
344.84
83.00


2017 May 30 20:19:00
605.00
129.00
45.37
348.59
83.50


2017 May 30 20:20:00
605.00
129.00
45.17
345.73
83.36


2017 May 30 20:21:00
605.00
129.00
45.69
345.40
83.67


2017 May 30 20:22:00
605.00
129.00
45.52
346.60
84.00


2017 May 30 20:23:00
605.00
129.00
46.31
346.22
83.92


2017 May 30 20:24:00
605.00
129.00
46.19
345.56
83.37


2017 May 30 20:25:00
605.00
129.00
46.31
345.92
83.29


2017 May 30 20:26:00
605.00
129.00
45.59
346.48
83.09









Once both sides compute the model, the 2 independent sensor variables, time stamp, and the standard error bucket for each sensor are sent, leading to a total data size of

1 ts*32 bits+2 Ind.sensors*32 bits+N Dep.sensors*4 bit

in the worst case (i.e., when standard error is outside ±1 range) or a saving of 4×8−4=28 bits per sensor. For 8 sensors, the savings will be 28×8 bits or 28 bytes for each time stamp.


Considering each data row consists of 10 sensors values and a timestamp, the raw size of each machine data row is

1 ts*32 bits+2 Ind.sensors*32 bits+8 Dep.sensors*32 bits=352 bits=44 bytes

which compresses to the following:

1 ts*32 bits+2 Ind.sensors*32 bits+8 Dep.sensors*4 bit=128 bits=16 bytes

or a compression ratio of

100×(1−16/44)=63.63%.


In the best case, which is also the average case (i.e., when the standard errors are inside the range of ±1), the standard errors are represented using 2 bits per sensor variable.


So the compressed data size is

1 ts*32 bits+2 Ind.sensors*32 bits+8 Dep.sensors*2 bit=112 bits=14 bytes

or a compression ratio of

100×(1−14/44)=68.18%.


In general, the compression ratio can be calculated for a machine with m sensors, where n sensors are independent variables, k sensors are dependent variables such that m=n+k, and r sensors are overhead (timestamp, position data, etc.). Assuming all data are 4 bytes. The data size of each row is

(m+r)×4 bytes,

whereas in the present scheme, the data row size is

(n+k/8+r)×4 bytes

producing a compression ratio of

100×(1−(n+k/8+r)×4/(m+r)×4)

for m=20, n=2 and k=18, and r=1, the above scheme provides worst case compression ratio of

100×(1−(2×4+18/2+4)/(21×4))=75.0%

for m=20, n=2 and k=18, and r=1, the above scheme provides best case and average case compression ratio of

100×(1−(2×4+18/4+4)/(21×4))=80.36%


Similarly, for m=40, n=2 and k=38, and r=1, the above scheme provides best case and average case compression ratio of

100×(1−(2×4+38/4+4)/(41×4))=86.89%


Many bucketing schemes of standard errors can be created. For example, ±1 standard error range may be merged to one state:

















Id
std. err.
bits









1
−1 >= std. err <= 1
  0



2
1 < std err <= 2
1000



3
−1 > std err >= −2
1100



4
2 < std err <= 3
1001



5
−2 > std. err >= −3
1101



6
std. err > 3
1010



7
std. err <− 3
1110



8
error
1011



9
null
1111










for m=20, n=2, k=18, and r=1, the above scheme's worst case compression ratio is same as before

100×(1−(2×4+18/2+4)/(21×4))=75.0%


But, for m=20, n=2, k=18, and r=1, the above scheme provides best case compression ratio of

100×(1−(2×4×8+18+4×8)/(21×4×8))=83.04%,

and for m=40, n=2, k=38, and r=1, the above scheme provides best case compression ratio of

100×(1−(2×4×8+38+4×8)/(41×4×8))=89.79%


Instead of compressing machine data, the above algorithm may be used to increase precision for the range of data that occurs more frequently and decrease precision for the data that happens infrequently. For example, additional bits can be assigned to represent data that have standard errors in the range±3 z-scores and fewer bits for data that have standard error outside of that range.


In some embodiments, the presently disclosed technology does not involve sending at least some part of the actual data; rather, the technology uses parameters and/or statistical errors to implicitly communicate the actual data. Therefore, the system may be used as a data obfuscation technique. In some embodiments, the actual, exact data values cannot be recovered from the sensor standard error values without prior knowledge of the model and model parameters. If the model is encrypted during transmission, only the independent variables need be sent encrypted during transmission. The standard errors for dependent sensor variables may be sent as plain text, thus reducing the transmission encryption overhead and improving performance.


A linear model generated by machine learning may also be used, which greatly decreases the model size as compared to other modeling techniques. Since only two model parameters are required (i.e., offset and gradient) and relatively little computing resources are needed to generate a linear model, the recalculation and re-transmission of the model can occur more frequently and on any transmission interface, e.g., on satellite, LoRaWAN, cellular, etc. Additionally, range-based linear models may also be used. For example, the full operating range of independent parameters are divided into ‘n’ smaller ranges and ‘n’ linear models are computed for each smaller range. Considering that only a few variables are required to store linear models, the combined model size would remain very small (e.g., 100 range based models require 100×2 parameters per model×4 bytes per parameter+100×(1 error mean+1 error standard deviations)×4 bytes each=1600 bytes or 4 orders of magnitude smaller than the model lookup table referenced above).



FIG. 1 shows a block diagram of a system including at least a transmitter 102 and a receiver 112 according to some embodiments of the presently disclosed technology. As described above, the transmitter 102 can be an edge device that receives a data stream 108 from one or more sensors. Some embodiments of an edge device are described in U.S. application Ser. No. 15/703,487 filed Sep. 13, 2017. The transmitter 102 can include one or more processors 104 configured to implement statistical model(s) 106 and encode data differentials (e.g., into bits representation) with respect to the statistical model(s) used. The transmitter 102 is communicatively connected to the receiver 112 via network connection(s) 120. The receiver 112 can be a server including one or more processors 114 configured to implement statistical model(s) 116 and decode data differentials (e.g., from bits representation) with respect to the statistical model(s) used. After or as the decoding is performed, the receiver 112 can generate a reconstructed data stream 118 and provide it to another device or a user.


As an example, the transmitter may be constructed as follows. A controller of the transmitter may include any or any combination of a system-on-chip, or commercially available embedded processor, Arduino, MeOS, MicroPython, Raspberry Pi, or other type processor board. The transmitter may also include an Application Specific Integrated Circuit (ASIC), an electronic circuit, a programmable combinatorial circuit (e.g., FPGA), a processor (shared, dedicated, or group) or memory (shared, dedicated, or group) that may execute one or more software or firmware programs, or other suitable components that provide the described functionality. The controller has an interface to a communication port, e.g., a radio or network device.


In embodiments, one or more of sensors determine, sense, and/or provide to controller data regarding one or more other characteristics may be and/or include Internet of Things (“IoT”) devices. IoT devices may be objects or “things”, each of which may be embedded with hardware or software that may enable connectivity to a network, typically to provide information to a system, such as controller. Because the IoT devices are enabled to communicate over a network, the IoT devices may exchange event-based data with service providers or systems in order to enhance or complement the services that may be provided. These IoT devices are typically able to transmit data autonomously or with little to no user intervention. In embodiments, a connection may accommodate vehicle sensors as IoT devices and may include IoT-compatible connectivity, which may include any or all of WiFi, LoRan, 900 MHz Wifi, BlueTooth, low-energy BlueTooth, USB, UWB, etc. Wired connections, such as Ethernet 1000baseT, CANBus, USB 3.0, USB 3.1, etc., may be employed.


Embodiments may be implemented into a computing device or system using any suitable hardware and/or software to configure as desired. The computing device may house a board such as motherboard which may include a number of components, including but not limited to a processor and at least one communication interface device. The processor may include one or more processor cores physically and electrically coupled to the motherboard. The at least one communication interface device may also be physically and electrically coupled to the motherboard. In further implementations, the communication interface device may be part of the processor. In embodiments, processor may include a hardware accelerator (e.g., FPGA).


Depending on its applications, computing device may include other components which include, but are not limited to, volatile memory (e.g., DRAM), non-volatile memory (e.g., ROM), and flash memory. In embodiments, flash and/or ROM may include executable programming instructions configured to implement the algorithms, operating system, applications, user interface, etc.


In embodiments, computing device may further include an analog-to-digital converter, a digital-to-analog converter, a programmable gain amplifier, a sample-and-hold amplifier, a data acquisition subsystem, a pulse width modulator input, a pulse width modulator output, a graphics processor, a digital signal processor, a crypto processor, a chipset, a cellular radio, an antenna, a display, a touchscreen display, a touchscreen controller, a battery, an audio codec, a video codec, a power amplifier, a global positioning system (GPS) device or subsystem, a compass (magnetometer), an accelerometer, a barometer (manometer), a gyroscope, a speaker, a camera, a mass storage device (such as a SIM card interface, and SD memory or micro-SD memory interface, SATA interface, hard disk drive, compact disk (CD), digital versatile disk (DVD), and so forth), a microphone, a filter, an oscillator, a pressure sensor, and/or an RFID chip.


The communication network interface device may enable wireless communications for the transfer of data to and from the computing device. The term “wireless” and its derivatives may be used to describe circuits, devices, systems, processes, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication chip 406 may implement any of a number of wireless standards or protocols, including but not limited to Institute for Electrical and Electronic Engineers (IEEE) standards including Wi-Fi (IEEE 802.11 family), IEEE 802.16 standards (e.g., IEEE 802.16-2005 Amendment), Long-Term Evolution (LTE) project along with any amendments, updates, and/or revisions (e.g., advanced LTE project, ultra-mobile broadband (UMB) project (also referred to as “3GPP2”), etc.). IEEE 802.16 compatible BWA networks are generally referred to as WiMAX networks, an acronym that stands for Worldwide Interoperability for Microwave Access, which is a certification mark for products that pass conformity and interoperability tests for the IEEE 802.16 standards. The communication chip 406 may operate in accordance with a Global System for Mobile Communication (GSM), General Packet Radio Service (GPRS), Universal Mobile Telecommunications System (UMTS), High Speed Packet Access (HSPA), Evolved HSPA (E-HSPA), or LTE network. The communication chip 406 may operate in accordance with Enhanced Data for GSM Evolution (EDGE), GSM EDGE Radio Access Network (GERAN), Universal Terrestrial Radio Access Network (UTRAN), or Evolved UTRAN (E-UTRAN). The communication chip 406 may operate in accordance with Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Digital Enhanced Cordless Telecommunications (DECT), Evolution-Data Optimized (EV-DO), derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The communication chip may operate in accordance with other wireless protocols in other embodiments. The computing device may include a plurality of communication chips. For instance, a first communication chip may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.


The processor of the computing device may include a die in a package assembly. The term “processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory.



FIG. 2 shows a flowchart of actions performed by the transmitter and the receiver of FIG. 1, according to some embodiments of the presently disclose technology.


As shown in FIG. 2, at block 202 the transmitter receives a stream of sensor data. At block 204, the transmitter receives inputs on or automatically generates statistical model(s) that describe or otherwise model the stream of sensor data. At block 206, the transmitter transmits to the receiver the statistical model(s) or data (e.g., model parameters) defining the statistical model(s). At block 208, the transmitter receives subsequent sensor data of the stream. At block 210, the transmitter calculates a difference between the subsequent sensor data and the expectation (e.g., predicted values) based on the statistical model(s). At block 212, the transmitter encodes the difference data (e.g., into bits representations). At block 214, the transmitter transmits the encoded difference data to the receiver.


With continued reference to FIG. 2, at block 222, the receiver receives from the transmitter the statistical model(s) or the data defining the statistical model(s). At block 224, the receiver receives the encoded difference data. At block 226, the receiver decodes the difference data. At block 228, the receiver uses the statistical model(s) and the decoded difference data to estimate the subsequent sensor data. At block 230, the receiver outputs the estimated subsequent sensor data.


Although certain embodiments have been illustrated and described herein for purposes of description, a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope of the present disclosure. The various embodiments and optional features recited herein may be employed in any combination, subcombination, or permutation, consistent with the discussions herein. This application is intended to cover any adaptations or variations of the embodiments discussed herein, limited only by the claims.


The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments. In cases where any document incorporated by reference conflicts with the present application, the present application controls.


These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims
  • 1. A system for communicating information between a transmitting device and a receiving device, comprising: one or more processors; andmemory storing contents that, when executed by the one or more processors, cause the system to perform actions comprising: communicating, from the transmitting device to the receiving device, information defining one or more statistical models including training error statistics for the one or more statistical models, wherein the one or more statistical models estimate a second category of sensor data based at least partially on a first category of sensor data that is associated with same time-stamps of the second category of sensor data;encoding, by the transmitting device and based at least partially on the training error statistics, prediction errors that represent at least a difference between (a) instances of the second category of sensor data and (b) at least a prediction made by the one or more statistical models based at least partially on instances of the first category of sensor data, to generate encoded prediction errors, wherein the encoding of the prediction errors comprises compressing the prediction errors based at least partially on a non-linear loss; andcommunicating, from the transmitting device to the receiving device, (a) the instances of the first category of sensor data and (b) the encoded prediction errors, for reconstruction of at least the instances of the second category of sensor data.
  • 2. The system of claim 1, wherein the first category of sensor data corresponds to independent variables of the one or more statistical models and the second category of sensor data corresponds to dependent variables of the one or more statistical models.
  • 3. The system of claim 2, wherein the one or more statistical models are derived based at least partially on a relationship between the independent and dependent variables.
  • 4. The system of claim 1, wherein the actions further comprise obtaining the training error statistics based on a training set of instances of the first category and second category of sensor data.
  • 5. The system of claim 1, wherein the training error statistics includes a training error mean and a training error standard deviation.
  • 6. The system of claim 1, wherein the prediction errors are encoded with more bits for greater deviation from a predicted mean than for smaller deviation from the predicted mean.
  • 7. A method for communicating information between a transmitting device and a receiving device, comprising: communicating, from a transmitting device to a receiving device, information defining one or more statistical models including training error statistics for the one or more statistical models, wherein the one or more statistical models estimate a second category of sensor data based at least partially on a first category of sensor data that is associated with same points in time as the second category of sensor data;encoding, by the transmitting device and based at least partially on the training error statistics, prediction errors that represent at least a difference between (a) instances of the second category of sensor data and (b) at least a prediction made by the one or more statistical models based at least partially on instances of the first category of sensor data, to generate encoded prediction errors, wherein the encoding of the prediction errors comprises compressing the prediction errors based at least partially on a non-linear loss; andcommunicating, from the transmitting device to the receiving device, (a) the instances of the first category of sensor data and (b) the encoded prediction errors, for reconstruction of at least the instances of the second category of sensor data.
  • 8. The method of claim 7, wherein the first category of sensor data corresponds to independent variables of the one or more statistical models and the second category of sensor data corresponds to dependent variables of the one or more statistical models.
  • 9. The method of claim 7, wherein the one or more statistical models are derived based at least partially on a relationship between a plurality of independent and dependent variables.
  • 10. The method of claim 7, further comprising obtaining the training error statistics based on a training set of instances of the first category and second category of sensor data.
  • 11. The method of claim 7, wherein the training error statistics includes a training error mean and a training error standard deviation.
  • 12. The method of claim 7, wherein the prediction errors are encoded with more bits for greater deviation from a predicted mean than for smaller deviation from the predicted mean.
  • 13. A method of communicating information, comprising: modeling a stream of sensor data including a first category of sensor data and a second category of sensor data that are associated with same time-stamps, to produce parameters of a statistical model, the parameters of the statistical model including training error statistics associated with the modeling;encoding, at a transmitting device and based at least partially on the training error statistics, prediction errors that represent at least a difference between (a) instances of the second category of sensor data and (b) at least a prediction made by the statistical model based at least partially on instances of the first category of sensor data, to generate encoded prediction errors wherein the encoding of the prediction errors comprises compressing the prediction errors based at least partially on a non-linear loss; andsending, from the transmitting device to a receiving device, at least the encoded prediction errors to communicate data for reconstruction of at least the instances of the second category of sensor data.
  • 14. The method of claim 13, further comprising reconstructing, at the receiving device, at least the instances of the second category of sensor data based at least partially on the encoded prediction errors, the instances of the first category of sensor data, and the statistical model.
  • 15. The method of claim 13, wherein the statistical model comprises at least one of a spline model, a neural network, a support vector machine, or a Generalized Additive Model (GAM).
  • 16. The method of claim 13, wherein communications between the transmitting device and the receiving device are bandwidth constrained.
  • 17. The method of claim 13, wherein the transmitting device and receiving device are asymmetric and wherein the receiving device receives communications from a plurality of transmitting devices.
  • 18. The method of claim 13, wherein the statistical model is dependent on a correlation between the second category of sensor data and the first category of sensor data.
  • 19. The method of claim 13, wherein the sending of at least the encoded prediction errors is encrypted.
  • 20. The method of claim 13, wherein the prediction errors are encoded with more bits for greater deviation from a predicted mean than for smaller deviation from the predicted mean.
  • 21. A system for communicating information between a transmitting device and a receiving device, comprising: one or more processors; andmemory storing contents that, when executed by the one or more processors, cause the system to perform actions comprising: modeling a stream of sensor data including a first category of sensor data and a second category of sensor data that are associated with same points in time, to produce parameters of a statistical model, the parameters of the statistical model including training error statistics associated with the modeling;encoding, at the transmitting device and based at least partially on the training error statistics, prediction errors that represent at least a difference between (a) instances of the second category of sensor data and (b) at least a prediction made by the statistical model based at least partially on instances of the first category of sensor data, to generate encoded prediction errors, wherein the encoding of the prediction errors comprises compressing the prediction errors based at least partially on a non-linear loss; andsending, from the transmitting device to the receiving device, at least the encoded prediction errors to communicate data for reconstruction of at least the instances of the second category of sensor data.
  • 22. The system of claim 21, wherein in the actions further comprise reconstructing, at the receiving device, at least the instances of the second category of sensor data based at least partially on the encoded prediction errors, the instances of the first category of sensor data, and the statistical model.
  • 23. The system of claim 21, wherein the statistical model comprises at least one of a spline model, a neural network, a support vector machine, or a Generalized Additive Model (GAM).
  • 24. The system of claim 21, wherein the receiving device receives communications from a plurality of transmitting devices.
  • 25. The system of claim 21, wherein the sending of at least the encoded prediction errors is encrypted.
  • 26. The system of claim 21, wherein the prediction errors are encoded with more bits for greater deviation from a predicted mean than for smaller deviation from the predicted mean.
US Referenced Citations (2506)
Number Name Date Kind
5243546 Maggard Sep 1993 A
5486762 Freedman et al. Jan 1996 A
5515477 Sutherland May 1996 A
5529901 Van Doorn et al. Jun 1996 A
5561421 Smith et al. Oct 1996 A
5641689 Jacob Van Doorn et al. Jun 1997 A
5659362 Kovac et al. Aug 1997 A
5667541 Klun et al. Sep 1997 A
5682317 Keeler et al. Oct 1997 A
5770606 El-Rashidy et al. Jun 1998 A
5915036 Grunkin et al. Jun 1999 A
5985889 El-Rashidy et al. Nov 1999 A
6006182 Fakhr et al. Dec 1999 A
6043037 Lucas Mar 2000 A
6064960 Bellegarda et al. May 2000 A
6081211 De Queiroz et al. Jun 2000 A
6121276 El-Rashidy et al. Sep 2000 A
6132974 Lucas Oct 2000 A
6140057 Lucas Oct 2000 A
6200983 El-Rashidy et al. Mar 2001 B1
6219457 Potu Apr 2001 B1
6223162 Chen et al. Apr 2001 B1
6226393 Grunkin et al. May 2001 B1
6300888 Chen et al. Oct 2001 B1
6306437 El-Rashidy et al. Oct 2001 B1
6356363 Cooper et al. Mar 2002 B1
6362756 Shannon Mar 2002 B1
6366884 Bellegarda et al. Apr 2002 B1
6389389 Meunier et al. May 2002 B1
6401070 McManus et al. Jun 2002 B1
6404925 Foote et al. Jun 2002 B1
6404932 Hata et al. Jun 2002 B1
6411729 Grunkin Jun 2002 B1
6444870 Zhang et al. Sep 2002 B1
6490373 Hata et al. Dec 2002 B2
6510250 Hata et al. Jan 2003 B2
6519599 Chickering et al. Feb 2003 B1
6553344 Bellegarda et al. Apr 2003 B2
6566368 El-Rashidy et al. May 2003 B2
6606037 Ekstrand et al. Aug 2003 B2
6633857 Tipping Oct 2003 B1
6662185 Stark et al. Dec 2003 B1
6664902 Andrew et al. Dec 2003 B2
6671414 Micchelli et al. Dec 2003 B1
6675185 Mitchell et al. Jan 2004 B1
6678423 Trenary et al. Jan 2004 B1
6684252 Chow Jan 2004 B1
6703231 Elbers et al. Mar 2004 B2
6704718 Burges et al. Mar 2004 B2
6735630 Gelvin et al. May 2004 B1
6751354 Foote et al. Jun 2004 B2
6757439 Leeder et al. Jun 2004 B2
6760480 Hata et al. Jul 2004 B2
6774917 Foote et al. Aug 2004 B1
6785652 Bellegarda et al. Aug 2004 B2
6795506 Zhang et al. Sep 2004 B1
6795786 LaMarca et al. Sep 2004 B2
6801668 Fröjdh et al. Oct 2004 B2
6804600 Uluyol Oct 2004 B1
6826607 Gelvin et al. Nov 2004 B1
6832006 Savakis et al. Dec 2004 B2
6832251 Gelvin et al. Dec 2004 B1
6839003 Soliman et al. Jan 2005 B2
6859831 Gelvin et al. Feb 2005 B1
6879944 Tipping et al. Apr 2005 B1
6895083 Bers et al. May 2005 B1
6895101 Celik et al. May 2005 B2
6895121 Joshi et al. May 2005 B2
6927710 Finzer et al. Aug 2005 B2
6939670 Pressman et al. Sep 2005 B2
6941019 Mitchell et al. Sep 2005 B1
7006568 Gu et al. Feb 2006 B1
7020578 Sorensen et al. Mar 2006 B2
7020701 Gelvin et al. Mar 2006 B1
7039654 Eder May 2006 B1
7043287 Khalil et al. May 2006 B1
7050646 Xu et al. May 2006 B2
7068641 Allan et al. Jun 2006 B1
7069258 Bothwell Jun 2006 B1
7081693 Hamel et al. Jul 2006 B2
7099523 Martens et al. Aug 2006 B2
7117185 Aliferis et al. Oct 2006 B1
7126500 Adams et al. Oct 2006 B2
7144869 Wolff et al. Dec 2006 B2
7146053 Rijavec et al. Dec 2006 B1
7170201 Hamel et al. Jan 2007 B2
7179797 McNeel Feb 2007 B2
7207041 Elson et al. Apr 2007 B2
7208517 Winn et al. Apr 2007 B1
7228171 Lesser et al. Jun 2007 B2
7231180 Benson et al. Jun 2007 B2
7238799 Hadjiargyrou et al. Jul 2007 B2
7246314 Foote et al. Jul 2007 B2
7256505 Arms et al. Aug 2007 B2
7266661 Walmsley Sep 2007 B2
7268137 Campochiaro Sep 2007 B2
7298925 Nowicki et al. Nov 2007 B2
7306913 Devlin et al. Dec 2007 B2
7309598 Fibers et al. Dec 2007 B2
7328625 Sundermeyer et al. Feb 2008 B2
7336720 Martemyanov et al. Feb 2008 B2
7337033 Ontalus et al. Feb 2008 B1
7339957 Hitt Mar 2008 B2
7346507 Natarajan et al. Mar 2008 B1
7361998 Hamel et al. Apr 2008 B2
7365455 Hamel et al. Apr 2008 B2
7379890 Myr et al. May 2008 B2
7385503 Wells et al. Jun 2008 B1
7389114 Ju et al. Jun 2008 B2
7398164 Ogushi et al. Jul 2008 B2
7401057 Eder Jul 2008 B2
7426499 Eder Sep 2008 B2
7429805 Hamel et al. Sep 2008 B2
7443509 Burns Oct 2008 B1
7445896 Rieder et al. Nov 2008 B2
7473687 Hoffman et al. Jan 2009 B2
7474805 Nowicki et al. Jan 2009 B2
7482117 Cargill et al. Jan 2009 B2
7483871 Herz Jan 2009 B2
7487066 Sundermeyer et al. Feb 2009 B2
7494783 Soreq et al. Feb 2009 B2
7504970 Fulcomer Mar 2009 B2
7516572 Yang et al. Apr 2009 B2
7518538 Schneider Apr 2009 B1
7532763 Yu et al. May 2009 B2
7538697 Schneider May 2009 B1
7547683 Wolff et al. Jun 2009 B2
7550504 Pablos Jun 2009 B2
7561972 Welch et al. Jul 2009 B1
7561973 Welch et al. Jul 2009 B1
7564383 Schneider Jul 2009 B2
7578793 Todros et al. Aug 2009 B2
7583961 Kappes et al. Sep 2009 B2
7590516 Jourdan et al. Sep 2009 B2
7592507 Beeckman et al. Sep 2009 B2
7593815 Willen et al. Sep 2009 B2
7605485 Pitchford et al. Oct 2009 B2
7605721 Schneider Oct 2009 B2
7609838 Westhoff et al. Oct 2009 B2
7612692 Schneider Nov 2009 B2
7625699 Devlin et al. Dec 2009 B2
7629901 Schneider Dec 2009 B1
7630563 Irvine et al. Dec 2009 B2
7630736 Wang Dec 2009 B2
7645984 Gorenstein et al. Jan 2010 B2
7646814 Winger et al. Jan 2010 B2
7651840 Li et al. Jan 2010 B2
7653491 Schadt et al. Jan 2010 B2
7660203 Barakat et al. Feb 2010 B2
7660295 Allan et al. Feb 2010 B2
7660355 Winger et al. Feb 2010 B2
7662564 Jiang et al. Feb 2010 B2
7671480 Pitchford et al. Mar 2010 B2
7685084 Sisk et al. Mar 2010 B2
7693683 Ihara Apr 2010 B2
7695911 Li et al. Apr 2010 B2
7695916 Iakoubova et al. Apr 2010 B2
7698213 Lancaster Apr 2010 B2
7700074 Pettegrew et al. Apr 2010 B2
7702482 Graepel et al. Apr 2010 B2
7702576 Fahner et al. Apr 2010 B2
7709460 McCaddon May 2010 B2
7710455 Aramaki et al. May 2010 B2
7711488 Hsu et al. May 2010 B2
7719416 Arms et al. May 2010 B2
7719448 Schneider May 2010 B2
7727725 Huang et al. Jun 2010 B2
7729864 Schadt Jun 2010 B2
7730063 Eder Jun 2010 B2
7743009 Hangartner et al. Jun 2010 B2
7743309 Li et al. Jun 2010 B2
7747392 Ruaño et al. Jun 2010 B2
7751984 Tang Jul 2010 B2
7764958 Townsend et al. Jul 2010 B2
7774272 Fahner et al. Aug 2010 B2
7781168 Iakoubova et al. Aug 2010 B2
7788970 Hitt et al. Sep 2010 B2
7797367 Gelvin et al. Sep 2010 B1
7799530 Iakoubova et al. Sep 2010 B2
7802015 Cheifot et al. Sep 2010 B2
7805405 Fernandez Sep 2010 B2
7807138 Berger et al. Oct 2010 B2
7811794 Cargill et al. Oct 2010 B2
7813981 Fahner et al. Oct 2010 B2
7816083 Grupe et al. Oct 2010 B2
7820380 Huang Oct 2010 B2
7821426 Schneider Oct 2010 B2
7829282 Rieder et al. Nov 2010 B2
7833706 Begovich et al. Nov 2010 B2
7840408 Yi et al. Nov 2010 B2
7844687 Gelvin et al. Nov 2010 B1
7853456 Soto et al. Dec 2010 B2
7863021 Schrodi et al. Jan 2011 B2
7873567 Eder Jan 2011 B2
7873634 Desbiens Jan 2011 B2
7873673 Cleveland et al. Jan 2011 B2
7881206 St. Pierre et al. Feb 2011 B2
7881544 Bashyam et al. Feb 2011 B2
7885988 Bashyam et al. Feb 2011 B2
7888016 Rieder et al. Feb 2011 B2
7888461 Firestein-Miller Feb 2011 B2
7888486 Walsh et al. Feb 2011 B2
7890403 Smith et al. Feb 2011 B1
7893041 Morrow et al. Feb 2011 B2
7904135 Menezes et al. Mar 2011 B2
7908928 Vik et al. Mar 2011 B2
7910107 Walsh et al. Mar 2011 B2
7910303 Bare et al. Mar 2011 B2
7913556 Hsu et al. Mar 2011 B2
7915244 Hoffman et al. Mar 2011 B2
7921069 Canny et al. Apr 2011 B2
7933741 Willen et al. Apr 2011 B2
7936932 Bashyam et al. May 2011 B2
7947451 Li et al. May 2011 B2
7953559 Sundermeyer et al. May 2011 B2
7953676 Agarwal et al. May 2011 B2
7957222 Souders et al. Jun 2011 B2
7961959 Bashyam et al. Jun 2011 B2
7961960 Bashyam et al. Jun 2011 B2
7970216 Bashyam et al. Jun 2011 B2
7970640 Eder Jun 2011 B2
7974478 Bashyam et al. Jul 2011 B2
7977052 Luke et al. Jul 2011 B2
7987148 Hangartner et al. Jul 2011 B2
7990262 Weaver et al. Aug 2011 B2
7993833 Begovich et al. Aug 2011 B2
7996342 Grabarnik et al. Aug 2011 B2
8000314 Brownrigg et al. Aug 2011 B2
8005140 Yang et al. Aug 2011 B2
8005620 Gustafsson et al. Aug 2011 B2
8010319 Walters et al. Aug 2011 B2
8010476 Fung et al. Aug 2011 B2
8011255 Arms et al. Sep 2011 B2
8013731 Weaver et al. Sep 2011 B2
8013732 Petite et al. Sep 2011 B2
8017317 Fibers et al. Sep 2011 B2
8017908 Gorenstein et al. Sep 2011 B2
8024125 Hsu et al. Sep 2011 B2
8024980 Arms et al. Sep 2011 B2
8026113 Kaushal et al. Sep 2011 B2
8026808 Weaver et al. Sep 2011 B2
8027947 Hinsz et al. Sep 2011 B2
8031650 Petite et al. Oct 2011 B2
8035511 Weaver et al. Oct 2011 B2
8037043 Zoeter et al. Oct 2011 B2
8039212 Li et al. Oct 2011 B2
8044812 Harres Oct 2011 B2
8064412 Petite Nov 2011 B2
8071291 Bare et al. Dec 2011 B2
8071302 Huang Dec 2011 B2
8073331 Mazed Dec 2011 B1
8086864 Kim et al. Dec 2011 B2
8094713 Clark Jan 2012 B2
8098485 Weaver et al. Jan 2012 B2
8103537 Chickering et al. Jan 2012 B2
8104993 Hitt et al. Jan 2012 B2
8111156 Song et al. Feb 2012 B2
8112381 Yuan et al. Feb 2012 B2
8112624 Parkinson et al. Feb 2012 B2
8126653 Welch et al. Feb 2012 B2
8135548 Breton et al. Mar 2012 B2
8140658 Gelvin et al. Mar 2012 B1
8148070 Iakoubova et al. Apr 2012 B2
8152750 Vournakis et al. Apr 2012 B2
8153366 Rieder et al. Apr 2012 B2
8160136 Sezer Apr 2012 B2
8171136 Petite May 2012 B2
8175403 Alakuijala May 2012 B1
8178834 Gorenstein et al. May 2012 B2
8185316 Alam et al. May 2012 B2
8185486 Eder May 2012 B2
8193929 Siu et al. Jun 2012 B1
8193930 Petite et al. Jun 2012 B2
8194655 Pister Jun 2012 B2
8194858 Bukshpun et al. Jun 2012 B2
8195814 Shelby Jun 2012 B2
8199635 Taylor et al. Jun 2012 B2
8204224 Xiao et al. Jun 2012 B2
8211638 Huang et al. Jul 2012 B2
8212667 Petite et al. Jul 2012 B2
8214082 Tsai et al. Jul 2012 B2
8214315 Hangartner et al. Jul 2012 B2
8214370 Turon et al. Jul 2012 B1
8216786 Shiffman et al. Jul 2012 B2
8217078 Singh et al. Jul 2012 B1
8219848 Branson et al. Jul 2012 B2
8221273 Donahoe Jul 2012 B2
8222270 Nordsiek et al. Jul 2012 B2
8223010 Petite et al. Jul 2012 B2
8225129 Douglis et al. Jul 2012 B2
8227189 Bare et al. Jul 2012 B2
8233471 Brownrigg et al. Jul 2012 B2
8234150 Pickton et al. Jul 2012 B1
8234151 Pickton et al. Jul 2012 B1
8236816 Nordsiek et al. Aug 2012 B2
8238290 Ordentlich et al. Aug 2012 B2
8260575 Walters et al. Sep 2012 B2
8264401 Kavaler Sep 2012 B1
8265657 Shao et al. Sep 2012 B2
8270745 Fuchie et al. Sep 2012 B2
8279067 Berger et al. Oct 2012 B2
8279080 Pitchford et al. Oct 2012 B2
8280671 Luo et al. Oct 2012 B2
8282517 Donahoe Oct 2012 B2
8283440 Firestein-Miller Oct 2012 B2
8289184 Strohm Oct 2012 B2
8291069 Phillips Oct 2012 B1
8299109 Nordsiek et al. Oct 2012 B2
8305899 Luo et al. Nov 2012 B2
8306340 Ceperkovic et al. Nov 2012 B2
8311849 Soto et al. Nov 2012 B2
8325030 Townsend et al. Dec 2012 B2
8328950 Baseman et al. Dec 2012 B2
8330596 Tanaka et al. Dec 2012 B2
8331441 Yang et al. Dec 2012 B2
8335304 Petite Dec 2012 B2
8346688 Carroll et al. Jan 2013 B2
8349327 Walsh et al. Jan 2013 B2
8350750 Paek et al. Jan 2013 B2
8351688 Hancock et al. Jan 2013 B2
8359347 Branson et al. Jan 2013 B2
8364627 Canny et al. Jan 2013 B2
8370935 Jakobsson et al. Feb 2013 B1
8372625 Walsh et al. Feb 2013 B2
8373576 Strohm Feb 2013 B2
8374451 Shibata et al. Feb 2013 B2
8374837 De Winter et al. Feb 2013 B2
8375442 Jakobsson et al. Feb 2013 B2
8379564 Petite et al. Feb 2013 B2
8383338 Kitzman et al. Feb 2013 B2
8395496 Joshi et al. Mar 2013 B2
8401798 Welch et al. Mar 2013 B2
8410931 Petite et al. Apr 2013 B2
8411742 Yang et al. Apr 2013 B2
8412461 Gustafsson et al. Apr 2013 B2
8412465 Fu et al. Apr 2013 B2
8415093 Pribenszky et al. Apr 2013 B2
8417762 Branson et al. Apr 2013 B2
8421274 Sun et al. Apr 2013 B2
8434356 Hsu et al. May 2013 B2
8446884 Petite et al. May 2013 B2
8451766 Lee et al. May 2013 B2
8452621 Leong et al. May 2013 B1
8452638 Pickton et al. May 2013 B2
8455468 Hoffman et al. Jun 2013 B2
8458457 Parkinson Jun 2013 B2
8461849 Almonte et al. Jun 2013 B1
8463582 Song et al. Jun 2013 B2
8465980 Lin et al. Jun 2013 B2
8473249 Handley et al. Jun 2013 B2
8476077 Lin et al. Jul 2013 B2
8480110 Gorenstein et al. Jul 2013 B2
8489063 Petite Jul 2013 B2
8489499 Yan et al. Jul 2013 B2
8493601 Hull et al. Jul 2013 B2
8496934 Walsh et al. Jul 2013 B2
8497084 Markowitz et al. Jul 2013 B2
8498915 Eder Jul 2013 B2
8501718 Gleicher et al. Aug 2013 B2
8501719 Gleicher et al. Aug 2013 B2
8509555 Meany Aug 2013 B2
8514928 Clark Aug 2013 B2
8515719 Tamaki et al. Aug 2013 B2
8521294 Sarma et al. Aug 2013 B2
8527352 Chatwin et al. Sep 2013 B2
8529383 Donahoe Sep 2013 B2
8530831 Coon et al. Sep 2013 B1
8533473 Gupta et al. Sep 2013 B2
8536998 Siu et al. Sep 2013 B1
8540644 Husheer Sep 2013 B2
8543428 Jones, III et al. Sep 2013 B1
8544089 Jakobsson et al. Sep 2013 B2
8552861 Bastide et al. Oct 2013 B2
8559271 Barakat et al. Oct 2013 B2
8563295 Davis et al. Oct 2013 B2
8566070 Tamaki et al. Oct 2013 B2
8568995 Lopes-Virella et al. Oct 2013 B2
8569574 Khatib et al. Oct 2013 B2
8572290 Mukhopadhyay et al. Oct 2013 B1
8582481 Kim et al. Nov 2013 B2
8585517 Donahoe Nov 2013 B2
8585606 McDonald et al. Nov 2013 B2
8600560 Smith et al. Dec 2013 B2
8600870 Milana Dec 2013 B2
8614060 Rieder et al. Dec 2013 B2
8615374 Discenzo Dec 2013 B1
8618164 Singh et al. Dec 2013 B2
8625496 Brownrigg et al. Jan 2014 B2
8626697 Chaine et al. Jan 2014 B1
8630965 Savvides et al. Jan 2014 B2
8635029 Gustafsson et al. Jan 2014 B2
8635654 Correa et al. Jan 2014 B2
8638217 Arms et al. Jan 2014 B2
8639618 Yan et al. Jan 2014 B2
8644171 Meany et al. Feb 2014 B2
8645298 Hennig et al. Feb 2014 B2
8647819 Khatib Feb 2014 B2
8652776 Lavedan et al. Feb 2014 B2
8660786 Bengtson et al. Feb 2014 B2
8666357 Petite Mar 2014 B2
8669063 Weinschenk et al. Mar 2014 B2
8682812 Ranjan Mar 2014 B1
8682876 Shamlin et al. Mar 2014 B2
8687810 Bukshpun et al. Apr 2014 B2
8688850 Branson et al. Apr 2014 B2
8694455 Eder Apr 2014 B2
8694474 Wu Apr 2014 B2
8700064 Shao et al. Apr 2014 B2
8704656 Abedi Apr 2014 B2
8706589 Smith et al. Apr 2014 B1
8711743 De Poorter et al. Apr 2014 B2
8712937 Bacus et al. Apr 2014 B1
8713025 Eder Apr 2014 B2
8715704 Skelton et al. May 2014 B2
8715943 Princen et al. May 2014 B2
8718140 Cai et al. May 2014 B1
8718958 Breton et al. May 2014 B2
8724866 Wu et al. May 2014 B2
8725456 Saha et al. May 2014 B1
8725541 Andrist et al. May 2014 B2
8731052 Fuchie May 2014 B2
8731728 Milosevic et al. May 2014 B2
8731977 Hardin et al. May 2014 B1
8732534 Kini et al. May 2014 B2
8733168 Donahoe et al. May 2014 B2
8741635 Lindeman et al. Jun 2014 B2
8741956 Singh et al. Jun 2014 B2
8754805 Wang et al. Jun 2014 B2
8756173 Hunzinger et al. Jun 2014 B2
8766172 Gorenstein et al. Jul 2014 B2
8769094 Phillips Jul 2014 B2
8776062 Garbow et al. Jul 2014 B2
8781768 Gershinsky et al. Jul 2014 B2
8787246 Brownrigg Jul 2014 B2
8787638 Zee et al. Jul 2014 B2
8795172 Abolfathi et al. Aug 2014 B2
8799202 Carroll et al. Aug 2014 B2
8805579 Skrinde Aug 2014 B2
8805619 Sorensen et al. Aug 2014 B2
8810429 Gershinsky et al. Aug 2014 B2
8811670 Mundhenk et al. Aug 2014 B2
8812007 Hitt et al. Aug 2014 B2
8812362 Agarwal et al. Aug 2014 B2
8812654 Gelvin et al. Aug 2014 B2
8816850 Bandyopadhyay et al. Aug 2014 B2
8822149 Black et al. Sep 2014 B2
8822924 Valentino et al. Sep 2014 B2
8824762 Rivaz et al. Sep 2014 B2
8832244 Gelvin et al. Sep 2014 B2
8836503 Gelvin et al. Sep 2014 B2
8843356 Schadt et al. Sep 2014 B2
8855011 Ortega et al. Oct 2014 B2
8855245 Lee et al. Oct 2014 B2
8867309 Ray et al. Oct 2014 B2
8867310 Ray et al. Oct 2014 B1
8871901 Samoylova et al. Oct 2014 B2
8873335 Ray et al. Oct 2014 B1
8873336 Ray et al. Oct 2014 B1
8877174 Suckling et al. Nov 2014 B2
8879356 Ray et al. Nov 2014 B1
8885441 Ray et al. Nov 2014 B1
8889662 Navara Nov 2014 B2
8892409 Mun Nov 2014 B2
8892624 Branson et al. Nov 2014 B2
8892704 Bronez et al. Nov 2014 B2
8903192 Malik et al. Dec 2014 B2
8903531 Pharand et al. Dec 2014 B2
8911958 Lopes-Virella et al. Dec 2014 B2
8912512 Langoju et al. Dec 2014 B1
8922065 Sun et al. Dec 2014 B2
8923144 Shao et al. Dec 2014 B2
8924587 Petite Dec 2014 B2
8924588 Petite Dec 2014 B2
8929568 Grancharov et al. Jan 2015 B2
8930571 Petite Jan 2015 B2
8949989 Jakobsson et al. Feb 2015 B2
8954377 Turon et al. Feb 2015 B1
8956608 Walsh et al. Feb 2015 B2
8962680 Forbes et al. Feb 2015 B2
8964708 Petite Feb 2015 B2
8964727 Allan et al. Feb 2015 B2
8965625 Dvorak et al. Feb 2015 B2
8971432 Murakami et al. Mar 2015 B2
8975022 Begovich et al. Mar 2015 B2
8977421 Dvorak et al. Mar 2015 B2
8982856 Brownrigg Mar 2015 B2
8983793 Luo et al. Mar 2015 B2
8987686 Rizkallah et al. Mar 2015 B2
8987973 Mukter-Uz-Zaman et al. Mar 2015 B2
8990032 Bajwa et al. Mar 2015 B2
8992453 Vournakis et al. Mar 2015 B2
8994551 Pitchford et al. Mar 2015 B2
9004320 Keating et al. Apr 2015 B2
9011877 Davis et al. Apr 2015 B2
9017255 Raptis et al. Apr 2015 B2
9020866 Zhou et al. Apr 2015 B1
9026273 Ziarno May 2015 B2
9026279 Ziarno May 2015 B2
9026336 Ziarno May 2015 B2
9028404 DeRemer et al. May 2015 B2
9030565 Yang et al. May 2015 B2
9032058 Guthery May 2015 B2
9034401 Clarot et al. May 2015 B1
9035807 Jiang et al. May 2015 B2
9036910 Mundhenk et al. May 2015 B1
9037256 Bokil May 2015 B2
9040023 Durham et al. May 2015 B2
9053537 Stein et al. Jun 2015 B2
9056115 Gleicher et al. Jun 2015 B2
9061004 Markowitz et al. Jun 2015 B2
9061055 Fueyo et al. Jun 2015 B2
9063165 Valentino et al. Jun 2015 B2
9065699 Stratigos, Jr. Jun 2015 B2
9069352 Trumble Jun 2015 B2
9072114 Abedi Jun 2015 B2
9072496 Rao et al. Jul 2015 B2
9074257 Rieder et al. Jul 2015 B2
9074731 Barrett Jul 2015 B2
9075146 Valentino et al. Jul 2015 B1
9075796 Markatou et al. Jul 2015 B2
9080212 Khatib Jul 2015 B2
9090339 Arms et al. Jul 2015 B2
9092391 Stephan et al. Jul 2015 B2
9103826 Kochel et al. Aug 2015 B2
9103920 Valentino et al. Aug 2015 B2
9105181 Pitchford et al. Aug 2015 B2
9106718 Bonasera et al. Aug 2015 B2
9111240 Petite Aug 2015 B2
9111333 Jiang et al. Aug 2015 B2
9115989 Valentino et al. Aug 2015 B2
9116722 Shenfield et al. Aug 2015 B2
9119019 Murias et al. Aug 2015 B2
9128991 Shamlin et al. Sep 2015 B2
9129497 Petite Sep 2015 B2
9130651 Tabe Sep 2015 B2
9132110 Singh et al. Sep 2015 B2
9141215 Donahoe Sep 2015 B2
9148849 Akhlaq et al. Sep 2015 B2
9152146 Ziarno Oct 2015 B2
9154263 Muqaibel et al. Oct 2015 B1
9164292 Brooke Oct 2015 B2
9179147 Yang et al. Nov 2015 B2
9179161 Blum Nov 2015 B2
9186107 Towler et al. Nov 2015 B2
9191037 Lascari et al. Nov 2015 B2
9200324 Cavet et al. Dec 2015 B2
9202051 Jakobsson et al. Dec 2015 B2
9204319 Ouyang et al. Dec 2015 B2
9205064 Narain et al. Dec 2015 B2
9205092 Gleicher et al. Dec 2015 B2
9207247 Kraus et al. Dec 2015 B2
9208209 Katz Dec 2015 B1
9210436 Jeon et al. Dec 2015 B2
9210446 Kumar et al. Dec 2015 B2
9210938 Chan et al. Dec 2015 B2
9211103 Kraus et al. Dec 2015 B2
9216010 Ostroverkhov et al. Dec 2015 B2
9216213 Maki et al. Dec 2015 B2
9226304 Chen et al. Dec 2015 B2
9226518 Llagostera et al. Jan 2016 B2
9232217 Argyropoulos et al. Jan 2016 B2
9232407 Stanczak et al. Jan 2016 B2
9233466 Skrinde Jan 2016 B2
9239215 Donahoe Jan 2016 B2
9240955 Mukhopadhyay et al. Jan 2016 B1
9243493 Hsu et al. Jan 2016 B2
9275353 Lu et al. Mar 2016 B2
9282029 Petite Mar 2016 B2
9288743 Yang et al. Mar 2016 B2
9292550 Yarmus Mar 2016 B2
9297814 Skinner et al. Mar 2016 B2
9297915 Koh et al. Mar 2016 B2
9305275 McLachlan Apr 2016 B2
9311808 Nurmela et al. Apr 2016 B2
9325396 Murakami et al. Apr 2016 B2
9339202 Brockway et al. May 2016 B2
9356776 Ko et al. May 2016 B2
9361274 Chu et al. Jun 2016 B2
9363175 Chu et al. Jun 2016 B2
9370501 Singh et al. Jun 2016 B2
9370509 Nordsiek et al. Jun 2016 B2
9371565 Begovich et al. Jun 2016 B2
9372213 Auguste et al. Jun 2016 B2
9374671 Zhyshko et al. Jun 2016 B1
9374677 Tarlazzi et al. Jun 2016 B2
9375412 Singh et al. Jun 2016 B2
9375436 Gleicher et al. Jun 2016 B2
9386522 San Vicente et al. Jul 2016 B2
9386553 Berger et al. Jul 2016 B2
9387940 Godzdanker et al. Jul 2016 B2
9389235 Weinschenk et al. Jul 2016 B2
9390622 Kamarianakis Jul 2016 B2
9394345 Cong et al. Jul 2016 B2
9397795 Choi Jul 2016 B2
9398576 Calcev et al. Jul 2016 B2
9399061 Kupper et al. Jul 2016 B2
9402245 Chen et al. Jul 2016 B2
9402871 Davis et al. Aug 2016 B2
9413571 Jin et al. Aug 2016 B2
9415029 Singh et al. Aug 2016 B2
9417331 Valentino et al. Aug 2016 B2
9428767 Minshull et al. Aug 2016 B2
9429661 Valentino et al. Aug 2016 B2
9430936 Petite Aug 2016 B2
9439126 Petite Sep 2016 B2
9445445 Miller et al. Sep 2016 B2
9451920 Khair Sep 2016 B2
9455763 Muqaibel et al. Sep 2016 B2
9459360 Ray et al. Oct 2016 B2
9468541 Contreras-Vidal et al. Oct 2016 B2
9470809 Ray Oct 2016 B2
9470818 Akhlaq et al. Oct 2016 B2
9471884 Hamann et al. Oct 2016 B2
9478224 Kjoerling et al. Oct 2016 B2
9483531 Zhou et al. Nov 2016 B2
9492086 Ewers et al. Nov 2016 B2
9492096 Brockway et al. Nov 2016 B2
9495860 Lett Nov 2016 B2
9500757 Ray Nov 2016 B2
9503467 Lefebvre et al. Nov 2016 B2
9515691 Petite Dec 2016 B2
9529210 Brooke Dec 2016 B2
9534234 Minshull et al. Jan 2017 B2
9534258 Black et al. Jan 2017 B2
9536214 Heng et al. Jan 2017 B2
9539223 Page et al. Jan 2017 B2
9542939 Hoffmeister Jan 2017 B1
9555069 Clarot et al. Jan 2017 B2
9555251 Stein Jan 2017 B2
9563921 Shi et al. Feb 2017 B2
9571582 Petite et al. Feb 2017 B2
9574209 Minshull et al. Feb 2017 B2
9576404 Ziarno et al. Feb 2017 B2
9576694 Gogotsi et al. Feb 2017 B2
9579337 Stover et al. Feb 2017 B2
9580697 Minshull et al. Feb 2017 B2
9583967 Moss Feb 2017 B2
9584193 Stratigos, Jr. Feb 2017 B2
9585620 Paquet et al. Mar 2017 B2
9585868 Forbes et al. Mar 2017 B2
9590772 Choi et al. Mar 2017 B2
9605857 Secor Mar 2017 B2
9608740 Henry et al. Mar 2017 B2
9609810 Chan et al. Apr 2017 B2
9615226 Petite Apr 2017 B2
9615269 Henry et al. Apr 2017 B2
9615585 Iatrou et al. Apr 2017 B2
9615792 Raptis et al. Apr 2017 B2
9619883 Yudovsky Apr 2017 B2
9621959 Mountain Apr 2017 B2
9625646 Molin et al. Apr 2017 B2
9628165 Murakami et al. Apr 2017 B2
9628286 Nguyen et al. Apr 2017 B1
9628365 Gelvin et al. Apr 2017 B2
9632746 Keipert et al. Apr 2017 B2
9633401 Curtis Apr 2017 B2
9639100 Storm et al. May 2017 B2
9639807 Berengueres et al. May 2017 B2
9639902 Huehn et al. May 2017 B2
9640850 Henry et al. May 2017 B2
9650678 Bhatia May 2017 B2
9651400 Pitchford et al. May 2017 B2
9656389 Skrinde May 2017 B2
9661205 Athan May 2017 B2
9662392 Altschul et al. May 2017 B2
9663824 Chilton et al. May 2017 B2
9666042 Wedig et al. May 2017 B2
9667317 Gross et al. May 2017 B2
9667653 Barabash et al. May 2017 B2
9668104 Ching et al. May 2017 B1
9672474 Dirac et al. Jun 2017 B2
9674210 Oprea et al. Jun 2017 B1
9674711 Bennett et al. Jun 2017 B2
9675642 Braughler et al. Jun 2017 B2
9679378 Mouridsen et al. Jun 2017 B2
9681807 Miller et al. Jun 2017 B2
9681835 Karmali et al. Jun 2017 B2
9683832 Wang et al. Jun 2017 B2
9685992 Bennett et al. Jun 2017 B2
9691263 Petite Jun 2017 B2
9699768 Werb Jul 2017 B2
9699785 Henry et al. Jul 2017 B2
9701325 Kim et al. Jul 2017 B2
9701721 Bunnik et al. Jul 2017 B2
9705526 Veernapu Jul 2017 B1
9705561 Henry et al. Jul 2017 B2
9705610 Barzegar et al. Jul 2017 B2
9710767 Dietrich et al. Jul 2017 B1
9711038 Pennebaker, III Jul 2017 B1
9717459 Sereno et al. Aug 2017 B2
9721210 Brown Aug 2017 B1
9722318 Adriazola et al. Aug 2017 B2
9727115 Brown et al. Aug 2017 B1
9727616 Wu et al. Aug 2017 B2
9728063 Fu et al. Aug 2017 B1
9729197 Gross et al. Aug 2017 B2
9729568 Lefebvre et al. Aug 2017 B2
9730160 San Vicente et al. Aug 2017 B2
9734122 Vuskovic et al. Aug 2017 B2
9734290 Srinivas et al. Aug 2017 B2
9735833 Gross et al. Aug 2017 B2
9740979 Dubey et al. Aug 2017 B2
9742462 Bennett et al. Aug 2017 B2
9742521 Henry et al. Aug 2017 B2
9743370 Davis et al. Aug 2017 B2
9746452 Worden et al. Aug 2017 B2
9746479 Suthanthiran et al. Aug 2017 B2
9748626 Henry et al. Aug 2017 B2
9749013 Barnickel et al. Aug 2017 B2
9749053 Henry et al. Aug 2017 B2
9749083 Henry et al. Aug 2017 B2
9753022 Squartini et al. Sep 2017 B2
9753164 Barakat et al. Sep 2017 B2
9757388 Kreppner et al. Sep 2017 B2
9758828 Suthanthiran et al. Sep 2017 B2
9760907 Canny et al. Sep 2017 B2
9762289 Henry et al. Sep 2017 B2
9766320 Lazik et al. Sep 2017 B2
9766619 Ziarno Sep 2017 B2
9768833 Fuchs et al. Sep 2017 B2
9769020 Henry et al. Sep 2017 B2
9769128 Gross et al. Sep 2017 B2
9769522 Richardson Sep 2017 B2
9769619 Zhyshko et al. Sep 2017 B2
9772612 McCarthy, III et al. Sep 2017 B2
9775818 Page et al. Oct 2017 B2
9776725 Fox et al. Oct 2017 B2
9777327 Akoulitchev et al. Oct 2017 B2
9780834 Henry et al. Oct 2017 B2
9781700 Chen et al. Oct 2017 B2
9786012 Besman et al. Oct 2017 B2
9787412 Henry et al. Oct 2017 B2
9788326 Henry et al. Oct 2017 B2
9788354 Miller et al. Oct 2017 B2
9790256 Bunnik et al. Oct 2017 B2
9791460 Tseng et al. Oct 2017 B2
9791910 Brown et al. Oct 2017 B1
9792741 Rabenoro et al. Oct 2017 B2
9793951 Henry et al. Oct 2017 B2
9793954 Bennett et al. Oct 2017 B2
9793955 Henry et al. Oct 2017 B2
9795335 Merfeld et al. Oct 2017 B2
9800327 Gerszberg et al. Oct 2017 B2
9801857 Sarpotdar et al. Oct 2017 B2
9801920 Kim et al. Oct 2017 B2
9806818 Henry et al. Oct 2017 B2
9809854 Crow et al. Nov 2017 B2
9811794 Mun Nov 2017 B2
9812136 Kjoerling et al. Nov 2017 B2
9812754 Parsche Nov 2017 B2
9816373 Howell et al. Nov 2017 B2
9816897 Ziarno Nov 2017 B2
9820146 Gross et al. Nov 2017 B2
9824578 Burton et al. Nov 2017 B2
9831912 Henry et al. Nov 2017 B2
9836577 Beim et al. Dec 2017 B2
9838078 Bennett et al. Dec 2017 B2
9838736 Smith et al. Dec 2017 B2
9838760 Seema et al. Dec 2017 B2
9838896 Barnickel et al. Dec 2017 B1
9846479 Brown et al. Dec 2017 B1
9847566 Henry et al. Dec 2017 B2
9847850 Henry et al. Dec 2017 B2
9853342 Henry et al. Dec 2017 B2
9854551 Davis et al. Dec 2017 B2
9854994 Ashe et al. Jan 2018 B2
9858681 Rhoads Jan 2018 B2
9860075 Gerszberg et al. Jan 2018 B1
9860820 Petite Jan 2018 B2
9863222 Morrow et al. Jan 2018 B2
9865911 Henry et al. Jan 2018 B2
9866276 Henry et al. Jan 2018 B2
9866306 Murakami et al. Jan 2018 B2
9866309 Bennett et al. Jan 2018 B2
9870519 Ning et al. Jan 2018 B2
9871282 Henry et al. Jan 2018 B2
9871283 Henry et al. Jan 2018 B2
9871558 Henry et al. Jan 2018 B2
9871927 Perez et al. Jan 2018 B2
9874923 Brown et al. Jan 2018 B1
9876264 Barnickel et al. Jan 2018 B2
9876570 Henry et al. Jan 2018 B2
9876571 Henry et al. Jan 2018 B2
9876587 Barzegar et al. Jan 2018 B2
9876605 Henry et al. Jan 2018 B1
9878138 Altschul et al. Jan 2018 B2
9878139 Altschul et al. Jan 2018 B2
9881339 Mun Jan 2018 B2
9882257 Henry et al. Jan 2018 B2
9882660 Breton et al. Jan 2018 B2
9884281 Fox et al. Feb 2018 B2
9886545 Narain et al. Feb 2018 B2
9886771 Chen et al. Feb 2018 B1
9887447 Henry et al. Feb 2018 B2
9888081 Farinelli et al. Feb 2018 B1
9891883 Sharma et al. Feb 2018 B2
9892420 Sterns et al. Feb 2018 B2
9893795 Henry et al. Feb 2018 B1
9894852 Gilbert et al. Feb 2018 B2
9896215 Fox et al. Feb 2018 B2
9900177 Holley Feb 2018 B2
9900790 Sheen et al. Feb 2018 B1
9902499 Fox et al. Feb 2018 B2
9903193 Harding et al. Feb 2018 B2
9904535 Gross et al. Feb 2018 B2
9906269 Fuchs et al. Feb 2018 B2
9911020 Liu et al. Mar 2018 B1
9912027 Henry et al. Mar 2018 B2
9912033 Henry et al. Mar 2018 B2
9912381 Bennett et al. Mar 2018 B2
9912382 Bennett et al. Mar 2018 B2
9912419 Blandino et al. Mar 2018 B1
9913006 Wascat et al. Mar 2018 B1
9913139 Gross et al. Mar 2018 B2
9917341 Henry et al. Mar 2018 B2
9926368 Walsh et al. Mar 2018 B2
9926593 Ehrich et al. Mar 2018 B2
9927512 Rowe et al. Mar 2018 B2
9927517 Bennett et al. Mar 2018 B1
9929755 Henry et al. Mar 2018 B2
9930668 Barzegar et al. Mar 2018 B2
9931036 Miller et al. Apr 2018 B2
9931037 Miller et al. Apr 2018 B2
9932637 Iakoubova et al. Apr 2018 B2
9934239 Gkoulalas-Divanis et al. Apr 2018 B2
9935703 Bennett et al. Apr 2018 B2
9938576 Sadee et al. Apr 2018 B1
9940942 Klejsa et al. Apr 2018 B2
9946571 Brown et al. Apr 2018 B1
9948333 Henry et al. Apr 2018 B2
9948354 Bennett et al. Apr 2018 B2
9948355 Gerszberg et al. Apr 2018 B2
9948477 Marten Apr 2018 B2
9949659 Armoundas Apr 2018 B2
9949693 Sereno et al. Apr 2018 B2
9951348 Cong et al. Apr 2018 B2
9953448 Eslami et al. Apr 2018 B2
9954286 Henry et al. Apr 2018 B2
9954287 Henry et al. Apr 2018 B2
9955190 Reibman et al. Apr 2018 B2
9955488 Ouyang et al. Apr 2018 B2
9957052 Fox et al. May 2018 B2
9959285 Gkoulalas-Divanis et al. May 2018 B2
9960808 Henry et al. May 2018 B2
9960980 Wilson May 2018 B2
9961488 D'Alberto et al. May 2018 B2
9965813 Martin et al. May 2018 B2
9967002 Bennett et al. May 2018 B2
9967173 Gross et al. May 2018 B2
9967714 Ching et al. May 2018 B2
9969329 Shenoy et al. May 2018 B2
9970993 Mensah-Brown et al. May 2018 B1
9972014 McCord et al. May 2018 B2
9973299 Henry et al. May 2018 B2
9973416 Henry et al. May 2018 B2
9973940 Rappaport May 2018 B1
9974018 San Vicente et al. May 2018 B2
9974773 Sarpotdar et al. May 2018 B2
9976182 Khatib May 2018 B2
9980223 San Vicente et al. May 2018 B2
9982301 Muthukumar et al. May 2018 B2
9983011 Mountain May 2018 B2
9983216 Tseng et al. May 2018 B2
9986527 D'Alberto et al. May 2018 B2
9988624 Serber et al. Jun 2018 B2
9990648 Sterns et al. Jun 2018 B2
9990649 Sterns et al. Jun 2018 B2
9990818 Wedig et al. Jun 2018 B2
9991580 Henry et al. Jun 2018 B2
9992123 Ouyang et al. Jun 2018 B2
9993735 Aghdaie et al. Jun 2018 B2
9997819 Bennett et al. Jun 2018 B2
9998870 Bennett et al. Jun 2018 B1
9998932 Henry et al. Jun 2018 B2
9999038 Barzegar et al. Jun 2018 B2
10002367 Sterns et al. Jun 2018 B2
10003794 Jiang et al. Jun 2018 B2
10004183 Britt et al. Jun 2018 B2
10006088 Begovich et al. Jun 2018 B2
10006779 Takahashi Jun 2018 B2
10007592 Bagchi et al. Jun 2018 B2
10008052 Wilson et al. Jun 2018 B2
10009063 Gerszberg et al. Jun 2018 B2
10009067 Birk et al. Jun 2018 B2
10009366 Lefebvre et al. Jun 2018 B2
10010703 Altschul et al. Jul 2018 B2
10013701 Sterns et al. Jul 2018 B2
10013721 Laaser et al. Jul 2018 B1
10018631 Thorne et al. Jul 2018 B2
10019727 Sterns et al. Jul 2018 B2
10020844 Bogdan et al. Jul 2018 B2
10021426 Hu et al. Jul 2018 B2
10023877 Cong et al. Jul 2018 B2
10024187 Soares et al. Jul 2018 B2
10027397 Kim Jul 2018 B2
10027398 Bennett et al. Jul 2018 B2
10028706 Brockway et al. Jul 2018 B2
10032123 Mejegård et al. Jul 2018 B2
10032309 Jiang et al. Jul 2018 B2
10033108 Henry et al. Jul 2018 B2
10035609 Ziarno Jul 2018 B2
10036074 Pichaud et al. Jul 2018 B2
10036638 D'Alberto et al. Jul 2018 B2
10037393 Polovick et al. Jul 2018 B1
10038697 Dotan et al. Jul 2018 B2
10038765 Park et al. Jul 2018 B2
10043527 Gurijala et al. Aug 2018 B1
10044409 Barzegar et al. Aug 2018 B2
10046779 Kim Aug 2018 B2
10047358 Serber et al. Aug 2018 B1
10050697 Bennett et al. Aug 2018 B2
10051403 Eronen et al. Aug 2018 B2
10051630 Barzegar et al. Aug 2018 B2
10051663 Biswas et al. Aug 2018 B2
10058519 Singh et al. Aug 2018 B2
10061887 Vishnudas et al. Aug 2018 B2
10062121 Besman et al. Aug 2018 B2
10063280 Fuchs et al. Aug 2018 B2
10063861 Chen et al. Aug 2018 B2
10068467 Pennebaker Sep 2018 B1
10069185 Henry et al. Sep 2018 B2
10069535 Vannucci et al. Sep 2018 B2
10069547 Wang et al. Sep 2018 B2
10070166 Chaar et al. Sep 2018 B2
10070220 Shields et al. Sep 2018 B2
10070321 Li et al. Sep 2018 B2
10070381 Noh et al. Sep 2018 B2
10071151 Bunnik et al. Sep 2018 B2
10079661 Gerszberg et al. Sep 2018 B2
10080774 Fueyo et al. Sep 2018 B2
10084223 Corum et al. Sep 2018 B2
10084868 Chandra et al. Sep 2018 B2
10085425 Funaya et al. Oct 2018 B2
10085697 Evans Oct 2018 B1
10089716 Chandra et al. Oct 2018 B2
10090594 Henry et al. Oct 2018 B2
10090606 Henry et al. Oct 2018 B2
10091017 Landow et al. Oct 2018 B2
10091512 Xu et al. Oct 2018 B2
10091787 Barzegar et al. Oct 2018 B2
10092509 Maisel et al. Oct 2018 B2
10098569 Abeyratne et al. Oct 2018 B2
10098908 Durham et al. Oct 2018 B2
10100092 Atkinson et al. Oct 2018 B2
10101340 Lin et al. Oct 2018 B2
10103422 Britz et al. Oct 2018 B2
10103801 Bennett et al. Oct 2018 B2
10111169 San Vicente et al. Oct 2018 B2
10111888 Kreppner et al. Oct 2018 B2
10113198 Begovich et al. Oct 2018 B2
10113200 Danila et al. Oct 2018 B2
10114915 Polovick et al. Oct 2018 B2
10116697 Beckman et al. Oct 2018 B2
10117868 Palczewski et al. Nov 2018 B2
10121338 Ellers et al. Nov 2018 B2
10121339 Strulovitch et al. Nov 2018 B2
10122218 Corum et al. Nov 2018 B2
10126309 Wiktorowicz Nov 2018 B2
10131949 Li et al. Nov 2018 B2
10133989 Brown Nov 2018 B1
10135145 Henry et al. Nov 2018 B2
10135146 Henry et al. Nov 2018 B2
10135147 Henry et al. Nov 2018 B2
10135499 Stratigos Nov 2018 B2
10136434 Gerszberg et al. Nov 2018 B2
10137288 Altschul et al. Nov 2018 B2
10139820 Liu et al. Nov 2018 B2
10141622 Corum et al. Nov 2018 B2
10142010 Bennett et al. Nov 2018 B2
10142086 Bennett et al. Nov 2018 B2
10142788 Zhyshko et al. Nov 2018 B2
10144036 Fuchs et al. Dec 2018 B2
10147173 Huang et al. Dec 2018 B2
10148016 Johnson et al. Dec 2018 B2
10149129 Petite Dec 2018 B2
10149131 Natarajan et al. Dec 2018 B2
10153823 Murakami et al. Dec 2018 B2
10153892 Kliewer et al. Dec 2018 B2
10154326 Mazed Dec 2018 B2
10154624 Guan et al. Dec 2018 B2
10155651 Keating et al. Dec 2018 B2
10157509 Dolan et al. Dec 2018 B2
10168337 Brasier et al. Jan 2019 B2
10168695 Barnickel et al. Jan 2019 B2
10170840 Henry et al. Jan 2019 B2
10171501 Beckman et al. Jan 2019 B2
10172363 Wakefield Jan 2019 B2
10175387 Kleeman et al. Jan 2019 B2
10178445 Lubranski et al. Jan 2019 B2
10181010 Patel et al. Jan 2019 B2
10187850 San Vicente et al. Jan 2019 B2
10187899 Ouyang et al. Jan 2019 B2
10194437 Henry et al. Jan 2019 B2
10200752 Richardson Feb 2019 B2
10535138 Pfeiffer Jan 2020 B2
11216742 Bhattacharyya Jan 2022 B2
20010009904 Wolff et al. Jul 2001 A1
20010024525 Hata et al. Sep 2001 A1
20010031089 Hata et al. Oct 2001 A1
20010034686 Eder Oct 2001 A1
20020001574 Woiff et al. Jan 2002 A1
20020016699 Hoggart et al. Feb 2002 A1
20020028021 Foote et al. Mar 2002 A1
20020055457 Janus et al. May 2002 A1
20020076115 Leeder et al. Jun 2002 A1
20020090139 Hata et al. Jul 2002 A1
20020091972 Harris et al. Jul 2002 A1
20020099686 Schwartz et al. Jul 2002 A1
20020131084 Andrew et al. Sep 2002 A1
20020138012 Hodges et al. Sep 2002 A1
20020138270 Bellegarda et al. Sep 2002 A1
20020175921 Xu et al. Nov 2002 A1
20020176633 Frojdh et al. Nov 2002 A1
20020184272 Burges et al. Dec 2002 A1
20030009295 Markowitz et al. Jan 2003 A1
20030018647 Bialkowski Jan 2003 A1
20030021848 Johnson et al. Jan 2003 A1
20030023951 Rosenberg Jan 2003 A1
20030050265 Dean et al. Mar 2003 A1
20030059121 Savakis et al. Mar 2003 A1
20030065409 Raeth et al. Apr 2003 A1
20030073715 El-Rashidy et al. Apr 2003 A1
20030078738 Wouters et al. Apr 2003 A1
20030086621 Hata et al. May 2003 A1
20030093277 Bellegarda et al. May 2003 A1
20030098804 Ekstrand et al. May 2003 A1
20030104499 Pressman et al. Jun 2003 A1
20030107488 van Putten Jun 2003 A1
20030139963 Chickering et al. Jul 2003 A1
20030151513 Herrmann et al. Aug 2003 A1
20030166017 McCarthy Sep 2003 A1
20030166026 Goodman et al. Sep 2003 A1
20030170660 Sondergaard et al. Sep 2003 A1
20030170700 Shang et al. Sep 2003 A1
20030171685 Lesser et al. Sep 2003 A1
20030171876 Markowitz et al. Sep 2003 A1
20030180764 Shang et al. Sep 2003 A1
20030190602 Pressman et al. Oct 2003 A1
20030198650 Elbers et al. Oct 2003 A1
20030199685 Pressman et al. Oct 2003 A1
20030220775 Jourdan et al. Nov 2003 A1
20040001543 Adams et al. Jan 2004 A1
20040001611 Celik et al. Jan 2004 A1
20040015525 Martens et al. Jan 2004 A1
20040027259 Soliman et al. Feb 2004 A1
20040063095 Elbers et al. Apr 2004 A1
20040063655 Dean et al. Apr 2004 A1
20040073414 Bienenstock et al. Apr 2004 A1
20040083833 Hitt et al. May 2004 A1
20040085233 Linzer et al. May 2004 A1
20040088239 Eder May 2004 A1
20040090329 Hitt May 2004 A1
20040090345 Hitt May 2004 A1
20040092493 El-Rashidy et al. May 2004 A1
20040100394 Hitt May 2004 A1
20040110697 Wolff et al. Jun 2004 A1
20040115688 Cheung et al. Jun 2004 A1
20040116409 Campochiaro Jun 2004 A1
20040116434 Campochiaro Jun 2004 A1
20040127799 Sorensen et al. Jul 2004 A1
20040128097 LaMarca et al. Jul 2004 A1
20040138826 Carter et al. Jul 2004 A1
20040139110 LaMarca et al. Jul 2004 A1
20040142890 McNeel Jul 2004 A1
20040157783 McCaddon Aug 2004 A1
20040165527 Gu et al. Aug 2004 A1
20040166519 Cargill et al. Aug 2004 A1
20040172319 Eder Sep 2004 A1
20040199445 Eder Oct 2004 A1
20040210509 Eder Oct 2004 A1
20040215551 Eder Oct 2004 A1
20040221237 Foote et al. Nov 2004 A1
20040225629 Eder Nov 2004 A1
20040265849 Cargill et al. Dec 2004 A1
20050002950 Rubens et al. Jan 2005 A1
20050017602 Arms et al. Jan 2005 A1
20050026169 Cargill et al. Feb 2005 A1
20050069224 Nowicki et al. Mar 2005 A1
20050071266 Eder Mar 2005 A1
20050075597 Vournakis et al. Apr 2005 A1
20050080613 Colledge et al. Apr 2005 A1
20050090936 Hitt et al. Apr 2005 A1
20050096360 Salte et al. May 2005 A1
20050096963 Myr et al. May 2005 A1
20050113306 Janus et al. May 2005 A1
20050113307 Janus et al. May 2005 A1
20050144106 Eder Jun 2005 A1
20050147172 Winger et al. Jul 2005 A1
20050147173 Winger et al. Jul 2005 A1
20050164206 Hadjiargyrou et al. Jul 2005 A1
20050171923 Kiiveri et al. Aug 2005 A1
20050176442 Ju et al. Aug 2005 A1
20050210340 Townsend et al. Sep 2005 A1
20050213548 Benson et al. Sep 2005 A1
20050245252 Kappes et al. Nov 2005 A1
20050246314 Eder Nov 2005 A1
20050251468 Eder Nov 2005 A1
20050272054 Cargill et al. Dec 2005 A1
20050276323 Martemyanov et al. Dec 2005 A1
20050282201 Pressman et al. Dec 2005 A1
20050287559 Cargill et al. Dec 2005 A1
20060024700 Cargill et al. Feb 2006 A1
20060026017 Walker Feb 2006 A1
20060029060 Pister Feb 2006 A1
20060035867 Janus et al. Feb 2006 A1
20060036403 Wegerich et al. Feb 2006 A1
20060036497 Chickering et al. Feb 2006 A1
20060053004 Ceperkovic et al. Mar 2006 A1
20060059028 Eder Mar 2006 A1
20060061795 Walmsley Mar 2006 A1
20060084070 Rieder et al. Apr 2006 A1
20060084081 Rieder et al. Apr 2006 A1
20060101017 Eder May 2006 A1
20060111635 Todros et al. May 2006 A1
20060111849 Schadt et al. May 2006 A1
20060122816 Schadt et al. Jun 2006 A1
20060136184 Gustafsson et al. Jun 2006 A1
20060142983 Sorensen et al. Jun 2006 A1
20060143071 Hofmann Jun 2006 A1
20060143454 Walmsley Jun 2006 A1
20060147420 Fueyo et al. Jul 2006 A1
20060149522 Tang Jul 2006 A1
20060164997 Graepel et al. Jul 2006 A1
20060165163 Burazerovic et al. Jul 2006 A1
20060175606 Wang et al. Aug 2006 A1
20060184473 Eder Aug 2006 A1
20060189553 Wolff et al. Aug 2006 A9
20060200709 Yu et al. Sep 2006 A1
20060206246 Walker Sep 2006 A1
20060223093 Luke et al. Oct 2006 A1
20060228715 Shiffman et al. Oct 2006 A1
20060234262 Ruano et al. Oct 2006 A1
20060241869 Schadt et al. Oct 2006 A1
20060243055 Sundermeyer et al. Nov 2006 A1
20060243056 Sundermeyer et al. Nov 2006 A1
20060243180 Sundermeyer et al. Nov 2006 A1
20060278241 Ruano Dec 2006 A1
20060286571 Dervieux Dec 2006 A1
20060292547 Pettegrew et al. Dec 2006 A1
20070026426 Fuernkranz et al. Feb 2007 A1
20070031846 Cargill et al. Feb 2007 A1
20070031847 Cargill et al. Feb 2007 A1
20070031848 Cargill et al. Feb 2007 A1
20070036773 Cooper et al. Feb 2007 A1
20070037208 Foote et al. Feb 2007 A1
20070037241 Soreq et al. Feb 2007 A1
20070038346 Ehrlich et al. Feb 2007 A1
20070038386 Schadt et al. Feb 2007 A1
20070042382 Cargill et al. Feb 2007 A1
20070043656 Lancaster Feb 2007 A1
20070049644 Bedoukian et al. Mar 2007 A1
20070054278 Cargill Mar 2007 A1
20070059710 Luke et al. Mar 2007 A1
20070065843 Jiang et al. Mar 2007 A1
20070067195 Fahner et al. Mar 2007 A1
20070072821 Iakoubova et al. Mar 2007 A1
20070078117 Hoffman et al. Apr 2007 A1
20070078434 Keusch et al. Apr 2007 A1
20070083491 Walmsley et al. Apr 2007 A1
20070087000 Walsh et al. Apr 2007 A1
20070088248 Glenn et al. Apr 2007 A1
20070090996 Wang Apr 2007 A1
20070101382 Aramaki et al. May 2007 A1
20070105804 Wolff et al. May 2007 A1
20070112521 Akimov et al. May 2007 A1
20070123487 McNeel May 2007 A1
20070129948 Yi et al. Jun 2007 A1
20070166707 Schadt et al. Jul 2007 A1
20070167727 Menezes et al. Jul 2007 A1
20070185656 Schadt Aug 2007 A1
20070190056 Kambadur et al. Aug 2007 A1
20070195808 Ehrlich et al. Aug 2007 A1
20070202518 Ruano et al. Aug 2007 A1
20070208600 Babus et al. Sep 2007 A1
20070208640 Banasiak et al. Sep 2007 A1
20070210916 Ogushi et al. Sep 2007 A1
20070210929 Sabata et al. Sep 2007 A1
20070216545 Li et al. Sep 2007 A1
20070217506 Yang et al. Sep 2007 A1
20070221125 Kaushal et al. Sep 2007 A1
20070223582 Borer Sep 2007 A1
20070224712 Kaushal et al. Sep 2007 A1
20070233679 Liu et al. Oct 2007 A1
20070239439 Yi et al. Oct 2007 A1
20070239862 Bronez et al. Oct 2007 A1
20070254289 Li et al. Nov 2007 A1
20070254369 Grimes et al. Nov 2007 A1
20070255113 Grimes Nov 2007 A1
20070259954 Pablos Nov 2007 A1
20070275881 Morrow et al. Nov 2007 A1
20070278395 Gorenstein et al. Dec 2007 A1
20070297394 Allan et al. Dec 2007 A1
20080015871 Eder Jan 2008 A1
20080027769 Eder Jan 2008 A1
20080027841 Eder Jan 2008 A1
20080031213 Kaiser et al. Feb 2008 A1
20080031545 Nowicki et al. Feb 2008 A1
20080032628 Vehvilainen et al. Feb 2008 A1
20080033589 Ontalus et al. Feb 2008 A1
20080037880 Lai Feb 2008 A1
20080038230 Lindeman et al. Feb 2008 A1
20080050025 Bashyam et al. Feb 2008 A1
20080050026 Bashyam et al. Feb 2008 A1
20080050027 Bashyam et al. Feb 2008 A1
20080050029 Bashyam et al. Feb 2008 A1
20080050047 Bashyam et al. Feb 2008 A1
20080050357 Gustafsson et al. Feb 2008 A1
20080050732 Rieder et al. Feb 2008 A1
20080050733 Rieder et al. Feb 2008 A1
20080051318 Li et al. Feb 2008 A1
20080055121 Fulcomer Mar 2008 A1
20080057500 Rieder et al. Mar 2008 A1
20080059072 Willen et al. Mar 2008 A1
20080074254 Townsend et al. Mar 2008 A1
20080076120 Donaldson et al. Mar 2008 A1
20080103892 Chatwin et al. May 2008 A1
20080108081 Luke et al. May 2008 A1
20080108713 Begovich et al. May 2008 A1
20080114564 Ihara May 2008 A1
20080122938 Broberg et al. May 2008 A1
20080126378 Parkinson et al. May 2008 A1
20080127545 Yang et al. Jun 2008 A1
20080129495 Hitt Jun 2008 A1
20080139402 Pressman et al. Jun 2008 A1
20080140549 Eder Jun 2008 A1
20080152235 Bashyam et al. Jun 2008 A1
20080154928 Bashyam et al. Jun 2008 A1
20080160046 Elbers et al. Jul 2008 A1
20080166348 Kupper et al. Jul 2008 A1
20080172205 Breton et al. Jul 2008 A1
20080176266 Berger et al. Jul 2008 A1
20080177592 Masuyama et al. Jul 2008 A1
20080183394 Woodward Jul 2008 A1
20080189545 Parkinson Aug 2008 A1
20080195596 Sisk et al. Aug 2008 A1
20080213745 Berger et al. Sep 2008 A1
20080215609 Cleveland et al. Sep 2008 A1
20080219094 Barakat Sep 2008 A1
20080228744 Desbiens Sep 2008 A1
20080241846 Iakoubova et al. Oct 2008 A1
20080248476 Cargill et al. Oct 2008 A1
20080253283 Douglis et al. Oct 2008 A1
20080256069 Eder Oct 2008 A1
20080256166 Branson et al. Oct 2008 A1
20080256167 Branson et al. Oct 2008 A1
20080256253 Branson et al. Oct 2008 A1
20080256384 Branson et al. Oct 2008 A1
20080256548 Branson et al. Oct 2008 A1
20080256549 Liu et al. Oct 2008 A1
20080286796 Grupe et al. Nov 2008 A1
20080299554 Huang et al. Dec 2008 A1
20080301077 Fung et al. Dec 2008 A1
20080305967 Ward et al. Dec 2008 A1
20080306034 Ward Dec 2008 A1
20080306804 Opdycke et al. Dec 2008 A1
20080309481 Tanaka et al. Dec 2008 A1
20080311572 Ahuja et al. Dec 2008 A1
20080313073 Fahner et al. Dec 2008 A1
20080318219 Rieder et al. Dec 2008 A1
20080318914 Hoffman et al. Dec 2008 A1
20080319897 Fahner et al. Dec 2008 A1
20090006363 Canny et al. Jan 2009 A1
20090007706 Hitt et al. Jan 2009 A1
20090009317 Weaver et al. Jan 2009 A1
20090009323 Weaver et al. Jan 2009 A1
20090009339 Gorrell et al. Jan 2009 A1
20090009340 Weaver et al. Jan 2009 A1
20090018891 Eder Jan 2009 A1
20090030771 Eder Jan 2009 A1
20090035768 Nelson et al. Feb 2009 A1
20090035769 Nelson et al. Feb 2009 A1
20090035772 Nelson et al. Feb 2009 A1
20090037402 Jones et al. Feb 2009 A1
20090037410 Jones et al. Feb 2009 A1
20090041021 Meany et al. Feb 2009 A1
20090043637 Eder Feb 2009 A1
20090050492 Alocilja et al. Feb 2009 A1
20090053745 Firestein-Miller Feb 2009 A1
20090055139 Agarwal et al. Feb 2009 A1
20090058088 Pitchford et al. Mar 2009 A1
20090058639 Tanaka et al. Mar 2009 A1
20090059827 Liu et al. Mar 2009 A1
20090070081 Saenz et al. Mar 2009 A1
20090070182 Eder Mar 2009 A1
20090070767 Garbow et al. Mar 2009 A1
20090076890 Dixon et al. Mar 2009 A1
20090087909 Carpenter et al. Apr 2009 A1
20090089022 Song et al. Apr 2009 A1
20090104620 Schramm et al. Apr 2009 A1
20090107510 Cornish et al. Apr 2009 A1
20090112752 Milana Apr 2009 A1
20090118217 Cargill et al. May 2009 A1
20090119357 Rice et al. May 2009 A1
20090123441 Braughler et al. May 2009 A1
20090125466 Hinsz et al. May 2009 A1
20090125916 Lu et al. May 2009 A1
20090130682 Li et al. May 2009 A1
20090131702 Pablos May 2009 A1
20090132448 Eder May 2009 A1
20090132453 Hangartner et al. May 2009 A1
20090136481 Kambadur et al. May 2009 A1
20090137417 Fu et al. May 2009 A1
20090138715 Xiao et al. May 2009 A1
20090140893 Schneider Jun 2009 A1
20090140894 Schneider Jun 2009 A1
20090146833 Lee et al. Jun 2009 A1
20090149722 Abolfathi et al. Jun 2009 A1
20090157409 Lifu et al. Jun 2009 A1
20090161581 Kim Jun 2009 A1
20090162346 Schrodi et al. Jun 2009 A1
20090162348 Li et al. Jun 2009 A1
20090168653 St. Pierre et al. Jul 2009 A1
20090170111 Luke et al. Jul 2009 A1
20090171740 Eder Jul 2009 A1
20090175830 Fueyo et al. Jul 2009 A1
20090176235 Cargill et al. Jul 2009 A1
20090176857 Levy Jul 2009 A1
20090181384 Nekarda et al. Jul 2009 A1
20090186352 Akoulitchev et al. Jul 2009 A1
20090196206 Weaver et al. Aug 2009 A1
20090196875 Cargill et al. Aug 2009 A1
20090198374 Tsai et al. Aug 2009 A1
20090210173 Arms et al. Aug 2009 A1
20090210363 Grabarnik et al. Aug 2009 A1
20090212981 Schneider Aug 2009 A1
20090220965 Frackelton, Jr. et al. Sep 2009 A1
20090221438 Kitzman et al. Sep 2009 A1
20090221620 Luke et al. Sep 2009 A1
20090226420 Hauser et al. Sep 2009 A1
20090232408 Meany Sep 2009 A1
20090233299 Ruano et al. Sep 2009 A1
20090234200 Husheer Sep 2009 A1
20090253952 Khatib et al. Oct 2009 A1
20090258003 Bare Oct 2009 A1
20090262929 Walmsley Oct 2009 A1
20090264453 Shiffman et al. Oct 2009 A1
20090270332 Bare et al. Oct 2009 A1
20090271342 Eder Oct 2009 A1
20090276189 Willen et al. Nov 2009 A1
20090280566 Carpenter et al. Nov 2009 A1
20090284399 Schneider Nov 2009 A1
20090285827 Walsh et al. Nov 2009 A1
20090289820 Schneider Nov 2009 A1
20090292475 Alam et al. Nov 2009 A1
20090294645 Gorenstein et al. Dec 2009 A1
20090296670 Luo et al. Dec 2009 A1
20090298082 Klee et al. Dec 2009 A1
20090303042 Song et al. Dec 2009 A1
20090306950 De Winter et al. Dec 2009 A1
20090308600 Hsu et al. Dec 2009 A1
20090312410 Shiffman et al. Dec 2009 A1
20090313041 Eder Dec 2009 A1
20090322510 Berger et al. Dec 2009 A1
20090322570 Schneider Dec 2009 A1
20090325920 Hoffman et al. Dec 2009 A1
20100003691 Chettier et al. Jan 2010 A1
20100008934 Schrodi et al. Jan 2010 A1
20100010336 Pettegrew et al. Jan 2010 A1
20100028870 Welch et al. Feb 2010 A1
20100029493 Welch et al. Feb 2010 A1
20100031052 Kim et al. Feb 2010 A1
20100035983 Shiffman et al. Feb 2010 A1
20100039933 Taylor et al. Feb 2010 A1
20100042438 Moore et al. Feb 2010 A1
20100047798 Feldman et al. Feb 2010 A1
20100048525 Gleicher et al. Feb 2010 A1
20100048679 Garren et al. Feb 2010 A1
20100054307 Strohm Mar 2010 A1
20100063851 Andrist et al. Mar 2010 A1
20100070455 Halperin et al. Mar 2010 A1
20100074054 Barakat et al. Mar 2010 A1
20100076949 Zoeter et al. Mar 2010 A1
20100082617 Liu et al. Apr 2010 A1
20100100331 Gustafsson et al. Apr 2010 A1
20100100338 Vik et al. Apr 2010 A1
20100109853 Strohm May 2010 A1
20100113407 Gleicher et al. May 2010 A1
20100114581 Li et al. May 2010 A1
20100114793 Eder May 2010 A1
20100120040 Iakoubova et al. May 2010 A1
20100125641 Shelby May 2010 A1
20100132058 Diatchenko et al. May 2010 A1
20100136553 Black et al. Jun 2010 A1
20100136579 Tseng et al. Jun 2010 A1
20100137409 Plotnikova et al. Jun 2010 A1
20100148940 Gelvin et al. Jun 2010 A1
20100151468 Esteller et al. Jun 2010 A1
20100152619 Kalpaxis et al. Jun 2010 A1
20100152909 Hitt et al. Jun 2010 A1
20100174336 Stein Jul 2010 A1
20100176939 Harres Jul 2010 A1
20100183574 Davis et al. Jul 2010 A1
20100183610 Li et al. Jul 2010 A1
20100184040 Kirkpatrick et al. Jul 2010 A1
20100187414 Gorenstein et al. Jul 2010 A1
20100190172 Cargill et al. Jul 2010 A1
20100191216 Keusch et al. Jul 2010 A1
20100196400 Li et al. Aug 2010 A1
20100197033 Lin et al. Aug 2010 A1
20100201516 Gelvin et al. Aug 2010 A1
20100202442 Allan et al. Aug 2010 A1
20100203507 Dervieux Aug 2010 A1
20100203508 Dervieux Aug 2010 A1
20100211787 Bukshpun et al. Aug 2010 A1
20100215645 Cargill et al. Aug 2010 A1
20100216154 Huang et al. Aug 2010 A1
20100216655 Sulem Aug 2010 A1
20100217648 Agarwal et al. Aug 2010 A1
20100222225 Fu et al. Sep 2010 A1
20100249188 Lavedan et al. Sep 2010 A1
20100254312 Kennedy Oct 2010 A1
20100261187 Iakoubova et al. Oct 2010 A1
20100268680 Hangartner et al. Oct 2010 A1
20100272713 Ward et al. Oct 2010 A1
20100278060 Lee et al. Nov 2010 A1
20100278796 Berger Nov 2010 A1
20100284989 Markowitz et al. Nov 2010 A1
20100285579 Lim et al. Nov 2010 A1
20100293130 Stephan et al. Nov 2010 A1
20100310499 Skelton et al. Dec 2010 A1
20100310543 Farinelli et al. Dec 2010 A1
20100312128 Karst et al. Dec 2010 A1
20100330187 Bravo et al. Dec 2010 A1
20110004509 Wu et al. Jan 2011 A1
20110019737 Yang et al. Jan 2011 A1
20110021555 Nordsiek et al. Jan 2011 A1
20110027275 Ferrara et al. Feb 2011 A1
20110028333 Christensen et al. Feb 2011 A1
20110032983 Sezer Feb 2011 A1
20110035271 Weaver et al. Feb 2011 A1
20110035491 Gelvin et al. Feb 2011 A1
20110045818 Banks et al. Feb 2011 A1
20110054356 Merfeld Mar 2011 A1
20110054949 Joye et al. Mar 2011 A1
20110059860 Gustafsson et al. Mar 2011 A1
20110064747 Sarangarajan et al. Mar 2011 A1
20110065981 Khatib Mar 2011 A1
20110070587 Fuernkranz et al. Mar 2011 A1
20110071033 Yurttas et al. Mar 2011 A1
20110075920 Wu et al. Mar 2011 A1
20110077194 McCaddon Mar 2011 A1
20110077215 Yu et al. Mar 2011 A1
20110077931 Grimes Mar 2011 A1
20110079077 Lin et al. Apr 2011 A1
20110086349 Anjomshoaa et al. Apr 2011 A1
20110086371 Lin et al. Apr 2011 A1
20110086796 Wang et al. Apr 2011 A1
20110091994 Lotteau Apr 2011 A1
20110093288 Soto et al. Apr 2011 A1
20110101788 Sun et al. May 2011 A1
20110104121 Wira et al. May 2011 A1
20110106736 Aharonson et al. May 2011 A1
20110111419 Stefansson et al. May 2011 A1
20110118539 Khatib May 2011 A1
20110123100 Carroll et al. May 2011 A1
20110123986 Narain et al. May 2011 A1
20110123987 Narain et al. May 2011 A1
20110124119 Lopes-Virella et al. May 2011 A1
20110129831 Cargill et al. Jun 2011 A1
20110130303 Sanche Fueyo et al. Jun 2011 A1
20110131160 Canny et al. Jun 2011 A1
20110135637 Sampson et al. Jun 2011 A1
20110136260 Firestein-Miller Jun 2011 A1
20110137472 Hitt et al. Jun 2011 A1
20110137851 Cavet et al. Jun 2011 A1
20110150323 Hancock et al. Jun 2011 A1
20110158806 Arms et al. Jun 2011 A1
20110166844 Gustafsson et al. Jul 2011 A1
20110173116 Yan et al. Jul 2011 A1
20110176469 Kim et al. Jul 2011 A1
20110176606 Fuchie Jul 2011 A1
20110182524 Shibata et al. Jul 2011 A1
20110189648 Pribenszky et al. Aug 2011 A1
20110191496 Luo et al. Aug 2011 A1
20110200266 Fuchie et al. Aug 2011 A1
20110207659 Morrow et al. Aug 2011 A1
20110207708 Gleicher et al. Aug 2011 A1
20110208738 Bar et al. Aug 2011 A1
20110213746 Botonjic-Sehic et al. Sep 2011 A1
20110224181 Hoffman et al. Sep 2011 A1
20110225037 Tunca et al. Sep 2011 A1
20110230366 Gudmundsson et al. Sep 2011 A1
20110248846 Belov et al. Oct 2011 A1
20110251272 Rieder et al. Oct 2011 A1
20110251995 Hangartner et al. Oct 2011 A1
20110257216 Nordsiek et al. Oct 2011 A1
20110257217 Nordsiek et al. Oct 2011 A1
20110257218 Nordsiek et al. Oct 2011 A1
20110257219 Nordsiek et al. Oct 2011 A1
20110263633 Nordsiek et al. Oct 2011 A1
20110263634 Nordsiek et al. Oct 2011 A1
20110263635 Nordsiek et al. Oct 2011 A1
20110263636 Nordsiek et al. Oct 2011 A1
20110263637 Nordsiek et al. Oct 2011 A1
20110263967 Bailey et al. Oct 2011 A1
20110269735 Shiffman et al. Nov 2011 A1
20110276828 Tamaki et al. Nov 2011 A1
20110284029 Baseman et al. Nov 2011 A1
20110287946 Gudmundsson et al. Nov 2011 A1
20110293278 Mazed Dec 2011 A1
20110293626 Schrodi et al. Dec 2011 A1
20110299455 Ordentlich et al. Dec 2011 A1
20110302823 Bruck et al. Dec 2011 A1
20110307303 Dutta et al. Dec 2011 A1
20110310779 De Poorter et al. Dec 2011 A1
20110311565 Samoylova et al. Dec 2011 A1
20110319811 Nordsiek et al. Dec 2011 A1
20120003212 Walsh et al. Jan 2012 A1
20120010274 Begovich et al. Jan 2012 A1
20120010867 Eder Jan 2012 A1
20120014289 Ortega et al. Jan 2012 A1
20120014435 Yang et al. Jan 2012 A1
20120016106 Walsh et al. Jan 2012 A1
20120016436 Sarma et al. Jan 2012 A1
20120030082 Voltz et al. Feb 2012 A1
20120039864 Bare et al. Feb 2012 A1
20120046263 Navara Feb 2012 A1
20120051434 Blum Mar 2012 A1
20120064512 Li et al. Mar 2012 A1
20120065758 Pharand et al. Mar 2012 A1
20120066217 Eder Mar 2012 A1
20120069895 Blum Mar 2012 A1
20120071357 Kitzman et al. Mar 2012 A1
20120072781 Kini et al. Mar 2012 A1
20120082678 Li et al. Apr 2012 A1
20120089370 Chebbo et al. Apr 2012 A1
20120092155 Abedi Apr 2012 A1
20120093376 Malik et al. Apr 2012 A1
20120101965 Hennig et al. Apr 2012 A1
20120106397 Abedi May 2012 A1
20120107370 Forbes et al. May 2012 A1
20120108651 Bare et al. May 2012 A1
20120114211 Kraus et al. May 2012 A1
20120114620 Braughler et al. May 2012 A1
20120121618 Kantoff et al. May 2012 A1
20120123284 Kheradvar May 2012 A1
20120127020 Paek et al. May 2012 A1
20120127924 Bandyopadhyay et al. May 2012 A1
20120128223 Rivaz et al. May 2012 A1
20120128702 Weinschenk et al. May 2012 A1
20120136629 Tamaki et al. May 2012 A1
20120143510 Alam Jun 2012 A1
20120150032 Gudmundsson et al. Jun 2012 A1
20120154149 Trumble Jun 2012 A1
20120156215 Samoylova et al. Jun 2012 A1
20120158633 Eder Jun 2012 A1
20120163656 Wang et al. Jun 2012 A1
20120165221 Landstein et al. Jun 2012 A1
20120166291 Broder et al. Jun 2012 A1
20120173171 Bajwa et al. Jul 2012 A1
20120173200 Breton et al. Jul 2012 A1
20120178486 Kaufmann Jul 2012 A1
20120184605 Forbes et al. Jul 2012 A1
20120190386 Anderson Jul 2012 A1
20120207771 O'Shannessy et al. Aug 2012 A1
20120209565 Handley et al. Aug 2012 A1
20120209697 Agresti et al. Aug 2012 A1
20120215348 Skrinde Aug 2012 A1
20120218376 Athan Aug 2012 A1
20120220055 Foote et al. Aug 2012 A1
20120220958 Vournakis et al. Aug 2012 A1
20120230515 Grancharov et al. Sep 2012 A1
20120239489 Peretti et al. Sep 2012 A1
20120244145 Sampson et al. Sep 2012 A1
20120245133 Hoffman et al. Sep 2012 A1
20120250863 Bukshpun et al. Oct 2012 A1
20120250963 Carroll et al. Oct 2012 A1
20120252050 Towler et al. Oct 2012 A1
20120252695 Aerssens et al. Oct 2012 A1
20120257164 Zee et al. Oct 2012 A1
20120257530 Bijwaard et al. Oct 2012 A1
20120258874 Narain et al. Oct 2012 A1
20120258884 Schramm et al. Oct 2012 A1
20120259557 Gorenstein et al. Oct 2012 A1
20120262291 Bastide et al. Oct 2012 A1
20120264692 Bare et al. Oct 2012 A1
20120265716 Hunzinger et al. Oct 2012 A1
20120265978 Shenfield et al. Oct 2012 A1
20120269846 Maki et al. Oct 2012 A1
20120276528 Cargill et al. Nov 2012 A1
20120280146 Rizkallah et al. Nov 2012 A1
20120283885 Mannar et al. Nov 2012 A1
20120284207 Eder Nov 2012 A1
20120290505 Eder Nov 2012 A1
20120301407 Durham et al. Nov 2012 A1
20120303408 Eder Nov 2012 A1
20120303504 Eder Nov 2012 A1
20120310619 McConaghy Dec 2012 A1
20120315655 Kraus et al. Dec 2012 A1
20120316833 Lovick Dec 2012 A1
20120316835 Maeda et al. Dec 2012 A1
20120330720 Pickton et al. Dec 2012 A1
20130004473 Kochel et al. Jan 2013 A1
20130012860 Suthanthiran et al. Jan 2013 A1
20130013574 Wu Jan 2013 A1
20130016625 Murias et al. Jan 2013 A1
20130016636 Berger et al. Jan 2013 A1
20130024124 Collazo et al. Jan 2013 A1
20130024269 Farahat et al. Jan 2013 A1
20130029327 Huang et al. Jan 2013 A1
20130029384 Cerdobbel et al. Jan 2013 A1
20130030051 Shiffman et al. Jan 2013 A1
20130030584 Milosevic et al. Jan 2013 A1
20130040922 Kreppner et al. Feb 2013 A1
20130040923 Kreppner et al. Feb 2013 A1
20130041034 Singh et al. Feb 2013 A1
20130041627 Luo et al. Feb 2013 A1
20130044183 Jeon et al. Feb 2013 A1
20130045198 Bare et al. Feb 2013 A1
20130045958 Kreppner et al. Feb 2013 A1
20130046463 Bengtson et al. Feb 2013 A1
20130048436 Chan Feb 2013 A1
20130054486 Eder Feb 2013 A1
20130058914 Iakoubova et al. Mar 2013 A1
20130059827 Kreppner et al. Mar 2013 A1
20130059915 Singh et al. Mar 2013 A1
20130060305 Bokiu Mar 2013 A1
20130060549 Grimes Mar 2013 A1
20130061339 Garner et al. Mar 2013 A1
20130065870 Singh et al. Mar 2013 A1
20130071033 Stein et al. Mar 2013 A1
20130073213 Centola et al. Mar 2013 A1
20130073442 Eder Mar 2013 A1
20130076531 San Vicente et al. Mar 2013 A1
20130076532 San Vicente et al. Mar 2013 A1
20130078627 Li et al. Mar 2013 A1
20130078912 San Vicente et al. Mar 2013 A1
20130080073 de Corral Mar 2013 A1
20130080101 Vuskovic et al. Mar 2013 A1
20130081158 Paterson et al. Mar 2013 A1
20130096892 Essa et al. Apr 2013 A1
20130097276 Sridhar Apr 2013 A1
20130102918 Etkin et al. Apr 2013 A1
20130103570 Shi et al. Apr 2013 A1
20130103615 Mun Apr 2013 A1
20130107041 Norem et al. May 2013 A1
20130109583 Beim May 2013 A1
20130112895 Birlouez-Aragon et al. May 2013 A1
20130113631 Pitchford et al. May 2013 A1
20130118532 Baltsen et al. May 2013 A1
20130129764 Atkinson et al. May 2013 A1
20130130923 Ehrich et al. May 2013 A1
20130132163 Eder May 2013 A1
20130138481 Handley May 2013 A1
20130143215 Dervieux Jun 2013 A1
20130148713 Lee et al. Jun 2013 A1
20130149290 Braughler et al. Jun 2013 A1
20130151429 Cao et al. Jun 2013 A1
20130153060 Barrett Jun 2013 A1
20130155952 Chu et al. Jun 2013 A1
20130156767 Walsh et al. Jun 2013 A1
20130171296 Isaksen Jul 2013 A1
20130176872 Stanczak et al. Jul 2013 A1
20130180336 Koh et al. Jul 2013 A1
20130183664 Welch et al. Jul 2013 A1
20130185226 Hardman et al. Jul 2013 A1
20130197081 Powers et al. Aug 2013 A1
20130197738 Dvorak et al. Aug 2013 A1
20130197830 Dvorak et al. Aug 2013 A1
20130198203 Bates et al. Aug 2013 A1
20130201316 Binder et al. Aug 2013 A1
20130204664 Romagnolo et al. Aug 2013 A1
20130204833 Pang et al. Aug 2013 A1
20130207815 Pitchford et al. Aug 2013 A1
20130209486 Li et al. Aug 2013 A1
20130210855 Nordsiek et al. Aug 2013 A1
20130211229 Rao et al. Aug 2013 A1
20130212168 Bonasera et al. Aug 2013 A1
20130216551 Begovich et al. Aug 2013 A1
20130225439 Princen et al. Aug 2013 A1
20130237438 Ruano et al. Sep 2013 A1
20130237447 Nelson et al. Sep 2013 A1
20130240722 Coon et al. Sep 2013 A1
20130244121 Gogotsi et al. Sep 2013 A1
20130244233 Diatchenko et al. Sep 2013 A1
20130244902 Thibodeau et al. Sep 2013 A1
20130244965 Williams et al. Sep 2013 A1
20130252267 Lin et al. Sep 2013 A1
20130252822 Weber et al. Sep 2013 A1
20130258904 Kaufmann Oct 2013 A1
20130259847 Vishnudas et al. Oct 2013 A1
20130262425 Shamlin et al. Oct 2013 A1
20130265874 Zhu et al. Oct 2013 A1
20130265915 Choi et al. Oct 2013 A1
20130265981 Yang et al. Oct 2013 A1
20130266557 Sarangarajan et al. Oct 2013 A1
20130271668 Argyropoulos et al. Oct 2013 A1
20130273103 Liao et al. Oct 2013 A1
20130274195 Bare et al. Oct 2013 A1
20130280241 Markowitz et al. Oct 2013 A1
20130288913 Schramm et al. Oct 2013 A1
20130289424 Brockway et al. Oct 2013 A1
20130303558 Luke et al. Nov 2013 A1
20130303939 Karmali et al. Nov 2013 A1
20130310261 Schramm et al. Nov 2013 A1
20130314273 Kavaler et al. Nov 2013 A1
20130315885 Narain et al. Nov 2013 A1
20130315894 Schrodi et al. Nov 2013 A1
20130320212 Valentino et al. Dec 2013 A1
20130325498 Muza, Jr. et al. Dec 2013 A1
20130332010 Ziarno Dec 2013 A1
20130332011 Ziarno Dec 2013 A1
20130332025 Ziarno Dec 2013 A1
20130332231 Pickton et al. Dec 2013 A1
20130332338 Yan et al. Dec 2013 A1
20130346023 Novo et al. Dec 2013 A1
20130346039 Song et al. Dec 2013 A1
20130346844 Graepel et al. Dec 2013 A1
20140004075 Suckling et al. Jan 2014 A1
20140004510 DeAngelis et al. Jan 2014 A1
20140006013 Markatou et al. Jan 2014 A1
20140010047 Barakat et al. Jan 2014 A1
20140010288 Yang et al. Jan 2014 A1
20140011206 Latham et al. Jan 2014 A1
20140011787 Gleicher et al. Jan 2014 A1
20140025342 Gorenstein et al. Jan 2014 A1
20140032186 Gustafsson et al. Jan 2014 A1
20140038930 Gleicher et al. Feb 2014 A1
20140058528 Contreras-Vidal et al. Feb 2014 A1
20140062212 Sun et al. Mar 2014 A1
20140072550 Iakoubova et al. Mar 2014 A1
20140072957 Huang et al. Mar 2014 A1
20140080784 Stover et al. Mar 2014 A1
20140081675 Ives et al. Mar 2014 A1
20140086920 Walsh et al. Mar 2014 A1
20140087960 Seddon et al. Mar 2014 A1
20140088406 Dharmakumar et al. Mar 2014 A1
20140093127 Mundhenk et al. Apr 2014 A1
20140093974 Lopes-Virella et al. Apr 2014 A1
20140095251 Huovilainen Apr 2014 A1
20140100128 Narain et al. Apr 2014 A1
20140100989 Zhang et al. Apr 2014 A1
20140106370 Tseng et al. Apr 2014 A1
20140107850 Curtis Apr 2014 A1
20140114549 Ziarno Apr 2014 A1
20140114746 Pani et al. Apr 2014 A1
20140114880 Breeden Apr 2014 A1
20140120137 Davis et al. May 2014 A1
20140120533 Shiffman et al. May 2014 A1
20140124621 Godzdanker et al. May 2014 A1
20140127213 Schrodi et al. May 2014 A1
20140128362 Bare et al. May 2014 A1
20140134186 Li et al. May 2014 A1
20140134625 Haddad et al. May 2014 A1
20140135225 Crow et al. May 2014 A1
20140141988 Thorne et al. May 2014 A1
20140142861 Hagstrom et al. May 2014 A1
20140143134 Yan et al. May 2014 A1
20140148505 Rieder et al. May 2014 A1
20140153674 Stratigos, Jr. Jun 2014 A1
20140156231 Guo et al. Jun 2014 A1
20140156571 Hennig et al. Jun 2014 A1
20140163096 Golden et al. Jun 2014 A1
20140170069 Dharmakumar et al. Jun 2014 A1
20140171337 Beim Jun 2014 A1
20140171382 Bhatia Jun 2014 A1
20140172444 Moore et al. Jun 2014 A1
20140172507 Menon Jun 2014 A1
20140178348 Kelsey et al. Jun 2014 A1
20140184430 Jiang et al. Jul 2014 A1
20140186333 Bare et al. Jul 2014 A1
20140188918 Shamlin et al. Jul 2014 A1
20140191875 Wedig et al. Jul 2014 A1
20140192689 De Poorter et al. Jul 2014 A1
20140193919 Skinner et al. Jul 2014 A1
20140199290 Grupe et al. Jul 2014 A1
20140200953 Mun Jul 2014 A1
20140200999 Canny et al. Jul 2014 A1
20140213533 Suthanthiran et al. Jul 2014 A1
20140216144 Squartini et al. Aug 2014 A1
20140219968 Llagostera et al. Aug 2014 A1
20140221484 Cargill et al. Aug 2014 A1
20140225603 Auguste et al. Aug 2014 A1
20140234291 Cargill et al. Aug 2014 A1
20140234347 Weinschenk et al. Aug 2014 A1
20140235605 Shiffman et al. Aug 2014 A1
20140236965 Yarmus Aug 2014 A1
20140242180 Lavik et al. Aug 2014 A1
20140244216 Breton et al. Aug 2014 A1
20140249447 Sereno et al. Sep 2014 A1
20140249862 Andrist et al. Sep 2014 A1
20140253733 Norem et al. Sep 2014 A1
20140256576 Li et al. Sep 2014 A1
20140258355 Chu et al. Sep 2014 A1
20140263418 Keating et al. Sep 2014 A1
20140263430 Keating et al. Sep 2014 A1
20140263989 Valentino et al. Sep 2014 A1
20140264047 Valentino et al. Sep 2014 A1
20140266776 Miller et al. Sep 2014 A1
20140266785 Miller et al. Sep 2014 A1
20140267700 Wang et al. Sep 2014 A1
20140268601 Valentino et al. Sep 2014 A1
20140271672 Iakoubova et al. Sep 2014 A1
20140273821 Miller et al. Sep 2014 A1
20140274885 Cong et al. Sep 2014 A1
20140275849 Acquista Sep 2014 A1
20140278148 Ziegel et al. Sep 2014 A1
20140278967 Pal et al. Sep 2014 A1
20140279053 Lee Sep 2014 A1
20140279306 Shi et al. Sep 2014 A1
20140286935 Hamblin et al. Sep 2014 A1
20140294903 Forbes et al. Oct 2014 A1
20140299783 Valentino et al. Oct 2014 A1
20140301217 Choi et al. Oct 2014 A1
20140303481 Sorensen et al. Oct 2014 A1
20140303944 Jiang et al. Oct 2014 A1
20140307770 Jiang et al. Oct 2014 A1
20140312242 Valentino et al. Oct 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140324521 Mun Oct 2014 A1
20140336965 Mori et al. Nov 2014 A1
20140343786 Dvorak et al. Nov 2014 A1
20140343959 Hasegawa et al. Nov 2014 A1
20140349597 Abolfathi et al. Nov 2014 A1
20140349984 Hoffman et al. Nov 2014 A1
20140350722 Skrinde Nov 2014 A1
20140351183 Germain et al. Nov 2014 A1
20140355499 Akhlaq et al. Dec 2014 A1
20140358442 Akhlaq et al. Dec 2014 A1
20140365144 Dvorak et al. Dec 2014 A1
20140365276 Harsha et al. Dec 2014 A1
20140370836 Gladstone Dec 2014 A1
20140376645 Kumar et al. Dec 2014 A1
20140376827 Jiang et al. Dec 2014 A1
20140378334 Galichon et al. Dec 2014 A1
20150001420 Langoju et al. Jan 2015 A1
20150002845 Ostroverkhov et al. Jan 2015 A1
20150004641 Dylov et al. Jan 2015 A1
20150005176 Kim et al. Jan 2015 A1
20150006605 Chu et al. Jan 2015 A1
20150007181 Saraschandra et al. Jan 2015 A1
20150018632 Khair Jan 2015 A1
20150019262 Du et al. Jan 2015 A1
20150023949 Narain et al. Jan 2015 A1
20150025328 Khair Jan 2015 A1
20150031578 Black et al. Jan 2015 A1
20150031969 Khair Jan 2015 A1
20150032598 Fleming et al. Jan 2015 A1
20150032675 Huehn et al. Jan 2015 A1
20150039265 Acharid et al. Feb 2015 A1
20150046582 Gelvin et al. Feb 2015 A1
20150049650 Choi Feb 2015 A1
20150051896 Simard et al. Feb 2015 A1
20150051949 Pickton Feb 2015 A1
20150056212 Kupper et al. Feb 2015 A1
20150064194 Kupper et al. Mar 2015 A1
20150064195 Kupper et al. Mar 2015 A1
20150064670 Merfeld et al. Mar 2015 A1
20150066738 Tian et al. Mar 2015 A1
20150072434 Towler et al. Mar 2015 A1
20150072879 Princen et al. Mar 2015 A1
20150073306 Abeyratne et al. Mar 2015 A1
20150078460 Hu et al. Mar 2015 A1
20150078738 Brooke Mar 2015 A1
20150081247 Valentino et al. Mar 2015 A1
20150082754 Jasiulek et al. Mar 2015 A1
20150086013 Metzler et al. Mar 2015 A1
20150088783 Mun Mar 2015 A1
20150089399 Megill et al. Mar 2015 A1
20150094618 Russell et al. Apr 2015 A1
20150100244 Hannum Apr 2015 A1
20150100407 Sterns et al. Apr 2015 A1
20150100408 Sterns et al. Apr 2015 A1
20150100409 Sterns et al. Apr 2015 A1
20150100410 Sterns et al. Apr 2015 A1
20150100411 Sterns et al. Apr 2015 A1
20150100412 Sterns et al. Apr 2015 A1
20150111775 Iakoubova et al. Apr 2015 A1
20150112874 Serio et al. Apr 2015 A1
20150119079 Tarlazzi et al. Apr 2015 A1
20150119759 Gonzales et al. Apr 2015 A1
20150120758 Cichosz et al. Apr 2015 A1
20150139425 Ko et al. May 2015 A1
20150142331 Beim et al. May 2015 A1
20150152176 Walsh et al. Jun 2015 A1
20150164408 Russell et al. Jun 2015 A1
20150167062 Young et al. Jun 2015 A1
20150169840 Kupfer et al. Jun 2015 A1
20150178620 Ascari et al. Jun 2015 A1
20150178756 Chao et al. Jun 2015 A1
20150190367 Forbes et al. Jul 2015 A1
20150190436 Davis et al. Jul 2015 A1
20150191787 Muthukumar et al. Jul 2015 A1
20150192682 Valentino et al. Jul 2015 A1
20150205756 Bouchard Jul 2015 A1
20150209586 Silva et al. Jul 2015 A1
20150213192 Patel et al. Jul 2015 A1
20150215127 Sabottke Jul 2015 A1
20150216164 Bedoukian et al. Aug 2015 A1
20150216922 Kim et al. Aug 2015 A1
20150220487 Lovick Aug 2015 A1
20150228031 Emison et al. Aug 2015 A1
20150228076 Mouridsen et al. Aug 2015 A1
20150231191 Clarot et al. Aug 2015 A1
20150232944 De Reynies et al. Aug 2015 A1
20150235143 Eder Aug 2015 A1
20150240304 Cervino et al. Aug 2015 A1
20150240305 Suthanthiran et al. Aug 2015 A1
20150240314 Danila et al. Aug 2015 A1
20150249486 Stratigos, Jr. Sep 2015 A1
20150250816 Durham et al. Sep 2015 A1
20150259744 Begovich et al. Sep 2015 A1
20150262511 Lin et al. Sep 2015 A1
20150268355 Valentino et al. Sep 2015 A1
20150272464 Armoundas Oct 2015 A1
20150280863 Muqaibel et al. Oct 2015 A1
20150286933 Trivelpiece Oct 2015 A1
20150287143 Gabriel et al. Oct 2015 A1
20150288604 Boudreaux Oct 2015 A1
20150289149 Ouyang et al. Oct 2015 A1
20150291975 Minshull et al. Oct 2015 A1
20150291976 Minshull et al. Oct 2015 A1
20150291977 Minshull et al. Oct 2015 A1
20150292010 Khatib Oct 2015 A1
20150292016 Bureau et al. Oct 2015 A1
20150294431 Fiorucci et al. Oct 2015 A1
20150299798 De Reynies et al. Oct 2015 A1
20150302529 Jagannathan Oct 2015 A1
20150306160 Fueyo et al. Oct 2015 A1
20150307614 Sampson et al. Oct 2015 A1
20150316562 Kochel et al. Nov 2015 A1
20150316926 Ziarno Nov 2015 A1
20150317449 Eder Nov 2015 A1
20150320707 Singh et al. Nov 2015 A1
20150320708 Singh et al. Nov 2015 A1
20150324548 Eder Nov 2015 A1
20150328174 Singh et al. Nov 2015 A1
20150330869 Ziarno Nov 2015 A1
20150332013 Lee et al. Nov 2015 A1
20150337373 Chettier et al. Nov 2015 A1
20150338525 Valentino et al. Nov 2015 A1
20150341379 Lefebvre et al. Nov 2015 A1
20150341643 Xu et al. Nov 2015 A1
20150341675 Su Nov 2015 A1
20150343144 Altschul et al. Dec 2015 A1
20150347922 Hamann et al. Dec 2015 A1
20150348095 Dixon et al. Dec 2015 A1
20150351084 Werb Dec 2015 A1
20150351336 Gilbert et al. Dec 2015 A1
20150356458 Berengueres et al. Dec 2015 A1
20150359781 Sarpotdar et al. Dec 2015 A1
20150361494 Ward et al. Dec 2015 A1
20150363981 Ziarno et al. Dec 2015 A1
20150366830 Singh et al. Dec 2015 A1
20150377909 Cavet et al. Dec 2015 A1
20150378807 Ball et al. Dec 2015 A1
20150379428 Dirac et al. Dec 2015 A1
20150379429 Lee et al. Dec 2015 A1
20150379430 Dirac et al. Dec 2015 A1
20150381994 Yu et al. Dec 2015 A1
20160000045 Funaya et al. Jan 2016 A1
20160003845 Brasier et al. Jan 2016 A1
20160010162 Klee et al. Jan 2016 A1
20160012334 Ning et al. Jan 2016 A1
20160012465 Sharp Jan 2016 A1
20160017037 Hamblin et al. Jan 2016 A1
20160017426 Beim et al. Jan 2016 A1
20160024575 Spindler et al. Jan 2016 A1
20160025514 Pitchford et al. Jan 2016 A1
20160029643 Iatrou et al. Feb 2016 A1
20160029945 Merfeld et al. Feb 2016 A1
20160032388 Huang et al. Feb 2016 A1
20160034640 Zhao et al. Feb 2016 A1
20160034664 Santos et al. Feb 2016 A1
20160038538 Keyser et al. Feb 2016 A1
20160040184 Cong et al. Feb 2016 A1
20160040236 Hosur et al. Feb 2016 A1
20160042009 Gkoulalas-Divanis et al. Feb 2016 A1
20160042197 Gkoulalas-Divanis et al. Feb 2016 A1
20160042513 Yudovsky Feb 2016 A1
20160042744 Klejsa et al. Feb 2016 A1
20160044035 Huang Feb 2016 A1
20160045466 Singh et al. Feb 2016 A1
20160046991 Huang et al. Feb 2016 A1
20160048925 Emison et al. Feb 2016 A1
20160051791 Ewers et al. Feb 2016 A1
20160051806 Goldsmith Feb 2016 A1
20160053322 Nelson et al. Feb 2016 A1
20160055855 Kjoerling et al. Feb 2016 A1
20160058717 Page et al. Mar 2016 A1
20160063144 Cooke et al. Mar 2016 A1
20160068890 Pichaud et al. Mar 2016 A1
20160068916 Nekarda et al. Mar 2016 A1
20160072547 Muqaibel et al. Mar 2016 A1
20160075665 Page et al. Mar 2016 A1
20160078361 Brueckner et al. Mar 2016 A1
20160081551 Miller et al. Mar 2016 A1
20160081586 Miller et al. Mar 2016 A1
20160082589 Skrinde Mar 2016 A1
20160088517 Akyurek et al. Mar 2016 A1
20160091730 Brooke Mar 2016 A1
20160097082 Georganopoulou Apr 2016 A1
20160100444 San Vicente et al. Apr 2016 A1
20160100445 San Vicente et al. Apr 2016 A1
20160105801 Wittenberg et al. Apr 2016 A1
20160108473 Shiffman et al. Apr 2016 A1
20160108476 Schweiger et al. Apr 2016 A1
20160110657 Gibiansky et al. Apr 2016 A1
20160110812 Mun Apr 2016 A1
20160117327 Zhou et al. Apr 2016 A1
20160122396 Bunnik et al. May 2016 A1
20160124933 Takeuchi et al. May 2016 A1
20160125292 Seo et al. May 2016 A1
20160138105 McCoy et al. May 2016 A1
20160139122 Degauque et al. May 2016 A1
20160145693 Narain et al. May 2016 A1
20160147013 Molin et al. May 2016 A1
20160148237 Ifrach et al. May 2016 A1
20160152252 Kim et al. Jun 2016 A1
20160152538 Plettner et al. Jun 2016 A1
20160163132 Rabenoro et al. Jun 2016 A1
20160168639 Luke et al. Jun 2016 A1
20160171398 Eder Jun 2016 A1
20160171618 Besman et al. Jun 2016 A1
20160171619 Besman et al. Jun 2016 A1
20160173122 Akitomi et al. Jun 2016 A1
20160173959 Seema et al. Jun 2016 A1
20160174148 Seed et al. Jun 2016 A1
20160175321 Carper et al. Jun 2016 A1
20160183799 San Vicente et al. Jun 2016 A1
20160189381 Rhoads Jun 2016 A1
20160196587 Eder Jul 2016 A1
20160198657 Gupta Jul 2016 A1
20160202239 Voros et al. Jul 2016 A1
20160202755 Connor Jul 2016 A1
20160203279 Srinivas et al. Jul 2016 A1
20160203316 Mace et al. Jul 2016 A1
20160222100 Monje-Deisseroth et al. Aug 2016 A1
20160222450 Schrodi et al. Aug 2016 A1
20160224724 Zhao et al. Aug 2016 A1
20160224869 Clark-Polner Aug 2016 A1
20160225073 Xiao et al. Aug 2016 A1
20160225074 Xiao et al. Aug 2016 A1
20160228056 Hooker et al. Aug 2016 A1
20160228392 Singh et al. Aug 2016 A1
20160237487 Yu et al. Aug 2016 A1
20160239919 Eder Aug 2016 A1
20160243190 Barriere et al. Aug 2016 A1
20160243215 Barouch et al. Aug 2016 A1
20160244836 Li et al. Aug 2016 A1
20160244837 Bare et al. Aug 2016 A1
20160244840 Chilton et al. Aug 2016 A1
20160249152 Jin et al. Aug 2016 A1
20160250228 Kreppner et al. Sep 2016 A1
20160251720 Schulze et al. Sep 2016 A1
20160253324 Altshuller et al. Sep 2016 A1
20160253330 Altshuller et al. Sep 2016 A1
20160256112 Brockway et al. Sep 2016 A1
20160259883 Grinchuk et al. Sep 2016 A1
20160260302 Ellers et al. Sep 2016 A1
20160260303 Strulovitch et al. Sep 2016 A1
20160261997 Gladstone Sep 2016 A1
20160265055 Iakoubova et al. Sep 2016 A1
20160271144 Kreppner et al. Sep 2016 A1
20160281105 Cong et al. Sep 2016 A1
20160281164 Bare et al. Sep 2016 A1
20160282941 Aksenova et al. Sep 2016 A1
20160292589 Taylor et al. Oct 2016 A1
20160295371 Zhyshko et al. Oct 2016 A1
20160300183 Berger et al. Oct 2016 A1
20160303111 Nordsiek et al. Oct 2016 A1
20160303172 Zitvogel et al. Oct 2016 A1
20160306075 Heng et al. Oct 2016 A1
20160307138 Heng et al. Oct 2016 A1
20160310442 Deshpande et al. Oct 2016 A1
20160314055 Bagchi et al. Oct 2016 A1
20160319352 Iakoubova et al. Nov 2016 A1
20160323839 Davis et al. Nov 2016 A1
20160323841 Davis et al. Nov 2016 A1
20160333328 Minshull et al. Nov 2016 A1
20160338617 Ashe et al. Nov 2016 A1
20160338644 Connor Nov 2016 A1
20160340691 Minshull et al. Nov 2016 A1
20160344738 Dotan et al. Nov 2016 A1
20160345260 Johnson et al. Nov 2016 A1
20160352768 Lefebvre et al. Dec 2016 A1
20160353294 Wang et al. Dec 2016 A1
20160355886 Tan et al. Dec 2016 A1
20160356665 Felemban et al. Dec 2016 A1
20160356666 Bilal et al. Dec 2016 A1
20160359683 Bartfai-Walcott et al. Dec 2016 A1
20160371782 Jones et al. Dec 2016 A1
20160372123 Kjoerling et al. Dec 2016 A1
20160378427 Sharma et al. Dec 2016 A1
20160378942 Srinivas et al. Dec 2016 A1
20170004409 Chu et al. Jan 2017 A1
20170006135 Siebel et al. Jan 2017 A1
20170006140 Park et al. Jan 2017 A1
20170007574 Spencer et al. Jan 2017 A1
20170009295 Rigoutsos et al. Jan 2017 A1
20170013533 Felemban et al. Jan 2017 A1
20170014032 Khair Jan 2017 A1
20170014108 Mazurowski Jan 2017 A1
20170016896 Eastman et al. Jan 2017 A1
20170017904 Heng et al. Jan 2017 A1
20170021204 Baek Jan 2017 A1
20170022563 Iakoubova et al. Jan 2017 A1
20170022564 Begovich et al. Jan 2017 A1
20170027940 Peeper et al. Feb 2017 A1
20170028006 Ricard et al. Feb 2017 A1
20170029888 Cargill et al. Feb 2017 A1
20170029889 Cargill et al. Feb 2017 A1
20170032100 Shaked et al. Feb 2017 A1
20170035011 Grob et al. Feb 2017 A1
20170037470 Kirkpatrick et al. Feb 2017 A1
20170046347 Zhou et al. Feb 2017 A1
20170046499 Hu et al. Feb 2017 A1
20170046615 Schupp-Omid et al. Feb 2017 A1
20170051019 Bunnik et al. Feb 2017 A1
20170051359 Pegtel et al. Feb 2017 A1
20170052945 Takeuchi et al. Feb 2017 A1
20170056468 Eisenbud et al. Mar 2017 A1
20170061073 Sadhasivam Mar 2017 A1
20170067121 Kelsey et al. Mar 2017 A1
20170068795 Liu et al. Mar 2017 A1
20170071884 Page et al. Mar 2017 A1
20170072851 Shenoy et al. Mar 2017 A1
20170073756 Jensen et al. Mar 2017 A1
20170074878 Oberoi et al. Mar 2017 A1
20170076209 Sisk et al. Mar 2017 A1
20170076303 Pickton et al. Mar 2017 A1
20170078400 Binder et al. Mar 2017 A1
20170088900 Anjamshoaa et al. Mar 2017 A1
20170091673 Gupta et al. Mar 2017 A1
20170097347 Eastman et al. Apr 2017 A1
20170098240 Yang et al. Apr 2017 A1
20170098257 Keller Apr 2017 A1
20170098278 Carges et al. Apr 2017 A1
20170099836 Bruck et al. Apr 2017 A1
20170100446 Clarot et al. Apr 2017 A1
20170103190 Abraham et al. Apr 2017 A1
20170105004 Chen et al. Apr 2017 A1
20170105005 Chen et al. Apr 2017 A1
20170106178 Altschul et al. Apr 2017 A1
20170107583 Black et al. Apr 2017 A1
20170108502 Mulvihill et al. Apr 2017 A1
20170112792 Lu et al. Apr 2017 A1
20170116383 Ziavras et al. Apr 2017 A1
20170116624 Moore et al. Apr 2017 A1
20170116653 Smith et al. Apr 2017 A1
20170117064 Lepine et al. Apr 2017 A1
20170119662 Maisel et al. May 2017 A1
20170124520 Chakra et al. May 2017 A1
20170124528 Chakra et al. May 2017 A1
20170126009 Chen et al. May 2017 A1
20170126332 Biswas et al. May 2017 A1
20170127110 Chaar et al. May 2017 A1
20170127180 Shields et al. May 2017 A1
20170132537 Chavez May 2017 A1
20170135041 Miller et al. May 2017 A1
20170135647 Morris et al. May 2017 A1
20170137879 Narain et al. May 2017 A1
20170140122 Kupfer et al. May 2017 A1
20170140424 Canny et al. May 2017 A9
20170145503 Schrodi et al. May 2017 A1
20170151217 Sarpotdar et al. Jun 2017 A1
20170151964 Kim et al. Jun 2017 A1
20170156344 Wakefield Jun 2017 A1
20170157249 Kupper et al. Jun 2017 A1
20170159045 Serber et al. Jun 2017 A1
20170159138 Tarcic et al. Jun 2017 A1
20170167287 Jacobs et al. Jun 2017 A1
20170168070 Oberoi et al. Jun 2017 A1
20170169912 Gogotsi et al. Jun 2017 A1
20170171807 Noh et al. Jun 2017 A1
20170171889 Biswas et al. Jun 2017 A1
20170172472 Wedekind et al. Jun 2017 A1
20170172473 Wedekind et al. Jun 2017 A1
20170173262 Veltz Jun 2017 A1
20170177435 Chattha et al. Jun 2017 A1
20170177542 Chattha et al. Jun 2017 A1
20170177813 Yao et al. Jun 2017 A1
20170180214 Azevedo et al. Jun 2017 A1
20170180798 Goli et al. Jun 2017 A1
20170181098 Shinohara Jun 2017 A1
20170181628 Burnette et al. Jun 2017 A1
20170183243 Reitmeyer et al. Jun 2017 A1
20170191134 Gudmundsson et al. Jul 2017 A1
20170193647 Huang et al. Jul 2017 A1
20170195823 Shinohara Jul 2017 A1
20170196481 Rundell et al. Jul 2017 A1
20170199845 Azar et al. Jul 2017 A1
20170201297 Stratigos Jul 2017 A1
20170213345 Eslami et al. Jul 2017 A1
20170214799 Perez et al. Jul 2017 A1
20170217018 Skrinde Aug 2017 A1
20170219451 Chaudhary et al. Aug 2017 A1
20170222753 Angelopoulos et al. Aug 2017 A1
20170223653 Weitnauer et al. Aug 2017 A1
20170224268 Altini et al. Aug 2017 A1
20170226164 Izum et al. Aug 2017 A1
20170228810 Shang et al. Aug 2017 A1
20170228998 Fu et al. Aug 2017 A1
20170231221 Iatrou et al. Aug 2017 A1
20170233809 Hackney et al. Aug 2017 A1
20170233815 Timmons Aug 2017 A1
20170235894 Cox et al. Aug 2017 A1
20170236060 Ignatyev Aug 2017 A1
20170238850 Gonzales et al. Aug 2017 A1
20170238879 Ducreux Aug 2017 A1
20170242972 Hu et al. Aug 2017 A1
20170244777 Ouyang et al. Aug 2017 A1
20170246963 Lee et al. Aug 2017 A1
20170247673 Isaksen Aug 2017 A1
20170255888 McCord et al. Sep 2017 A1
20170255945 McCord et al. Sep 2017 A1
20170259050 Altschul et al. Sep 2017 A1
20170259178 Aghdaie et al. Sep 2017 A1
20170259942 Ziarno Sep 2017 A1
20170261645 Kleeman et al. Sep 2017 A1
20170262580 Beim et al. Sep 2017 A1
20170264805 Athan Sep 2017 A1
20170265044 Lundsgaard et al. Sep 2017 A1
20170268066 Gatto et al. Sep 2017 A1
20170268954 Ocalan Sep 2017 A1
20170270580 Esposito et al. Sep 2017 A1
20170276655 Li Sep 2017 A1
20170280717 Bedoukian et al. Oct 2017 A1
20170281092 Burnette et al. Oct 2017 A1
20170281747 Bunnik et al. Oct 2017 A1
20170284839 Ojaua Oct 2017 A1
20170286594 Reid et al. Oct 2017 A1
20170286608 Srinivas et al. Oct 2017 A1
20170286838 Cipriani et al. Oct 2017 A1
20170287522 Imao Oct 2017 A1
20170289323 Gelvin et al. Oct 2017 A1
20170289812 Werb Oct 2017 A1
20170290024 Ouyang et al. Oct 2017 A1
20170292159 Shiffman et al. Oct 2017 A1
20170295503 Govindaraju et al. Oct 2017 A1
20170296104 Ryan et al. Oct 2017 A1
20170298126 Baum et al. Oct 2017 A1
20170300814 Shaked et al. Oct 2017 A1
20170300824 Peng et al. Oct 2017 A1
20170301017 Magdelinic et al. Oct 2017 A1
20170302756 Chou et al. Oct 2017 A1
20170304248 Puder et al. Oct 2017 A1
20170306745 Harding et al. Oct 2017 A1
20170308672 Martin et al. Oct 2017 A1
20170308846 de Mars et al. Oct 2017 A1
20170310697 Lefebvre et al. Oct 2017 A1
20170310972 Wang et al. Oct 2017 A1
20170310974 Guleryuz et al. Oct 2017 A1
20170311895 Sereno et al. Nov 2017 A1
20170312289 Dugan Stocks et al. Nov 2017 A1
20170312315 Braughler et al. Nov 2017 A1
20170316150 Deciu et al. Nov 2017 A1
20170322928 Gotchev et al. Nov 2017 A1
20170330431 Wedig et al. Nov 2017 A1
20170331899 Binder et al. Nov 2017 A1
20170337711 Ratner et al. Nov 2017 A1
20170344554 Ha et al. Nov 2017 A1
20170344555 Yan et al. Nov 2017 A1
20170344556 Wu et al. Nov 2017 A1
20170344954 Xu et al. Nov 2017 A1
20170346609 Li et al. Nov 2017 A1
20170347242 Ching et al. Nov 2017 A1
20170347297 Li et al. Nov 2017 A1
20170350705 D'Alberto et al. Dec 2017 A1
20170351689 Vasudevan et al. Dec 2017 A1
20170351806 Beim Dec 2017 A1
20170351811 Zhao et al. Dec 2017 A1
20170353825 D'Alberto et al. Dec 2017 A1
20170353826 D'Alberto et al. Dec 2017 A1
20170353827 D'Alberto et al. Dec 2017 A1
20170353865 Li et al. Dec 2017 A1
20170353941 D'Alberto et al. Dec 2017 A1
20170359584 Said et al. Dec 2017 A1
20170363738 Kaino Dec 2017 A1
20170364596 Wu et al. Dec 2017 A1
20170364817 Raykov et al. Dec 2017 A1
20170369534 Bunnik et al. Dec 2017 A1
20170374521 Zhyshko et al. Dec 2017 A1
20170374619 San Vicente et al. Dec 2017 A1
20180000102 Jackson et al. Jan 2018 A1
20180003722 Tseng et al. Jan 2018 A1
20180005149 Dhingra Jan 2018 A1
20180006957 Ouyang et al. Jan 2018 A1
20180010136 Hunt et al. Jan 2018 A1
20180010185 Ebert et al. Jan 2018 A1
20180010197 Beane-Ebel et al. Jan 2018 A1
20180010198 Anjamshoaa et al. Jan 2018 A1
20180011110 Landi et al. Jan 2018 A1
20180014771 Merchant-Borna et al. Jan 2018 A1
20180017392 Claudel et al. Jan 2018 A1
20180017545 Hisamatsu et al. Jan 2018 A1
20180017564 Sanada et al. Jan 2018 A1
20180017570 Arashida et al. Jan 2018 A1
20180018683 Yee et al. Jan 2018 A1
20180019862 Kliewer et al. Jan 2018 A1
20180020951 Kaifosh et al. Jan 2018 A1
20180021279 Hamilton-Reeves et al. Jan 2018 A1
20180024029 Ota et al. Jan 2018 A1
20180031589 Tamezane et al. Feb 2018 A1
20180032876 Altshuller et al. Feb 2018 A1
20180032938 Scriffignano et al. Feb 2018 A1
20180033088 Besman et al. Feb 2018 A1
20180034912 Binder et al. Feb 2018 A1
20180035605 Guan et al. Feb 2018 A1
20180038994 Hamann et al. Feb 2018 A1
20180039316 Brown et al. Feb 2018 A1
20180046926 Achin et al. Feb 2018 A1
20180049636 Miller et al. Feb 2018 A1
20180049638 Ewers et al. Feb 2018 A1
20180051344 Barreto et al. Feb 2018 A1
20180058202 Disko et al. Mar 2018 A1
20180060458 Zhao et al. Mar 2018 A1
20180060513 Tang et al. Mar 2018 A1
20180060738 Achin et al. Mar 2018 A1
20180060744 Achin et al. Mar 2018 A1
20180062941 Brown et al. Mar 2018 A1
20180064666 Lu et al. Mar 2018 A1
20180067010 Kim et al. Mar 2018 A1
20180067118 Kim et al. Mar 2018 A1
20180071285 Palczewski et al. Mar 2018 A1
20180075357 Subramanian et al. Mar 2018 A1
20180077146 Lonas Mar 2018 A1
20180077663 Davis et al. Mar 2018 A1
20180078605 Spencer et al. Mar 2018 A1
20180078747 Altschul et al. Mar 2018 A1
20180078748 Altschul et al. Mar 2018 A1
20180080081 Akoulitchev et al. Mar 2018 A1
20180085168 Valdes et al. Mar 2018 A1
20180085355 Abramovitch et al. Mar 2018 A1
20180087098 Gregg Mar 2018 A1
20180089389 Hu et al. Mar 2018 A1
20180093418 Lappas et al. Apr 2018 A1
20180093419 Lappas et al. Apr 2018 A1
20180094317 Dudley, Jr. et al. Apr 2018 A1
20180095450 Lappas et al. Apr 2018 A1
20180108431 Beim et al. Apr 2018 A1
20180111051 Xue et al. Apr 2018 A1
20180114128 Libert et al. Apr 2018 A1
20180116987 Singh et al. May 2018 A1
20180120133 Blank et al. May 2018 A1
20180122020 Blank et al. May 2018 A1
20180124181 Binder et al. May 2018 A1
20180124407 Bright-Thomas et al. May 2018 A1
20180128824 Mani et al. May 2018 A1
20180129902 Li May 2018 A1
20180132720 Miller et al. May 2018 A1
20180132725 Vogl et al. May 2018 A1
20180143986 Sinha et al. May 2018 A1
20180148180 Fagundes et al. May 2018 A1
20180148182 Fagundes et al. May 2018 A1
20180148776 Guo et al. May 2018 A1
20180157758 Arrizabalaga et al. Jun 2018 A1
20180160982 Laszlo et al. Jun 2018 A1
20180162549 Ziarno Jun 2018 A1
20180164439 Droz et al. Jun 2018 A1
20180166962 Kim et al. Jun 2018 A1
20180170575 Ziarno Jun 2018 A1
20180171407 Schrodi et al. Jun 2018 A1
20180176556 Zhao et al. Jun 2018 A1
20180176563 Zhao et al. Jun 2018 A1
20180176582 Zhao et al. Jun 2018 A1
20180181910 Zhang et al. Jun 2018 A1
20180182116 Rhoads Jun 2018 A1
20180182181 Dolan et al. Jun 2018 A1
20180185519 Dharmakumar et al. Jul 2018 A1
20180189564 Freitag et al. Jul 2018 A1
20180191867 Siebel et al. Jul 2018 A1
20180192936 Widge et al. Jul 2018 A1
20180193652 Srivastava et al. Jul 2018 A1
20180201948 Gonzalez Morales et al. Jul 2018 A1
20180206489 Plettner et al. Jul 2018 A1
20180207248 Castex Jul 2018 A1
20180211677 Klejsa et al. Jul 2018 A1
20180212787 Lee et al. Jul 2018 A1
20180213348 Natarajan et al. Jul 2018 A1
20180214404 Rosenberg et al. Aug 2018 A1
20180216099 Serber et al. Aug 2018 A1
20180216100 Serber et al. Aug 2018 A1
20180216101 Serber et al. Aug 2018 A1
20180216132 Cong et al. Aug 2018 A1
20180216197 Davicioni et al. Aug 2018 A1
20180217141 Sasso Aug 2018 A1
20180217143 Sasso et al. Aug 2018 A1
20180218117 Beim et al. Aug 2018 A1
20180222388 Shenoy et al. Aug 2018 A1
20180225585 Dong et al. Aug 2018 A1
20180227930 Ouyang et al. Aug 2018 A1
20180232421 Dialani et al. Aug 2018 A1
20180232434 Geyik et al. Aug 2018 A1
20180232661 Li et al. Aug 2018 A1
20180232700 Li et al. Aug 2018 A1
20180232702 Dialani et al. Aug 2018 A1
20180232904 Zakharevich et al. Aug 2018 A1
20180235549 Sereno et al. Aug 2018 A1
20180236027 Barriere et al. Aug 2018 A1
20180237825 Ehrich et al. Aug 2018 A1
20180239829 Dialani et al. Aug 2018 A1
20180240535 Harper et al. Aug 2018 A1
20180245154 Tsalik et al. Aug 2018 A1
20180246696 Sharma et al. Aug 2018 A1
20180251819 Pichaud et al. Sep 2018 A1
20180251842 Iakoubova et al. Sep 2018 A1
20180254041 Harper Sep 2018 A1
20180260515 Narain et al. Sep 2018 A1
20180260717 Li et al. Sep 2018 A1
20180262433 Ouyang et al. Sep 2018 A1
20180263606 Orringer et al. Sep 2018 A1
20180263962 Sarpotdar et al. Sep 2018 A1
20180271980 Altschul et al. Sep 2018 A1
20180275146 Narain et al. Sep 2018 A1
20180275629 Watanabe Sep 2018 A1
20180276325 Polovick et al. Sep 2018 A1
20180276497 Madabhushi et al. Sep 2018 A1
20180276498 Madabhushi et al. Sep 2018 A1
20180276570 Watanabe Sep 2018 A1
20180277146 Chen et al. Sep 2018 A1
20180277250 Garbett et al. Sep 2018 A1
20180278693 Binder et al. Sep 2018 A1
20180278694 Binder et al. Sep 2018 A1
20180282736 Lyerly et al. Oct 2018 A1
20180285765 Nandagopal et al. Oct 2018 A1
20180285900 Bhattacharyya et al. Oct 2018 A1
20180291398 Cong et al. Oct 2018 A1
20180291459 Al-Deen Ashab et al. Oct 2018 A1
20180291474 Miick et al. Oct 2018 A1
20180292384 Suthanthiran et al. Oct 2018 A1
20180292412 Wischhusen et al. Oct 2018 A1
20180293462 Ambati et al. Oct 2018 A1
20180293501 Ambati et al. Oct 2018 A1
20180293511 Bouillet et al. Oct 2018 A1
20180293538 Berger et al. Oct 2018 A1
20180293759 Moore Oct 2018 A1
20180293778 Appu et al. Oct 2018 A1
20180295375 Ratner Oct 2018 A1
20180300333 Wang et al. Oct 2018 A1
20180300639 Abbas Oct 2018 A1
20180303354 Li Oct 2018 A1
20180303906 Caspi et al. Oct 2018 A1
20180305762 Cargill et al. Oct 2018 A1
20180310529 Funaya et al. Nov 2018 A1
20180312923 Luke et al. Nov 2018 A1
20180312926 Klee et al. Nov 2018 A9
20180314964 Takano et al. Nov 2018 A1
20180315507 Mortazavi et al. Nov 2018 A1
20180317140 Zhang Nov 2018 A1
20180317794 Mackellar et al. Nov 2018 A1
20180322203 Zhang et al. Nov 2018 A1
20180323882 Breton et al. Nov 2018 A1
20180326173 Ewers et al. Nov 2018 A1
20180327740 Gifford et al. Nov 2018 A1
20180327806 Hung et al. Nov 2018 A1
20180327844 Deciu et al. Nov 2018 A1
20180334721 Narain et al. Nov 2018 A1
20180336534 Kim Nov 2018 A1
20180338017 Mekuria et al. Nov 2018 A1
20180338282 San Vicente et al. Nov 2018 A1
20180340231 LaFleur et al. Nov 2018 A1
20180340515 Huyn Nov 2018 A1
20180341958 Hanowell Nov 2018 A1
20180343304 Binder et al. Nov 2018 A1
20180343482 Loheide et al. Nov 2018 A1
20180344841 Bunnik et al. Dec 2018 A1
20180349514 Alzate Perez et al. Dec 2018 A1
20180353138 Doheny et al. Dec 2018 A1
20180357361 Frenkel et al. Dec 2018 A1
20180357362 Frenkel et al. Dec 2018 A1
20180357529 Song et al. Dec 2018 A1
20180357565 Syed et al. Dec 2018 A1
20180357726 Besman et al. Dec 2018 A1
20180358118 Bagaev et al. Dec 2018 A1
20180358125 Bagaev et al. Dec 2018 A1
20180358128 Bagaev et al. Dec 2018 A1
20180358132 Bagaev et al. Dec 2018 A1
20180359608 Ching et al. Dec 2018 A1
20180360892 Pamer et al. Dec 2018 A1
20180365521 Dai et al. Dec 2018 A1
20180369238 Anton et al. Dec 2018 A1
20180369696 Aghdaie et al. Dec 2018 A1
20180371553 Steelman et al. Dec 2018 A1
20180375743 Lee et al. Dec 2018 A1
20180375940 Binder et al. Dec 2018 A1
20190000750 Maisel et al. Jan 2019 A1
20190001219 Sardari et al. Jan 2019 A1
20190004996 Azar et al. Jan 2019 A1
20190005586 Lei et al. Jan 2019 A1
20190010548 Diatchenko et al. Jan 2019 A1
20190010554 Narain et al. Jan 2019 A1
20190014587 Zhang Jan 2019 A1
20190015035 Merfeld et al. Jan 2019 A1
20190015622 Ewers et al. Jan 2019 A1
20190017117 Barr et al. Jan 2019 A1
20190017123 Davicioni et al. Jan 2019 A1
20190020530 Au et al. Jan 2019 A1
20190024174 Begovich et al. Jan 2019 A1
20190024497 Harding et al. Jan 2019 A1
20190032136 Shiffman et al. Jan 2019 A1
20190033078 D'Alberto et al. Jan 2019 A1
20190034473 Jha et al. Jan 2019 A1
20190034474 Nandagopal et al. Jan 2019 A1
20190036779 Bajaj Jan 2019 A1
20190036780 Evans et al. Jan 2019 A1
20190036801 Natarajan et al. Jan 2019 A1
20190036816 Evans et al. Jan 2019 A1
20190037558 Zhang Jan 2019 A1
20190057170 Burriesci et al. Feb 2019 A1
20190191230 Li Jun 2019 A1
20190339416 Elkabetz et al. Nov 2019 A1
20190340534 McMahan et al. Nov 2019 A1
20200193234 Pai et al. Jun 2020 A1
20200225385 O'Donncha Jul 2020 A1
Non-Patent Literature Citations (96)
Entry
Rune Prytz, (“Machine learning methods for vehicle predictive maintenance using off-board and on-board data”), 2014, Halmstad University Dissertations No. 9, Halmstad University Press, pp. 1-96. (Year: 2014).
“File Compression Possibilities”. A Brief guide to compress a file in 4 different ways. https://www.gadgetcouncil.com/compress-1GB-files-into-10-mb/.
“Hospital Uses Data Analytics and Predictive Modeling To Identify and Allocate Scarce Resources to High-Risk Patients, Leading to Fewer Readmissions”. Agency for Healthcare Research and Quality. Jan. 29, 2014. Retrieved Jan. 29, 2014.
“Implementing Predictive Modeling in R for Algorithmic Trading”. Oct. 7, 2016. Retrieved Nov. 25, 2016.
“Predictive-Model Based Trading Systems, Part 1—System Trader Success”. System Trader Success. Jul. 22, 2013. Retrieved Nov. 25, 2016.
Arcangel, Cory. “On Compression” (2013), 13 pages.
Augustin, N.H.; Sauleau, E-A; Wood, S.N. (2012). “On quantile quantile plots for generalized linear models”. Computational Statistics and Data Analysis. 56: 2404-2409. doi:10.1016/j.csda.2012.01.026.
Banerjee, Imon. “Probabilistic Prognostic Estimates of Survival in Metastatic Cancer Patients (PPES-Met) Utilizing Free-Text Clinical Narratives”. Scientific Reports. 8 (10037 (2018)). doi:10.1038/s41598-018-27946-5.
Baraniuk, R. G., “Compressive sensing [lecture notes],” IEEE, Signal Processing Magazine, vol. 24, No. 4, 2007, 9 pages.
Ben-Gal, I. (2005). “On the Use of Data Compression Measures to Analyze Robust Designs”, 54 (3). IEEE Transactions on Reliability: 381-388.
Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 1-122.
Breiman, Leo (Aug. 1996). “Bagging predictors”. Machine Learning. 24 (2): 123-140. doi:10.1007/bf00058655.
Brian Junker (Mar. 22, 2010). “Additive models and cross-validation”.
Cai, J.F.; Candes, E.J.; Shen, Z.W. A singular value thresholding algorithm for matrix completion. Siam J, Optim. 2010, 20, 1956-1982.
Caione, C.; Brunelli, D.; Benini, L. Distributed compressive sampling for lifetime optimization in dense wireless sensor networks. IEEE Trans. Ind. Inf. 2012, 8, 30-40.
Candes, E. J., M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted 1 1 minimization,” Journal of Fourier Analysis and Applications, vol. 14, No. 5-6, 2008, pp. 877-905.
Candes, E.J.; Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9, 717-772.
Candes, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory 2006, 52.
CCITT Study Group VIII und die Joint Photographic Experts Group (JPEG) von ISO/IEC Joint Technical Committee 1/Subcommittee 29/Working Group 10 (1993), “Annex D—Arithmetic coding”, in ITU-T, Recommendation T.81: Digital Compression and Coding of Continuous-tone Still images—Requirements and guidelines.
Cevher, V., A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa, “Compressive sensing for background subtraction,” in Computer Vision—ECCV 2008. Springer, 2008, pp. 155-168.
Chanda P, Bader JS, Elhaik E; Elhaik; Bader (Jul. 27, 2012). “HapZipper: sharing HapMap populations just got easier”, Nucleic Acids Research. 40 (20): e159. doi:10.1093/nar/gks709. PMC 3488212. PMID 22844100.
Charbiwala, Z., Y. Kim, S. Zahedi, J. Friedman, and M. B. Srivastava, “Energy efficient sampling for event detection in wireless sensor networks,” in Proceedings of the 14th ACM/IEEE international symposium on Low power electronics and design, ACM, 2009, pp. 419-424.
Cheng, J.; Ye, Q.; Jiang, H.; Wang, D.; Wang, C. STCDG: An efficient data gathering algorithm based on matrix completion for wireless sensor networks. IEEE Trans. Wirel. Commun. 2013, 12, 850-861.
Christley S, Lu Y, Li C, Xie X; Lu; Li; Xie (Jan. 15, 2009). “Human genomes as email attachments”. Bioinformatics. 25 (2): 274-5. doi:10.1093/bioinformatics/btn582. PMID 18996942.
Claude Elwood Shannon (1948), Alcatel-Lucent, ed., “A Mathematical Theory of Communication,”, Bell System Technical Journal 27 (3-4).
Coalson, Josh. “FLAC Comparison,” 5 pages.
Donoho, D. L., “Compressed sensing,” IEEE Transactions on, Information Theory, vol. 52, No. 4, pp. 1289-1306, 2006.
en.wikipedia.org/wiki/Data_compression, 17 pages.
Fahrmeier, L.; Lang, S. (2001). “Bayesian Inference for Generalized Additive Mixed Models based on Markov Random Field Priors”. Journal of the Royal Statistical Society, Series C. 50: 201-220.
forteconsultancy.wordpress.com/2010/05/17/wondering-what-lies-ahead-the-power-of-predictive-modeling/.
Gleichman, S.; Eldar, Y.C. “Blind Compressed Censing.” IEEE Trans. Inf. Theory 2011, 57, 6958-6975.
Goel, S., and T. Imielinski, “Prediction-based monitoring in sensor networks: taking lessons from mpeg,” ACM SIGCOMM Computer Communication Review, vol. 31, No. 5, pp. 82-98, 2001.
Goldstein, T.; O'Donoghue, B.; Setzer, S.; Baraniuk, R. Fast alternating direction optimization methods. SIAM J. Imaging Sci. 2014, 7, 1588-1623.
Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2013.
Graphics & Media Lab Video Group (2007), “Lossless Video Codecs Comparison, 2007,” Moscow State University, Mar. 2007, CS MSU Graphics & Media Lab, 131 pages.
Greven, Sonja; Kneib, Thomas (2010). “On the behaviour of marginal and conditional AIC in linear mixed models”. Biometrika. 97: 773-789. doi:10.1093/biomet/asq042.
Grimes, C. A., “Design of a wireless sensor network for long-term, in-situ monitoring of an aqueous environment,” Sensors, vol. 2, No. 11, pp. 455-472, 2002.
Gu, C.; Wahba, G. (1991). “Minimizing GCV/GML scores with multiple smoothing parameters via the Newton method”. SIAM Journal on Scientific and Statistical Computing. 12. pp. 383-398.
Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Siences, Maui, HI, USA, Jan. 4-7, 2000; p. 223.
Hilbert, Martin; López, Priscila (Apr. 1, 2011). “The World's Technological Capacity to Store, Communicate, and Compute Information”. Science. 332 (6025): 60-65. Bibcode:2011Sci . . . 332 . . . 60H. doi:10.1126/science.1200970. PMID 21310967.
Hu, Y.; Zhang, D.; Ye, J.; Li, X.; He, X. Fast and accurate matrix completion via truncated nuclear norm regularization, IEEE Trans. Pattern Anal. Mach, Intell. 2013, 35, 2117-2130.
Huffman, David Albert (Sep. 1952), “A method for the construction of minimum-redundancy codes” (in German), Proceedings of the IRE 40 (9): pp. 1098-1101, doi:10.1109/JRPROC.1952.273898.
International Search Report and Written Opinion, dated Apr. 23, 2020 for International Application PCT/US20/15698, 13 pages.
Jeffrey H. Altschul, Lynne Sebastian, and Kurt Heidelberg, “Predictive Modeling in the Military: Similar Goals, Divergent Paths”, Preservation Research Series 1, SRI Foundation, 2004.
Kadkhodaie, M.; Christakopoulou, K.; Sanjabi, M.; Banerjee, A. Accelerated alternating direction method of multipliers. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, Aug. 10-13, 2015; pp. 497-506.
Kim, Y.J.; Gu, C. (2004). “Smoothing spline Gaussian regression: more scalable computation via efficient approximation”. Journal of the Royal Statistical Society, Series B. 66. pp. 337-356.
Kong, L.; Xia, M.; Liu, X.Y.; Chen, G.; Gu, Y.; Wu, M.Y.; Liu, X. Data loss and reconstruction in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 2818-2828.
Kong, L.; Xia, M.; Liu, X.Y.; Chen, G.; Gu, Y.; Wu, M.Y.; Liu, X. Supplemental Document—Data loss and reconstruction in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 2818-2828.
Korn, D.; et al. “RFC 3284: The VCDIFF Generic Differencing and Compression Data Format”. Internet Engineering Task Force. (2002).
Korn, D.G.; Vo, K.P. (1995), B. Krishnamurthy, ed., Vdelta: Differencing and Compression, Practical Reusable Unix Software, New York: John Wiley & Sons, Inc.
Lachowski, R.; Pellenz, M.E.; Penna, M.C.; Jamhour, E.; Souza, R.D. An efficient distributed algorithm for constructing spanning trees in wireless sensor networks. Sensors 2015, 15, 1518-1536.
Lane, Tom. “JPEG Image Compression FAQ, Part 1”. Internet FAQ Archives. Independent JPEG Group.
Li, S.X.; Gao, F.; Ge, G.N.; Zhang, S.Y. Deterministic construction of compressed sensing matrices via algebraic curves. IEEE Trans. Inf. Theory 2012, 58, 5035-5041.
Liu, X.Y.; Zhu, Y.; Kong, L.; Liu, C.; Gu, Y.; Vasilakos, A.V.; Wu, M.Y. CDC: Compressive data collection for wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 2188-2197.
Liu, Y.; He, Y.; Li, M.; Wang, J.; Liu, K.; Li, X. Does wireless sensor network scale? A measurement study on GreenOrbs. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 1983-1993.
Luo, C., F. Wu, J. Sun, and C. W. Chen, “Compressive data gathering for large-scale wireless sensor networks,” ACM, Proceedings of the 15th annual international conference on Mobile computing and networking, pp. 145-156, 2009.
Luo, C., F. Wu, J. Sun, and C. W. Chen, “Efficient measurement generation and pervasive sparsity for compressive data gathering,” Wireless Communications, IEEE Transactions on, vol. 9, No. 12, pp. 3728-3738, 2010.
Luo, C.; Wu, F.; Sun, J.; Chen, C.W. Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th ACM International Conference on Mobile Computing and Networking, Beijing, China, Sep. 20-25, 2009; pp. 145-156.
M. Hosseini, D. Pratas, and A. Pinho. 2016. A survey on data compression methods for biological sequences. Information 7(4):(2016): 56.
Mahdi, O.A.; Mohammed, M.A.; Mohamed, A.J. (Nov. 2012). “Implementing a Novel Approach an Convert Audio Compression to Text Coding via Hybrid Technique”. International Journal of Computer Science Issues. 9 (6, No. 3): 53-59.
Mahmud, Salauddin (Mar. 2012). “An Improved Data Compression Method for General Data”. International Journal of Scientific & Engineering Research, 3(3):2.
Mahoney, Matt. “Rationale for a Large Text Compression Benchmark”. Florida Institute of Technology, (2006) cs.fit.edu/mmahoney/compression/rationale.htm.
Marak, Laszlo. “On image compression” University of Mame la Vallee (2013).
Marra, G.; Wood, S.N. (2012). “Coverage properties of confidence intervals for generalized additive model components”. Scandinavian Journal of Statistics. 39: 53-74. doi: 10.1111/j.1467-9469.2011.00760.x.
Mittal, S.; Vetter, J. (2015), “A Survey Of Architectural Approaches for Data Compression in Cache and Main Memory Systems”, IEEE Transactions on Parallel and Distributed Systems, IEEE.
Nasir Ahmed, T. Natarajan, Kamisetty Ramamohan Rao (Jan. 1974), “Discrete Cosine Transform” (in German), IEEE Transactions on Computers C-23 (1): pp. 90-93, doi: 10.1109/T-C.1974.223784.
Navqi, Saud; Naqvi, R.; Riaz, R.A.; Siddiqui, F. (Apr. 2011). “Optimized RTL design and implementation of LZW algorithm for high bandwidth applications” Electrical Review. 2011 (4): 279-285.
Nelder, John; Wedderburn, Robert (1972). “Generalized Linear Models”. Journal of the Royal Statistical Society. Series A (General). Blackwell Publishing. 135 (3): 370-384. doi:10.2307/2344614. JSTOR 2344614.
Pavlichin DS, Weissman T, Yona G; Weissman; Yona (Sep. 2013). “The human genome contracts again”. Bioinformatics. 29 (17): 2199-202. doi:10.1093/bioinformatics/btt362. PMID 23793748.
Pujar, J.H.; Kadlaskar, L.M. (May 2010). “A New Lossless Method of Image Compression and Decompression Using Huffman Coding Techniques” Journal of Theoretical and Applied Information Technology. 15 (1): 18-23.
Reiss, P.T.; Ogden, T.R. (2009). “Smoothing parameter selection for a class of semiparametric linear models”. Journal of the Royal Statistical Society, Series B. 71: 505-523. doi: 10.1111/j.1467-9868.2008.00695.x.
Rigby, R.A.; Stasinopoulos, D.M. (2005). “Generalized additive models for location, scale and shape (with discussion)”. Journal of the Royal Statistical Society, Series C. 54: 507-554. doi: 10.1111/j.1467-9876.2005.00510.x.
Roughan, M.; Zhang, Y.; Willinger, W.; Qiu, L.L. Spatio-temporal compressive sensing and internet traffic matrices. IEEE ACM Trans. Netw. 2012, 20, 662-676.
Rue, H.; Martino, Sara; Chopin, Nicolas (2009). “Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion)”. Journal of the Royal Statistical Society, Series B. 71: 319-392. doi:10.1111/j.1467-9868.2008.00700.x.
Schmid, M.; Hothorn, T. (2008). “Boosting additive models using component-wise P-splines”. Computational Statistics and Data Analysis. 53: 298-311. doi:10.1016/j.csda.2008.09.009.
Scully, D.; Carla E. Bradley (2006). “Compression and machine learning: A new perspective on feature space vectors” Data Compression Conference, 2006.
Senn, Stephen (2003). “A conversation with John Nelder”. Statistical Science. 18 (1): 118-131. doi:10.1214/ss/1056397489.
Shmilovici A.; Kahiri Y.; Ben-Gal I.; Hauser S. (2009). “Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm” 33(2). Computational Economics: 131-154.
Shuman, D.I.; Narang, S.K.; Frossard, P.; Ortega, A.; Vandergheynst, P. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 2013, 30, 83-98.
Silverman, B.W. (1985). “Some Aspects of the Spline Smoothing Approach to Non-Parametric Regression Curve Fitting (with discussion)”. Journal of the Royal Statistical Society, Series B. 47. pp. 1-53.
Sullivan, G. J.; Ohm, J.-R.; Han, W.-J.; Wiegand, T., (Dec. 2012). “Overview of the High Efficiency Video Coding (HEVC) Standard” IEEE Transactions on Circuits and Systems for Video Technology. IEEE. 22 (12).
Toh, K.C.; Yun, S. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. 2010, 6, 615-640.
Umlauf, Nikolaus; Adler, Daniel; Kneib, Thomas; Lang, Stefan; Zeileis, Achim. “Structured Additive Regression Models: An R Interface to BayesX”. Journal of Statistical Software. 63 (21): 1-46.
Wahba, G. (1983). “Bayesian Confidence Intervals for the Cross Validated Smoothing Spline”. Journal of the Royal Statistical Society, Series B. 45. pp. 133-150.
Wang, Donghao, Wan, Jiangwen, Nie, Zhipeng, Zhang, Qiang, and Fei, Zhijie, “Efficient Data Gathering Methods in Wireless Sensor Networks Using GBTR Matrix Completion”, Sensors 2016, 16(9), 1532; doi:10.3390/s1601532.
Wolfram, Stephen (2002). A New Kind of Science. Wolfram Media, Inc. p. 1069. ISBN 1-57955-008-8.
Wood, S. N. (2000). “Modelling and smoothing parameter estimation with multiple quadratic penalties”. Journal of the Royal Statistical Society. Series B. 62 (2): 413-428. doi: 10.1111/1467-9868.00240.
Wood, S. N. (2008). “Fast stable direct fitting and smoothness selection for generalized additive models”. Journal of the Royal Statistical Society, Series B. 70 (3): 495-518. arXiv:0709.3906. doi:10.1111/j.1467-9868.2007.00646.x.
Wood, S.N. (2011). “Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models”. Journal of the Royal Statistical Society, Series B. 73: 3-36.
Wood, S. N.; Pya, N.; Saefken, B. (2016). “Smoothing parameter and model selection for general smooth models (with discussion)”. Journal of the American Statistical Association. 111: 1548-1575. doi:10.1080/01621459.2016.1180986.
Xiang, L., J. Luo, C. Deng, A. V. Vasilakos, and W. Lin, “Dual-level compressed aggregation: Recovering fields of physical quantities from incomplete sensory data,” arXiv preprint arXiv:1107.4873, 2011.
Xiang, L.; Luo, J.; Rosenberg, C. Compressed data aggregation: Energy-efficient and high-fidelity data collection. IEEE ACM Trans. Netw. 2013, 21, 1722-1735.
Yoon, S.; Shahabi, C. The Clustered AGgregation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks. ACM Trans. Sens. Netw. 2007, 3, 3.
Zeger, Scott L.; Liang, Kung-Yee; Albert, Paul S. (1988). “Models for Longitudinal Data: A Generalized Estimating Equation Approach”. Biometrics. International Biometric Society. 44 (4): 1049-1060. doi:10.2307/2531734. JSTOR 2531734. PMID 3233245.
Zhang Z., and B. D. Rao, “Sparse signal recovery with temporally correlated source vectors using sparse bayesian learning,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, pp. 912-926, 2011.
Zheng, H., S. Xiao, X. Wang, and X. Tian, “Energy and latency analysis for in-network computation with compressive sensing in wireless sensor networks,” INFOCOM, pp. 2811-2815, 2012.
Related Publications (1)
Number Date Country
20220067248 A1 Mar 2022 US
Provisional Applications (1)
Number Date Country
62813664 Mar 2019 US
Continuations (1)
Number Date Country
Parent 16776221 Jan 2020 US
Child 17495383 US