The present disclosure relates to the field of data compression, and more particularly to lossy compression of data based on statistical properties, e.g., for storage and communication of sensor data.
In order to continuously transfer machine data time series between computers (e.g., from an edge device that is collecting one or more machine's data and sending to one or more cloud servers) one computer typically transfers all of the sensor data values collected from the machine(s) at each timestamp along with timestamp data and optionally position data (e.g., GPS location) or other context information, to another computer, which may be in the cloud. This communication burden is one of the main challenges in Internet of things (IoT) data transfer, due of the cost of transferring the large volume of data. Further, latency may increase and communication reliability may decrease with increasing data volume.
The process of reducing the size of a data file is often referred to as data compression. In the context of data transmission, it is called source coding; encoding done at the source of the data before it is stored or transmitted.
In signal processing, data compression, source coding, or bit-rate reduction typically involves encoding information using fewer bits than the original representation. Compression can be either lossy or lossless. Lossless compression reduces bits by identifying and eliminating redundancy. This reduction may be deterministic, i.e., reduction in bits is assured, or statistical, i.e., a particular type of redundancy reduction under most circumstances leads to a net reduction in bit required for encoding. No information is lost in lossless compression.
Lossless data compression algorithms usually exploit statistical redundancy to represent data without losing any information, so that the process is reversible. Lossless compression relies on the fact that real world data typically has redundancy (lack of entropy). Therefore, by reencoding the data to increase the entropy of the expression, the amount of data (bits) may be reduced. The Lempel-Ziv (LZ) compression methods employ run-length encoding. For most LZ methods, a table of previous strings is generated dynamically from earlier data in the input. The table itself is often Huffman encoded. Grammar-based codes like this can compress highly repetitive input extremely effectively, for instance, a biological data collection of the same or closely related species, a huge versioned document collection, internet archival, etc. The basic task of grammar-based codes is constructing a context-free grammar deriving a single string. Other practical grammar compression algorithms include Sequitur and Re-Pair.
Some lossless compressors use probabilistic models, such as prediction by partial matching. The Burrows-Wheeler transform can also be viewed as an indirect form of statistical modeling. In a further refinement of the direct use of probabilistic modeling, statistical estimates can be coupled to an algorithm called arithmetic coding, which uses the mathematical calculations of a finite-state machine to produce a string of encoded bits from a series of input data symbols. It uses an internal memory state to avoid the need to perform a one-to-one mapping of individual input symbols to distinct representations that use an integer number of bits, and it clears out the internal memory only after encoding the entire string of data symbols. Arithmetic coding applies especially well to adaptive data compression tasks where the statistics vary and are context-dependent, as it can be easily coupled with an adaptive model of the probability distribution of the input data.
Lossy compression typically reduces the number of bits by removing unnecessary or less important information. This can involve predicting which signal aspects may be considered noise, and/or which signal aspects have low importance for the ultimate use of the data. Lossy data compression is, in one aspect, the converse of lossless data compression, which loses information. However, subject to loss of information, the techniques of lossless compression may also be employed with lossy data compression.
There is a close connection between machine learning and compression: a system that predicts the posterior probabilities of a sequence given its entire history can be used for optimal data compression (by using arithmetic coding on the output distribution) while an optimal compressor can be used for prediction (by finding the symbol that compresses best, given the previous history).
Compression algorithms can implicitly map strings into implicit feature space vectors, and compression-based similarity measures used to compute similarity within these feature spaces. For each compressor C(.) we define an associated vector space ϰ, such that C(.) maps an input string x, corresponds to the vector norm ∥˜x∥.
In lossless compression, and typically lossy compression as well, information redundancy is reduced, using methods such as coding, pattern recognition, and linear prediction to reduce the amount of information used to represent the uncompressed data. Due to the nature of lossy algorithms, quality suffers when a file is decompressed and recompressed (digital generation loss). (Lossless compression may be achieved through loss of non-redundant information, so increase in entropy is not assured.)
In lossy compression, the lost information is, or is treated as, noise. One way to filter noise is to transform the data to a representation where the supposed signal is concentrated in regions of the data space, to form a sparse distribution. The sparse regions of the distribution may be truncated, e.g., by applying a threshold, and the remaining dense regions of the distribution may be further transformed or encoded. Multiple different methods may be employed, to reduce noise based on different criteria.
See, U.S. Pat. Nos. 10,003,794; 10,028,706; 10,032,309; 10,063,861; 10,091,512; 5,243,546; 5,486,762; 5,515,477; 5,561,421; 5,659,362; 6,081,211; 6,219,457; 6,223,162; 6,300,888; 6,356,363; 6,362,756; 6,389,389; 6,404,925; 6,404,932; 6,490,373; 6,510,250; 6,606,037; 6,664,902; 6,671,414; 6,675,185; 6,678,423; 6,751,354; 6,757,439; 6,760,480; 6,774,917; 6,795,506; 6,801,668; 6,832,006; 6,839,003; 6,895,101; 6,895,121; 6,927,710; 6,941,019; 7,006,568; 7,050,646; 7,068,641; 7,099,523; 7,126,500; 7,146,053; 7,246,314; 7,266,661; 7,298,925; 7,336,720; 7,474,805; 7,483,871; 7,504,970; 7,518,538; 7,532,763; 7,538,697; 7,564,383; 7,578,793; 7,605,721; 7,612,692; 7,629,901; 7,630,563; 7,645,984; 7,646,814; 7,660,295; 7,660,355; 7,719,448; 7,743,309; 7,821,426; 7,881,544; 7,885,988; 7,936,932; 7,961,959; 7,961,960; 7,970,216; 7,974,478; 8,005,140; 8,017,908; 8,112,624; 8,160,136; 8,175,403; 8,178,834; 8,185,316; 8,204,224; 8,238,290; 8,270,745; 8,306,340; 8,331,441; 8,374,451; 8,411,742; 8,458,457; 8,480,110; 8,509,555; 8,540,644; 8,644,171; 8,694,474; 8,718,140; 8,731,052; 8,766,172; 8,964,727; 9,035,807; 9,111,333; 9,179,147; 9,179,161; 9,339,202; 9,478,224; 9,492,096; 9,705,526; 9,812,136; 9,940,942; 20010024525; 20010031089; 20020028021; 20020076115; 20020090139; 20020131084; 20020175921; 20020176633; 20030018647; 20030059121; 20030086621; 20030098804; 20040001543; 20040001611; 20040015525; 20040027259; 20040085233; 20040165527; 20040221237; 20050069224; 20050147172; 20050147173; 20050276323; 20060053004; 20060061795; 20060111635; 20060143454; 20060165163; 20060200709; 20070083491; 20070216545; 20070217506; 20070223582; 20070278395; 20070297394; 20080031545; 20080037880; 20080050025; 20080050026; 20080050027; 20080050029; 20080050047; 20080055121; 20080126378; 20080152235; 20080154928; 20080189545; 20090041021; 20090138715; 20090140893; 20090140894; 20090212981; 20090232408; 20090234200; 20090262929; 20090284399; 20090289820; 20090292475; 20090294645; 20090322570; 20100114581; 20100187414; 20100202442; 20110019737; 20110032983; 20110176606; 20110182524; 20110200266; 20110263967; 20110299455; 20120014435; 20120051434; 20120069895; 20120143510; 20120259557; 20130013574; 20130080073; 20130289424; 20140010288; 20140025342; 20140184430; 20140303944; 20140307770; 20140370836; 20140376827; 20150086013; 20150100244; 20150341643; 20150381994; 20160042744; 20160055855; 20160256112; 20160261997; 20160292589; 20160372123; 20170046615; 20170105004; 20170105005; 20170310972; 20170310974; 20170337711; 20170359584; 20180124407; 20180176556; 20180176563; 20180176582; 20180211677; 20180293778; and 20180295375.
Wireless Sensor Networks (WSN) typically consist of a large number of sensors distributed in a sensing area to serve different tasks, such as continuous environmental monitoring. These networks are intended to continuously sense an area of interest and transmit the sensed data to a sink node. Due to the power consumption constraints, it is inefficient to directly transmit the raw sensed data to the sink, as they often exhibit a high correlation in the spatial and temporal domains and can be efficiently compressed to reduce power and bandwidth requirements, and reduce latency, and provide greater opportunity for error detection and correction (EDC) encoding. See:
U.S. Pat. Nos. 10,004,183; 10,006,779; 10,007,592; 10,008,052; 10,009,063; 10,009,067; 10,010,703; 10,020,844; 10,024,187; 10,027,397; 10,027,398; 10,032,123; 10,033,108; 10,035,609; 10,038,765; 10,043,527; 10,044,409; 10,046,779; 10,050,697; 10,051,403; 10,051,630; 10,051,663; 10,063,280; 10,068,467; 10,069,185; 10,069,535; 10,069,547; 10,070,321; 10,070,381; 10,079,661; 10,084,223; 10,084,868; 10,085,425; 10,085,697; 10,089,716; 10,090,594; 10,090,606; 10,091,017; 10,091,787; 10,103,422; 10,103,801; 10,111,169; 10,116,697; 10,121,338; 10,121,339; 10,122,218; 10,133,989; 10,135,145; 10,135,146; 10,135,147; 10,135,499; 10,136,434; 10,137,288; 10,139,820; 10,141,622; 10,142,010; 10,142,086; 10,144,036; 10,148,016; 10,149,129; 10,149,131; 10,153,823; 10,153,892; 10,154,326; 10,155,651; 10,168,695; 10,170,840; 10,171,501; 10,178,445; 10,187,850; 10,194,437; 10,200,752; 6,735,630; 6,795,786; 6,826,607; 6,832,251; 6,859,831; 7,020,701; 7,081,693; 7,170,201; 7,207,041; 7,231,180; 7,256,505; 7,328,625; 7,339,957; 7,361,998; 7,365,455; 7,385,503; 7,398,164; 7,429,805; 7,443,509; 7,487,066; 7,605,485; 7,609,838; 7,630,736; 7,660,203; 7,671,480; 7,710,455; 7,719,416; 7,764,958; 7,788,970; 7,797,367; 7,802,015; 7,805,405; 7,844,687; 7,873,673; 7,881,206; 7,908,928; 7,953,559; 7,957,222; 7,990,262; 7,996,342; 8,000,314; 8,010,319; 8,011,255; 8,013,731; 8,013,732; 8,024,980; 8,026,113; 8,026,808; 8,031,650; 8,035,511; 8,044,812; 8,064,412; 8,073,331; 8,086,864; 8,098,485; 8,104,993; 8,111,156; 8,112,381; 8,140,658; 8,171,136; 8,193,929; 8,193,930; 8,194,655; 8,194,858; 8,195,814; 8,199,635; 8,212,667; 8,214,082; 8,214,370; 8,219,848; 8,221,273; 8,223,010; 8,225,129; 8,233,471; 8,260,575; 8,264,401; 8,265,657; 8,279,067; 8,279,080; 8,280,671; 8,282,517; 8,289,184; 8,305,899; 8,325,030; 8,330,596; 8,335,304; 8,350,750; 8,359,347; 8,370,935; 8,373,576; 8,375,442; 8,379,564; 8,395,496; 8,410,931; 8,417,762; 8,421,274; 8,446,884; 8,451,766; 8,489,063; 8,493,601; 8,529,383; 8,533,473; 8,536,998; 8,544,089; 8,552,861; 8,559,271; 8,572,290; 8,582,481; 8,585,517; 8,585,606; 8,600,560; 8,615,374; 8,625,496; 8,630,965; 8,635,654; 8,638,217; 8,660,786; 8,666,357; 8,687,810; 8,688,850; 8,700,064; 8,704,656; 8,711,743; 8,733,168; 8,756,173; 8,776,062; 8,781,768; 8,787,246; 8,795,172; 8,805,579; 8,810,429; 8,812,007; 8,812,654; 8,816,850; 8,822,924; 8,832,244; 8,836,503; 8,855,011; 8,855,245; 8,867,309; 8,867,310; 8,873,335; 8,873,336; 8,879,356; 8,885,441; 8,892,624; 8,892,704; 8,922,065; 8,923,144; 8,924,587; 8,924,588; 8,930,571; 8,949,989; 8,954,377; 8,964,708; 8,971,432; 8,982,856; 8,983,793; 8,987,973; 8,990,032; 8,994,551; 9,004,320; 9,017,255; 9,026,273; 9,026,279; 9,026,336; 9,028,404; 9,032,058; 9,063,165; 9,065,699; 9,072,114; 9,074,731; 9,075,146; 9,090,339; 9,103,920; 9,105,181; 9,111,240; 9,115,989; 9,119,019; 9,129,497; 9,130,651; 9,141,215; 9,148,849; 9,152,146; 9,154,263; 9,164,292; 9,191,037; 9,202,051; 9,210,436; 9,210,938; 9,226,304; 9,232,407; 9,233,466; 9,239,215; 9,240,955; 9,282,029; 9,288,743; 9,297,915; 9,305,275; 9,311,808; 9,325,396; 9,356,776; 9,363,175; 9,372,213; 9,374,677; 9,386,522; 9,386,553; 9,387,940; 9,397,795; 9,398,576; 9,402,245; 9,413,571; 9,417,331; 9,429,661; 9,430,936; 9,439,126; 9,445,445; 9,455,763; 9,459,360; 9,470,809; 9,470,818; 9,492,086; 9,495,860; 9,500,757; 9,515,691; 9,529,210; 9,571,582; 9,576,404; 9,576,694; 9,583,967; 9,584,193; 9,585,620; 9,590,772; 9,605,857; 9,608,740; 9,609,810; 9,615,226; 9,615,269; 9,615,792; 9,621,959; 9,628,165; 9,628,286; 9,628,365; 9,632,746; 9,639,100; 9,640,850; 9,651,400; 9,656,389; 9,661,205; 9,662,392; 9,666,042; 9,667,317; 9,667,653; 9,674,711; 9,681,807; 9,685,992; 9,691,263; 9,699,768; 9,699,785; 9,701,325; 9,705,561; 9,705,610; 9,711,038; 9,721,210; 9,722,318; 9,727,115; 9,728,063; 9,729,197; 9,730,160; 9,735,833; 9,742,462; 9,742,521; 9,743,370; 9,746,452; 9,748,626; 9,749,013; 9,749,053; 9,749,083; 9,753,022; 9,753,164; 9,762,289; 9,766,320; 9,766,619; 9,768,833; 9,769,020; 9,769,128; 9,769,522; 9,772,612; 9,776,725; 9,780,834; 9,781,700; 9,787,412; 9,788,326; 9,788,354; 9,791,910; 9,793,951; 9,793,954; 9,793,955; 9,800,327; 9,806,818; 9,812,754; 9,816,373; 9,816,897; 9,820,146; 9,824,578; 9,831,912; 9,838,078; 9,838,736; 9,838,760; 9,838,896; 9,846,479; 9,847,566; 9,847,850; 9,853,342; 9,854,551; 9,854,994; 9,858,681; 9,860,075; 9,860,820; 9,863,222; 9,865,911; 9,866,276; 9,866,306; 9,866,309; 9,871,282; 9,871,283; 9,871,558; 9,874,923; 9,876,264; 9,876,570; 9,876,571; 9,876,587; 9,876,605; 9,878,138; 9,878,139; 9,882,257; 9,884,281; 9,887,447; 9,888,081; 9,891,883; 9,893,795; 9,894,852; 9,896,215; 9,900,177; 9,902,499; 9,904,535; 9,906,269; 9,911,020; 9,912,027; 9,912,033; 9,912,381; 9,912,382; 9,912,419; 9,913,006; 9,913,139; 9,917,341; 9,927,512; 9,927,517; 9,929,755; 9,930,668; 9,931,036; 9,931,037; 9,935,703; 9,946,571; 9,948,333; 9,948,354; 9,948,355; 9,948,477; 9,953,448; 9,954,286; 9,954,287; 9,957,052; 9,960,808; 9,960,980; 9,965,813; 9,967,002; 9,967,173; 9,969,329; 9,970,993; 9,973,299; 9,973,416; 9,973,940; 9,974,018; 9,980,223; 9,983,011; 9,990,818; 9,991,580; 9,997,819; 9,998,870; 9,998,932; 9,999,038; 20030107488; 20030151513; 20040083833; 20040090329; 20040090345; 20040100394; 20040128097; 20040139110; 20050017602; 20050090936; 20050210340; 20050213548; 20060026017; 20060029060; 20060175606; 20060206246; 20060243055; 20060243056; 20060243180; 20070038346; 20070090996; 20070101382; 20070195808; 20070210916; 20070210929; 20070221125; 20070224712; 20070239862; 20080031213; 20080074254; 20080122938; 20080129495; 20080215609; 20080219094; 20080253283; 20080256166; 20080256167; 20080256253; 20080256384; 20080256548; 20080256549; 20080309481; 20090007706; 20090009317; 20090009323; 20090009339; 20090009340; 20090058088; 20090058639; 20090059827; 20090070767; 20090146833; 20090149722; 20090161581; 20090168653; 20090196206; 20090198374; 20090210173; 20090210363; 20090296670; 20090303042; 20090322510; 20100031052; 20100039933; 20100054307; 20100074054; 20100100338; 20100109853; 20100125641; 20100148940; 20100152619; 20100152909; 20100176939; 20100201516; 20100211787; 20100254312; 20100278060; 20100312128; 20110035271; 20110035491; 20110045818; 20110101788; 20110137472; 20110158806; 20110176469; 20110191496; 20110248846; 20110293278; 20110310779; 20120014289; 20120089370; 20120092155; 20120106397; 20120123284; 20120127020; 20120127924; 20120173171; 20120178486; 20120190386; 20120215348; 20120218376; 20120250863; 20120257530; 20120262291; 20120265716; 20130016625; 20130016636; 20130041627; 20130044183; 20130046463; 20130048436; 20130076531; 20130076532; 20130078912; 20130097276; 20130107041; 20130113631; 20130148713; 20130153060; 20130155952; 20130176872; 20130180336; 20130201316; 20130207815; 20130244121; 20130258904; 20130265874; 20130265915; 20130265981; 20130314273; 20130320212; 20130332010; 20130332011; 20130332025; 20140010047; 20140062212; 20140114549; 20140124621; 20140153674; 20140191875; 20140192689; 20140216144; 20140225603; 20140253733; 20140263418; 20140263430; 20140263989; 20140264047; 20140266776; 20140266785; 20140268601; 20140273821; 20140275849; 20140299783; 20140301217; 20140312242; 20140349597; 20140350722; 20140355499; 20140358442; 20150046582; 20150049650; 20150078738; 20150081247; 20150082754; 20150094618; 20150119079; 20150139425; 20150164408; 20150178620; 20150192682; 20150249486; 20150268355; 20150280863; 20150286933; 20150288604; 20150294431; 20150316926; 20150330869; 20150338525; 20150343144; 20150351084; 20150351336; 20150363981; 20160000045; 20160012465; 20160025514; 20160044035; 20160051791; 20160051806; 20160072547; 20160081551; 20160081586; 20160082589; 20160088517; 20160091730; 20160100444; 20160100445; 20160152252; 20160173959; 20160174148; 20160183799; 20160189381; 20160202755; 20160260302; 20160260303; 20160300183; 20160314055; 20160323839; 20160323841; 20160338617; 20160338644; 20160345260; 20160353294; 20160356665; 20160356666; 20160378427; 20170006140; 20170013533; 20170021204; 20170072851; 20170078400; 20170106178; 20170116383; 20170126332; 20170135041; 20170151964; 20170167287; 20170169912; 20170171807; 20170171889; 20170172472; 20170172473; 20170173262; 20170177435; 20170177542; 20170180214; 20170181098; 20170181628; 20170183243; 20170195823; 20170201297; 20170213345; 20170217018; 20170222753; 20170223653; 20170228998; 20170259050; 20170259942; 20170264805; 20170268954; 20170276655; 20170281092; 20170284839; 20170287522; 20170289323; 20170289812; 20170295503; 20170296104; 20170302756; 20170330431; 20170331899; 20170346609; 20170347297; 20170353865; 20170374619; 20180017392; 20180019862; 20180024029; 20180034912; 20180039316; 20180049638; 20180058202; 20180077663; 20180078747; 20180078748; 20180124181; 20180129902; 20180132720; 20180148180; 20180148182; 20180162549; 20180164439; 20180166962; 20180170575; 20180181910; 20180182116; 20180212787; 20180213348; 20180222388; 20180246696; 20180271980; 20180278693; 20180278694; 20180293538; 20180310529; 20180317140; 20180317794; 20180326173; 20180338017; 20180338282; 20180343304; 20180343482; 20180375940; 20190014587; 20190015622; 20190020530; 20190036801; and 20190037558.
Spatial correlation in WSN refers to, e.g., the correlation between the sensed data at spatially adjacent sensor nodes. On the other hand, temporal correlation usually refers to the slow varying nature of the sensed data. Compressive sensing (CS) is a tool that provides a means to process and transport correlated data in an efficient manner by exploring the sparsity of these data. Temporal correlation can be modeled in the form of a multiple measurement vector (MMV), where it models the source as an auto regressive (AR) process and then incorporates such information into the framework of sparse Bayesian learning for sparse signal recovery and converts MMV to block single measurement vector (SMV) model. Compressive sensing theory provides an elegant mathematical framework to compress and recover signals using a small number of linear measurements. Under certain conditions on the measurement matrix, the acquired signal can be perfectly reconstructed from these measurements.
A mean is a commonly used measure of central tendency, and is influenced by every value in a sample according to the formula:
where μ is population mean, and
A standard deviation is a measure of variability, according to the formula:
(if μ is unknown, use
A small sample bias may be corrected by dividing by n−1, where n is the number of samples, i.e.:
A normal distribution has a bell shaped curve, and is a reasonably accurate description of many (but not all) natural distributions introduced by a random process. It is unimodal, symmetrical, has points of inflection at μ±σ, has tails that approach x-axis, and is completely defined by its mean and standard deviation.
The standard error of the mean, is a standard deviation of sampling error of different samples of a given sample size. For a sampling error of (
“File Compression Possibilities”. A Brief guide to compress a file in 4 different ways.
“Intel labs berkeley data,” www.select.cs.cmu.edu/data/labapp3/.
The present disclosure concerns communicating sensor data. In accordance with some embodiments, the technique(s) disclosed significantly compresses the data volume by using a common machine learning based model on both send and receive sides, and sending only independent sensor variables and discrete standard error values of dependent sensor variables based on the prediction from the generated model instead of sending all the sensor data as continuous variables. Thus, the presently disclosed technology reduces data volume at the expense of loss of precision. The loss of precision can be designed carefully such that it serves the intended purpose of the data, e.g., human viewing. In some embodiments, various and applicable lossless data compression techniques (e.g., Huffman Encoding) can be implemented before, after, and/or otherwise in combination with the presently disclosed lossy compression technology. For example, after applying the presently disclosed technology, the independent parameter(s) (e.g., independent sensor variables) and/or contextual data (e.g., timestamps, latitudes, longitudes, or the like) can be compressed using other compression techniques before data transmission.
Consider a system where one or multiple machines are connected to an edge device. At the start of the system, the transmitting device (e.g., an edge computer) must transfer all of the machine data to the receiving device (e.g., a cloud server). When enough data are transmitted, both sides of the system generate an identical machine learning based model. Once the model generation is complete on both sides, the system synchronously switches to a reduced transmission mode, sending only computed error values, e.g., standard error values, as the dependent sensor variables' data.
Over time, the models may be updated; however, this updating must occur on the edge device due to the loss of precision introduced in compression. New models may be generated as needed and sent over a high bandwidth and/or cheap communication channel (e.g., LAN, WLAN, or cellular communication) when available, whereas lower data rate and/or expensive communication media (e.g., satellite communication, LoRaWAN, etc.) can be used for sending machine data. The model synchronization process may be scheduled for a period when the edge device has access to a high bandwidth and/or cheap communication medium (e.g., when a vehicle with a deployed edge device enters a certain geographic area). The system cannot start using the new model until both sender and receiver have synchronized the new model and new training error statistics at which point both sides must switch synchronously and begin sending and receiving compressed data according to the updated compression mechanism.
Due to the potentially large size of a machine learning based model, the model may be stored as a database lookup table, reducing the model size considerably at the expense of loss in precision. The model data rows may be restricted to the practical possible combinations of input independent variables and hence shrink the model's size. A typical model saved in table form and including a diesel engine's speed (i.e., Revolutions Per Minute) from 0 to 2000 and engine load 0 to 100%, will have 200001 rows (i.e., 2000×100 rows+one row for engine speed and engine load percent both zero). Thus, a 20 sensor model (2 independent and 18 dependent) would require around 16 MB space considering 4 bytes of storage per sensor.
In some embodiments, the edge device runs a machine learning based method on a training dataset collected over time from a machine and generate a model that represents the relationships between independent and dependent variables. Once the model is built, it would generate the error statistics (i.e., mean training error and standard deviation of training errors) for the training period from the difference between model predicted dependent sensor values and actual measured dependent sensor values, and save the sensor specific error statistics. Once the ML based model is built using training data and the error means and error standard deviations of dependent sensors are generated and stored on both sender and receiver side, at run time the edge device can measure all the independent and dependent sensor variables and compute the standard errors of all dependent sensor values from the difference between measured dependent sensor values and predicted sensor values and error mean and error standard deviations, and transmit only the standard errors of dependent sensor values. The receiving computer can generate the same model independently from the exact same data it received from edge before. When the receiving computer receives the standard error values for each sensor, it can compute the actual sensor data values back from the standard error values, using model predicted sensor value for the specific independent sensor variables and training error statistics.
It is therefore an object to provide a method of communicating information, comprising: modeling a stream of sensor data, to produce parameters of a predictive statistical model; communicating information defining the predictive statistical model from a transmitter to a receiver; and after communicating the information defining the predictive statistical model to the receiver, communicating information characterizing subsequent sensor data from the transmitter to the receiver, dependent on an error of the subsequent sensor data with respect to a prediction of the subsequent sensor data by the statistical model.
It is also an object to provide a method of synchronizing a state of a transmitter and a receiver, to communicate a stream of sensor data, comprising: modeling the stream of sensor data input to the transmitter, to produce parameters of a predictive statistical model; communicating information defining the predictive statistical model to the receiver; and communicating information characterizing subsequent sensor data from the transmitter to the receiver, as a statistically normalized differential encoding of the subsequent sensor data with respect to a prediction of the subsequent sensor data by the predictive statistical model.
It is a further object to provide a system for receiving communicated information, comprising: a predictive statistical model, stored in a memory, derived by modeling a stream of sensor data; a communication port configured to receive a communication from a transmitter; and at least one processor, configured to: receive information defining the predictive statistical model from the transmitter; and after reception of the information defining the predictive statistical model, receive information characterizing subsequent sensor data from the transmitter, dependent on an error of the subsequent sensor data with respect to a prediction of the subsequent sensor data by the statistical model.
It is another object to provide a system for communicating information, comprising: a predictive statistical model, stored in a memory, derived by modeling a stream of sensor data; a communication port configured to communicate with a receiver; and at least one processor, configured to: transmit information defining the predictive statistical model to the receiver; and after communication of the information defining the predictive statistical model to the receiver, communicate information characterizing subsequent sensor data to the receiver, dependent on an error of the subsequent sensor data with respect to a prediction of the subsequent sensor data by the statistical model.
A further object provides a system for synchronizing a state of a transmitter and a receiver, to communicate a stream of sensor data, comprising: a communication port configured to communicate with a receiver; and at least one automated processor, configured to: model the stream of sensor data, and to define parameters of a predictive statistical model; communicate the defined parameters of a predictive statistical model to the receiver; and communicate information characterizing subsequent sensor data to the receiver, comprising a series of statistically normalized differentially encoded subsequent sensor data with respect to a prediction of the series of subsequent sensor data by the predictive statistical model.
The method may further comprise calculating, at the receiver, the subsequent sensor data from the error of the sensor data and the prediction of the sensor data by statistical model.
The method may further comprise acquiring a time series of subsequent sensor data, and communicating from the transmitter to the receiver, information characterizing the time series of subsequent sensor data comprising a time series of errors of subsequent sensor data time-samples with respect to a prediction of the subsequent sensor data time-samples by the predictive statistical model.
The predictive statistical model may be adaptive to the communicated information characterizing subsequent sensor data.
The method may further comprise storing information dependent on the predictive statistical model in a memory of the transmitter and a memory of the receiver.
The method may further comprise determining a sensor data standard error based on a predicted sensor data error standard deviation.
The predictive statistical model may be derived from a machine learning based algorithm developed based on relationships between independent and dependent variables represented in the sensor data.
The predictive statistical model may generate error statistics comprising a mean training error and a standard deviation of the mean training error for a stream of sensor data of the training data set in a training period.
The predictive statistical model may comprise a linear model generated by machine learning.
The predictive statistical model may comprise a plurality of predictive statistical models, each provided for a subset of a range of at least one independent variable of the steam of sensor data.
The method may further comprise computing a predicted stream of sensor data, a predicted stream of sensor data error means, and a predicted stream of sensor data error standard deviations, based on the predictive statistical model.
The method may further comprise communicating the predicted stream of sensor data error means from the transmitter to the receiver. The method may further comprise receiving the predicted stream of sensor data error means at the receiver, and based on the predictive statistical model and the received stream of sensor data error means, reconstructing the stream of sensor data.
The method may further comprise approximately reconstructing a stream of subsequent sensor data based on the received predictive statistical model, at least one control variable, and the errors of stream of subsequent sensor data.
The method may further comprise transmitting a standard error of the prediction of the subsequent sensor data by the predictive statistical model from the transmitter to the receiver, and inferring the prediction of the subsequent sensor data by the predictive statistical model at the receiver from the received standard error of the prediction and the predictive statistical model.
The stream of sensor data may comprise sensor data from a plurality of sensors which are dependent on at least one common control variable, the predictive statistical model being dependent on a correlation of the sensor data from the plurality of sensors, further comprise calculating standard errors of the subsequent sensor data from the plurality of sensors with respect to the predictive statistical model dependent on a correlation of the sensor data, entropy encoding the standard errors based on at least the correlation, and transmitting the entropy encoded standard errors, and a representation of the at least one common control variable from the transmitter to the receiver.
The stream of sensor data comprises engine data. The engine data may comprise timestamped data comprise at least one of engine speed, engine load, coolant temperature, coolant pressure, oil temperature, oil pressure, fuel pressure, and fuel actuator state. The engine data may comprise timestamped data comprise engine speed, engine load percentage, and at least one of coolant temperature, coolant pressure, oil temperature, oil pressure, and fuel pressure. The engine may be a diesel engine, and the modeled stream of sensor data is acquired while the diesel engine is in a steady state within a bounded range of engine speed and engine load.
The predictive statistical model may be a spline model, a neural network, a support vector machine, and/or a Generalized Additive Model (GAM).
Various predictive modeling methods are known, including Group method of data handling; Naive Bayes; k-nearest neighbor algorithm; Majority classifier; Support vector machines; Random forests; Boosted trees; CART (Classification and Regression Trees); Multivariate adaptive regression splines (MARS); Neural Networks and deep neural networks; ACE and AVAS; Ordinary Least Squares; Generalized Linear Models (GLM) (The generalized linear model (GLM) is a flexible family of models that are unified under a single method. Logistic regression is a notable special case of GLM. Other types of GLM include Poisson regression, gamma regression, and multinomial regression); Logistic regression (Logistic regression is a technique in which unknown values of a discrete variable are predicted based on known values of one or more continuous and/or discrete variables. Logistic regression differs from ordinary least squares (OLS) regression in that the dependent variable is binary in nature. This procedure has many applications); Generalized additive models; Robust regression; and Semiparametric regression. See:
U.S. Pat. Nos. 10,061,887; 10,126,309; 10,154,624; 10,168,337; 10,187,899; 6,006,182; 6,064,960; 6,366,884; 6,401,070; 6,553,344; 6,785,652; 7,039,654; 7,144,869; 7,379,890; 7,389,114; 7,401,057; 7,426,499; 7,547,683; 7,561,972; 7,561,973; 7,583,961; 7,653,491; 7,693,683; 7,698,213; 7,702,576; 7,729,864; 7,730,063; 7,774,272; 7,813,981; 7,873,567; 7,873,634; 7,970,640; 8,005,620; 8,126,653; 8,152,750; 8,185,486; 8,401,798; 8,412,461; 8,498,915; 8,515,719; 8,566,070; 8,635,029; 8,694,455; 8,713,025; 8,724,866; 8,731,728; 8,843,356; 8,929,568; 8,992,453; 9,020,866; 9,037,256; 9,075,796; 9,092,391; 9,103,826; 9,204,319; 9,205,064; 9,297,814; 9,428,767; 9,471,884; 9,483,531; 9,534,234; 9,574,209; 9,580,697; 9,619,883; 9,886,545; 9,900,790; 9,903,193; 9,955,488; 9,992,123; 20010009904; 20010034686; 20020001574; 20020138012; 20020138270; 20030023951; 20030093277; 20040073414; 20040088239; 20040110697; 20040172319; 20040199445; 20040210509; 20040215551; 20040225629; 20050071266; 20050075597; 20050096963; 20050144106; 20050176442; 20050245252; 20050246314; 20050251468; 20060059028; 20060101017; 20060111849; 20060122816; 20060136184; 20060184473; 20060189553; 20060241869; 20070038386; 20070043656; 20070067195; 20070105804; 20070166707; 20070185656; 20070233679; 20080015871; 20080027769; 20080027841; 20080050357; 20080114564; 20080140549; 20080228744; 20080256069; 20080306804; 20080313073; 20080319897; 20090018891; 20090030771; 20090037402; 20090037410; 20090043637; 20090050492; 20090070182; 20090132448; 20090171740; 20090220965; 20090271342; 20090313041; 20100028870; 20100029493; 20100042438; 20100070455; 20100082617; 20100100331; 20100114793; 20100293130; 20110054949; 20110059860; 20110064747; 20110075920; 20110111419; 20110123986; 20110123987; 20110166844; 20110230366; 20110276828; 20110287946; 20120010867; 20120066217; 20120136629; 20120150032; 20120158633; 20120207771; 20120220958; 20120230515; 20120258874; 20120283885; 20120284207; 20120290505; 20120303408; 20120303504; 20130004473; 20130030584; 20130054486; 20130060305; 20130073442; 20130096892; 20130103570; 20130132163; 20130183664; 20130185226; 20130259847; 20130266557; 20130315885; 20140006013; 20140032186; 20140100128; 20140172444; 20140193919; 20140278967; 20140343959; 20150023949; 20150235143; 20150240305; 20150289149; 20150291975; 20150291976; 20150291977; 20150316562; 20150317449; 20150324548; 20150347922; 20160003845; 20160042513; 20160117327; 20160145693; 20160148237; 20160171398; 20160196587; 20160225073; 20160225074; 20160239919; 20160282941; 20160333328; 20160340691; 20170046347; 20170126009; 20170132537; 20170137879; 20170191134; 20170244777; 20170286594; 20170290024; 20170306745; 20170308672; 20170308846; 20180006957; 20180017564; 20180018683; 20180035605; 20180046926; 20180060458; 20180060738; 20180060744; 20180120133; 20180122020; 20180189564; 20180227930; 20180260515; 20180260717; 20180262433; 20180263606; 20180275146; 20180282736; 20180293511; 20180334721; 20180341958; 20180349514; 20190010554; and 20190024497.
In statistics, the generalized linear model (GLM) is a flexible generalization of ordinary linear regression that allows for response variables that have error distribution models other than a normal distribution. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value. Generalized linear models unify various other statistical models, including linear regression, logistic regression and Poisson regression, and employs an iteratively reweighted least squares method for maximum likelihood estimation of the model parameters. See:
U.S. Pat. Nos. 10,002,367; 10,006,088; 10,009,366; 10,013,701; 10,013,721; 10,018,631; 10,019,727; 10,021,426; 10,023,877; 10,036,074; 10,036,638; 10,037,393; 10,038,697; 10,047,358; 10,058,519; 10,062,121; 10,070,166; 10,070,220; 10,071,151; 10,080,774; 10,092,509; 10,098,569; 10,098,908; 10,100,092; 10,101,340; 10,111,888; 10,113,198; 10,113,200; 10,114,915; 10,117,868; 10,131,949; 10,142,788; 10,147,173; 10,157,509; 10,172,363; 10,175,387; 10,181,010; 5,529,901; 5,641,689; 5,667,541; 5,770,606; 5,915,036; 5,985,889; 6,043,037; 6,121,276; 6,132,974; 6,140,057; 6,200,983; 6,226,393; 6,306,437; 6,411,729; 6,444,870; 6,519,599; 6,566,368; 6,633,857; 6,662,185; 6,684,252; 6,703,231; 6,704,718; 6,879,944; 6,895,083; 6,939,670; 7,020,578; 7,043,287; 7,069,258; 7,117,185; 7,179,797; 7,208,517; 7,228,171; 7,238,799; 7,268,137; 7,306,913; 7,309,598; 7,337,033; 7,346,507; 7,445,896; 7,473,687; 7,482,117; 7,494,783; 7,516,572; 7,550,504; 7,590,516; 7,592,507; 7,593,815; 7,625,699; 7,651,840; 7,662,564; 7,685,084; 7,693,683; 7,695,911; 7,695,916; 7,700,074; 7,702,482; 7,709,460; 7,711,488; 7,727,725; 7,743,009; 7,747,392; 7,751,984; 7,781,168; 7,799,530; 7,807,138; 7,811,794; 7,816,083; 7,820,380; 7,829,282; 7,833,706; 7,840,408; 7,853,456; 7,863,021; 7,888,016; 7,888,461; 7,888,486; 7,890,403; 7,893,041; 7,904,135; 7,910,107; 7,910,303; 7,913,556; 7,915,244; 7,921,069; 7,933,741; 7,947,451; 7,953,676; 7,977,052; 7,987,148; 7,993,833; 7,996,342; 8,010,476; 8,017,317; 8,024,125; 8,027,947; 8,037,043; 8,039,212; 8,071,291; 8,071,302; 8,094,713; 8,103,537; 8,135,548; 8,148,070; 8,153,366; 8,211,638; 8,214,315; 8,216,786; 8,217,078; 8,222,270; 8,227,189; 8,234,150; 8,234,151; 8,236,816; 8,283,440; 8,291,069; 8,299,109; 8,311,849; 8,328,950; 8,346,688; 8,349,327; 8,351,688; 8,364,627; 8,372,625; 8,374,837; 8,383,338; 8,412,465; 8,415,093; 8,434,356; 8,452,621; 8,452,638; 8,455,468; 8,461,849; 8,463,582; 8,465,980; 8,473,249; 8,476,077; 8,489,499; 8,496,934; 8,497,084; 8,501,718; 8,501,719; 8,514,928; 8,515,719; 8,521,294; 8,527,352; 8,530,831; 8,543,428; 8,563,295; 8,566,070; 8,568,995; 8,569,574; 8,600,870; 8,614,060; 8,618,164; 8,626,697; 8,639,618; 8,645,298; 8,647,819; 8,652,776; 8,669,063; 8,682,812; 8,682,876; 8,706,589; 8,712,937; 8,715,704; 8,715,943; 8,718,958; 8,725,456; 8,725,541; 8,731,977; 8,732,534; 8,741,635; 8,741,956; 8,754,805; 8,769,094; 8,787,638; 8,799,202; 8,805,619; 8,811,670; 8,812,362; 8,822,149; 8,824,762; 8,871,901; 8,877,174; 8,889,662; 8,892,409; 8,903,192; 8,903,531; 8,911,958; 8,912,512; 8,956,608; 8,962,680; 8,965,625; 8,975,022; 8,977,421; 8,987,686; 9,011,877; 9,030,565; 9,034,401; 9,036,910; 9,037,256; 9,040,023; 9,053,537; 9,056,115; 9,061,004; 9,061,055; 9,069,352; 9,072,496; 9,074,257; 9,080,212; 9,106,718; 9,116,722; 9,128,991; 9,132,110; 9,186,107; 9,200,324; 9,205,092; 9,207,247; 9,208,209; 9,210,446; 9,211,103; 9,216,010; 9,216,213; 9,226,518; 9,232,217; 9,243,493; 9,275,353; 9,292,550; 9,361,274; 9,370,501; 9,370,509; 9,371,565; 9,374,671; 9,375,412; 9,375,436; 9,389,235; 9,394,345; 9,399,061; 9,402,871; 9,415,029; 9,451,920; 9,468,541; 9,503,467; 9,534,258; 9,536,214; 9,539,223; 9,542,939; 9,555,069; 9,555,251; 9,563,921; 9,579,337; 9,585,868; 9,615,585; 9,625,646; 9,633,401; 9,639,807; 9,639,902; 9,650,678; 9,663,824; 9,668,104; 9,672,474; 9,674,210; 9,675,642; 9,679,378; 9,681,835; 9,683,832; 9,701,721; 9,710,767; 9,717,459; 9,727,616; 9,729,568; 9,734,122; 9,734,290; 9,740,979; 9,746,479; 9,757,388; 9,758,828; 9,760,907; 9,769,619; 9,775,818; 9,777,327; 9,786,012; 9,790,256; 9,791,460; 9,792,741; 9,795,335; 9,801,857; 9,801,920; 9,809,854; 9,811,794; 9,836,577; 9,870,519; 9,871,927; 9,881,339; 9,882,660; 9,886,771; 9,892,420; 9,926,368; 9,926,593; 9,932,637; 9,934,239; 9,938,576; 9,949,659; 9,949,693; 9,951,348; 9,955,190; 9,959,285; 9,961,488; 9,967,714; 9,972,014; 9,974,773; 9,976,182; 9,982,301; 9,983,216; 9,986,527; 9,988,624; 9,990,648; 9,990,649; 9,993,735; 20020016699; 20020055457; 20020099686; 20020184272; 20030009295; 20030021848; 20030023951; 20030050265; 20030073715; 20030078738; 20030104499; 20030139963; 20030166017; 20030166026; 20030170660; 20030170700; 20030171685; 20030171876; 20030180764; 20030190602; 20030198650; 20030199685; 20030220775; 20040063095; 20040063655; 20040073414; 20040092493; 20040115688; 20040116409; 20040116434; 20040127799; 20040138826; 20040142890; 20040157783; 20040166519; 20040265849; 20050002950; 20050026169; 20050080613; 20050096360; 20050113306; 20050113307; 20050164206; 20050171923; 20050272054; 20050282201; 20050287559; 20060024700; 20060035867; 20060036497; 20060084070; 20060084081; 20060142983; 20060143071; 20060147420; 20060149522; 20060164997; 20060223093; 20060228715; 20060234262; 20060278241; 20060286571; 20060292547; 20070026426; 20070031846; 20070031847; 20070031848; 20070036773; 20070037208; 20070037241; 20070042382; 20070049644; 20070054278; 20070059710; 20070065843; 20070072821; 20070078117; 20070078434; 20070087000; 20070088248; 20070123487; 20070129948; 20070167727; 20070190056; 20070202518; 20070208600; 20070208640; 20070239439; 20070254289; 20070254369; 20070255113; 20070259954; 20070275881; 20080032628; 20080033589; 20080038230; 20080050732; 20080050733; 20080051318; 20080057500; 20080059072; 20080076120; 20080103892; 20080108081; 20080108713; 20080114564; 20080127545; 20080139402; 20080160046; 20080166348; 20080172205; 20080176266; 20080177592; 20080183394; 20080195596; 20080213745; 20080241846; 20080248476; 20080286796; 20080299554; 20080301077; 20080305967; 20080306034; 20080311572; 20080318219; 20080318914; 20090006363; 20090035768; 20090035769; 20090035772; 20090053745; 20090055139; 20090070081; 20090076890; 20090087909; 20090089022; 20090104620; 20090107510; 20090112752; 20090118217; 20090119357; 20090123441; 20090125466; 20090125916; 20090130682; 20090131702; 20090132453; 20090136481; 20090137417; 20090157409; 20090162346; 20090162348; 20090170111; 20090175830; 20090176235; 20090176857; 20090181384; 20090186352; 20090196875; 20090210363; 20090221438; 20090221620; 20090226420; 20090233299; 20090253952; 20090258003; 20090264453; 20090270332; 20090276189; 20090280566; 20090285827; 20090298082; 20090306950; 20090308600; 20090312410; 20090325920; 20100003691; 20100008934; 20100010336; 20100035983; 20100047798; 20100048525; 20100048679; 20100063851; 20100076949; 20100113407; 20100120040; 20100132058; 20100136553; 20100136579; 20100137409; 20100151468; 20100174336; 20100183574; 20100183610; 20100184040; 20100190172; 20100191216; 20100196400; 20100197033; 20100203507; 20100203508; 20100215645; 20100216154; 20100216655; 20100217648; 20100222225; 20100249188; 20100261187; 20100268680; 20100272713; 20100278796; 20100284989; 20100285579; 20100310499; 20100310543; 20100330187; 20110004509; 20110021555; 20110027275; 20110028333; 20110054356; 20110065981; 20110070587; 20110071033; 20110077194; 20110077215; 20110077931; 20110079077; 20110086349; 20110086371; 20110086796; 20110091994; 20110093288; 20110104121; 20110106736; 20110118539; 20110123100; 20110124119; 20110129831; 20110130303; 20110131160; 20110135637; 20110136260; 20110137851; 20110150323; 20110173116; 20110189648; 20110207659; 20110207708; 20110208738; 20110213746; 20110224181; 20110225037; 20110251272; 20110251995; 20110257216; 20110257217; 20110257218; 20110257219; 20110263633; 20110263634; 20110263635; 20110263636; 20110263637; 20110269735; 20110276828; 20110284029; 20110293626; 20110302823; 20110307303; 20110311565; 20110319811; 20120003212; 20120010274; 20120016106; 20120016436; 20120030082; 20120039864; 20120046263; 20120064512; 20120065758; 20120071357; 20120072781; 20120082678; 20120093376; 20120101965; 20120107370; 20120108651; 20120114211; 20120114620; 20120121618; 20120128223; 20120128702; 20120136629; 20120154149; 20120156215; 20120163656; 20120165221; 20120166291; 20120173200; 20120184605; 20120209565; 20120209697; 20120220055; 20120239489; 20120244145; 20120245133; 20120250963; 20120252050; 20120252695; 20120257164; 20120258884; 20120264692; 20120265978; 20120269846; 20120276528; 20120280146; 20120301407; 20120310619; 20120315655; 20120316833; 20120330720; 20130012860; 20130024124; 20130024269; 20130029327; 20130029384; 20130030051; 20130040922; 20130040923; 20130041034; 20130045198; 20130045958; 20130058914; 20130059827; 20130059915; 20130060305; 20130060549; 20130061339; 20130065870; 20130071033; 20130073213; 20130078627; 20130080101; 20130081158; 20130102918; 20130103615; 20130109583; 20130112895; 20130118532; 20130129764; 20130130923; 20130138481; 20130143215; 20130149290; 20130151429; 20130156767; 20130171296; 20130197081; 20130197738; 20130197830; 20130198203; 20130204664; 20130204833; 20130209486; 20130210855; 20130211229; 20130212168; 20130216551; 20130225439; 20130237438; 20130237447; 20130240722; 20130244233; 20130244902; 20130244965; 20130252267; 20130252822; 20130262425; 20130271668; 20130273103; 20130274195; 20130280241; 20130288913; 20130303558; 20130303939; 20130310261; 20130315894; 20130325498; 20130332231; 20130332338; 20130346023; 20130346039; 20130346844; 20140004075; 20140004510; 20140011206; 20140011787; 20140038930; 20140058528; 20140072550; 20140072957; 20140080784; 20140081675; 20140086920; 20140087960; 20140088406; 20140093127; 20140093974; 20140095251; 20140100989; 20140106370; 20140107850; 20140114746; 20140114880; 20140120137; 20140120533; 20140127213; 20140128362; 20140134186; 20140134625; 20140135225; 20140141988; 20140142861; 20140143134; 20140148505; 20140156231; 20140156571; 20140163096; 20140170069; 20140171337; 20140171382; 20140172507; 20140178348; 20140186333; 20140188918; 20140199290; 20140200953; 20140200999; 20140213533; 20140219968; 20140221484; 20140234291; 20140234347; 20140235605; 20140236965; 20140242180; 20140244216; 20140249447; 20140249862; 20140256576; 20140258355; 20140267700; 20140271672; 20140274885; 20140278148; 20140279053; 20140279306; 20140286935; 20140294903; 20140303481; 20140316217; 20140323897; 20140324521; 20140336965; 20140343786; 20140349984; 20140365144; 20140365276; 20140376645; 20140378334; 20150001420; 20150002845; 20150004641; 20150005176; 20150006605; 20150007181; 20150018632; 20150019262; 20150025328; 20150031578; 20150031969; 20150032598; 20150032675; 20150039265; 20150051896; 20150051949; 20150056212; 20150064194; 20150064195; 20150064670; 20150066738; 20150072434; 20150072879; 20150073306; 20150078460; 20150088783; 20150089399; 20150100407; 20150100408; 20150100409; 20150100410; 20150100411; 20150100412; 20150111775; 20150112874; 20150119759; 20150120758; 20150142331; 20150152176; 20150167062; 20150169840; 20150178756; 20150190367; 20150190436; 20150191787; 20150205756; 20150209586; 20150213192; 20150215127; 20150216164; 20150216922; 20150220487; 20150228031; 20150228076; 20150231191; 20150232944; 20150240304; 20150240314; 20150250816; 20150259744; 20150262511; 20150272464; 20150287143; 20150292010; 20150292016; 20150299798; 20150302529; 20150306160; 20150307614; 20150320707; 20150320708; 20150328174; 20150332013; 20150337373; 20150341379; 20150348095; 20150356458; 20150359781; 20150361494; 20150366830; 20150377909; 20150378807; 20150379428; 20150379429; 20150379430; 20160010162; 20160012334; 20160017037; 20160017426; 20160024575; 20160029643; 20160029945; 20160032388; 20160034640; 20160034664; 20160038538; 20160040184; 20160040236; 20160042009; 20160042197; 20160045466; 20160046991; 20160048925; 20160053322; 20160058717; 20160063144; 20160068890; 20160068916; 20160075665; 20160078361; 20160097082; 20160105801; 20160108473; 20160108476; 20160110657; 20160110812; 20160122396; 20160124933; 20160125292; 20160138105; 20160139122; 20160147013; 20160152538; 20160163132; 20160168639; 20160171618; 20160171619; 20160173122; 20160175321; 20160198657; 20160202239; 20160203279; 20160203316; 20160222100; 20160222450; 20160224724; 20160224869; 20160228056; 20160228392; 20160237487; 20160243190; 20160243215; 20160244836; 20160244837; 20160244840; 20160249152; 20160250228; 20160251720; 20160253324; 20160253330; 20160259883; 20160265055; 20160271144; 20160281105; 20160281164; 20160282941; 20160295371; 20160303111; 20160303172; 20160306075; 20160307138; 20160310442; 20160319352; 20160344738; 20160352768; 20160355886; 20160359683; 20160371782; 20160378942; 20170004409; 20170006135; 20170007574; 20170009295; 20170014032; 20170014108; 20170016896; 20170017904; 20170022563; 20170022564; 20170027940; 20170028006; 20170029888; 20170029889; 20170032100; 20170035011; 20170037470; 20170046499; 20170051019; 20170051359; 20170052945; 20170056468; 20170061073; 20170067121; 20170068795; 20170071884; 20170073756; 20170074878; 20170076303; 20170088900; 20170091673; 20170097347; 20170098240; 20170098257; 20170098278; 20170099836; 20170100446; 20170103190; 20170107583; 20170108502; 20170112792; 20170116624; 20170116653; 20170117064; 20170119662; 20170124520; 20170124528; 20170127110; 20170127180; 20170135647; 20170140122; 20170140424; 20170145503; 20170151217; 20170156344; 20170157249; 20170159045; 20170159138; 20170168070; 20170177813; 20170180798; 20170193647; 20170196481; 20170199845; 20170214799; 20170219451; 20170224268; 20170226164; 20170228810; 20170231221; 20170233809; 20170233815; 20170235894; 20170236060; 20170238850; 20170238879; 20170242972; 20170246963; 20170247673; 20170255888; 20170255945; 20170259178; 20170261645; 20170262580; 20170265044; 20170268066; 20170270580; 20170280717; 20170281747; 20170286594; 20170286608; 20170286838; 20170292159; 20170298126; 20170300814; 20170300824; 20170301017; 20170304248; 20170310697; 20170311895; 20170312289; 20170312315; 20170316150; 20170322928; 20170344554; 20170344555; 20170344556; 20170344954; 20170347242; 20170350705; 20170351689; 20170351806; 20170351811; 20170353825; 20170353826; 20170353827; 20170353941; 20170363738; 20170364596; 20170364817; 20170369534; 20170374521; 20180000102; 20180003722; 20180005149; 20180010136; 20180010185; 20180010197; 20180010198; 20180011110; 20180014771; 20180017545; 20180017564; 20180017570; 20180020951; 20180021279; 20180031589; 20180032876; 20180032938; 20180033088; 20180038994; 20180049636; 20180051344; 20180060513; 20180062941; 20180064666; 20180067010; 20180067118; 20180071285; 20180075357; 20180077146; 20180078605; 20180080081; 20180085168; 20180085355; 20180087098; 20180089389; 20180093418; 20180093419; 20180094317; 20180095450; 20180108431; 20180111051; 20180114128; 20180116987; 20180120133; 20180122020; 20180128824; 20180132725; 20180143986; 20180148776; 20180157758; 20180160982; 20180171407; 20180182181; 20180185519; 20180191867; 20180192936; 20180193652; 20180201948; 20180206489; 20180207248; 20180214404; 20180216099; 20180216100; 20180216101; 20180216132; 20180216197; 20180217141; 20180217143; 20180218117; 20180225585; 20180232421; 20180232434; 20180232661; 20180232700; 20180232702; 20180232904; 20180235549; 20180236027; 20180237825; 20180239829; 20180240535; 20180245154; 20180251819; 20180251842; 20180254041; 20180260717; 20180263962; 20180275629; 20180276325; 20180276497; 20180276498; 20180276570; 20180277146; 20180277250; 20180285765; 20180285900; 20180291398; 20180291459; 20180291474; 20180292384; 20180292412; 20180293462; 20180293501; 20180293759; 20180300333; 20180300639; 20180303354; 20180303906; 20180305762; 20180312923; 20180312926; 20180314964; 20180315507; 20180322203; 20180323882; 20180327740; 20180327806; 20180327844; 20180336534; 20180340231; 20180344841; 20180353138; 20180357361; 20180357362; 20180357529; 20180357565; 20180357726; 20180358118; 20180358125; 20180358128; 20180358132; 20180359608; 20180360892; 20180365521; 20180369238; 20180369696; 20180371553; 20190000750; 20190001219; 20190004996; 20190005586; 20190010548; 20190015035; 20190017117; 20190017123; 20190024174; 20190032136; 20190033078; 20190034473; 20190034474; 20190036779; 20190036780; and 20190036816.
Ordinary linear regression predicts the expected value of a given unknown quantity (the response variable, a random variable) as a linear combination of a set of observed values (predictors). This implies that a constant change in a predictor leads to a constant change in the response variable (i.e., a linear-response model). This is appropriate when the response variable has a normal distribution (intuitively, when a response variable can vary essentially indefinitely in either direction with no fixed “zero value”, or more generally for any quantity that only varies by a relatively small amount, e.g., human heights). However, these assumptions are inappropriate for some types of response variables. For example, in cases where the response variable is expected to be always positive and varying over a wide range, constant input changes lead to geometrically varying, rather than constantly varying, output changes.
In a GLM, each outcome Y of the dependent variables is assumed to be generated from a particular distribution in the exponential family, a large range of probability distributions that includes the normal, binomial, Poisson and gamma distributions, among others.
The GLM consists of three elements: A probability distribution from the exponential family; a linear predictor η=Xβ; and a link function g such that E(Y)=μ=g−1(η). The linear predictor is the quantity which incorporates the information about the independent variables into the model. The symbol η (Greek “eta”) denotes a linear predictor. It is related to the expected value of the data through the link function. η is expressed as linear combinations (thus, “linear”) of unknown parameters β. The coefficients of the linear combination are represented as the matrix of independent variables X. η can thus be expressed as The link function provides the relationship between the linear predictor and the mean of the distribution function. There are many commonly used link functions, and their choice is informed by several considerations. There is always a well-defined canonical link function which is derived from the exponential of the response's density function. However, in some cases it makes sense to try to match the domain of the link function to the range of the distribution function's mean, or use a non-canonical link function for algorithmic purposes, for example Bayesian probit regression. For the most common distributions, the mean is one of the parameters in the standard form of the distribution's density function, and then is the function as defined above that maps the density function into its canonical form. A simple, very important example of a generalized linear model (also an example of a general linear model) is linear regression. In linear regression, the use of the least-squares estimator is justified by the Gauss-Markov theorem, which does not assume that the distribution is normal.
The standard GLM assumes that the observations are uncorrelated. Extensions have been developed to allow for correlation between observations, as occurs for example in longitudinal studies and clustered designs. Generalized estimating equations (GEEs) allow for the correlation between observations without the use of an explicit probability model for the origin of the correlations, so there is no explicit likelihood. They are suitable when the random effects and their variances are not of inherent interest, as they allow for the correlation without explaining its origin. The focus is on estimating the average response over the population (“population-averaged” effects) rather than the regression parameters that would enable prediction of the effect of changing one or more components of X on a given individual. GEEs are usually used in conjunction with Huber-White standard errors. Generalized linear mixed models (GLMMs) are an extension to GLMs that includes random effects in the linear predictor, giving an explicit probability model that explains the origin of the correlations. The resulting “subject-specific” parameter estimates are suitable when the focus is on estimating the effect of changing one or more components of X on a given individual. GLMMs are also referred to as multilevel models and as mixed model. In general, fitting GLMMs is more computationally complex and intensive than fitting GEEs.
In statistics, a generalized additive model (GAM) is a generalized linear model in which the linear predictor depends linearly on unknown smooth functions of some predictor variables, and interest focuses on inference about these smooth functions. GAMs were originally developed by Trevor Hastie and Robert Tibshirani to blend properties of generalized linear models with additive models.
The model relates a univariate response variable, to some predictor variables. An exponential family distribution is specified for (for example normal, binomial or Poisson distributions) along with a link function g (for example the identity or log functions) relating the expected value of univariate response variable to the predictor variables.
The functions may have a specified parametric form (for example a polynomial, or an un-penalized regression spline of a variable) or may be specified non-parametrically, or semi-parametrically, simply as ‘smooth functions’, to be estimated by non-parametric means. So a typical GAM might use a scatterplot smoothing function, such as a locally weighted mean. This flexibility to allow non-parametric fits with relaxed assumptions on the actual relationship between response and predictor, provides the potential for better fits to data than purely parametric models, but arguably with some loss of interpretability.
Any multivariate function can be represented as sums and compositions of univariate functions. Unfortunately, though the Kolmogorov-Arnold representation theorem asserts the existence of a function of this form, it gives no mechanism whereby one could be constructed. Certain constructive proofs exist, but they tend to require highly complicated (i.e., fractal) functions, and thus are not suitable for modeling approaches. It is not clear that any step-wise (i.e., backfitting algorithm) approach could even approximate a solution. Therefore, the Generalized Additive Model drops the outer sum, and demands instead that the function belong to a simpler class.
The original GAM fitting method estimated the smooth components of the model using non-parametric smoothers (for example smoothing splines or local linear regression smoothers) via the backfitting algorithm. Backfitting works by iterative smoothing of partial residuals and provides a very general modular estimation method capable of using a wide variety of smoothing methods to estimate the terms. Many modern implementations of GAMs and their extensions are built around the reduced rank smoothing approach, because it allows well founded estimation of the smoothness of the component smooths at comparatively modest computational cost, and also facilitates implementation of a number of model extensions in a way that is more difficult with other methods. At its simplest the idea is to replace the unknown smooth functions in the model with basis expansions. Smoothing bias complicates interval estimation for these models, and the simplest approach turns out to involve a Bayesian approach. Understanding this Bayesian view of smoothing also helps to understand the REML and full Bayes approaches to smoothing parameter estimation. At some level smoothing penalties are imposed.
Overfitting can be a problem with GAMs, especially if there is un-modelled residual auto-correlation or un-modelled overdispersion. Cross-validation can be used to detect and/or reduce overfitting problems with GAMs (or other statistical methods), and software often allows the level of penalization to be increased to force smoother fits. Estimating very large numbers of smoothing parameters is also likely to be statistically challenging, and there are known tendencies for prediction error criteria (GCV, AIC etc.) to occasionally undersmooth substantially, particularly at moderate sample sizes, with REML being somewhat less problematic in this regard. Where appropriate, simpler models such as GLMs may be preferable to GAMs unless GAMs improve predictive ability substantially (in validation sets) for the application in question.
The stream of sensor data may comprise temporally averaged sensor data for a series of timestamps.
Communications between the transmitter to the receiver may be bandwidth constrained.
The transmitter and receiver may be asymmetric, wherein the transmitter is a data source and the receiver is a data sink, wherein the receiver is configured to receive communications from a plurality of transmitters.
The information characterizing subsequent sensor data may comprise the error of subsequent sensor data with respect to the prediction of the subsequent sensor data by the predictive statistical model comprises a standardized training error mean, standardized by subtracting a training error mean from an instantaneous error between subsequent sensor data and predicted subsequent sensor data, and dividing this difference by a training error standard deviation for a respective sensor, to produce a z-score of a prediction error.
The error of the subsequent sensor data with respect to the prediction of the subsequent sensor data may be statistically normalized and quantized with respect to units of standard deviation away from a predicted mean of the subsequent sensor data.
The error of the subsequent sensor data with respect to the prediction of the subsequent sensor data may be quantized in uneven steps with respect to units of standard deviation away from a predicted mean of the subsequent sensor data.
The error of the subsequent sensor data with respect to the prediction of the subsequent sensor data may be represented with higher resolution for smaller deviation away from a predicted mean of the subsequent sensor data than for higher deviation from the predicted mean of the subsequent sensor data.
The information defining the predictive statistical model communicated from the transmitter to the receiver may be encrypted.
The communicating of information characterizing subsequent sensor data may comprise communicating encrypted information representing independent variables and unencrypted information representing dependent variables.
The at least one processor may be further configured to calculate, the subsequent sensor data from the error of the sensor data and the prediction of the sensor data by statistical model.
The at least one processor may be further configured to acquire a time series of subsequent sensor data, and to communicate to the receiver information characterizing the time series of subsequent sensor data comprise a time series of errors of subsequent sensor data time samples with respect to a prediction of the subsequent sensor data time samples by the predictive statistical model.
The at least one processor may be configured to generate error statistics comprise a mean training error and a standard deviation of the mean training error for a stream of sensor data of the training data set in a training period based on the predictive statistical model.
The at least one processor may be configured to compute a predicted stream of sensor data, a predicted stream of sensor data error means, and a predicted stream of sensor data error standard deviations, based on the predictive statistical model.
The at least one processor may be configured to communicate the predicted stream of sensor data error means to the receiver.
The receiver may be configured to receive the predicted stream of sensor data error means, and based on the predictive statistical model and the received stream of sensor data error means, reconstruct the stream of sensor data.
The receiver may be configured to approximately reconstruct a stream of subsequent sensor data based on the received predictive statistical model, at least one control variable, and the errors of stream of subsequent sensor data.
The at least one processor may be configured to transmit a standard error of the prediction of the subsequent sensor data by the predictive statistical model to the receiver.
The receiver may be configured to infer the prediction of the subsequent sensor data by the predictive statistical model from the received standard error of the prediction and the predictive statistical model.
In accordance with some embodiments, the process of generating model and standard errors, and communicating data based on the generated model and training error statistics (error mean and standard deviation) is as follows.
An edge device collects machine data, such as an n-dimensional engine data time series that may include, but is not limited to, timestamps (ts) and the following engine parameters: engine speed (rpm), engine load percentage (load), coolant temperature (coolant temperature), coolant pressure (coolant pressure), oil temperature (oil temperature), oil pressure (oil pressure), fuel pressure (fuel pressure), and fuel actuator percentage (fuel actuator percentage). The edge device can be a computing node at the “edge” of an enterprise network, metropolitan network, or other network, in accordance with the geographic distribution of computing nodes in a network of, for example, IoT devices. In this aspect, edge computing is a distributed computing paradigm in which computation is largely or completely performed on distributed device nodes as opposed to primarily taking place in a centralized cloud environment.
For example, in accordance with some implementation of the presently disclosed technology, an edge computing device is installed on a vessel and interfaces with the electronic control units/modules (ECUs/ECMs) of all the diesel engines of the vessel. The edge computing device collects engine sensor data as a time series (e.g., all engines' RPMs, load percentages, fuel rates, oil pressures, oil temperatures, coolant pressures, coolant temperatures, air intake temperatures, bearing temperatures, cylinder temperatures, or the like), and collects vessel speed and location data from an internal GPS/DGPS of the edge device and/or the vessel's GPS/DGPS. The edge device can also interface and collect data from onboard PLC and other devices, systems, or assets such as generators, z-drives, tanks, or the like. Illustratively, the edge device collects the sensor data at an approximate rate of sixty samples per minute and aligns the data to every second's time-stamp (e.g., 12:00:00, 12:00:01, 12:00:02, . . . ) using its own clock that is synchronized via NTP service. For ships, this data is typically transmitted to shore office through satellite connectivity; and for vessels that operate near shore (e.g. inland tugboats) cellular data transmission is another option.
In an example vessel's edge device installation that has 1000 sensor data points, each day the edge device can collect, store and send 24*60*60*1000*4=345.6 MB of data at one second resolution (based on a configuration where each sensor data point is 4 bytes or 32 bits in size)! Even if the edge device sends minute's average data (i.e., average or arithmetic mean of every minute's data instead of every second's data), it will transmit 24*60*1000*4=5.76 MB a day over a low bandwidth connection (e.g., satellite or cellular), which can still strain low bandwidth network resources—especially when there are multiple vessels transmitting their respective data at the same time.
In various embodiments, the edge devices can reside on vessels, automobiles, aerial vehicles (e.g., planes, drones, etc.), Internet of Things (IoT) devices, or other mobile devices to collect data locally without transmitting the all of the collected data in explicit form to one or more servers, cloud storage, or other remote systems or devices. Referring back to machine data example above, in a variance analysis of diesel engine data, most of the engine parameters, including coolant temperature, are found to have strong correlation with engine RPM and engine load percentage in a bounded range of engine speed, when engine is in steady state, i.e., RPM and engine load is stable. Inside that bounded region of engine RPM (e.g., higher than idle engine RPM), there exists a function ƒ1 such that:
coolant temperature=ƒ1 (rpm,load)
ƒ1:n|→
m. In this case n equals two (rpm and load) and m equals one (coolant temperature)
In other words, ƒ1 is a map that allows for prediction of a single dependent variable from two independent variables. Similarly,
coolant pressure=ƒ2(rpm,load) oil temperature=ƒ3(rpm,load)
oil pressure=ƒ4(rpm,load)
fuel pressure=ƒ5(rpm,load)
fuel actuator percentage=ƒ6(rpm,load) fuel rate=ƒ7(rpm,load)
intake temp=ƒ8(rpm,load)
Grouping these maps into one map leads to a multi-dimensional map (i.e., the model) such that ƒ:n|→
m
where n equals two (rpm, load) and m equals eight (coolant temperature, coolant pressure, oil temperature, oil pressure, fuel pressure, fuel actuator percentage, fuel rate and intake temp) in this case. Critically, many maps are grouped into a single map with the same input variables, enabling potentially many correlated variables (i.e., a tensor of variables) to be predicted within a bounded range. Note that the specific independent variables need not be engine RPM and engine load and need not be limited to two variables. For example, engine operating hours could be added as an independent variable in the map to account for engine degradation with operating time.
In order to create an engine model, a training time period is selected in which the engine had no apparent operational issues. A machine learning-based method is used to generate the engine models on the edge device or in the cloud. For example, a modeling technique is selected that offers low model bias (e.g., spline, neural network or support vector machines (SVM), and/or a Generalized Additive Model (GAM)).
In some embodiments, the programming language ‘R’ is used as an environment for statistical computing and graphics and GAM for creating a low bias model. Error statistics and/or the z-scores of the predicted errors are used to further minimize prediction errors. The engine's operating ranges can be divided into multiple distinct ranges and multiple multi-dimensional models can be built to improve model accuracy.
The same set of training data that was used to build the model (or other applicable training data) is then passed as an input set to the model in order to create a predicted sensor value(s) time series. By subtracting the predicted sensor values from the measured sensor values, an error time series for all the dependent sensor values is created for the training data set. The error statistics, such as mean and standard deviations of the training period error series, are computed and saved as the training period error statistics.
In the event that the data does not comply with presumptions, such as normal distribution, a normalization process may be included. In other cases, alternate statistical techniques may be employed, so long as they are synchronized at transmitter and receiver.
Once the model is deployed to the edge device and the system is operational, the dependent and independent sensor values can be measured in near real-time, and average data (e.g., per minute) may be computed. The expected value for dependent engine sensors can be predicted by passing the independent sensor values to the engine model. The error (i.e., the difference) between the measured value of a dependent variable and its predicted value can then be computed. These errors are standardized by subtracting the training error mean from the instantaneous error and dividing this difference by the training error standard deviations for a given sensor, which is essentially a z-score of prediction errors. These z-scores of prediction error or standardized prediction error can be sent to a remote computer instead of the actual raw data as measured using a bit description table as described later.
Suppose Y is a set of measured values of a dependent sensor variable, at time-stamps T, where
T=t0, t1, t2, t3, t4, t5, . . . .
Y=y0, y1, y2, y3, y4, y5, . . . .
X0 and X1 are two independent variables whose values are measured at the same time stamps are
X0=x00, x01, x02, x03, x04, x05, . . . .
X1=x10, x11, x12, x13, x14, x15, . . . .
and a machine learning based model exists Ŷ=ƒ (X0, X1)
such that the values of Y can be predicted at the same time-stamps by Ŷ where
Ŷ=ŷ0, ŷ1, ŷ2, ŷ3, ŷ4, ŷ5, . . . .
such that, ŷi=ƒ(x0i, x1i)
suppose the training mean error for sensor Y is μY,
and training error's standard deviation for sensor Y is σY
so the computed standard error series or z-scores of prediction errors will be
εY=εy1, εy2, εy3, εy4, εy5, . . .
where εyi=((yi−ŷi)−μY)/σY
The transmitter (e.g., edge device or sending computer) sends these standard errors along with independent variables X0, X1 and time-stamp data series T. Once these data are received, the receiver computes the predicted sensor value ŷi at time ti
ŷi=ƒ(x0i,x1i)
where ƒ is the identical machine learning model on both sending and receiving sides. The receiving side can recover a given sensor's value provided that the receiver has the identical machine learning based model as the sender and the training error statistics:
yi=ŷi+μY+yi×σY
By introducing non-linear loss into the compression algorithm, the compression ratios can be greatly increased. As an example, consider the following buckets of standard errors, assigning unique standard error states to unique bit patterns, e.g.:
Four bits represent the value of the standard error when the standard error is outside of the −1 to +1 range and two bits represent the value when standard error is within the −1 to +1 range. The receiver side algorithm can check if the most significant bit (i.e., the left most bit) is zero, thus identifying that the error will be within ±1 and be represented by two bits, otherwise the error will be greater than ±1 and represented by four bits. The second bit determines the polarity of the error quantity (positive or negative standard error) etc.
Using a typical diesel engine as an example, assume that a machine dataset containing 10 sensors must be transmitted. Assume that two of the sensors are independent and eight are dependent sensor variables. Given enough data, a machine learning based model can be generated such that the 8 dependent sensors values can be predicted from an input consisting of 2 independent variables.
Table 1 represents the output of the machine learning based model showing predictions of fuel pressure, fuel actuator percentage, oil temperature, oil pressure, coolant temperature, coolant pressure, fuel rate and intake temperature for an engine speed of 1454 RPM and various engine load percentages.
Once both sides compute the model, the 2 independent sensor variables, time stamp, and the standard error bucket for each sensor are sent, leading to a total data size of
1 ts*32 bits+2 Ind.sensors*32 bits+N Dep.sensors*4 bit
in the worst case (i.e., when standard error is outside±1 range) or a saving of 4×8−4=28 bits per sensor. For 8 sensors, the savings will be 28×8 bits or 28 bytes for each time stamp.
Considering each data row consists of 10 sensors values and a timestamp, the raw size of each machine data row is
1 ts*32 bits+2 Ind.sensors*32 bits+8 Dep.sensors*32 bits=352 bits=44 bytes
which compresses to the following:
1 ts*32 bits+2 Ind.sensors*32 bits+8 Dep.sensors*4 bit=128 bits=16 bytes
or a compression ratio of
100×(1−16/44)=63.63%.
In the best case, which is also the average case (i.e., when the standard errors are inside the range of ±1), the standard errors are represented using 2 bits per sensor variable.
So the compressed data size is
1 ts*32 bits+2 Ind.sensors*32 bits+8 Dep.sensors*2 bit=112 bits=14 bytes
or a compression ratio of
100−(1−14/44)=68.18%.
In general, the compression ratio can be calculated for a machine with m sensors, where n sensors are independent variables, k sensors are dependent variables such that m=n+k, and r sensors are overhead (timestamp, position data, etc.). Assuming all data are 4 bytes. The data size of each row is
(m+r)×4 bytes,
whereas in the present scheme, the data row size is
(n+k/8+r)×4 bytes
producing a compression ratio of
100×(1−(n+k/8+r)×4/(m+r)×4)
for m=20, n=2 and k=18, and r=1, the above scheme provides worst case compression ratio of
100×(1−(2×4+18/2+4)/(21×4))=75.0%
for m=20, n=2 and k=18, and r=1, the above scheme provides best case and average case compression ratio of
100×(1−(2×4+18/4+4)/(21×4))=80.36%
Similarly, for m=40, n=2 and k=38, and r=1, the above scheme provides best case and average case compression ratio of
100×(1−(2×4+38/4+4)/(41×4))=86.89%
Many bucketing schemes of standard errors can be created. For example, ±1 standard error range may be merged to one state:
for m=20, n=2, k=18, and r=1, the above scheme's worst case compression ratio is same as before
100×(1−(2×4+18/2+4)/(21×4))=75.0%
But, for m=20, n=2, k=18, and r=1, the above scheme provides best case compression ratio of
100−(1−(2×4×8+18+4×8)/(21×4×8))=83.04%,
and for m=40, n=2, k=38, and r=1, the above scheme provides best case compression ratio of
100−(1−(2×4×8+38+4×8)/(41×4×8))=89.79%
Instead of compressing machine data, the above algorithm may be used to increase precision for the range of data that occurs more frequently and decrease precision for the data that happens infrequently. For example, additional bits can be assigned to represent data that have standard errors in the range±3 z-scores and fewer bits for data that have standard error outside of that range.
In some embodiments, the presently disclosed technology does not involve sending at least some part of the actual data; rather, the technology uses parameters and/or statistical errors to implicitly communicate the actual data. Therefore, the system may be used as a data obfuscation technique. In some embodiments, the actual, exact data values cannot be recovered from the sensor standard error values without prior knowledge of the model and model parameters. If the model is encrypted during transmission, only the independent variables need be sent encrypted during transmission. The standard errors for dependent sensor variables may be sent as plain text, thus reducing the transmission encryption overhead and improving performance.
A linear model generated by machine learning may also be used, which greatly decreases the model size as compared to other modeling techniques. Since only two model parameters are required (i.e., offset and gradient) and relatively little computing resources are needed to generate a linear model, the recalculation and re-transmission of the model can occur more frequently and on any transmission interface, e.g., on satellite, LoRaWAN, cellular, etc. Additionally, range-based linear models may also be used. For example, the full operating range of independent parameters are divided into ‘n’ smaller ranges and ‘n’ linear models are computed for each smaller range. Considering that only a few variables are required to store linear models, the combined model size would remain very small (e.g., 100 range based models require 100×2 parameters per model×4 bytes per parameter+100×(1 error mean+1 error standard deviations)×4 bytes each=1600 bytes or 4 orders of magnitude smaller than the model lookup table referenced above).
As an example, the transmitter may be constructed as follows. A controller of the transmitter may include any or any combination of a system-on-chip, or commercially available embedded processor, Arduino, MeOS, MicroPython, Raspberry Pi, or other type processor board. The transmitter may also include an Application Specific Integrated Circuit (ASIC), an electronic circuit, a programmable combinatorial circuit (e.g., FPGA), a processor (shared, dedicated, or group) or memory (shared, dedicated, or group) that may execute one or more software or firmware programs, or other suitable components that provide the described functionality. The controller has an interface to a communication port, e.g., a radio or network device.
In embodiments, one or more of sensors determine, sense, and/or provide to controller data regarding one or more other characteristics may be and/or include Internet of Things (“IoT”) devices. IoT devices may be objects or “things”, each of which may be embedded with hardware or software that may enable connectivity to a network, typically to provide information to a system, such as controller. Because the IoT devices are enabled to communicate over a network, the IoT devices may exchange event-based data with service providers or systems in order to enhance or complement the services that may be provided. These IoT devices are typically able to transmit data autonomously or with little to no user intervention. In embodiments, a connection may accommodate vehicle sensors as IoT devices and may include IoT-compatible connectivity, which may include any or all of WiFi, LoRan, 900 MHz Wifi, BlueTooth, low-energy BlueTooth, USB, UWB, etc. Wired connections, such as Ethernet 1000baseT, CANBus, USB 3.0, USB 3.1, etc., may be employed.
Embodiments may be implemented into a computing device or system using any suitable hardware and/or software to configure as desired. The computing device may house a board such as motherboard which may include a number of components, including but not limited to a processor and at least one communication interface device. The processor may include one or more processor cores physically and electrically coupled to the motherboard. The at least one communication interface device may also be physically and electrically coupled to the motherboard. In further implementations, the communication interface device may be part of the processor. In embodiments, processor may include a hardware accelerator (e.g., FPGA).
Depending on its applications, computing device may include other components which include, but are not limited to, volatile memory (e.g., DRAM), non-volatile memory (e.g., ROM), and flash memory. In embodiments, flash and/or ROM may include executable programming instructions configured to implement the algorithms, operating system, applications, user interface, etc.
In embodiments, computing device may further include an analog-to-digital converter, a digital-to-analog converter, a programmable gain amplifier, a sample-and-hold amplifier, a data acquisition subsystem, a pulse width modulator input, a pulse width modulator output, a graphics processor, a digital signal processor, a crypto processor, a chipset, a cellular radio, an antenna, a display, a touchscreen display, a touchscreen controller, a battery, an audio codec, a video codec, a power amplifier, a global positioning system (GPS) device or subsystem, a compass (magnetometer), an accelerometer, a barometer (manometer), a gyroscope, a speaker, a camera, a mass storage device (such as a SIM card interface, and SD memory or micro-SD memory interface, SATA interface, hard disk drive, compact disk (CD), digital versatile disk (DVD), and so forth), a microphone, a filter, an oscillator, a pressure sensor, and/or an RFID chip.
The communication network interface device may enable wireless communications for the transfer of data to and from the computing device. The term “wireless” and its derivatives may be used to describe circuits, devices, systems, processes, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication chip 406 may implement any of a number of wireless standards or protocols, including but not limited to Institute for Electrical and Electronic Engineers (IEEE) standards including Wi-Fi (IEEE 802.11 family), IEEE 802.16 standards (e.g., IEEE 802.16-2005 Amendment), Long-Term Evolution (LTE) project along with any amendments, updates, and/or revisions (e.g., advanced LTE project, ultra-mobile broadband (UMB) project (also referred to as “3GPP2”), etc.). IEEE 802.16 compatible BWA networks are generally referred to as WiMAX networks, an acronym that stands for Worldwide Interoperability for Microwave Access, which is a certification mark for products that pass conformity and interoperability tests for the IEEE 802.16 standards. The communication chip 406 may operate in accordance with a Global System for Mobile Communication (GSM), General Packet Radio Service (GPRS), Universal Mobile Telecommunications System (UMTS), High Speed Packet Access (HSPA), Evolved HSPA (E-HSPA), or LTE network. The communication chip 406 may operate in accordance with Enhanced Data for GSM Evolution (EDGE), GSM EDGE Radio Access Network (GERAN), Universal Terrestrial Radio Access Network (UTRAN), or Evolved UTRAN (E-UTRAN). The communication chip 406 may operate in accordance with Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Digital Enhanced Cordless Telecommunications (DECT), Evolution-Data Optimized (EV-DO), derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The communication chip may operate in accordance with other wireless protocols in other embodiments. The computing device may include a plurality of communication chips. For instance, a first communication chip may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
The processor of the computing device may include a die in a package assembly. The term “processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory.
As shown in
With continued reference to
Although certain embodiments have been illustrated and described herein for purposes of description, a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope of the present disclosure. The various embodiments and optional features recited herein may be employed in any combination, subcombination, or permutation, consistent with the discussions herein. This application is intended to cover any adaptations or variations of the embodiments discussed herein, limited only by the claims.
The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments. In cases where any document incorporated by reference conflicts with the present application, the present application controls.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
This Application claims the benefit of provisional U.S. Application No. 62/813,664, filed Mar. 4, 2019 and entitled “SYSTEM AND METHOD FOR DATA COMPRESSION AND PRIVATE COMMUNICATION OF MACHINE DATA BETWEEN COMPUTERS USING MACHINE LEARNING,” which is hereby incorporated by reference in its entirety.
| Number | Name | Date | Kind |
|---|---|---|---|
| 5243546 | Maggard | Sep 1993 | A |
| 5486762 | Freedman et al. | Jan 1996 | A |
| 5515477 | Sutherland | May 1996 | A |
| 5529901 | Van Doorn et al. | Jun 1996 | A |
| 5561421 | Smith et al. | Oct 1996 | A |
| 5641689 | Van Doorn et al. | Jun 1997 | A |
| 5659362 | Kovac et al. | Aug 1997 | A |
| 5667541 | Klun et al. | Sep 1997 | A |
| 5682317 | Keeler et al. | Oct 1997 | A |
| 5770606 | El-Rashidy et al. | Jun 1998 | A |
| 5915036 | Grunkin et al. | Jun 1999 | A |
| 5985889 | El-Rashidy et al. | Nov 1999 | A |
| 6006182 | Fakhr et al. | Dec 1999 | A |
| 6043037 | Lucas | Mar 2000 | A |
| 6064960 | Bellegarda et al. | May 2000 | A |
| 6081211 | De Queiroz et al. | Jun 2000 | A |
| 6121276 | El-Rashidy et al. | Sep 2000 | A |
| 6132974 | Lucas | Oct 2000 | A |
| 6140057 | Lucas | Oct 2000 | A |
| 6200983 | El-Rashidy et al. | Mar 2001 | B1 |
| 6219457 | Potu | Apr 2001 | B1 |
| 6223162 | Chen et al. | Apr 2001 | B1 |
| 6226393 | Grunkin et al. | May 2001 | B1 |
| 6300888 | Chen et al. | Oct 2001 | B1 |
| 6306437 | El-Rashidy et al. | Oct 2001 | B1 |
| 6356363 | Cooper et al. | Mar 2002 | B1 |
| 6362756 | Shannon | Mar 2002 | B1 |
| 6366884 | Bellegarda et al. | Apr 2002 | B1 |
| 6389389 | Meunier et al. | May 2002 | B1 |
| 6401070 | McManus et al. | Jun 2002 | B1 |
| 6404925 | Foote et al. | Jun 2002 | B1 |
| 6404932 | Hata et al. | Jun 2002 | B1 |
| 6411729 | Grunkin | Jun 2002 | B1 |
| 6444870 | Zhang et al. | Sep 2002 | B1 |
| 6490373 | Hata et al. | Dec 2002 | B2 |
| 6510250 | Hata et al. | Jan 2003 | B2 |
| 6519599 | Chickering et al. | Feb 2003 | B1 |
| 6553344 | Bellegarda et al. | Apr 2003 | B2 |
| 6566368 | El-Rashidy et al. | May 2003 | B2 |
| 6606037 | Ekstrand et al. | Aug 2003 | B2 |
| 6633857 | Tipping | Oct 2003 | B1 |
| 6662185 | Stark et al. | Dec 2003 | B1 |
| 6664902 | Andrew et al. | Dec 2003 | B2 |
| 6671414 | Micchelli et al. | Dec 2003 | B1 |
| 6675185 | Mitchell et al. | Jan 2004 | B1 |
| 6678423 | Trenary et al. | Jan 2004 | B1 |
| 6684252 | Chow | Jan 2004 | B1 |
| 6703231 | Elbers et al. | Mar 2004 | B2 |
| 6704718 | Burges et al. | Mar 2004 | B2 |
| 6735630 | Gelvin et al. | May 2004 | B1 |
| 6751354 | Foote et al. | Jun 2004 | B2 |
| 6757439 | Leeder et al. | Jun 2004 | B2 |
| 6760480 | Hata et al. | Jul 2004 | B2 |
| 6774917 | Foote et al. | Aug 2004 | B1 |
| 6785652 | Bellegarda et al. | Aug 2004 | B2 |
| 6795506 | Zhang et al. | Sep 2004 | B1 |
| 6795786 | LaMarca et al. | Sep 2004 | B2 |
| 6801668 | Fröjdh et al. | Oct 2004 | B2 |
| 6804600 | Uluyol et al. | Oct 2004 | B1 |
| 6826607 | Gelvin et al. | Nov 2004 | B1 |
| 6832006 | Savakis et al. | Dec 2004 | B2 |
| 6832251 | Gelvin et al. | Dec 2004 | B1 |
| 6839003 | Soliman et al. | Jan 2005 | B2 |
| 6859831 | Gelvin et al. | Feb 2005 | B1 |
| 6879944 | Tipping et al. | Apr 2005 | B1 |
| 6895083 | Bers et al. | May 2005 | B1 |
| 6895101 | Celik et al. | May 2005 | B2 |
| 6895121 | Joshi et al. | May 2005 | B2 |
| 6927710 | Linzer et al. | Aug 2005 | B2 |
| 6939670 | Pressman et al. | Sep 2005 | B2 |
| 6941019 | Mitchell et al. | Sep 2005 | B1 |
| 7006568 | Gu et al. | Feb 2006 | B1 |
| 7020578 | Sorensen et al. | Mar 2006 | B2 |
| 7020701 | Gelvin et al. | Mar 2006 | B1 |
| 7039654 | Eder | May 2006 | B1 |
| 7043287 | Khalil et al. | May 2006 | B1 |
| 7050646 | Xu et al. | May 2006 | B2 |
| 7068641 | Allan et al. | Jun 2006 | B1 |
| 7069258 | Bothwell | Jun 2006 | B1 |
| 7081693 | Hamel et al. | Jul 2006 | B2 |
| 7099523 | Martens et al. | Aug 2006 | B2 |
| 7117185 | Aliferis et al. | Oct 2006 | B1 |
| 7126500 | Adams et al. | Oct 2006 | B2 |
| 7144869 | Wolff et al. | Dec 2006 | B2 |
| 7146053 | Rijavec et al. | Dec 2006 | B1 |
| 7170201 | Hamel et al. | Jan 2007 | B2 |
| 7179797 | McNeel | Feb 2007 | B2 |
| 7207041 | Elson et al. | Apr 2007 | B2 |
| 7208517 | Winn et al. | Apr 2007 | B1 |
| 7228171 | Lesser et al. | Jun 2007 | B2 |
| 7231180 | Benson et al. | Jun 2007 | B2 |
| 7238799 | Hadjiargyrou et al. | Jul 2007 | B2 |
| 7246314 | Foote et al. | Jul 2007 | B2 |
| 7256505 | Arms et al. | Aug 2007 | B2 |
| 7266661 | Walmsley | Sep 2007 | B2 |
| 7268137 | Campochiaro | Sep 2007 | B2 |
| 7298925 | Nowicki et al. | Nov 2007 | B2 |
| 7306913 | Devlin et al. | Dec 2007 | B2 |
| 7309598 | Elbers et al. | Dec 2007 | B2 |
| 7328625 | Sundermeyer et al. | Feb 2008 | B2 |
| 7336720 | Martemyanov et al. | Feb 2008 | B2 |
| 7337033 | Ontalus et al. | Feb 2008 | B1 |
| 7339957 | Hitt | Mar 2008 | B2 |
| 7346507 | Natarajan et al. | Mar 2008 | B1 |
| 7361998 | Hamel et al. | Apr 2008 | B2 |
| 7365455 | Hamel et al. | Apr 2008 | B2 |
| 7379890 | Myr et al. | May 2008 | B2 |
| 7385503 | Wells et al. | Jun 2008 | B1 |
| 7389114 | Ju et al. | Jun 2008 | B2 |
| 7398164 | Ogushi et al. | Jul 2008 | B2 |
| 7401057 | Eder | Jul 2008 | B2 |
| 7426499 | Eder | Sep 2008 | B2 |
| 7429805 | Hamel et al. | Sep 2008 | B2 |
| 7443509 | Burns | Oct 2008 | B1 |
| 7445896 | Rieder et al. | Nov 2008 | B2 |
| 7473687 | Hoffman et al. | Jan 2009 | B2 |
| 7474805 | Nowicki et al. | Jan 2009 | B2 |
| 7482117 | Cargill et al. | Jan 2009 | B2 |
| 7483871 | Herz | Jan 2009 | B2 |
| 7487066 | Sundermeyer et al. | Feb 2009 | B2 |
| 7494783 | Soreq et al. | Feb 2009 | B2 |
| 7504970 | Fulcomer | Mar 2009 | B2 |
| 7516572 | Yang et al. | Apr 2009 | B2 |
| 7518538 | Schneider | Apr 2009 | B1 |
| 7532763 | Yu et al. | May 2009 | B2 |
| 7538697 | Schneider | May 2009 | B1 |
| 7547683 | Wolff et al. | Jun 2009 | B2 |
| 7550504 | Pablos | Jun 2009 | B2 |
| 7561972 | Welch et al. | Jul 2009 | B1 |
| 7561973 | Welch et al. | Jul 2009 | B1 |
| 7564383 | Schneider | Jul 2009 | B2 |
| 7578793 | Todros et al. | Aug 2009 | B2 |
| 7583961 | Kappes et al. | Sep 2009 | B2 |
| 7590516 | Jourdan et al. | Sep 2009 | B2 |
| 7592507 | Beeckman et al. | Sep 2009 | B2 |
| 7593815 | Willen et al. | Sep 2009 | B2 |
| 7605485 | Pitchford et al. | Oct 2009 | B2 |
| 7605721 | Schneider | Oct 2009 | B2 |
| 7609838 | Westhoff et al. | Oct 2009 | B2 |
| 7612692 | Schneider | Nov 2009 | B2 |
| 7625699 | Devlin et al. | Dec 2009 | B2 |
| 7629901 | Schneider | Dec 2009 | B1 |
| 7630563 | Irvine et al. | Dec 2009 | B2 |
| 7630736 | Wang | Dec 2009 | B2 |
| 7645984 | Gorenstein et al. | Jan 2010 | B2 |
| 7646814 | Winger et al. | Jan 2010 | B2 |
| 7651840 | Li et al. | Jan 2010 | B2 |
| 7653491 | Schadt et al. | Jan 2010 | B2 |
| 7660203 | Barakat et al. | Feb 2010 | B2 |
| 7660295 | Allan et al. | Feb 2010 | B2 |
| 7660355 | Winger et al. | Feb 2010 | B2 |
| 7662564 | Jiang et al. | Feb 2010 | B2 |
| 7671480 | Pitchford et al. | Mar 2010 | B2 |
| 7685084 | Sisk et al. | Mar 2010 | B2 |
| 7693683 | Ihara | Apr 2010 | B2 |
| 7695911 | Li et al. | Apr 2010 | B2 |
| 7695916 | Iakoubova et al. | Apr 2010 | B2 |
| 7698213 | Lancaster | Apr 2010 | B2 |
| 7700074 | Pettegrew et al. | Apr 2010 | B2 |
| 7702482 | Graepel et al. | Apr 2010 | B2 |
| 7702576 | Fahner et al. | Apr 2010 | B2 |
| 7709460 | McCaddon | May 2010 | B2 |
| 7710455 | Aramaki et al. | May 2010 | B2 |
| 7711488 | Hsu et al. | May 2010 | B2 |
| 7719416 | Arms et al. | May 2010 | B2 |
| 7719448 | Schneider | May 2010 | B2 |
| 7727725 | Huang et al. | Jun 2010 | B2 |
| 7729864 | Schadt | Jun 2010 | B2 |
| 7730063 | Eder | Jun 2010 | B2 |
| 7743009 | Hangartner et al. | Jun 2010 | B2 |
| 7743309 | Li et al. | Jun 2010 | B2 |
| 7747392 | Ruaño et al. | Jun 2010 | B2 |
| 7751984 | Tang | Jul 2010 | B2 |
| 7764958 | Townsend et al. | Jul 2010 | B2 |
| 7774272 | Fahner et al. | Aug 2010 | B2 |
| 7781168 | Iakoubova et al. | Aug 2010 | B2 |
| 7788970 | Hitt et al. | Sep 2010 | B2 |
| 7797367 | Gelvin et al. | Sep 2010 | B1 |
| 7799530 | Iakoubova et al. | Sep 2010 | B2 |
| 7802015 | Cheifot et al. | Sep 2010 | B2 |
| 7805405 | Fernandez | Sep 2010 | B2 |
| 7807138 | Berger et al. | Oct 2010 | B2 |
| 7811794 | Cargill et al. | Oct 2010 | B2 |
| 7813981 | Fahner et al. | Oct 2010 | B2 |
| 7816083 | Grupe et al. | Oct 2010 | B2 |
| 7820380 | Huang | Oct 2010 | B2 |
| 7821426 | Schneider | Oct 2010 | B2 |
| 7829282 | Rieder et al. | Nov 2010 | B2 |
| 7833706 | Begovich et al. | Nov 2010 | B2 |
| 7840408 | Yi et al. | Nov 2010 | B2 |
| 7844687 | Gelvin et al. | Nov 2010 | B1 |
| 7853456 | Soto et al. | Dec 2010 | B2 |
| 7863021 | Schrodi et al. | Jan 2011 | B2 |
| 7873567 | Eder | Jan 2011 | B2 |
| 7873634 | Desbiens | Jan 2011 | B2 |
| 7873673 | Cleveland et al. | Jan 2011 | B2 |
| 7881206 | St. Pierre et al. | Feb 2011 | B2 |
| 7881544 | Bashyam et al. | Feb 2011 | B2 |
| 7885988 | Bashyam et al. | Feb 2011 | B2 |
| 7888016 | Rieder et al. | Feb 2011 | B2 |
| 7888461 | Firestein-Miller | Feb 2011 | B2 |
| 7888486 | Walsh et al. | Feb 2011 | B2 |
| 7890403 | Smith et al. | Feb 2011 | B1 |
| 7893041 | Morrow et al. | Feb 2011 | B2 |
| 7904135 | Menezes et al. | Mar 2011 | B2 |
| 7908928 | Vik et al. | Mar 2011 | B2 |
| 7910107 | Walsh et al. | Mar 2011 | B2 |
| 7910303 | Bare et al. | Mar 2011 | B2 |
| 7913556 | Hsu et al. | Mar 2011 | B2 |
| 7915244 | Hoffman et al. | Mar 2011 | B2 |
| 7921069 | Canny et al. | Apr 2011 | B2 |
| 7933741 | Willen et al. | Apr 2011 | B2 |
| 7936932 | Bashyam et al. | May 2011 | B2 |
| 7947451 | Li et al. | May 2011 | B2 |
| 7953559 | Sundermeyer et al. | May 2011 | B2 |
| 7953676 | Agarwal et al. | May 2011 | B2 |
| 7957222 | Souders et al. | Jun 2011 | B2 |
| 7961959 | Bashyam et al. | Jun 2011 | B2 |
| 7961960 | Bashyam et al. | Jun 2011 | B2 |
| 7970216 | Bashyam et al. | Jun 2011 | B2 |
| 7970640 | Eder | Jun 2011 | B2 |
| 7974478 | Bashyam et al. | Jul 2011 | B2 |
| 7977052 | Luke et al. | Jul 2011 | B2 |
| 7987148 | Hangartner et al. | Jul 2011 | B2 |
| 7990262 | Weaver et al. | Aug 2011 | B2 |
| 7993833 | Begovich et al. | Aug 2011 | B2 |
| 7996342 | Grabarnik et al. | Aug 2011 | B2 |
| 8000314 | Brownrigg et al. | Aug 2011 | B2 |
| 8005140 | Yang et al. | Aug 2011 | B2 |
| 8005620 | Gustafsson et al. | Aug 2011 | B2 |
| 8010319 | Walters et al. | Aug 2011 | B2 |
| 8010476 | Fung et al. | Aug 2011 | B2 |
| 8011255 | Arms et al. | Sep 2011 | B2 |
| 8013731 | Weaver et al. | Sep 2011 | B2 |
| 8013732 | Petite et al. | Sep 2011 | B2 |
| 8017317 | Elbers et al. | Sep 2011 | B2 |
| 8017908 | Gorenstein et al. | Sep 2011 | B2 |
| 8024125 | Hsu et al. | Sep 2011 | B2 |
| 8024980 | Arms et al. | Sep 2011 | B2 |
| 8026113 | Kaushal et al. | Sep 2011 | B2 |
| 8026808 | Weaver et al. | Sep 2011 | B2 |
| 8027947 | Hinsz et al. | Sep 2011 | B2 |
| 8031650 | Petite et al. | Oct 2011 | B2 |
| 8035511 | Weaver et al. | Oct 2011 | B2 |
| 8037043 | Zoeter et al. | Oct 2011 | B2 |
| 8039212 | Li et al. | Oct 2011 | B2 |
| 8044812 | Harres | Oct 2011 | B2 |
| 8064412 | Petite | Nov 2011 | B2 |
| 8071291 | Bare et al. | Dec 2011 | B2 |
| 8071302 | Huang | Dec 2011 | B2 |
| 8073331 | Mazed | Dec 2011 | B1 |
| 8086864 | Kim et al. | Dec 2011 | B2 |
| 8094713 | Clark | Jan 2012 | B2 |
| 8098485 | Weaver et al. | Jan 2012 | B2 |
| 8103537 | Chickering et al. | Jan 2012 | B2 |
| 8104993 | Hitt et al. | Jan 2012 | B2 |
| 8111156 | Song et al. | Feb 2012 | B2 |
| 8112381 | Yuan et al. | Feb 2012 | B2 |
| 8112624 | Parkinson et al. | Feb 2012 | B2 |
| 8126653 | Welch et al. | Feb 2012 | B2 |
| 8135548 | Breton et al. | Mar 2012 | B2 |
| 8140658 | Gelvin et al. | Mar 2012 | B1 |
| 8148070 | Iakoubova et al. | Apr 2012 | B2 |
| 8152750 | Vournakis et al. | Apr 2012 | B2 |
| 8153366 | Rieder et al. | Apr 2012 | B2 |
| 8160136 | Sezer | Apr 2012 | B2 |
| 8171136 | Petite | May 2012 | B2 |
| 8175403 | Alakuijala | May 2012 | B1 |
| 8178834 | Gorenstein et al. | May 2012 | B2 |
| 8185316 | Alam et al. | May 2012 | B2 |
| 8185486 | Eder | May 2012 | B2 |
| 8193929 | Siu et al. | Jun 2012 | B1 |
| 8193930 | Petite et al. | Jun 2012 | B2 |
| 8194655 | Pister | Jun 2012 | B2 |
| 8194858 | Bukshpun et al. | Jun 2012 | B2 |
| 8195814 | Shelby | Jun 2012 | B2 |
| 8199635 | Taylor et al. | Jun 2012 | B2 |
| 8204224 | Xiao et al. | Jun 2012 | B2 |
| 8211638 | Huang et al. | Jul 2012 | B2 |
| 8212667 | Petite et al. | Jul 2012 | B2 |
| 8214082 | Tsai et al. | Jul 2012 | B2 |
| 8214315 | Hangartner et al. | Jul 2012 | B2 |
| 8214370 | Turon et al. | Jul 2012 | B1 |
| 8216786 | Shiffman et al. | Jul 2012 | B2 |
| 8217078 | Singh et al. | Jul 2012 | B1 |
| 8219848 | Branson et al. | Jul 2012 | B2 |
| 8221273 | Donahoe | Jul 2012 | B2 |
| 8222270 | Nordsiek et al. | Jul 2012 | B2 |
| 8223010 | Petite et al. | Jul 2012 | B2 |
| 8225129 | Douglis et al. | Jul 2012 | B2 |
| 8227189 | Bare et al. | Jul 2012 | B2 |
| 8233471 | Brownrigg et al. | Jul 2012 | B2 |
| 8234150 | Pickton et al. | Jul 2012 | B1 |
| 8234151 | Pickton et al. | Jul 2012 | B1 |
| 8236816 | Nordsiek et al. | Aug 2012 | B2 |
| 8238290 | Ordentlich et al. | Aug 2012 | B2 |
| 8260575 | Walters et al. | Sep 2012 | B2 |
| 8264401 | Kavaler | Sep 2012 | B1 |
| 8265657 | Shao et al. | Sep 2012 | B2 |
| 8270745 | Fuchie et al. | Sep 2012 | B2 |
| 8279067 | Berger et al. | Oct 2012 | B2 |
| 8279080 | Pitchford et al. | Oct 2012 | B2 |
| 8280671 | Luo et al. | Oct 2012 | B2 |
| 8282517 | Donahoe | Oct 2012 | B2 |
| 8283440 | Firestein-Miller | Oct 2012 | B2 |
| 8289184 | Strohm | Oct 2012 | B2 |
| 8291069 | Phillips | Oct 2012 | B1 |
| 8299109 | Nordsiek et al. | Oct 2012 | B2 |
| 8305899 | Luo et al. | Nov 2012 | B2 |
| 8306340 | Ceperkovic et al. | Nov 2012 | B2 |
| 8311849 | Soto et al. | Nov 2012 | B2 |
| 8325030 | Townsend et al. | Dec 2012 | B2 |
| 8328950 | Baseman et al. | Dec 2012 | B2 |
| 8330596 | Tanaka et al. | Dec 2012 | B2 |
| 8331441 | Yang et al. | Dec 2012 | B2 |
| 8335304 | Petite | Dec 2012 | B2 |
| 8346688 | Carroll et al. | Jan 2013 | B2 |
| 8349327 | Walsh et al. | Jan 2013 | B2 |
| 8350750 | Paek et al. | Jan 2013 | B2 |
| 8351688 | Hancock et al. | Jan 2013 | B2 |
| 8359347 | Branson et al. | Jan 2013 | B2 |
| 8364627 | Canny et al. | Jan 2013 | B2 |
| 8370935 | Jakobsson et al. | Feb 2013 | B1 |
| 8372625 | Walsh et al. | Feb 2013 | B2 |
| 8373576 | Strohm | Feb 2013 | B2 |
| 8374451 | Shibata et al. | Feb 2013 | B2 |
| 8374837 | De Winter et al. | Feb 2013 | B2 |
| 8375442 | Jakobsson et al. | Feb 2013 | B2 |
| 8379564 | Petite et al. | Feb 2013 | B2 |
| 8383338 | Kitzman et al. | Feb 2013 | B2 |
| 8395496 | Joshi et al. | Mar 2013 | B2 |
| 8401798 | Welch et al. | Mar 2013 | B2 |
| 8410931 | Petite et al. | Apr 2013 | B2 |
| 8411742 | Yang et al. | Apr 2013 | B2 |
| 8412461 | Gustafsson et al. | Apr 2013 | B2 |
| 8412465 | Fu et al. | Apr 2013 | B2 |
| 8415093 | Pribenszky et al. | Apr 2013 | B2 |
| 8417762 | Branson et al. | Apr 2013 | B2 |
| 8421274 | Sun et al. | Apr 2013 | B2 |
| 8434356 | Hsu et al. | May 2013 | B2 |
| 8446884 | Petite et al. | May 2013 | B2 |
| 8451766 | Lee et al. | May 2013 | B2 |
| 8452621 | Leong et al. | May 2013 | B1 |
| 8452638 | Pickton et al. | May 2013 | B2 |
| 8455468 | Hoffman et al. | Jun 2013 | B2 |
| 8458457 | Parkinson | Jun 2013 | B2 |
| 8461849 | Almonte et al. | Jun 2013 | B1 |
| 8463582 | Song et al. | Jun 2013 | B2 |
| 8465980 | Lin et al. | Jun 2013 | B2 |
| 8473249 | Handley et al. | Jun 2013 | B2 |
| 8476077 | Lin et al. | Jul 2013 | B2 |
| 8480110 | Gorenstein et al. | Jul 2013 | B2 |
| 8489063 | Petite | Jul 2013 | B2 |
| 8489499 | Yan et al. | Jul 2013 | B2 |
| 8493601 | Hull et al. | Jul 2013 | B2 |
| 8496934 | Walsh et al. | Jul 2013 | B2 |
| 8497084 | Markowitz et al. | Jul 2013 | B2 |
| 8498915 | Eder | Jul 2013 | B2 |
| 8501718 | Gleicher et al. | Aug 2013 | B2 |
| 8501719 | Gleicher et al. | Aug 2013 | B2 |
| 8509555 | Meany | Aug 2013 | B2 |
| 8514928 | Clark | Aug 2013 | B2 |
| 8515719 | Tamaki et al. | Aug 2013 | B2 |
| 8521294 | Sarma et al. | Aug 2013 | B2 |
| 8527352 | Chatwin et al. | Sep 2013 | B2 |
| 8529383 | Donahoe | Sep 2013 | B2 |
| 8530831 | Coon et al. | Sep 2013 | B1 |
| 8533473 | Gupta et al. | Sep 2013 | B2 |
| 8536998 | Siu et al. | Sep 2013 | B1 |
| 8540644 | Husheer | Sep 2013 | B2 |
| 8543428 | Jones, III et al. | Sep 2013 | B1 |
| 8544089 | Jakobsson et al. | Sep 2013 | B2 |
| 8552861 | Bastide et al. | Oct 2013 | B2 |
| 8559271 | Barakat et al. | Oct 2013 | B2 |
| 8563295 | Davis et al. | Oct 2013 | B2 |
| 8566070 | Tamaki et al. | Oct 2013 | B2 |
| 8568995 | Lopes-Virella et al. | Oct 2013 | B2 |
| 8569574 | Khatib et al. | Oct 2013 | B2 |
| 8572290 | Mukhopadhyay et al. | Oct 2013 | B1 |
| 8582481 | Kim et al. | Nov 2013 | B2 |
| 8585517 | Donahoe | Nov 2013 | B2 |
| 8585606 | McDonald et al. | Nov 2013 | B2 |
| 8600560 | Smith et al. | Dec 2013 | B2 |
| 8600870 | Milana | Dec 2013 | B2 |
| 8614060 | Rieder et al. | Dec 2013 | B2 |
| 8615374 | Discenzo | Dec 2013 | B1 |
| 8618164 | Singh et al. | Dec 2013 | B2 |
| 8625496 | Brownrigg et al. | Jan 2014 | B2 |
| 8626697 | Chaine et al. | Jan 2014 | B1 |
| 8630965 | Savvides et al. | Jan 2014 | B2 |
| 8635029 | Gustafsson et al. | Jan 2014 | B2 |
| 8635654 | Correa et al. | Jan 2014 | B2 |
| 8638217 | Arms et al. | Jan 2014 | B2 |
| 8639618 | Yan et al. | Jan 2014 | B2 |
| 8644171 | Meany et al. | Feb 2014 | B2 |
| 8645298 | Hennig et al. | Feb 2014 | B2 |
| 8647819 | Khatib | Feb 2014 | B2 |
| 8652776 | Lavedan et al. | Feb 2014 | B2 |
| 8660786 | Bengtson et al. | Feb 2014 | B2 |
| 8666357 | Petite | Mar 2014 | B2 |
| 8669063 | Weinschenk et al. | Mar 2014 | B2 |
| 8682812 | Ranjan | Mar 2014 | B1 |
| 8682876 | Shamlin et al. | Mar 2014 | B2 |
| 8687810 | Bukshpun et al. | Apr 2014 | B2 |
| 8688850 | Branson et al. | Apr 2014 | B2 |
| 8694455 | Eder | Apr 2014 | B2 |
| 8694474 | Wu | Apr 2014 | B2 |
| 8700064 | Shao et al. | Apr 2014 | B2 |
| 8704656 | Abedi | Apr 2014 | B2 |
| 8706589 | Smith et al. | Apr 2014 | B1 |
| 8711743 | De Poorter et al. | Apr 2014 | B2 |
| 8712937 | Bacus et al. | Apr 2014 | B1 |
| 8713025 | Eder | Apr 2014 | B2 |
| 8715704 | Skelton et al. | May 2014 | B2 |
| 8715943 | Princen et al. | May 2014 | B2 |
| 8718140 | Cai et al. | May 2014 | B1 |
| 8718958 | Breton et al. | May 2014 | B2 |
| 8724866 | Wu et al. | May 2014 | B2 |
| 8725456 | Saha et al. | May 2014 | B1 |
| 8725541 | Andrist et al. | May 2014 | B2 |
| 8731052 | Fuchie | May 2014 | B2 |
| 8731728 | Milosevic et al. | May 2014 | B2 |
| 8731977 | Hardin et al. | May 2014 | B1 |
| 8732534 | Kini et al. | May 2014 | B2 |
| 8733168 | Donahoe et al. | May 2014 | B2 |
| 8741635 | Lindeman et al. | Jun 2014 | B2 |
| 8741956 | Singh et al. | Jun 2014 | B2 |
| 8754805 | Wang et al. | Jun 2014 | B2 |
| 8756173 | Hunzinger et al. | Jun 2014 | B2 |
| 8766172 | Gorenstein et al. | Jul 2014 | B2 |
| 8769094 | Phillips | Jul 2014 | B2 |
| 8776062 | Garbow et al. | Jul 2014 | B2 |
| 8781768 | Gershinsky et al. | Jul 2014 | B2 |
| 8787246 | Brownrigg | Jul 2014 | B2 |
| 8787638 | Zee et al. | Jul 2014 | B2 |
| 8795172 | Abolfathi et al. | Aug 2014 | B2 |
| 8799202 | Carroll et al. | Aug 2014 | B2 |
| 8805579 | Skrinde | Aug 2014 | B2 |
| 8805619 | Sorensen et al. | Aug 2014 | B2 |
| 8810429 | Gershinsky et al. | Aug 2014 | B2 |
| 8811670 | Mundhenk et al. | Aug 2014 | B2 |
| 8812007 | Hitt et al. | Aug 2014 | B2 |
| 8812362 | Agarwal et al. | Aug 2014 | B2 |
| 8812654 | Gelvin et al. | Aug 2014 | B2 |
| 8816850 | Bandyopadhyay et al. | Aug 2014 | B2 |
| 8822149 | Black et al. | Sep 2014 | B2 |
| 8822924 | Valentino et al. | Sep 2014 | B2 |
| 8824762 | Rivaz et al. | Sep 2014 | B2 |
| 8832244 | Gelvin et al. | Sep 2014 | B2 |
| 8836503 | Gelvin et al. | Sep 2014 | B2 |
| 8843356 | Schadt et al. | Sep 2014 | B2 |
| 8855011 | Ortega et al. | Oct 2014 | B2 |
| 8855245 | Lee et al. | Oct 2014 | B2 |
| 8867309 | Ray et al. | Oct 2014 | B2 |
| 8867310 | Ray et al. | Oct 2014 | B1 |
| 8871901 | Samoylova et al. | Oct 2014 | B2 |
| 8873335 | Ray et al. | Oct 2014 | B1 |
| 8873336 | Ray et al. | Oct 2014 | B1 |
| 8877174 | Suckling et al. | Nov 2014 | B2 |
| 8879356 | Ray et al. | Nov 2014 | B1 |
| 8885441 | Ray et al. | Nov 2014 | B1 |
| 8889662 | Navara | Nov 2014 | B2 |
| 8892409 | Mun | Nov 2014 | B2 |
| 8892624 | Branson et al. | Nov 2014 | B2 |
| 8892704 | Bronez et al. | Nov 2014 | B2 |
| 8903192 | Malik et al. | Dec 2014 | B2 |
| 8903531 | Pharand et al. | Dec 2014 | B2 |
| 8911958 | Lopes-Virella et al. | Dec 2014 | B2 |
| 8912512 | Langoju et al. | Dec 2014 | B1 |
| 8922065 | Sun et al. | Dec 2014 | B2 |
| 8923144 | Shao et al. | Dec 2014 | B2 |
| 8924587 | Petite | Dec 2014 | B2 |
| 8924588 | Petite | Dec 2014 | B2 |
| 8929568 | Grancharov et al. | Jan 2015 | B2 |
| 8930571 | Petite | Jan 2015 | B2 |
| 8949989 | Jakobsson et al. | Feb 2015 | B2 |
| 8954377 | Turon et al. | Feb 2015 | B1 |
| 8956608 | Walsh et al. | Feb 2015 | B2 |
| 8962680 | Forbes et al. | Feb 2015 | B2 |
| 8964708 | Petite | Feb 2015 | B2 |
| 8964727 | Allan et al. | Feb 2015 | B2 |
| 8965625 | Dvorak et al. | Feb 2015 | B2 |
| 8971432 | Murakami et al. | Mar 2015 | B2 |
| 8975022 | Begovich et al. | Mar 2015 | B2 |
| 8977421 | Dvorak et al. | Mar 2015 | B2 |
| 8982856 | Brownrigg | Mar 2015 | B2 |
| 8983793 | Luo et al. | Mar 2015 | B2 |
| 8987686 | Rizkallah et al. | Mar 2015 | B2 |
| 8987973 | Mukter-Uz-Zaman et al. | Mar 2015 | B2 |
| 8990032 | Bajwa et al. | Mar 2015 | B2 |
| 8992453 | Vournakis et al. | Mar 2015 | B2 |
| 8994551 | Pitchford et al. | Mar 2015 | B2 |
| 9004320 | Keating et al. | Apr 2015 | B2 |
| 9011877 | Davis et al. | Apr 2015 | B2 |
| 9017255 | Raptis et al. | Apr 2015 | B2 |
| 9020866 | Zhou et al. | Apr 2015 | B1 |
| 9026273 | Ziarno | May 2015 | B2 |
| 9026279 | Ziarno | May 2015 | B2 |
| 9026336 | Ziarno | May 2015 | B2 |
| 9028404 | DeRemer et al. | May 2015 | B2 |
| 9030565 | Yang et al. | May 2015 | B2 |
| 9032058 | Guthery | May 2015 | B2 |
| 9034401 | Clarot et al. | May 2015 | B1 |
| 9035807 | Jiang et al. | May 2015 | B2 |
| 9036910 | Mundhenk et al. | May 2015 | B1 |
| 9037256 | Bokil | May 2015 | B2 |
| 9040023 | Durham et al. | May 2015 | B2 |
| 9053537 | Stein et al. | Jun 2015 | B2 |
| 9056115 | Gleicher et al. | Jun 2015 | B2 |
| 9061004 | Markowitz et al. | Jun 2015 | B2 |
| 9061055 | Fueyo et al. | Jun 2015 | B2 |
| 9063165 | Valentino et al. | Jun 2015 | B2 |
| 9065699 | Stratigos, Jr. | Jun 2015 | B2 |
| 9069352 | Trumble | Jun 2015 | B2 |
| 9072114 | Abedi | Jun 2015 | B2 |
| 9072496 | Rao et al. | Jul 2015 | B2 |
| 9074257 | Rieder et al. | Jul 2015 | B2 |
| 9074731 | Barrett | Jul 2015 | B2 |
| 9075146 | Valentino et al. | Jul 2015 | B1 |
| 9075796 | Markatou et al. | Jul 2015 | B2 |
| 9080212 | Khatib | Jul 2015 | B2 |
| 9090339 | Arms et al. | Jul 2015 | B2 |
| 9092391 | Stephan et al. | Jul 2015 | B2 |
| 9103826 | Kochel et al. | Aug 2015 | B2 |
| 9103920 | Valentino et al. | Aug 2015 | B2 |
| 9105181 | Pitchford et al. | Aug 2015 | B2 |
| 9106718 | Bonasera et al. | Aug 2015 | B2 |
| 9111240 | Petite | Aug 2015 | B2 |
| 9111333 | Jiang et al. | Aug 2015 | B2 |
| 9115989 | Valentino et al. | Aug 2015 | B2 |
| 9116722 | Shenfield et al. | Aug 2015 | B2 |
| 9119019 | Murias et al. | Aug 2015 | B2 |
| 9128991 | Shamlin et al. | Sep 2015 | B2 |
| 9129497 | Petite | Sep 2015 | B2 |
| 9130651 | Tabe | Sep 2015 | B2 |
| 9132110 | Singh et al. | Sep 2015 | B2 |
| 9141215 | Donahoe | Sep 2015 | B2 |
| 9148849 | Akhlaq et al. | Sep 2015 | B2 |
| 9152146 | Ziarno | Oct 2015 | B2 |
| 9154263 | Muqaibel et al. | Oct 2015 | B1 |
| 9164292 | Brooke | Oct 2015 | B2 |
| 9179147 | Yang et al. | Nov 2015 | B2 |
| 9179161 | Blum | Nov 2015 | B2 |
| 9186107 | Towler et al. | Nov 2015 | B2 |
| 9191037 | Lascari et al. | Nov 2015 | B2 |
| 9200324 | Cavet et al. | Dec 2015 | B2 |
| 9202051 | Jakobsson et al. | Dec 2015 | B2 |
| 9204319 | Ouyang et al. | Dec 2015 | B2 |
| 9205064 | Narain et al. | Dec 2015 | B2 |
| 9205092 | Gleicher et al. | Dec 2015 | B2 |
| 9207247 | Kraus et al. | Dec 2015 | B2 |
| 9208209 | Katz | Dec 2015 | B1 |
| 9210436 | Jeon et al. | Dec 2015 | B2 |
| 9210446 | Kumar et al. | Dec 2015 | B2 |
| 9210938 | Chan et al. | Dec 2015 | B2 |
| 9211103 | Kraus et al. | Dec 2015 | B2 |
| 9216010 | Ostroverkhov et al. | Dec 2015 | B2 |
| 9216213 | Maki et al. | Dec 2015 | B2 |
| 9226304 | Chen et al. | Dec 2015 | B2 |
| 9226518 | Llagostera et al. | Jan 2016 | B2 |
| 9232217 | Argyropoulos et al. | Jan 2016 | B2 |
| 9232407 | Stanczak et al. | Jan 2016 | B2 |
| 9233466 | Skrinde | Jan 2016 | B2 |
| 9239215 | Donahoe | Jan 2016 | B2 |
| 9240955 | Mukhopadhyay et al. | Jan 2016 | B1 |
| 9243493 | Hsu et al. | Jan 2016 | B2 |
| 9275353 | Lu et al. | Mar 2016 | B2 |
| 9282029 | Petite | Mar 2016 | B2 |
| 9288743 | Yang et al. | Mar 2016 | B2 |
| 9292550 | Yarmus | Mar 2016 | B2 |
| 9297814 | Skinner et al. | Mar 2016 | B2 |
| 9297915 | Koh et al. | Mar 2016 | B2 |
| 9305275 | McLachlan | Apr 2016 | B2 |
| 9311808 | Nurmela et al. | Apr 2016 | B2 |
| 9325396 | Murakami et al. | Apr 2016 | B2 |
| 9339202 | Brockway et al. | May 2016 | B2 |
| 9356776 | Ko et al. | May 2016 | B2 |
| 9361274 | Chu et al. | Jun 2016 | B2 |
| 9363175 | Chu et al. | Jun 2016 | B2 |
| 9370501 | Singh et al. | Jun 2016 | B2 |
| 9370509 | Nordsiek et al. | Jun 2016 | B2 |
| 9371565 | Begovich et al. | Jun 2016 | B2 |
| 9372213 | Auguste et al. | Jun 2016 | B2 |
| 9374671 | Zhyshko et al. | Jun 2016 | B1 |
| 9374677 | Tarlazzi et al. | Jun 2016 | B2 |
| 9375412 | Singh et al. | Jun 2016 | B2 |
| 9375436 | Gleicher et al. | Jun 2016 | B2 |
| 9386522 | San Vicente et al. | Jul 2016 | B2 |
| 9386553 | Berger et al. | Jul 2016 | B2 |
| 9387940 | Godzdanker et al. | Jul 2016 | B2 |
| 9389235 | Weinschenk et al. | Jul 2016 | B2 |
| 9390622 | Kamarianakis | Jul 2016 | B2 |
| 9394345 | Cong et al. | Jul 2016 | B2 |
| 9397795 | Choi | Jul 2016 | B2 |
| 9398576 | Calcev et al. | Jul 2016 | B2 |
| 9399061 | Kupper et al. | Jul 2016 | B2 |
| 9402245 | Chen et al. | Jul 2016 | B2 |
| 9402871 | Davis et al. | Aug 2016 | B2 |
| 9413571 | Jin et al. | Aug 2016 | B2 |
| 9415029 | Singh et al. | Aug 2016 | B2 |
| 9417331 | Valentino et al. | Aug 2016 | B2 |
| 9428767 | Minshull et al. | Aug 2016 | B2 |
| 9429661 | Valentino et al. | Aug 2016 | B2 |
| 9430936 | Petite | Aug 2016 | B2 |
| 9439126 | Petite | Sep 2016 | B2 |
| 9445445 | Miller et al. | Sep 2016 | B2 |
| 9451920 | Khair | Sep 2016 | B2 |
| 9455763 | Muqaibel et al. | Sep 2016 | B2 |
| 9459360 | Ray et al. | Oct 2016 | B2 |
| 9468541 | Contreras-Vidal et al. | Oct 2016 | B2 |
| 9470809 | Ray | Oct 2016 | B2 |
| 9470818 | Akhlaq et al. | Oct 2016 | B2 |
| 9471884 | Hamann et al. | Oct 2016 | B2 |
| 9478224 | Kjoerling et al. | Oct 2016 | B2 |
| 9483531 | Zhou et al. | Nov 2016 | B2 |
| 9492086 | Ewers et al. | Nov 2016 | B2 |
| 9492096 | Brockway et al. | Nov 2016 | B2 |
| 9495860 | Lett | Nov 2016 | B2 |
| 9500757 | Ray | Nov 2016 | B2 |
| 9503467 | Lefebvre et al. | Nov 2016 | B2 |
| 9515691 | Petite | Dec 2016 | B2 |
| 9529210 | Brooke | Dec 2016 | B2 |
| 9534234 | Minshull et al. | Jan 2017 | B2 |
| 9534258 | Black et al. | Jan 2017 | B2 |
| 9536214 | Heng et al. | Jan 2017 | B2 |
| 9539223 | Page et al. | Jan 2017 | B2 |
| 9542939 | Hoffmeister | Jan 2017 | B1 |
| 9555069 | Clarot et al. | Jan 2017 | B2 |
| 9555251 | Stein | Jan 2017 | B2 |
| 9563921 | Shi et al. | Feb 2017 | B2 |
| 9571582 | Petite et al. | Feb 2017 | B2 |
| 9574209 | Minshull et al. | Feb 2017 | B2 |
| 9576404 | Ziarno et al. | Feb 2017 | B2 |
| 9576694 | Gogotsi et al. | Feb 2017 | B2 |
| 9579337 | Stover et al. | Feb 2017 | B2 |
| 9580697 | Minshull et al. | Feb 2017 | B2 |
| 9583967 | Moss | Feb 2017 | B2 |
| 9584193 | Stratigos, Jr. | Feb 2017 | B2 |
| 9585620 | Paquet et al. | Mar 2017 | B2 |
| 9585868 | Forbes et al. | Mar 2017 | B2 |
| 9590772 | Choi et al. | Mar 2017 | B2 |
| 9605857 | Secor | Mar 2017 | B2 |
| 9608740 | Henry et al. | Mar 2017 | B2 |
| 9609810 | Chan et al. | Apr 2017 | B2 |
| 9615226 | Petite | Apr 2017 | B2 |
| 9615269 | Henry et al. | Apr 2017 | B2 |
| 9615585 | Iatrou et al. | Apr 2017 | B2 |
| 9615792 | Raptis et al. | Apr 2017 | B2 |
| 9619883 | Yudovsky | Apr 2017 | B2 |
| 9621959 | Mountain | Apr 2017 | B2 |
| 9625646 | Molin et al. | Apr 2017 | B2 |
| 9628165 | Murakami et al. | Apr 2017 | B2 |
| 9628286 | Nguyen et al. | Apr 2017 | B1 |
| 9628365 | Gelvin et al. | Apr 2017 | B2 |
| 9632746 | Keipert et al. | Apr 2017 | B2 |
| 9633401 | Curtis | Apr 2017 | B2 |
| 9639100 | Storm et al. | May 2017 | B2 |
| 9639807 | Berengueres et al. | May 2017 | B2 |
| 9639902 | Huehn et al. | May 2017 | B2 |
| 9640850 | Henry et al. | May 2017 | B2 |
| 9650678 | Bhatia | May 2017 | B2 |
| 9651400 | Pitchford et al. | May 2017 | B2 |
| 9656389 | Skrinde | May 2017 | B2 |
| 9661205 | Athan | May 2017 | B2 |
| 9662392 | Altschul et al. | May 2017 | B2 |
| 9663824 | Chilton et al. | May 2017 | B2 |
| 9666042 | Wedig et al. | May 2017 | B2 |
| 9667317 | Gross et al. | May 2017 | B2 |
| 9667653 | Barabash et al. | May 2017 | B2 |
| 9668104 | Ching et al. | May 2017 | B1 |
| 9672474 | Dirac et al. | Jun 2017 | B2 |
| 9674210 | Oprea et al. | Jun 2017 | B1 |
| 9674711 | Bennett et al. | Jun 2017 | B2 |
| 9675642 | Braughler et al. | Jun 2017 | B2 |
| 9679378 | Mouridsen et al. | Jun 2017 | B2 |
| 9681807 | Miller et al. | Jun 2017 | B2 |
| 9681835 | Karmali et al. | Jun 2017 | B2 |
| 9683832 | Wang et al. | Jun 2017 | B2 |
| 9685992 | Bennett et al. | Jun 2017 | B2 |
| 9691263 | Petite | Jun 2017 | B2 |
| 9699768 | Werb | Jul 2017 | B2 |
| 9699785 | Henry et al. | Jul 2017 | B2 |
| 9701325 | Kim et al. | Jul 2017 | B2 |
| 9701721 | Bunnik et al. | Jul 2017 | B2 |
| 9705526 | Veernapu | Jul 2017 | B1 |
| 9705561 | Henry et al. | Jul 2017 | B2 |
| 9705610 | Barzegar et al. | Jul 2017 | B2 |
| 9710767 | Dietrich et al. | Jul 2017 | B1 |
| 9711038 | Pennebaker, III | Jul 2017 | B1 |
| 9717459 | Sereno et al. | Aug 2017 | B2 |
| 9721210 | Brown | Aug 2017 | B1 |
| 9722318 | Adriazola et al. | Aug 2017 | B2 |
| 9727115 | Brown et al. | Aug 2017 | B1 |
| 9727616 | Wu et al. | Aug 2017 | B2 |
| 9728063 | Fu et al. | Aug 2017 | B1 |
| 9729197 | Gross et al. | Aug 2017 | B2 |
| 9729568 | Lefebvre et al. | Aug 2017 | B2 |
| 9730160 | San Vicente et al. | Aug 2017 | B2 |
| 9734122 | Vuskovic et al. | Aug 2017 | B2 |
| 9734290 | Srinivas et al. | Aug 2017 | B2 |
| 9735833 | Gross et al. | Aug 2017 | B2 |
| 9740979 | Dubey et al. | Aug 2017 | B2 |
| 9742462 | Bennett et al. | Aug 2017 | B2 |
| 9742521 | Henry et al. | Aug 2017 | B2 |
| 9743370 | Davis et al. | Aug 2017 | B2 |
| 9746452 | Worden et al. | Aug 2017 | B2 |
| 9746479 | Suthanthiran et al. | Aug 2017 | B2 |
| 9748626 | Henry et al. | Aug 2017 | B2 |
| 9749013 | Barnickel et al. | Aug 2017 | B2 |
| 9749053 | Henry et al. | Aug 2017 | B2 |
| 9749083 | Henry et al. | Aug 2017 | B2 |
| 9753022 | Squartini et al. | Sep 2017 | B2 |
| 9753164 | Barakat et al. | Sep 2017 | B2 |
| 9757388 | Kreppner et al. | Sep 2017 | B2 |
| 9758828 | Suthanthiran et al. | Sep 2017 | B2 |
| 9760907 | Canny et al. | Sep 2017 | B2 |
| 9762289 | Henry et al. | Sep 2017 | B2 |
| 9766320 | Lazik et al. | Sep 2017 | B2 |
| 9766619 | Ziarno | Sep 2017 | B2 |
| 9768833 | Fuchs et al. | Sep 2017 | B2 |
| 9769020 | Henry et al. | Sep 2017 | B2 |
| 9769128 | Gross et al. | Sep 2017 | B2 |
| 9769522 | Richardson | Sep 2017 | B2 |
| 9769619 | Zhyshko et al. | Sep 2017 | B2 |
| 9772612 | McCarthy, III et al. | Sep 2017 | B2 |
| 9775818 | Page et al. | Oct 2017 | B2 |
| 9776725 | Fox et al. | Oct 2017 | B2 |
| 9777327 | Akoulitchev et al. | Oct 2017 | B2 |
| 9780834 | Henry et al. | Oct 2017 | B2 |
| 9781700 | Chen et al. | Oct 2017 | B2 |
| 9786012 | Besman et al. | Oct 2017 | B2 |
| 9787412 | Henry et al. | Oct 2017 | B2 |
| 9788326 | Henry et al. | Oct 2017 | B2 |
| 9788354 | Miller et al. | Oct 2017 | B2 |
| 9790256 | Bunnik et al. | Oct 2017 | B2 |
| 9791460 | Tseng et al. | Oct 2017 | B2 |
| 9791910 | Brown et al. | Oct 2017 | B1 |
| 9792741 | Rabenoro et al. | Oct 2017 | B2 |
| 9793951 | Henry et al. | Oct 2017 | B2 |
| 9793954 | Bennett et al. | Oct 2017 | B2 |
| 9793955 | Henry et al. | Oct 2017 | B2 |
| 9795335 | Merfeld et al. | Oct 2017 | B2 |
| 9800327 | Gerszberg et al. | Oct 2017 | B2 |
| 9801857 | Sarpotdar et al. | Oct 2017 | B2 |
| 9801920 | Kim et al. | Oct 2017 | B2 |
| 9806818 | Henry et al. | Oct 2017 | B2 |
| 9809854 | Crow et al. | Nov 2017 | B2 |
| 9811794 | Mun | Nov 2017 | B2 |
| 9812136 | Kjoerling et al. | Nov 2017 | B2 |
| 9812754 | Parsche | Nov 2017 | B2 |
| 9816373 | Howell et al. | Nov 2017 | B2 |
| 9816897 | Ziarno | Nov 2017 | B2 |
| 9820146 | Gross et al. | Nov 2017 | B2 |
| 9824578 | Burton et al. | Nov 2017 | B2 |
| 9831912 | Henry et al. | Nov 2017 | B2 |
| 9836577 | Beim et al. | Dec 2017 | B2 |
| 9838078 | Bennett et al. | Dec 2017 | B2 |
| 9838736 | Smith et al. | Dec 2017 | B2 |
| 9838760 | Seema et al. | Dec 2017 | B2 |
| 9838896 | Barnickel et al. | Dec 2017 | B1 |
| 9846479 | Brown et al. | Dec 2017 | B1 |
| 9847566 | Henry et al. | Dec 2017 | B2 |
| 9847850 | Henry et al. | Dec 2017 | B2 |
| 9853342 | Henry et al. | Dec 2017 | B2 |
| 9854551 | Davis et al. | Dec 2017 | B2 |
| 9854994 | Ashe et al. | Jan 2018 | B2 |
| 9858681 | Rhoads | Jan 2018 | B2 |
| 9860075 | Gerszberg et al. | Jan 2018 | B1 |
| 9860820 | Petite | Jan 2018 | B2 |
| 9863222 | Morrow et al. | Jan 2018 | B2 |
| 9865911 | Henry et al. | Jan 2018 | B2 |
| 9866276 | Henry et al. | Jan 2018 | B2 |
| 9866306 | Murakami et al. | Jan 2018 | B2 |
| 9866309 | Bennett et al. | Jan 2018 | B2 |
| 9870519 | Ning et al. | Jan 2018 | B2 |
| 9871282 | Henry et al. | Jan 2018 | B2 |
| 9871283 | Henry et al. | Jan 2018 | B2 |
| 9871558 | Henry et al. | Jan 2018 | B2 |
| 9871927 | Perez et al. | Jan 2018 | B2 |
| 9874923 | Brown et al. | Jan 2018 | B1 |
| 9876264 | Barnickel et al. | Jan 2018 | B2 |
| 9876570 | Henry et al. | Jan 2018 | B2 |
| 9876571 | Henry et al. | Jan 2018 | B2 |
| 9876587 | Barzegar et al. | Jan 2018 | B2 |
| 9876605 | Henry et al. | Jan 2018 | B1 |
| 9878138 | Altschul et al. | Jan 2018 | B2 |
| 9878139 | Altschul et al. | Jan 2018 | B2 |
| 9881339 | Mun | Jan 2018 | B2 |
| 9882257 | Henry et al. | Jan 2018 | B2 |
| 9882660 | Breton et al. | Jan 2018 | B2 |
| 9884281 | Fox et al. | Feb 2018 | B2 |
| 9886545 | Narain et al. | Feb 2018 | B2 |
| 9886771 | Chen et al. | Feb 2018 | B1 |
| 9887447 | Henry et al. | Feb 2018 | B2 |
| 9888081 | Farinelli et al. | Feb 2018 | B1 |
| 9891883 | Sharma et al. | Feb 2018 | B2 |
| 9892420 | Sterns et al. | Feb 2018 | B2 |
| 9893795 | Henry et al. | Feb 2018 | B1 |
| 9894852 | Gilbert et al. | Feb 2018 | B2 |
| 9896215 | Fox et al. | Feb 2018 | B2 |
| 9900177 | Holley | Feb 2018 | B2 |
| 9900790 | Sheen et al. | Feb 2018 | B1 |
| 9902499 | Fox et al. | Feb 2018 | B2 |
| 9903193 | Harding et al. | Feb 2018 | B2 |
| 9904535 | Gross et al. | Feb 2018 | B2 |
| 9906269 | Fuchs et al. | Feb 2018 | B2 |
| 9911020 | Liu et al. | Mar 2018 | B1 |
| 9912027 | Henry et al. | Mar 2018 | B2 |
| 9912033 | Henry et al. | Mar 2018 | B2 |
| 9912381 | Bennett et al. | Mar 2018 | B2 |
| 9912382 | Bennett et al. | Mar 2018 | B2 |
| 9912419 | Blandino et al. | Mar 2018 | B1 |
| 9913006 | Wascat et al. | Mar 2018 | B1 |
| 9913139 | Gross et al. | Mar 2018 | B2 |
| 9917341 | Henry et al. | Mar 2018 | B2 |
| 9926368 | Walsh et al. | Mar 2018 | B2 |
| 9926593 | Ehrich et al. | Mar 2018 | B2 |
| 9927512 | Rowe et al. | Mar 2018 | B2 |
| 9927517 | Bennett et al. | Mar 2018 | B1 |
| 9929755 | Henry et al. | Mar 2018 | B2 |
| 9930668 | Barzegar et al. | Mar 2018 | B2 |
| 9931036 | Miller et al. | Apr 2018 | B2 |
| 9931037 | Miller et al. | Apr 2018 | B2 |
| 9932637 | Iakoubova et al. | Apr 2018 | B2 |
| 9934239 | Gkoulalas-Divanis et al. | Apr 2018 | B2 |
| 9935703 | Bennett et al. | Apr 2018 | B2 |
| 9938576 | Sadee et al. | Apr 2018 | B1 |
| 9940942 | Klejsa et al. | Apr 2018 | B2 |
| 9946571 | Brown et al. | Apr 2018 | B1 |
| 9948333 | Henry et al. | Apr 2018 | B2 |
| 9948354 | Bennett et al. | Apr 2018 | B2 |
| 9948355 | Gerszberg et al. | Apr 2018 | B2 |
| 9948477 | Marten | Apr 2018 | B2 |
| 9949659 | Armoundas | Apr 2018 | B2 |
| 9949693 | Sereno et al. | Apr 2018 | B2 |
| 9951348 | Cong et al. | Apr 2018 | B2 |
| 9953448 | Eslami et al. | Apr 2018 | B2 |
| 9954286 | Henry et al. | Apr 2018 | B2 |
| 9954287 | Henry et al. | Apr 2018 | B2 |
| 9955190 | Reibman et al. | Apr 2018 | B2 |
| 9955488 | Ouyang et al. | Apr 2018 | B2 |
| 9957052 | Fox et al. | May 2018 | B2 |
| 9959285 | Gkoulalas-Divanis et al. | May 2018 | B2 |
| 9960808 | Henry et al. | May 2018 | B2 |
| 9960980 | Wilson | May 2018 | B2 |
| 9961488 | D'Alberto et al. | May 2018 | B2 |
| 9965813 | Martin et al. | May 2018 | B2 |
| 9967002 | Bennett et al. | May 2018 | B2 |
| 9967173 | Gross et al. | May 2018 | B2 |
| 9967714 | Ching et al. | May 2018 | B2 |
| 9969329 | Shenoy et al. | May 2018 | B2 |
| 9970993 | Mensah-Brown et al. | May 2018 | B1 |
| 9972014 | McCord et al. | May 2018 | B2 |
| 9973299 | Henry et al. | May 2018 | B2 |
| 9973416 | Henry et al. | May 2018 | B2 |
| 9973940 | Rappaport | May 2018 | B1 |
| 9974018 | San Vicente et al. | May 2018 | B2 |
| 9974773 | Sarpotdar et al. | May 2018 | B2 |
| 9976182 | Khatib | May 2018 | B2 |
| 9980223 | San Vicente et al. | May 2018 | B2 |
| 9982301 | Muthukumar et al. | May 2018 | B2 |
| 9983011 | Mountain | May 2018 | B2 |
| 9983216 | Tseng et al. | May 2018 | B2 |
| 9986527 | D'Alberto et al. | May 2018 | B2 |
| 9988624 | Serber et al. | Jun 2018 | B2 |
| 9990648 | Sterns et al. | Jun 2018 | B2 |
| 9990649 | Sterns et al. | Jun 2018 | B2 |
| 9990818 | Wedig et al. | Jun 2018 | B2 |
| 9991580 | Henry et al. | Jun 2018 | B2 |
| 9992123 | Ouyang et al. | Jun 2018 | B2 |
| 9993735 | Aghdaie et al. | Jun 2018 | B2 |
| 9997819 | Bennett et al. | Jun 2018 | B2 |
| 9998870 | Bennett et al. | Jun 2018 | B1 |
| 9998932 | Henry et al. | Jun 2018 | B2 |
| 9999038 | Barzegar et al. | Jun 2018 | B2 |
| 10002367 | Sterns et al. | Jun 2018 | B2 |
| 10003794 | Jiang et al. | Jun 2018 | B2 |
| 10004183 | Britt et al. | Jun 2018 | B2 |
| 10006088 | Begovich et al. | Jun 2018 | B2 |
| 10006779 | Takahashi | Jun 2018 | B2 |
| 10007592 | Bagchi et al. | Jun 2018 | B2 |
| 10008052 | Wilson et al. | Jun 2018 | B2 |
| 10009063 | Gerszberg et al. | Jun 2018 | B2 |
| 10009067 | Birk et al. | Jun 2018 | B2 |
| 10009366 | Lefebvre et al. | Jun 2018 | B2 |
| 10010703 | Altschul et al. | Jul 2018 | B2 |
| 10013701 | Sterns et al. | Jul 2018 | B2 |
| 10013721 | Laaser et al. | Jul 2018 | B1 |
| 10018631 | Thorne et al. | Jul 2018 | B2 |
| 10019727 | Sterns et al. | Jul 2018 | B2 |
| 10020844 | Bogdan et al. | Jul 2018 | B2 |
| 10021426 | Hu et al. | Jul 2018 | B2 |
| 10023877 | Cong et al. | Jul 2018 | B2 |
| 10024187 | Soares et al. | Jul 2018 | B2 |
| 10027397 | Kim | Jul 2018 | B2 |
| 10027398 | Bennett et al. | Jul 2018 | B2 |
| 10028706 | Brockway et al. | Jul 2018 | B2 |
| 10032123 | Mejegård et al. | Jul 2018 | B2 |
| 10032309 | Jiang et al. | Jul 2018 | B2 |
| 10033108 | Henry et al. | Jul 2018 | B2 |
| 10035609 | Ziarno | Jul 2018 | B2 |
| 10036074 | Pichaud et al. | Jul 2018 | B2 |
| 10036638 | D'Alberto et al. | Jul 2018 | B2 |
| 10037393 | Polovick et al. | Jul 2018 | B1 |
| 10038697 | Dotan et al. | Jul 2018 | B2 |
| 10038765 | Park et al. | Jul 2018 | B2 |
| 10043527 | Gurijala et al. | Aug 2018 | B1 |
| 10044409 | Barzegar et al. | Aug 2018 | B2 |
| 10046779 | Kim | Aug 2018 | B2 |
| 10047358 | Serber et al. | Aug 2018 | B1 |
| 10050697 | Bennett et al. | Aug 2018 | B2 |
| 10051403 | Eronen et al. | Aug 2018 | B2 |
| 10051630 | Barzegar et al. | Aug 2018 | B2 |
| 10051663 | Biswas et al. | Aug 2018 | B2 |
| 10058519 | Singh et al. | Aug 2018 | B2 |
| 10061887 | Vishnudas et al. | Aug 2018 | B2 |
| 10062121 | Besman et al. | Aug 2018 | B2 |
| 10063280 | Fuchs et al. | Aug 2018 | B2 |
| 10063861 | Chen et al. | Aug 2018 | B2 |
| 10068467 | Pennebaker | Sep 2018 | B1 |
| 10069185 | Henry et al. | Sep 2018 | B2 |
| 10069535 | Vannucci et al. | Sep 2018 | B2 |
| 10069547 | Wang et al. | Sep 2018 | B2 |
| 10070166 | Chaar et al. | Sep 2018 | B2 |
| 10070220 | Shields et al. | Sep 2018 | B2 |
| 10070321 | Li et al. | Sep 2018 | B2 |
| 10070381 | Noh et al. | Sep 2018 | B2 |
| 10071151 | Bunnik et al. | Sep 2018 | B2 |
| 10079661 | Gerszberg et al. | Sep 2018 | B2 |
| 10080774 | Fueyo et al. | Sep 2018 | B2 |
| 10084223 | Corum et al. | Sep 2018 | B2 |
| 10084868 | Chandra et al. | Sep 2018 | B2 |
| 10085425 | Funaya et al. | Oct 2018 | B2 |
| 10085697 | Evans | Oct 2018 | B1 |
| 10089716 | Chandra et al. | Oct 2018 | B2 |
| 10090594 | Henry et al. | Oct 2018 | B2 |
| 10090606 | Henry et al. | Oct 2018 | B2 |
| 10091017 | Landow et al. | Oct 2018 | B2 |
| 10091512 | Xu et al. | Oct 2018 | B2 |
| 10091787 | Barzegar et al. | Oct 2018 | B2 |
| 10092509 | Maisel et al. | Oct 2018 | B2 |
| 10098569 | Abeyratne et al. | Oct 2018 | B2 |
| 10098908 | Durham et al. | Oct 2018 | B2 |
| 10100092 | Atkinson et al. | Oct 2018 | B2 |
| 10101340 | Lin et al. | Oct 2018 | B2 |
| 10103422 | Britz et al. | Oct 2018 | B2 |
| 10103801 | Bennett et al. | Oct 2018 | B2 |
| 10111169 | San Vicente et al. | Oct 2018 | B2 |
| 10111888 | Kreppner et al. | Oct 2018 | B2 |
| 10113198 | Begovich et al. | Oct 2018 | B2 |
| 10113200 | Danila et al. | Oct 2018 | B2 |
| 10114915 | Polovick et al. | Oct 2018 | B2 |
| 10116697 | Beckman et al. | Oct 2018 | B2 |
| 10117868 | Palczewski et al. | Nov 2018 | B2 |
| 10121338 | Ellers et al. | Nov 2018 | B2 |
| 10121339 | Strulovitch et al. | Nov 2018 | B2 |
| 10122218 | Corum et al. | Nov 2018 | B2 |
| 10126309 | Wiktorowicz | Nov 2018 | B2 |
| 10131949 | Li et al. | Nov 2018 | B2 |
| 10133989 | Brown | Nov 2018 | B1 |
| 10135145 | Henry et al. | Nov 2018 | B2 |
| 10135146 | Henry et al. | Nov 2018 | B2 |
| 10135147 | Henry et al. | Nov 2018 | B2 |
| 10135499 | Stratigos | Nov 2018 | B2 |
| 10136434 | Gerszberg et al. | Nov 2018 | B2 |
| 10137288 | Altschul et al. | Nov 2018 | B2 |
| 10139820 | Liu et al. | Nov 2018 | B2 |
| 10141622 | Corum et al. | Nov 2018 | B2 |
| 10142010 | Bennett et al. | Nov 2018 | B2 |
| 10142086 | Bennett et al. | Nov 2018 | B2 |
| 10142788 | Zhyshko et al. | Nov 2018 | B2 |
| 10144036 | Fuchs et al. | Dec 2018 | B2 |
| 10147173 | Huang et al. | Dec 2018 | B2 |
| 10148016 | Johnson et al. | Dec 2018 | B2 |
| 10149129 | Petite | Dec 2018 | B2 |
| 10149131 | Natarajan et al. | Dec 2018 | B2 |
| 10153823 | Murakami et al. | Dec 2018 | B2 |
| 10153892 | Kliewer et al. | Dec 2018 | B2 |
| 10154326 | Mazed | Dec 2018 | B2 |
| 10154624 | Guan et al. | Dec 2018 | B2 |
| 10155651 | Keating et al. | Dec 2018 | B2 |
| 10157509 | Dolan et al. | Dec 2018 | B2 |
| 10168337 | Brasier et al. | Jan 2019 | B2 |
| 10168695 | Barnickel et al. | Jan 2019 | B2 |
| 10170840 | Henry et al. | Jan 2019 | B2 |
| 10171501 | Beckman et al. | Jan 2019 | B2 |
| 10172363 | Wakefield | Jan 2019 | B2 |
| 10175387 | Kleeman et al. | Jan 2019 | B2 |
| 10178445 | Lubranski et al. | Jan 2019 | B2 |
| 10181010 | Patel et al. | Jan 2019 | B2 |
| 10187850 | San Vicente et al. | Jan 2019 | B2 |
| 10187899 | Ouyang et al. | Jan 2019 | B2 |
| 10194437 | Henry et al. | Jan 2019 | B2 |
| 10200752 | Richardson | Feb 2019 | B2 |
| 10535138 | Pfeiffer | Jan 2020 | B2 |
| 20010009904 | Wolff et al. | Jul 2001 | A1 |
| 20010024525 | Hata et al. | Sep 2001 | A1 |
| 20010031089 | Hata et al. | Oct 2001 | A1 |
| 20010034686 | Eder | Oct 2001 | A1 |
| 20020001574 | Woiff et al. | Jan 2002 | A1 |
| 20020016699 | Hoggart et al. | Feb 2002 | A1 |
| 20020028021 | Foote et al. | Mar 2002 | A1 |
| 20020055457 | Janus et al. | May 2002 | A1 |
| 20020076115 | Leeder et al. | Jun 2002 | A1 |
| 20020090139 | Hata et al. | Jul 2002 | A1 |
| 20020091972 | Harris et al. | Jul 2002 | A1 |
| 20020099686 | Schwartz et al. | Jul 2002 | A1 |
| 20020131084 | Andrew et al. | Sep 2002 | A1 |
| 20020138012 | Hodges et al. | Sep 2002 | A1 |
| 20020138270 | Bellegarda et al. | Sep 2002 | A1 |
| 20020175921 | Xu et al. | Nov 2002 | A1 |
| 20020176633 | Frojdh et al. | Nov 2002 | A1 |
| 20020184272 | Burges et al. | Dec 2002 | A1 |
| 20030009295 | Markowitz et al. | Jan 2003 | A1 |
| 20030018647 | Bialkowski | Jan 2003 | A1 |
| 20030021848 | Johnson et al. | Jan 2003 | A1 |
| 20030023951 | Rosenberg | Jan 2003 | A1 |
| 20030050265 | Dean et al. | Mar 2003 | A1 |
| 20030059121 | Savakis et al. | Mar 2003 | A1 |
| 20030065409 | Raeth et al. | Apr 2003 | A1 |
| 20030073715 | El-Rashidy et al. | Apr 2003 | A1 |
| 20030078738 | Wouters et al. | Apr 2003 | A1 |
| 20030086621 | Hata et al. | May 2003 | A1 |
| 20030093277 | Bellegarda et al. | May 2003 | A1 |
| 20030098804 | Ekstrand et al. | May 2003 | A1 |
| 20030104499 | Pressman et al. | Jun 2003 | A1 |
| 20030107488 | van Putten | Jun 2003 | A1 |
| 20030139963 | Chickering et al. | Jul 2003 | A1 |
| 20030151513 | Herrmann et al. | Aug 2003 | A1 |
| 20030166017 | McCarthy | Sep 2003 | A1 |
| 20030166026 | Goodman et al. | Sep 2003 | A1 |
| 20030170660 | Sondergaard et al. | Sep 2003 | A1 |
| 20030170700 | Shang et al. | Sep 2003 | A1 |
| 20030171685 | Lesser et al. | Sep 2003 | A1 |
| 20030171876 | Markowitz et al. | Sep 2003 | A1 |
| 20030180764 | Shang et al. | Sep 2003 | A1 |
| 20030190602 | Pressman et al. | Oct 2003 | A1 |
| 20030198650 | Elbers et al. | Oct 2003 | A1 |
| 20030199685 | Pressman et al. | Oct 2003 | A1 |
| 20030220775 | Jourdan et al. | Nov 2003 | A1 |
| 20040001543 | Adams et al. | Jan 2004 | A1 |
| 20040001611 | Celik et al. | Jan 2004 | A1 |
| 20040015525 | Martens et al. | Jan 2004 | A1 |
| 20040027259 | Soliman et al. | Feb 2004 | A1 |
| 20040063095 | Fibers et al. | Apr 2004 | A1 |
| 20040063655 | Dean et al. | Apr 2004 | A1 |
| 20040073414 | Bienenstock et al. | Apr 2004 | A1 |
| 20040083833 | Hitt et al. | May 2004 | A1 |
| 20040085233 | Linzer et al. | May 2004 | A1 |
| 20040088239 | Eder | May 2004 | A1 |
| 20040090329 | Hitt | May 2004 | A1 |
| 20040090345 | Hitt | May 2004 | A1 |
| 20040092493 | El-Rashidy et al. | May 2004 | A1 |
| 20040100394 | Hitt | May 2004 | A1 |
| 20040110697 | Wolff et al. | Jun 2004 | A1 |
| 20040115688 | Cheung et al. | Jun 2004 | A1 |
| 20040116409 | Campochiaro | Jun 2004 | A1 |
| 20040116434 | Campochiaro | Jun 2004 | A1 |
| 20040127799 | Sorensen et al. | Jul 2004 | A1 |
| 20040128097 | LaMarca et al. | Jul 2004 | A1 |
| 20040138826 | Carter et al. | Jul 2004 | A1 |
| 20040139110 | LaMarca et al. | Jul 2004 | A1 |
| 20040142890 | McNeel | Jul 2004 | A1 |
| 20040157783 | McCaddon | Aug 2004 | A1 |
| 20040165527 | Gu et al. | Aug 2004 | A1 |
| 20040166519 | Cargill et al. | Aug 2004 | A1 |
| 20040172319 | Eder | Sep 2004 | A1 |
| 20040199445 | Eder | Oct 2004 | A1 |
| 20040210509 | Eder | Oct 2004 | A1 |
| 20040215551 | Eder | Oct 2004 | A1 |
| 20040221237 | Foote et al. | Nov 2004 | A1 |
| 20040225629 | Eder | Nov 2004 | A1 |
| 20040265849 | Cargill et al. | Dec 2004 | A1 |
| 20050002950 | Rubens et al. | Jan 2005 | A1 |
| 20050017602 | Arms et al. | Jan 2005 | A1 |
| 20050026169 | Cargill et al. | Feb 2005 | A1 |
| 20050069224 | Nowicki et al. | Mar 2005 | A1 |
| 20050071266 | Eder | Mar 2005 | A1 |
| 20050075597 | Vournakis et al. | Apr 2005 | A1 |
| 20050080613 | Colledge et al. | Apr 2005 | A1 |
| 20050090936 | Hitt et al. | Apr 2005 | A1 |
| 20050096360 | Salte et al. | May 2005 | A1 |
| 20050096963 | Myr et al. | May 2005 | A1 |
| 20050113306 | Janus et al. | May 2005 | A1 |
| 20050113307 | Janus et al. | May 2005 | A1 |
| 20050144106 | Eder | Jun 2005 | A1 |
| 20050147172 | Winger et al. | Jul 2005 | A1 |
| 20050147173 | Winger et al. | Jul 2005 | A1 |
| 20050164206 | Hadjiargyrou et al. | Jul 2005 | A1 |
| 20050171923 | Kiiveri et al. | Aug 2005 | A1 |
| 20050176442 | Ju et al. | Aug 2005 | A1 |
| 20050210340 | Townsend et al. | Sep 2005 | A1 |
| 20050213548 | Benson et al. | Sep 2005 | A1 |
| 20050245252 | Kappes et al. | Nov 2005 | A1 |
| 20050246314 | Eder | Nov 2005 | A1 |
| 20050251468 | Eder | Nov 2005 | A1 |
| 20050272054 | Cargill et al. | Dec 2005 | A1 |
| 20050276323 | Martemyanov et al. | Dec 2005 | A1 |
| 20050282201 | Pressman et al. | Dec 2005 | A1 |
| 20050287559 | Cargill et al. | Dec 2005 | A1 |
| 20060024700 | Cargill et al. | Feb 2006 | A1 |
| 20060026017 | Walker | Feb 2006 | A1 |
| 20060029060 | Pister | Feb 2006 | A1 |
| 20060035867 | Janus et al. | Feb 2006 | A1 |
| 20060036403 | Wegerich et al. | Feb 2006 | A1 |
| 20060036497 | Chickering et al. | Feb 2006 | A1 |
| 20060053004 | Ceperkovic et al. | Mar 2006 | A1 |
| 20060059028 | Eder | Mar 2006 | A1 |
| 20060061795 | Walmsley | Mar 2006 | A1 |
| 20060084070 | Rieder et al. | Apr 2006 | A1 |
| 20060084081 | Rieder et al. | Apr 2006 | A1 |
| 20060101017 | Eder | May 2006 | A1 |
| 20060111635 | Todros et al. | May 2006 | A1 |
| 20060111849 | Schadt et al. | May 2006 | A1 |
| 20060122816 | Schadt et al. | Jun 2006 | A1 |
| 20060136184 | Gustafsson et al. | Jun 2006 | A1 |
| 20060142983 | Sorensen et al. | Jun 2006 | A1 |
| 20060143071 | Hofmann | Jun 2006 | A1 |
| 20060143454 | Walmsley | Jun 2006 | A1 |
| 20060147420 | Fueyo et al. | Jul 2006 | A1 |
| 20060149522 | Tang | Jul 2006 | A1 |
| 20060164997 | Graepel et al. | Jul 2006 | A1 |
| 20060165163 | Burazerovic et al. | Jul 2006 | A1 |
| 20060175606 | Wang et al. | Aug 2006 | A1 |
| 20060184473 | Eder | Aug 2006 | A1 |
| 20060189553 | Wolff et al. | Aug 2006 | A9 |
| 20060200709 | Yu et al. | Sep 2006 | A1 |
| 20060206246 | Walker | Sep 2006 | A1 |
| 20060223093 | Luke et al. | Oct 2006 | A1 |
| 20060228715 | Shiffman et al. | Oct 2006 | A1 |
| 20060234262 | Ruano et al. | Oct 2006 | A1 |
| 20060241869 | Schadt et al. | Oct 2006 | A1 |
| 20060243055 | Sundermeyer et al. | Nov 2006 | A1 |
| 20060243056 | Sundermeyer et al. | Nov 2006 | A1 |
| 20060243180 | Sundermeyer et al. | Nov 2006 | A1 |
| 20060278241 | Ruano | Dec 2006 | A1 |
| 20060286571 | Dervieux | Dec 2006 | A1 |
| 20060292547 | Pettegrew et al. | Dec 2006 | A1 |
| 20070000423 | Cargill et al. | Feb 2007 | A1 |
| 20070026426 | Fuernkranz et al. | Feb 2007 | A1 |
| 20070031846 | Cargill et al. | Feb 2007 | A1 |
| 20070031847 | Cargill et al. | Feb 2007 | A1 |
| 20070031848 | Cargill et al. | Feb 2007 | A1 |
| 20070036773 | Cooper et al. | Feb 2007 | A1 |
| 20070037208 | Foote et al. | Feb 2007 | A1 |
| 20070037241 | Soreq et al. | Feb 2007 | A1 |
| 20070038346 | Ehrlich et al. | Feb 2007 | A1 |
| 20070038386 | Schadt et al. | Feb 2007 | A1 |
| 20070043656 | Lancaster | Feb 2007 | A1 |
| 20070049644 | Bedoukian et al. | Mar 2007 | A1 |
| 20070054278 | Cargill | Mar 2007 | A1 |
| 20070059710 | Luke et al. | Mar 2007 | A1 |
| 20070065843 | Jiang et al. | Mar 2007 | A1 |
| 20070067195 | Fahner et al. | Mar 2007 | A1 |
| 20070072821 | Iakoubova et al. | Mar 2007 | A1 |
| 20070078117 | Hoffman et al. | Apr 2007 | A1 |
| 20070078434 | Keusch et al. | Apr 2007 | A1 |
| 20070083491 | Walmsley et al. | Apr 2007 | A1 |
| 20070087000 | Walsh et al. | Apr 2007 | A1 |
| 20070088248 | Glenn et al. | Apr 2007 | A1 |
| 20070090996 | Wang | Apr 2007 | A1 |
| 20070101382 | Aramaki et al. | May 2007 | A1 |
| 20070105804 | Wolff et al. | May 2007 | A1 |
| 20070112521 | Akimov et al. | May 2007 | A1 |
| 20070123487 | McNeel | May 2007 | A1 |
| 20070129948 | Yi et al. | Jun 2007 | A1 |
| 20070166707 | Schadt et al. | Jul 2007 | A1 |
| 20070167727 | Menezes et al. | Jul 2007 | A1 |
| 20070185656 | Schadt | Aug 2007 | A1 |
| 20070190056 | Kambadur et al. | Aug 2007 | A1 |
| 20070195808 | Ehrlich et al. | Aug 2007 | A1 |
| 20070202518 | Ruano et al. | Aug 2007 | A1 |
| 20070208600 | Babus et al. | Sep 2007 | A1 |
| 20070208640 | Banasiak et al. | Sep 2007 | A1 |
| 20070210916 | Ogushi et al. | Sep 2007 | A1 |
| 20070210929 | Sabata et al. | Sep 2007 | A1 |
| 20070216545 | Li et al. | Sep 2007 | A1 |
| 20070217506 | Yang et al. | Sep 2007 | A1 |
| 20070221125 | Kaushal et al. | Sep 2007 | A1 |
| 20070223582 | Borer | Sep 2007 | A1 |
| 20070224712 | Kaushal et al. | Sep 2007 | A1 |
| 20070233679 | Liu et al. | Oct 2007 | A1 |
| 20070239439 | Yi et al. | Oct 2007 | A1 |
| 20070239862 | Bronez et al. | Oct 2007 | A1 |
| 20070254289 | Li et al. | Nov 2007 | A1 |
| 20070254369 | Grimes et al. | Nov 2007 | A1 |
| 20070255113 | Grimes | Nov 2007 | A1 |
| 20070259954 | Pablos | Nov 2007 | A1 |
| 20070275881 | Morrow et al. | Nov 2007 | A1 |
| 20070278395 | Gorenstein et al. | Dec 2007 | A1 |
| 20070297394 | Allan et al. | Dec 2007 | A1 |
| 20080015871 | Eder | Jan 2008 | A1 |
| 20080027769 | Eder | Jan 2008 | A1 |
| 20080027841 | Eder | Jan 2008 | A1 |
| 20080031213 | Kaiser et al. | Feb 2008 | A1 |
| 20080031545 | Nowicki et al. | Feb 2008 | A1 |
| 20080032628 | Vehvilainen et al. | Feb 2008 | A1 |
| 20080033589 | Ontalus et al. | Feb 2008 | A1 |
| 20080037880 | Lai | Feb 2008 | A1 |
| 20080038230 | Lindeman et al. | Feb 2008 | A1 |
| 20080050025 | Bashyam et al. | Feb 2008 | A1 |
| 20080050026 | Bashyam et al. | Feb 2008 | A1 |
| 20080050027 | Bashyam et al. | Feb 2008 | A1 |
| 20080050029 | Bashyam et al. | Feb 2008 | A1 |
| 20080050047 | Bashyam et al. | Feb 2008 | A1 |
| 20080050357 | Gustafsson et al. | Feb 2008 | A1 |
| 20080050732 | Rieder et al. | Feb 2008 | A1 |
| 20080050733 | Rieder et al. | Feb 2008 | A1 |
| 20080051318 | Li et al. | Feb 2008 | A1 |
| 20080055121 | Fulcomer | Mar 2008 | A1 |
| 20080057500 | Rieder et al. | Mar 2008 | A1 |
| 20080059072 | Willen et al. | Mar 2008 | A1 |
| 20080074254 | Townsend et al. | Mar 2008 | A1 |
| 20080076120 | Donaldson et al. | Mar 2008 | A1 |
| 20080103892 | Chatwin et al. | May 2008 | A1 |
| 20080108081 | Luke et al. | May 2008 | A1 |
| 20080108713 | Begovich et al. | May 2008 | A1 |
| 20080114564 | Ihara | May 2008 | A1 |
| 20080122938 | Broberg et al. | May 2008 | A1 |
| 20080126378 | Parkinson et al. | May 2008 | A1 |
| 20080127545 | Yang et al. | Jun 2008 | A1 |
| 20080129495 | Hitt | Jun 2008 | A1 |
| 20080139402 | Pressman et al. | Jun 2008 | A1 |
| 20080140549 | Eder | Jun 2008 | A1 |
| 20080152235 | Bashyam et al. | Jun 2008 | A1 |
| 20080154928 | Bashyam et al. | Jun 2008 | A1 |
| 20080160046 | Elbers et al. | Jul 2008 | A1 |
| 20080166348 | Kupper et al. | Jul 2008 | A1 |
| 20080172205 | Breton et al. | Jul 2008 | A1 |
| 20080176266 | Berger et al. | Jul 2008 | A1 |
| 20080177592 | Masuyama et al. | Jul 2008 | A1 |
| 20080183394 | Woodward | Jul 2008 | A1 |
| 20080189545 | Parkinson | Aug 2008 | A1 |
| 20080195596 | Sisk et al. | Aug 2008 | A1 |
| 20080213745 | Berger et al. | Sep 2008 | A1 |
| 20080215609 | Cleveland et al. | Sep 2008 | A1 |
| 20080219094 | Barakat | Sep 2008 | A1 |
| 20080228744 | Desbiens | Sep 2008 | A1 |
| 20080241846 | Iakoubova et al. | Oct 2008 | A1 |
| 20080248476 | Cargill et al. | Oct 2008 | A1 |
| 20080253283 | Douglis et al. | Oct 2008 | A1 |
| 20080256069 | Eder | Oct 2008 | A1 |
| 20080256166 | Branson et al. | Oct 2008 | A1 |
| 20080256167 | Branson et al. | Oct 2008 | A1 |
| 20080256253 | Branson et al. | Oct 2008 | A1 |
| 20080256384 | Branson et al. | Oct 2008 | A1 |
| 20080256548 | Branson et al. | Oct 2008 | A1 |
| 20080256549 | Liu et al. | Oct 2008 | A1 |
| 20080286796 | Grupe et al. | Nov 2008 | A1 |
| 20080299554 | Huang et al. | Dec 2008 | A1 |
| 20080301077 | Fung et al. | Dec 2008 | A1 |
| 20080305967 | Ward et al. | Dec 2008 | A1 |
| 20080306034 | Ward | Dec 2008 | A1 |
| 20080306804 | Opdycke et al. | Dec 2008 | A1 |
| 20080309481 | Tanaka et al. | Dec 2008 | A1 |
| 20080311572 | Ahuja et al. | Dec 2008 | A1 |
| 20080313073 | Fahner et al. | Dec 2008 | A1 |
| 20080318219 | Rieder et al. | Dec 2008 | A1 |
| 20080318914 | Hoffman et al. | Dec 2008 | A1 |
| 20080319897 | Fahner et al. | Dec 2008 | A1 |
| 20090006363 | Canny et al. | Jan 2009 | A1 |
| 20090007706 | Hitt et al. | Jan 2009 | A1 |
| 20090009317 | Weaver et al. | Jan 2009 | A1 |
| 20090009323 | Weaver et al. | Jan 2009 | A1 |
| 20090009339 | Gorrell et al. | Jan 2009 | A1 |
| 20090009340 | Weaver et al. | Jan 2009 | A1 |
| 20090018891 | Eder | Jan 2009 | A1 |
| 20090030771 | Eder | Jan 2009 | A1 |
| 20090035768 | Nelson et al. | Feb 2009 | A1 |
| 20090035769 | Nelson et al. | Feb 2009 | A1 |
| 20090035772 | Nelson et al. | Feb 2009 | A1 |
| 20090037402 | Jones et al. | Feb 2009 | A1 |
| 20090037410 | Jones et al. | Feb 2009 | A1 |
| 20090041021 | Meany et al. | Feb 2009 | A1 |
| 20090043637 | Eder | Feb 2009 | A1 |
| 20090050492 | Alocilja et al. | Feb 2009 | A1 |
| 20090053745 | Firestein-Miller | Feb 2009 | A1 |
| 20090055139 | Agarwal et al. | Feb 2009 | A1 |
| 20090058088 | Pitchford et al. | Mar 2009 | A1 |
| 20090058639 | Tanaka et al. | Mar 2009 | A1 |
| 20090059827 | Liu et al. | Mar 2009 | A1 |
| 20090070081 | Saenz et al. | Mar 2009 | A1 |
| 20090070182 | Eder | Mar 2009 | A1 |
| 20090070767 | Garbow et al. | Mar 2009 | A1 |
| 20090076890 | Dixon et al. | Mar 2009 | A1 |
| 20090087909 | Carpenter et al. | Apr 2009 | A1 |
| 20090089022 | Song et al. | Apr 2009 | A1 |
| 20090104620 | Schramm et al. | Apr 2009 | A1 |
| 20090107510 | Cornish et al. | Apr 2009 | A1 |
| 20090112752 | Milana | Apr 2009 | A1 |
| 20090118217 | Cargill et al. | May 2009 | A1 |
| 20090119357 | Rice et al. | May 2009 | A1 |
| 20090123441 | Braughler et al. | May 2009 | A1 |
| 20090125466 | Hinsz et al. | May 2009 | A1 |
| 20090125916 | Lu et al. | May 2009 | A1 |
| 20090130682 | Li et al. | May 2009 | A1 |
| 20090131702 | Pablos | May 2009 | A1 |
| 20090132448 | Eder | May 2009 | A1 |
| 20090132453 | Hangartner et al. | May 2009 | A1 |
| 20090136481 | Kambadur et al. | May 2009 | A1 |
| 20090137417 | Fu et al. | May 2009 | A1 |
| 20090138715 | Xiao et al. | May 2009 | A1 |
| 20090140893 | Schneider | Jun 2009 | A1 |
| 20090140894 | Schneider | Jun 2009 | A1 |
| 20090146833 | Lee et al. | Jun 2009 | A1 |
| 20090149722 | Abolfathi et al. | Jun 2009 | A1 |
| 20090157409 | Lifu et al. | Jun 2009 | A1 |
| 20090161581 | Kim | Jun 2009 | A1 |
| 20090162346 | Schrodi et al. | Jun 2009 | A1 |
| 20090162348 | Li et al. | Jun 2009 | A1 |
| 20090168653 | St. Pierre et al. | Jul 2009 | A1 |
| 20090170111 | Luke et al. | Jul 2009 | A1 |
| 20090171740 | Eder | Jul 2009 | A1 |
| 20090175830 | Fueyo et al. | Jul 2009 | A1 |
| 20090176235 | Cargill et al. | Jul 2009 | A1 |
| 20090176857 | Levy | Jul 2009 | A1 |
| 20090181384 | Nekarda et al. | Jul 2009 | A1 |
| 20090186352 | Akoulitchev et al. | Jul 2009 | A1 |
| 20090196206 | Weaver et al. | Aug 2009 | A1 |
| 20090196875 | Cargill et al. | Aug 2009 | A1 |
| 20090198374 | Tsai et al. | Aug 2009 | A1 |
| 20090210173 | Arms et al. | Aug 2009 | A1 |
| 20090210363 | Grabarnik et al. | Aug 2009 | A1 |
| 20090212981 | Schneider | Aug 2009 | A1 |
| 20090220965 | Frackelton, Jr. et al. | Sep 2009 | A1 |
| 20090221438 | Kitzman et al. | Sep 2009 | A1 |
| 20090221620 | Luke et al. | Sep 2009 | A1 |
| 20090226420 | Hauser et al. | Sep 2009 | A1 |
| 20090232408 | Meany | Sep 2009 | A1 |
| 20090233299 | Ruano et al. | Sep 2009 | A1 |
| 20090234200 | Husheer | Sep 2009 | A1 |
| 20090253952 | Khatib et al. | Oct 2009 | A1 |
| 20090258003 | Bare | Oct 2009 | A1 |
| 20090262929 | Walmsley | Oct 2009 | A1 |
| 20090264453 | Shiffman et al. | Oct 2009 | A1 |
| 20090270332 | Bare et al. | Oct 2009 | A1 |
| 20090271342 | Eder | Oct 2009 | A1 |
| 20090276189 | Willen et al. | Nov 2009 | A1 |
| 20090280566 | Carpenter et al. | Nov 2009 | A1 |
| 20090284399 | Schneider | Nov 2009 | A1 |
| 20090285827 | Walsh et al. | Nov 2009 | A1 |
| 20090289820 | Schneider | Nov 2009 | A1 |
| 20090292475 | Alam et al. | Nov 2009 | A1 |
| 20090294645 | Gorenstein et al. | Dec 2009 | A1 |
| 20090296670 | Luo et al. | Dec 2009 | A1 |
| 20090298082 | Klee et al. | Dec 2009 | A1 |
| 20090303042 | Song et al. | Dec 2009 | A1 |
| 20090306950 | De Winter et al. | Dec 2009 | A1 |
| 20090308600 | Hsu et al. | Dec 2009 | A1 |
| 20090312410 | Shiffman et al. | Dec 2009 | A1 |
| 20090313041 | Eder | Dec 2009 | A1 |
| 20090322510 | Berger et al. | Dec 2009 | A1 |
| 20090322570 | Schneider | Dec 2009 | A1 |
| 20090325920 | Hoffman et al. | Dec 2009 | A1 |
| 20100003691 | Chettier et al. | Jan 2010 | A1 |
| 20100008934 | Schrodi et al. | Jan 2010 | A1 |
| 20100010336 | Pettegrew et al. | Jan 2010 | A1 |
| 20100004243 | Moore et al. | Feb 2010 | A1 |
| 20100028870 | Welch et al. | Feb 2010 | A1 |
| 20100029493 | Welch et al. | Feb 2010 | A1 |
| 20100031052 | Kim et al. | Feb 2010 | A1 |
| 20100035983 | Shiffman et al. | Feb 2010 | A1 |
| 20100039933 | Taylor et al. | Feb 2010 | A1 |
| 20100047798 | Feldman et al. | Feb 2010 | A1 |
| 20100048525 | Gleicher et al. | Feb 2010 | A1 |
| 20100048679 | Garren et al. | Feb 2010 | A1 |
| 20100054307 | Strohm | Mar 2010 | A1 |
| 20100063851 | Andrist et al. | Mar 2010 | A1 |
| 20100070455 | Halperin et al. | Mar 2010 | A1 |
| 20100074054 | Barakat et al. | Mar 2010 | A1 |
| 20100076949 | Zoeter et al. | Mar 2010 | A1 |
| 20100082617 | Liu et al. | Apr 2010 | A1 |
| 20100100331 | Gustafsson et al. | Apr 2010 | A1 |
| 20100100338 | Vik et al. | Apr 2010 | A1 |
| 20100109853 | Strohm | May 2010 | A1 |
| 20100113407 | Gleicher et al. | May 2010 | A1 |
| 20100114581 | Li et al. | May 2010 | A1 |
| 20100114793 | Eder | May 2010 | A1 |
| 20100120040 | Iakoubova et al. | May 2010 | A1 |
| 20100125641 | Shelby | May 2010 | A1 |
| 20100132058 | Diatchenko et al. | May 2010 | A1 |
| 20100136553 | Black et al. | Jun 2010 | A1 |
| 20100136579 | Tseng et al. | Jun 2010 | A1 |
| 20100137409 | Plotnikova et al. | Jun 2010 | A1 |
| 20100148940 | Gelvin et al. | Jun 2010 | A1 |
| 20100151468 | Esteller et al. | Jun 2010 | A1 |
| 20100152619 | Kalpaxis et al. | Jun 2010 | A1 |
| 20100152909 | Hitt et al. | Jun 2010 | A1 |
| 20100174336 | Stein | Jul 2010 | A1 |
| 20100176939 | Harres | Jul 2010 | A1 |
| 20100183574 | Davis et al. | Jul 2010 | A1 |
| 20100183610 | Li et al. | Jul 2010 | A1 |
| 20100184040 | Kirkpatrick et al. | Jul 2010 | A1 |
| 20100187414 | Gorenstein et al. | Jul 2010 | A1 |
| 20100190172 | Cargill et al. | Jul 2010 | A1 |
| 20100191216 | Keusch et al. | Jul 2010 | A1 |
| 20100196400 | Li et al. | Aug 2010 | A1 |
| 20100197033 | Lin et al. | Aug 2010 | A1 |
| 20100201516 | Gelvin et al. | Aug 2010 | A1 |
| 20100202442 | Allan et al. | Aug 2010 | A1 |
| 20100203507 | Dervieux | Aug 2010 | A1 |
| 20100203508 | Dervieux | Aug 2010 | A1 |
| 20100211787 | Bukshpun et al. | Aug 2010 | A1 |
| 20100215645 | Cargill et al. | Aug 2010 | A1 |
| 20100216154 | Huang et al. | Aug 2010 | A1 |
| 20100216655 | Sulem | Aug 2010 | A1 |
| 20100217648 | Agarwal et al. | Aug 2010 | A1 |
| 20100222225 | Fu et al. | Sep 2010 | A1 |
| 20100249188 | Lavedan et al. | Sep 2010 | A1 |
| 20100254312 | Kennedy | Oct 2010 | A1 |
| 20100261187 | Iakoubova et al. | Oct 2010 | A1 |
| 20100268680 | Hangartner et al. | Oct 2010 | A1 |
| 20100272713 | Ward et al. | Oct 2010 | A1 |
| 20100278060 | Lee et al. | Nov 2010 | A1 |
| 20100278796 | Berger | Nov 2010 | A1 |
| 20100284989 | Markowitz et al. | Nov 2010 | A1 |
| 20100285579 | Lim et al. | Nov 2010 | A1 |
| 20100293130 | Stephan et al. | Nov 2010 | A1 |
| 20100310499 | Skelton et al. | Dec 2010 | A1 |
| 20100310543 | Farinelli et al. | Dec 2010 | A1 |
| 20100312128 | Karst et al. | Dec 2010 | A1 |
| 20100330187 | Bravo et al. | Dec 2010 | A1 |
| 20110004509 | Wu et al. | Jan 2011 | A1 |
| 20110019737 | Yang et al. | Jan 2011 | A1 |
| 20110021555 | Nordsiek et al. | Jan 2011 | A1 |
| 20110027275 | Ferrara et al. | Feb 2011 | A1 |
| 20110028333 | Christensen et al. | Feb 2011 | A1 |
| 20110032983 | Sezer | Feb 2011 | A1 |
| 20110035271 | Weaver et al. | Feb 2011 | A1 |
| 20110035491 | Gelvin et al. | Feb 2011 | A1 |
| 20110045818 | Banks et al. | Feb 2011 | A1 |
| 20110054356 | Merfeld | Mar 2011 | A1 |
| 20110054949 | Joye et al. | Mar 2011 | A1 |
| 20110059860 | Gustafsson et al. | Mar 2011 | A1 |
| 20110064747 | Sarangarajan et al. | Mar 2011 | A1 |
| 20110065981 | Khatib | Mar 2011 | A1 |
| 20110070587 | Fuernkranz et al. | Mar 2011 | A1 |
| 20110071033 | Yurttas et al. | Mar 2011 | A1 |
| 20110075920 | Wu et al. | Mar 2011 | A1 |
| 20110077194 | McCaddon | Mar 2011 | A1 |
| 20110077215 | Yu et al. | Mar 2011 | A1 |
| 20110077931 | Grimes | Mar 2011 | A1 |
| 20110079077 | Lin et al. | Apr 2011 | A1 |
| 20110086349 | Anjomshoaa et al. | Apr 2011 | A1 |
| 20110086371 | Lin et al. | Apr 2011 | A1 |
| 20110086796 | Wang et al. | Apr 2011 | A1 |
| 20110091994 | Lotteau | Apr 2011 | A1 |
| 20110093288 | Soto et al. | Apr 2011 | A1 |
| 20110101788 | Sun et al. | May 2011 | A1 |
| 20110104121 | Wira et al. | May 2011 | A1 |
| 20110106736 | Aharonson et al. | May 2011 | A1 |
| 20110111419 | Stefansson et al. | May 2011 | A1 |
| 20110118539 | Khatib | May 2011 | A1 |
| 20110123100 | Carroll et al. | May 2011 | A1 |
| 20110123986 | Narain et al. | May 2011 | A1 |
| 20110123987 | Narain et al. | May 2011 | A1 |
| 20110124119 | Lopes-Virella et al. | May 2011 | A1 |
| 20110129831 | Cargill et al. | Jun 2011 | A1 |
| 20110130303 | Sanche Fueyo et al. | Jun 2011 | A1 |
| 20110131160 | Canny et al. | Jun 2011 | A1 |
| 20110135637 | Sampson et al. | Jun 2011 | A1 |
| 20110136260 | Firestein-Miller | Jun 2011 | A1 |
| 20110137472 | Hitt et al. | Jun 2011 | A1 |
| 20110137851 | Cavet et al. | Jun 2011 | A1 |
| 20110150323 | Hancock et al. | Jun 2011 | A1 |
| 20110158806 | Arms et al. | Jun 2011 | A1 |
| 20110166844 | Gustafsson et al. | Jul 2011 | A1 |
| 20110173116 | Yan et al. | Jul 2011 | A1 |
| 20110176469 | Kim et al. | Jul 2011 | A1 |
| 20110176606 | Fuchie | Jul 2011 | A1 |
| 20110182524 | Shibata et al. | Jul 2011 | A1 |
| 20110189648 | Pribenszky et al. | Aug 2011 | A1 |
| 20110191496 | Luo et al. | Aug 2011 | A1 |
| 20110200266 | Fuchie et al. | Aug 2011 | A1 |
| 20110207659 | Morrow et al. | Aug 2011 | A1 |
| 20110207708 | Gleicher et al. | Aug 2011 | A1 |
| 20110208738 | Bar et al. | Aug 2011 | A1 |
| 20110213746 | Botonjic-Sehic et al. | Sep 2011 | A1 |
| 20110224181 | Hoffman et al. | Sep 2011 | A1 |
| 20110225037 | Tunca et al. | Sep 2011 | A1 |
| 20110230366 | Gudmundsson et al. | Sep 2011 | A1 |
| 20110248846 | Belov et al. | Oct 2011 | A1 |
| 20110251272 | Rieder et al. | Oct 2011 | A1 |
| 20110251995 | Hangartner et al. | Oct 2011 | A1 |
| 20110257216 | Nordsiek et al. | Oct 2011 | A1 |
| 20110257217 | Nordsiek et al. | Oct 2011 | A1 |
| 20110257218 | Nordsiek et al. | Oct 2011 | A1 |
| 20110257219 | Nordsiek et al. | Oct 2011 | A1 |
| 20110263633 | Nordsiek et al. | Oct 2011 | A1 |
| 20110263634 | Nordsiek et al. | Oct 2011 | A1 |
| 20110263635 | Nordsiek et al. | Oct 2011 | A1 |
| 20110263636 | Nordsiek et al. | Oct 2011 | A1 |
| 20110263637 | Nordsiek et al. | Oct 2011 | A1 |
| 20110263967 | Bailey et al. | Oct 2011 | A1 |
| 20110269735 | Shiffman et al. | Nov 2011 | A1 |
| 20110276828 | Tamaki et al. | Nov 2011 | A1 |
| 20110284029 | Baseman et al. | Nov 2011 | A1 |
| 20110287946 | Gudmundsson et al. | Nov 2011 | A1 |
| 20110293278 | Mazed | Dec 2011 | A1 |
| 20110293626 | Schrodi et al. | Dec 2011 | A1 |
| 20110299455 | Ordentlich et al. | Dec 2011 | A1 |
| 20110302823 | Bruck et al. | Dec 2011 | A1 |
| 20110307303 | Dutta et al. | Dec 2011 | A1 |
| 20110310779 | De Poorter et al. | Dec 2011 | A1 |
| 20110311565 | Samoylova et al. | Dec 2011 | A1 |
| 20110319811 | Nordsiek et al. | Dec 2011 | A1 |
| 20120003212 | Walsh et al. | Jan 2012 | A1 |
| 20120010274 | Begovich et al. | Jan 2012 | A1 |
| 20120010867 | Eder | Jan 2012 | A1 |
| 20120014289 | Ortega et al. | Jan 2012 | A1 |
| 20120014435 | Yang et al. | Jan 2012 | A1 |
| 20120016106 | Walsh et al. | Jan 2012 | A1 |
| 20120016436 | Sarma et al. | Jan 2012 | A1 |
| 20120030082 | Voltz et al. | Feb 2012 | A1 |
| 20120039864 | Bare et al. | Feb 2012 | A1 |
| 20120046263 | Navara | Feb 2012 | A1 |
| 20120051434 | Blum | Mar 2012 | A1 |
| 20120064512 | Li et al. | Mar 2012 | A1 |
| 20120065758 | Pharand et al. | Mar 2012 | A1 |
| 20120066217 | Eder | Mar 2012 | A1 |
| 20120069895 | Blum | Mar 2012 | A1 |
| 20120071357 | Kitzman et al. | Mar 2012 | A1 |
| 20120072781 | Kini et al. | Mar 2012 | A1 |
| 20120082678 | Li et al. | Apr 2012 | A1 |
| 20120089370 | Chebbo et al. | Apr 2012 | A1 |
| 20120092155 | Abedi | Apr 2012 | A1 |
| 20120093376 | Malik et al. | Apr 2012 | A1 |
| 20120101965 | Hennig et al. | Apr 2012 | A1 |
| 20120106397 | Abedi | May 2012 | A1 |
| 20120107370 | Forbes et al. | May 2012 | A1 |
| 20120108651 | Bare et al. | May 2012 | A1 |
| 20120114211 | Kraus et al. | May 2012 | A1 |
| 20120114620 | Braughler et al. | May 2012 | A1 |
| 20120121618 | Kantoff et al. | May 2012 | A1 |
| 20120123284 | Kheradvar | May 2012 | A1 |
| 20120127020 | Paek et al. | May 2012 | A1 |
| 20120127924 | Bandyopadhyay et al. | May 2012 | A1 |
| 20120128223 | Rivaz et al. | May 2012 | A1 |
| 20120128702 | Weinschenk et al. | May 2012 | A1 |
| 20120136629 | Tamaki et al. | May 2012 | A1 |
| 20120143510 | Alam | Jun 2012 | A1 |
| 20120150032 | Gudmundsson et al. | Jun 2012 | A1 |
| 20120154149 | Trumble | Jun 2012 | A1 |
| 20120156215 | Samoylova et al. | Jun 2012 | A1 |
| 20120158633 | Eder | Jun 2012 | A1 |
| 20120163656 | Wang et al. | Jun 2012 | A1 |
| 20120165221 | Landstein et al. | Jun 2012 | A1 |
| 20120166291 | Broder et al. | Jun 2012 | A1 |
| 20120173171 | Bajwa et al. | Jul 2012 | A1 |
| 20120173200 | Breton et al. | Jul 2012 | A1 |
| 20120178486 | Kaufmann | Jul 2012 | A1 |
| 20120184605 | Forbes et al. | Jul 2012 | A1 |
| 20120190386 | Anderson | Jul 2012 | A1 |
| 20120207771 | O'Shannessy et al. | Aug 2012 | A1 |
| 20120209565 | Handley et al. | Aug 2012 | A1 |
| 20120209697 | Agresti et al. | Aug 2012 | A1 |
| 20120215348 | Skrinde | Aug 2012 | A1 |
| 20120218376 | Athan | Aug 2012 | A1 |
| 20120220055 | Foote et al. | Aug 2012 | A1 |
| 20120220958 | Vournakis et al. | Aug 2012 | A1 |
| 20120230515 | Grancharov et al. | Sep 2012 | A1 |
| 20120239489 | Peretti et al. | Sep 2012 | A1 |
| 20120244145 | Sampson et al. | Sep 2012 | A1 |
| 20120245133 | Hoffman et al. | Sep 2012 | A1 |
| 20120250863 | Bukshpun et al. | Oct 2012 | A1 |
| 20120250963 | Carroll et al. | Oct 2012 | A1 |
| 20120252050 | Towler et al. | Oct 2012 | A1 |
| 20120252695 | Aerssens et al. | Oct 2012 | A1 |
| 20120257164 | Zee et al. | Oct 2012 | A1 |
| 20120257530 | Bijwaard et al. | Oct 2012 | A1 |
| 20120258874 | Narain et al. | Oct 2012 | A1 |
| 20120258884 | Schramm et al. | Oct 2012 | A1 |
| 20120259557 | Gorenstein et al. | Oct 2012 | A1 |
| 20120262291 | Bastide et al. | Oct 2012 | A1 |
| 20120264692 | Bare et al. | Oct 2012 | A1 |
| 20120265716 | Hunzinger et al. | Oct 2012 | A1 |
| 20120265978 | Shenfield et al. | Oct 2012 | A1 |
| 20120269846 | Maki et al. | Oct 2012 | A1 |
| 20120276528 | Cargill et al. | Nov 2012 | A1 |
| 20120280146 | Rizkallah et al. | Nov 2012 | A1 |
| 20120283885 | Mannar et al. | Nov 2012 | A1 |
| 20120284207 | Eder | Nov 2012 | A1 |
| 20120290505 | Eder | Nov 2012 | A1 |
| 20120301407 | Durham et al. | Nov 2012 | A1 |
| 20120303408 | Eder | Nov 2012 | A1 |
| 20120303504 | Eder | Nov 2012 | A1 |
| 20120310619 | McConaghy | Dec 2012 | A1 |
| 20120315655 | Kraus et al. | Dec 2012 | A1 |
| 20120316833 | Lovick | Dec 2012 | A1 |
| 20120316835 | Maeda et al. | Dec 2012 | A1 |
| 20120330720 | Pickton et al. | Dec 2012 | A1 |
| 20130004473 | Kochel et al. | Jan 2013 | A1 |
| 20130012860 | Suthanthiran et al. | Jan 2013 | A1 |
| 20130013574 | Wu | Jan 2013 | A1 |
| 20130016625 | Murias et al. | Jan 2013 | A1 |
| 20130016636 | Berger et al. | Jan 2013 | A1 |
| 20130024124 | Collazo et al. | Jan 2013 | A1 |
| 20130024269 | Farahat et al. | Jan 2013 | A1 |
| 20130029327 | Huang et al. | Jan 2013 | A1 |
| 20130029384 | Cerdobbel et al. | Jan 2013 | A1 |
| 20130030051 | Shiffman et al. | Jan 2013 | A1 |
| 20130030584 | Milosevic et al. | Jan 2013 | A1 |
| 20130040922 | Kreppner et al. | Feb 2013 | A1 |
| 20130040923 | Kreppner et al. | Feb 2013 | A1 |
| 20130041034 | Singh et al. | Feb 2013 | A1 |
| 20130041627 | Luo et al. | Feb 2013 | A1 |
| 20130044183 | Jeon et al. | Feb 2013 | A1 |
| 20130045198 | Bare et al. | Feb 2013 | A1 |
| 20130045958 | Kreppner et al. | Feb 2013 | A1 |
| 20130046463 | Bengtson et al. | Feb 2013 | A1 |
| 20130048436 | Chan | Feb 2013 | A1 |
| 20130054486 | Eder | Feb 2013 | A1 |
| 20130058914 | Iakoubova et al. | Mar 2013 | A1 |
| 20130059827 | Kreppner et al. | Mar 2013 | A1 |
| 20130059915 | Singh et al. | Mar 2013 | A1 |
| 20130060305 | Bokil | Mar 2013 | A1 |
| 20130060549 | Grimes | Mar 2013 | A1 |
| 20130061339 | Garner et al. | Mar 2013 | A1 |
| 20130065870 | Singh et al. | Mar 2013 | A1 |
| 20130071033 | Stein et al. | Mar 2013 | A1 |
| 20130073213 | Centola et al. | Mar 2013 | A1 |
| 20130073442 | Eder | Mar 2013 | A1 |
| 20130076531 | San Vicente et al. | Mar 2013 | A1 |
| 20130076532 | San Vicente et al. | Mar 2013 | A1 |
| 20130078627 | Li et al. | Mar 2013 | A1 |
| 20130078912 | San Vicente et al. | Mar 2013 | A1 |
| 20130080073 | de Corral | Mar 2013 | A1 |
| 20130080101 | Vuskovic et al. | Mar 2013 | A1 |
| 20130081158 | Paterson et al. | Mar 2013 | A1 |
| 20130096892 | Essa et al. | Apr 2013 | A1 |
| 20130097276 | Sridhar | Apr 2013 | A1 |
| 20130102918 | Etkin et al. | Apr 2013 | A1 |
| 20130103570 | Shi et al. | Apr 2013 | A1 |
| 20130103615 | Mun | Apr 2013 | A1 |
| 20130107041 | Norem et al. | May 2013 | A1 |
| 20130109583 | Beim | May 2013 | A1 |
| 20130112895 | Birlouez-Aragon et al. | May 2013 | A1 |
| 20130113631 | Pitchford et al. | May 2013 | A1 |
| 20130118532 | Baltsen et al. | May 2013 | A1 |
| 20130129764 | Atkinson et al. | May 2013 | A1 |
| 20130130923 | Ehrich et al. | May 2013 | A1 |
| 20130132163 | Eder | May 2013 | A1 |
| 20130138481 | Handley | May 2013 | A1 |
| 20130143215 | Dervieux | Jun 2013 | A1 |
| 20130148713 | Lee et al. | Jun 2013 | A1 |
| 20130149290 | Braughler et al. | Jun 2013 | A1 |
| 20130151429 | Cao et al. | Jun 2013 | A1 |
| 20130153060 | Barrett | Jun 2013 | A1 |
| 20130155952 | Chu et al. | Jun 2013 | A1 |
| 20130156767 | Walsh et al. | Jun 2013 | A1 |
| 20130171296 | Isaksen | Jul 2013 | A1 |
| 20130176872 | Stanczak et al. | Jul 2013 | A1 |
| 20130180336 | Koh et al. | Jul 2013 | A1 |
| 20130183664 | Welch et al. | Jul 2013 | A1 |
| 20130185226 | Hardman et al. | Jul 2013 | A1 |
| 20130197081 | Powers et al. | Aug 2013 | A1 |
| 20130197738 | Dvorak et al. | Aug 2013 | A1 |
| 20130197830 | Dvorak et al. | Aug 2013 | A1 |
| 20130198203 | Bates et al. | Aug 2013 | A1 |
| 20130201316 | Binder et al. | Aug 2013 | A1 |
| 20130204664 | Romagnolo et al. | Aug 2013 | A1 |
| 20130204833 | Pang et al. | Aug 2013 | A1 |
| 20130207815 | Pitchford et al. | Aug 2013 | A1 |
| 20130209486 | Li et al. | Aug 2013 | A1 |
| 20130210855 | Nordsiek et al. | Aug 2013 | A1 |
| 20130211229 | Rao et al. | Aug 2013 | A1 |
| 20130212168 | Bonasera et al. | Aug 2013 | A1 |
| 20130216551 | Begovich et al. | Aug 2013 | A1 |
| 20130225439 | Princen et al. | Aug 2013 | A1 |
| 20130237438 | Ruano et al. | Sep 2013 | A1 |
| 20130237447 | Nelson et al. | Sep 2013 | A1 |
| 20130240722 | Coon et al. | Sep 2013 | A1 |
| 20130244121 | Gogotsi et al. | Sep 2013 | A1 |
| 20130244233 | Diatchenko et al. | Sep 2013 | A1 |
| 20130244902 | Thibodeau et al. | Sep 2013 | A1 |
| 20130244965 | Williams et al. | Sep 2013 | A1 |
| 20130252267 | Lin et al. | Sep 2013 | A1 |
| 20130252822 | Weber et al. | Sep 2013 | A1 |
| 20130258904 | Kaufmann | Oct 2013 | A1 |
| 20130259847 | Vishnudas et al. | Oct 2013 | A1 |
| 20130262425 | Shamlin et al. | Oct 2013 | A1 |
| 20130265874 | Zhu et al. | Oct 2013 | A1 |
| 20130265915 | Choi et al. | Oct 2013 | A1 |
| 20130265981 | Yang et al. | Oct 2013 | A1 |
| 20130266557 | Sarangarajan et al. | Oct 2013 | A1 |
| 20130271668 | Argyropoulos et al. | Oct 2013 | A1 |
| 20130273103 | Liao et al. | Oct 2013 | A1 |
| 20130274195 | Bare et al. | Oct 2013 | A1 |
| 20130280241 | Markowitz et al. | Oct 2013 | A1 |
| 20130288913 | Schramm et al. | Oct 2013 | A1 |
| 20130289424 | Brockway et al. | Oct 2013 | A1 |
| 20130303558 | Luke et al. | Nov 2013 | A1 |
| 20130303939 | Karmali et al. | Nov 2013 | A1 |
| 20130310261 | Schramm et al. | Nov 2013 | A1 |
| 20130314273 | Kavaler et al. | Nov 2013 | A1 |
| 20130315885 | Narain et al. | Nov 2013 | A1 |
| 20130315894 | Schrodi et al. | Nov 2013 | A1 |
| 20130320212 | Valentino et al. | Dec 2013 | A1 |
| 20130325498 | Muza, Jr. et al. | Dec 2013 | A1 |
| 20130332010 | Ziarno | Dec 2013 | A1 |
| 20130332011 | Ziarno | Dec 2013 | A1 |
| 20130332025 | Ziarno | Dec 2013 | A1 |
| 20130332231 | Pickton et al. | Dec 2013 | A1 |
| 20130332338 | Yan et al. | Dec 2013 | A1 |
| 20130346023 | Novo et al. | Dec 2013 | A1 |
| 20130346039 | Song et al. | Dec 2013 | A1 |
| 20130346844 | Graepel et al. | Dec 2013 | A1 |
| 20140004075 | Suckling et al. | Jan 2014 | A1 |
| 20140004510 | DeAngelis et al. | Jan 2014 | A1 |
| 20140006013 | Markatou et al. | Jan 2014 | A1 |
| 20140010047 | Barakat et al. | Jan 2014 | A1 |
| 20140010288 | Yang et al. | Jan 2014 | A1 |
| 20140011206 | Latham et al. | Jan 2014 | A1 |
| 20140011787 | Gleicher et al. | Jan 2014 | A1 |
| 20140025342 | Gorenstein et al. | Jan 2014 | A1 |
| 20140032186 | Gustafsson et al. | Jan 2014 | A1 |
| 20140038930 | Gleicher et al. | Feb 2014 | A1 |
| 20140058528 | Contreras-Vidal et al. | Feb 2014 | A1 |
| 20140062212 | Sun et al. | Mar 2014 | A1 |
| 20140072550 | Iakoubova et al. | Mar 2014 | A1 |
| 20140072957 | Huang et al. | Mar 2014 | A1 |
| 20140080784 | Stover et al. | Mar 2014 | A1 |
| 20140081675 | Ives et al. | Mar 2014 | A1 |
| 20140086920 | Walsh et al. | Mar 2014 | A1 |
| 20140087960 | Seddon et al. | Mar 2014 | A1 |
| 20140088406 | Dharmakumar et al. | Mar 2014 | A1 |
| 20140093127 | Mundhenk et al. | Apr 2014 | A1 |
| 20140093974 | Lopes-Virella et al. | Apr 2014 | A1 |
| 20140095251 | Huovilainen | Apr 2014 | A1 |
| 20140100128 | Narain et al. | Apr 2014 | A1 |
| 20140100989 | Zhang et al. | Apr 2014 | A1 |
| 20140106370 | Tseng et al. | Apr 2014 | A1 |
| 20140107850 | Curtis | Apr 2014 | A1 |
| 20140114549 | Ziarno | Apr 2014 | A1 |
| 20140114746 | Pani et al. | Apr 2014 | A1 |
| 20140114880 | Breeden | Apr 2014 | A1 |
| 20140120137 | Davis et al. | May 2014 | A1 |
| 20140120533 | Shiffman et al. | May 2014 | A1 |
| 20140124621 | Godzdanker et al. | May 2014 | A1 |
| 20140127213 | Schrodi et al. | May 2014 | A1 |
| 20140128362 | Bare et al. | May 2014 | A1 |
| 20140134186 | Li et al. | May 2014 | A1 |
| 20140134625 | Haddad et al. | May 2014 | A1 |
| 20140135225 | Crow et al. | May 2014 | A1 |
| 20140141988 | Thorne et al. | May 2014 | A1 |
| 20140142861 | Hagstrom et al. | May 2014 | A1 |
| 20140143134 | Yan et al. | May 2014 | A1 |
| 20140148505 | Rieder et al. | May 2014 | A1 |
| 20140153674 | Stratigos, Jr. | Jun 2014 | A1 |
| 20140156231 | Guo et al. | Jun 2014 | A1 |
| 20140156571 | Hennig et al. | Jun 2014 | A1 |
| 20140163096 | Golden et al. | Jun 2014 | A1 |
| 20140170069 | Dharmakumar et al. | Jun 2014 | A1 |
| 20140171337 | Beim | Jun 2014 | A1 |
| 20140171382 | Bhatia | Jun 2014 | A1 |
| 20140172444 | Moore et al. | Jun 2014 | A1 |
| 20140172507 | Menon | Jun 2014 | A1 |
| 20140178348 | Kelsey et al. | Jun 2014 | A1 |
| 20140184430 | Jiang et al. | Jul 2014 | A1 |
| 20140186333 | Bare et al. | Jul 2014 | A1 |
| 20140188918 | Shamlin et al. | Jul 2014 | A1 |
| 20140191875 | Wedig et al. | Jul 2014 | A1 |
| 20140192689 | De Poorter et al. | Jul 2014 | A1 |
| 20140193919 | Skinner et al. | Jul 2014 | A1 |
| 20140199290 | Grupe et al. | Jul 2014 | A1 |
| 20140200953 | Mun | Jul 2014 | A1 |
| 20140200999 | Canny et al. | Jul 2014 | A1 |
| 20140213533 | Suthanthiran et al. | Jul 2014 | A1 |
| 20140216144 | Squartini et al. | Aug 2014 | A1 |
| 20140219968 | Llagostera et al. | Aug 2014 | A1 |
| 20140221484 | Cargill et al. | Aug 2014 | A1 |
| 20140225603 | Auguste et al. | Aug 2014 | A1 |
| 20140234291 | Cargill et al. | Aug 2014 | A1 |
| 20140234347 | Weinschenk et al. | Aug 2014 | A1 |
| 20140235605 | Shiffman et al. | Aug 2014 | A1 |
| 20140236965 | Yarmus | Aug 2014 | A1 |
| 20140242180 | Lavik et al. | Aug 2014 | A1 |
| 20140244216 | Breton et al. | Aug 2014 | A1 |
| 20140249447 | Sereno et al. | Sep 2014 | A1 |
| 20140249862 | Andrist et al. | Sep 2014 | A1 |
| 20140253733 | Norem et al. | Sep 2014 | A1 |
| 20140256576 | Li et al. | Sep 2014 | A1 |
| 20140258355 | Chu et al. | Sep 2014 | A1 |
| 20140263418 | Keating et al. | Sep 2014 | A1 |
| 20140263430 | Keating et al. | Sep 2014 | A1 |
| 20140263989 | Valentino et al. | Sep 2014 | A1 |
| 20140264047 | Valentino et al. | Sep 2014 | A1 |
| 20140266776 | Miller et al. | Sep 2014 | A1 |
| 20140266785 | Miller et al. | Sep 2014 | A1 |
| 20140267700 | Wang et al. | Sep 2014 | A1 |
| 20140268601 | Valentino et al. | Sep 2014 | A1 |
| 20140271672 | Iakoubova et al. | Sep 2014 | A1 |
| 20140273821 | Miller et al. | Sep 2014 | A1 |
| 20140274885 | Cong et al. | Sep 2014 | A1 |
| 20140275849 | Acquista | Sep 2014 | A1 |
| 20140278148 | Ziegel et al. | Sep 2014 | A1 |
| 20140278967 | Pal et al. | Sep 2014 | A1 |
| 20140279053 | Lee | Sep 2014 | A1 |
| 20140279306 | Shi et al. | Sep 2014 | A1 |
| 20140286935 | Hamblin et al. | Sep 2014 | A1 |
| 20140294903 | Forbes et al. | Oct 2014 | A1 |
| 20140299783 | Valentino et al. | Oct 2014 | A1 |
| 20140301217 | Choi et al. | Oct 2014 | A1 |
| 20140303481 | Sorensen et al. | Oct 2014 | A1 |
| 20140303944 | Jiang et al. | Oct 2014 | A1 |
| 20140307770 | Jiang et al. | Oct 2014 | A1 |
| 20140312242 | Valentino et al. | Oct 2014 | A1 |
| 20140316217 | Purdon et al. | Oct 2014 | A1 |
| 20140323897 | Brown et al. | Oct 2014 | A1 |
| 20140324521 | Mun | Oct 2014 | A1 |
| 20140336965 | Mori et al. | Nov 2014 | A1 |
| 20140343786 | Dvorak et al. | Nov 2014 | A1 |
| 20140343959 | Hasegawa et al. | Nov 2014 | A1 |
| 20140349597 | Abolfathi et al. | Nov 2014 | A1 |
| 20140349984 | Hoffman et al. | Nov 2014 | A1 |
| 20140350722 | Skrinde | Nov 2014 | A1 |
| 20140351183 | Germain et al. | Nov 2014 | A1 |
| 20140355499 | Akhlaq et al. | Dec 2014 | A1 |
| 20140358442 | Akhlaq et al. | Dec 2014 | A1 |
| 20140365144 | Dvorak et al. | Dec 2014 | A1 |
| 20140365276 | Harsha et al. | Dec 2014 | A1 |
| 20140370836 | Gladstone | Dec 2014 | A1 |
| 20140376645 | Kumar et al. | Dec 2014 | A1 |
| 20140376827 | Jiang et al. | Dec 2014 | A1 |
| 20140378334 | Galichon et al. | Dec 2014 | A1 |
| 20150001420 | Langoju et al. | Jan 2015 | A1 |
| 20150002845 | Ostroverkhov et al. | Jan 2015 | A1 |
| 20150004641 | Dylov et al. | Jan 2015 | A1 |
| 20150005176 | Kim et al. | Jan 2015 | A1 |
| 20150006605 | Chu et al. | Jan 2015 | A1 |
| 20150007181 | Saraschandra et al. | Jan 2015 | A1 |
| 20150018632 | Khair | Jan 2015 | A1 |
| 20150019262 | Du et al. | Jan 2015 | A1 |
| 20150023949 | Narain et al. | Jan 2015 | A1 |
| 20150025328 | Khair | Jan 2015 | A1 |
| 20150031578 | Black et al. | Jan 2015 | A1 |
| 20150031969 | Khair | Jan 2015 | A1 |
| 20150032598 | Fleming et al. | Jan 2015 | A1 |
| 20150032675 | Huehn et al. | Jan 2015 | A1 |
| 20150039265 | Acharid et al. | Feb 2015 | A1 |
| 20150046582 | Gelvin et al. | Feb 2015 | A1 |
| 20150049650 | Choi | Feb 2015 | A1 |
| 20150051896 | Simard et al. | Feb 2015 | A1 |
| 20150051949 | Pickton | Feb 2015 | A1 |
| 20150056212 | Kupper et al. | Feb 2015 | A1 |
| 20150064194 | Kupper et al. | Mar 2015 | A1 |
| 20150064195 | Kupper et al. | Mar 2015 | A1 |
| 20150064670 | Merfeld et al. | Mar 2015 | A1 |
| 20150066738 | Tian et al. | Mar 2015 | A1 |
| 20150072434 | Towler et al. | Mar 2015 | A1 |
| 20150072879 | Princen et al. | Mar 2015 | A1 |
| 20150073306 | Abeyratne et al. | Mar 2015 | A1 |
| 20150078460 | Hu et al. | Mar 2015 | A1 |
| 20150078738 | Brooke | Mar 2015 | A1 |
| 20150081247 | Valentino et al. | Mar 2015 | A1 |
| 20150082754 | Jasiulek et al. | Mar 2015 | A1 |
| 20150086013 | Metzler et al. | Mar 2015 | A1 |
| 20150088783 | Mun | Mar 2015 | A1 |
| 20150089399 | Megill et al. | Mar 2015 | A1 |
| 20150094618 | Russell et al. | Apr 2015 | A1 |
| 20150100244 | Hannum | Apr 2015 | A1 |
| 20150100407 | Sterns et al. | Apr 2015 | A1 |
| 20150100408 | Sterns et al. | Apr 2015 | A1 |
| 20150100409 | Sterns et al. | Apr 2015 | A1 |
| 20150100410 | Sterns et al. | Apr 2015 | A1 |
| 20150100411 | Sterns et al. | Apr 2015 | A1 |
| 20150100412 | Sterns et al. | Apr 2015 | A1 |
| 20150111775 | Iakoubova et al. | Apr 2015 | A1 |
| 20150112874 | Serio et al. | Apr 2015 | A1 |
| 20150119079 | Tarlazzi et al. | Apr 2015 | A1 |
| 20150119759 | Gonzales et al. | Apr 2015 | A1 |
| 20150120758 | Cichosz et al. | Apr 2015 | A1 |
| 20150139425 | Ko et al. | May 2015 | A1 |
| 20150142331 | Beim et al. | May 2015 | A1 |
| 20150152176 | Walsh et al. | Jun 2015 | A1 |
| 20150164408 | Russell et al. | Jun 2015 | A1 |
| 20150167062 | Young et al. | Jun 2015 | A1 |
| 20150169840 | Kupfer et al. | Jun 2015 | A1 |
| 20150178620 | Ascari et al. | Jun 2015 | A1 |
| 20150178756 | Chao et al. | Jun 2015 | A1 |
| 20150190367 | Forbes et al. | Jul 2015 | A1 |
| 20150190436 | Davis et al. | Jul 2015 | A1 |
| 20150191787 | Muthukumar et al. | Jul 2015 | A1 |
| 20150192682 | Valentino et al. | Jul 2015 | A1 |
| 20150205756 | Bouchard | Jul 2015 | A1 |
| 20150209586 | Silva et al. | Jul 2015 | A1 |
| 20150213192 | Patel et al. | Jul 2015 | A1 |
| 20150215127 | Sabottke | Jul 2015 | A1 |
| 20150216164 | Bedoukian et al. | Aug 2015 | A1 |
| 20150216922 | Kim et al. | Aug 2015 | A1 |
| 20150220487 | Lovick | Aug 2015 | A1 |
| 20150228031 | Emison et al. | Aug 2015 | A1 |
| 20150228076 | Mouridsen et al. | Aug 2015 | A1 |
| 20150231191 | Clarot et al. | Aug 2015 | A1 |
| 20150232944 | De Reynies et al. | Aug 2015 | A1 |
| 20150235143 | Eder | Aug 2015 | A1 |
| 20150240304 | Cervino et al. | Aug 2015 | A1 |
| 20150240305 | Suthanthiran et al. | Aug 2015 | A1 |
| 20150240314 | Danila et al. | Aug 2015 | A1 |
| 20150249486 | Stratigos, Jr. | Sep 2015 | A1 |
| 20150250816 | Durham et al. | Sep 2015 | A1 |
| 20150259744 | Begovich et al. | Sep 2015 | A1 |
| 20150262511 | Lin et al. | Sep 2015 | A1 |
| 20150268355 | Valentino et al. | Sep 2015 | A1 |
| 20150272464 | Armoundas | Oct 2015 | A1 |
| 20150280863 | Muqaibel et al. | Oct 2015 | A1 |
| 20150286933 | Trivelpiece | Oct 2015 | A1 |
| 20150287143 | Gabriel et al. | Oct 2015 | A1 |
| 20150288604 | Boudreaux | Oct 2015 | A1 |
| 20150289149 | Ouyang et al. | Oct 2015 | A1 |
| 20150291975 | Minshull et al. | Oct 2015 | A1 |
| 20150291976 | Minshull et al. | Oct 2015 | A1 |
| 20150291977 | Minshull et al. | Oct 2015 | A1 |
| 20150292010 | Khatib | Oct 2015 | A1 |
| 20150292016 | Bureau et al. | Oct 2015 | A1 |
| 20150294431 | Fiorucci et al. | Oct 2015 | A1 |
| 20150299798 | De Reynies et al. | Oct 2015 | A1 |
| 20150302529 | Jagannathan | Oct 2015 | A1 |
| 20150306160 | Fueyo et al. | Oct 2015 | A1 |
| 20150307614 | Sampson et al. | Oct 2015 | A1 |
| 20150316562 | Kochel et al. | Nov 2015 | A1 |
| 20150316926 | Ziarno | Nov 2015 | A1 |
| 20150317449 | Eder | Nov 2015 | A1 |
| 20150320707 | Singh et al. | Nov 2015 | A1 |
| 20150320708 | Singh et al. | Nov 2015 | A1 |
| 20150324548 | Eder | Nov 2015 | A1 |
| 20150328174 | Singh et al. | Nov 2015 | A1 |
| 20150330869 | Ziarno | Nov 2015 | A1 |
| 20150332013 | Lee et al. | Nov 2015 | A1 |
| 20150337373 | Chettier et al. | Nov 2015 | A1 |
| 20150338525 | Valentino et al. | Nov 2015 | A1 |
| 20150341379 | Lefebvre et al. | Nov 2015 | A1 |
| 20150341643 | Xu et al. | Nov 2015 | A1 |
| 20150343144 | Altschul et al. | Dec 2015 | A1 |
| 20150347922 | Hamann et al. | Dec 2015 | A1 |
| 20150348095 | Dixon et al. | Dec 2015 | A1 |
| 20150351084 | Werb | Dec 2015 | A1 |
| 20150351336 | Gilbert et al. | Dec 2015 | A1 |
| 20150356458 | Berengueres et al. | Dec 2015 | A1 |
| 20150359781 | Sarpotdar et al. | Dec 2015 | A1 |
| 20150361494 | Ward et al. | Dec 2015 | A1 |
| 20150363981 | Ziarno et al. | Dec 2015 | A1 |
| 20150366830 | Singh et al. | Dec 2015 | A1 |
| 20150377909 | Cavet et al. | Dec 2015 | A1 |
| 20150378807 | Ball et al. | Dec 2015 | A1 |
| 20150379428 | Dirac et al. | Dec 2015 | A1 |
| 20150379429 | Lee et al. | Dec 2015 | A1 |
| 20150379430 | Dirac et al. | Dec 2015 | A1 |
| 20150381994 | Yu et al. | Dec 2015 | A1 |
| 20160000045 | Funaya et al. | Jan 2016 | A1 |
| 20160003845 | Brasier et al. | Jan 2016 | A1 |
| 20160010162 | Klee et al. | Jan 2016 | A1 |
| 20160012334 | Ning et al. | Jan 2016 | A1 |
| 20160012465 | Sharp | Jan 2016 | A1 |
| 20160017037 | Hamblin et al. | Jan 2016 | A1 |
| 20160017426 | Beim et al. | Jan 2016 | A1 |
| 20160024575 | Spindler et al. | Jan 2016 | A1 |
| 20160025514 | Pitchford et al. | Jan 2016 | A1 |
| 20160029643 | Iatrou et al. | Feb 2016 | A1 |
| 20160029945 | Merfeld et al. | Feb 2016 | A1 |
| 20160032388 | Huang et al. | Feb 2016 | A1 |
| 20160034640 | Zhao et al. | Feb 2016 | A1 |
| 20160034664 | Santos et al. | Feb 2016 | A1 |
| 20160038538 | Keyser et al. | Feb 2016 | A1 |
| 20160040184 | Cong et al. | Feb 2016 | A1 |
| 20160040236 | Hosur et al. | Feb 2016 | A1 |
| 20160042009 | Gkoulalas-Divanis et al. | Feb 2016 | A1 |
| 20160042197 | Gkoulalas-Divanis et al. | Feb 2016 | A1 |
| 20160042513 | Yudovsky | Feb 2016 | A1 |
| 20160042744 | Klejsa et al. | Feb 2016 | A1 |
| 20160044035 | Huang | Feb 2016 | A1 |
| 20160045466 | Singh et al. | Feb 2016 | A1 |
| 20160046991 | Huang et al. | Feb 2016 | A1 |
| 20160048925 | Emison et al. | Feb 2016 | A1 |
| 20160051791 | Ewers et al. | Feb 2016 | A1 |
| 20160051806 | Goldsmith | Feb 2016 | A1 |
| 20160053322 | Nelson et al. | Feb 2016 | A1 |
| 20160055855 | Kjoerling et al. | Feb 2016 | A1 |
| 20160058717 | Page et al. | Mar 2016 | A1 |
| 20160063144 | Cooke et al. | Mar 2016 | A1 |
| 20160068890 | Pichaud et al. | Mar 2016 | A1 |
| 20160068916 | Nekarda et al. | Mar 2016 | A1 |
| 20160072547 | Muqaibel et al. | Mar 2016 | A1 |
| 20160075665 | Page et al. | Mar 2016 | A1 |
| 20160078361 | Brueckner et al. | Mar 2016 | A1 |
| 20160081551 | Miller et al. | Mar 2016 | A1 |
| 20160081586 | Miller et al. | Mar 2016 | A1 |
| 20160082589 | Skrinde | Mar 2016 | A1 |
| 20160088517 | Akyurek et al. | Mar 2016 | A1 |
| 20160091730 | Brooke | Mar 2016 | A1 |
| 20160097082 | Georganopoulou | Apr 2016 | A1 |
| 20160100444 | San Vicente et al. | Apr 2016 | A1 |
| 20160100445 | San Vicente et al. | Apr 2016 | A1 |
| 20160105801 | Wittenberg et al. | Apr 2016 | A1 |
| 20160108473 | Shiffman et al. | Apr 2016 | A1 |
| 20160108476 | Schweiger et al. | Apr 2016 | A1 |
| 20160110657 | Gibiansky et al. | Apr 2016 | A1 |
| 20160110812 | Mun | Apr 2016 | A1 |
| 20160117327 | Zhou et al. | Apr 2016 | A1 |
| 20160122396 | Bunnik et al. | May 2016 | A1 |
| 20160124933 | Takeuchi et al. | May 2016 | A1 |
| 20160125292 | Seo et al. | May 2016 | A1 |
| 20160138105 | Mccoy et al. | May 2016 | A1 |
| 20160139122 | Degauque et al. | May 2016 | A1 |
| 20160145693 | Narain et al. | May 2016 | A1 |
| 20160147013 | Molin et al. | May 2016 | A1 |
| 20160148237 | Ifrach et al. | May 2016 | A1 |
| 20160152252 | Kim et al. | Jun 2016 | A1 |
| 20160152538 | Plettner et al. | Jun 2016 | A1 |
| 20160163132 | Rabenoro et al. | Jun 2016 | A1 |
| 20160168639 | Luke et al. | Jun 2016 | A1 |
| 20160171398 | Eder | Jun 2016 | A1 |
| 20160171618 | Besman et al. | Jun 2016 | A1 |
| 20160171619 | Besman et al. | Jun 2016 | A1 |
| 20160173122 | Akitomi et al. | Jun 2016 | A1 |
| 20160173959 | Seema et al. | Jun 2016 | A1 |
| 20160174148 | Seed et al. | Jun 2016 | A1 |
| 20160175321 | Carper et al. | Jun 2016 | A1 |
| 20160183799 | San Vicente et al. | Jun 2016 | A1 |
| 20160189381 | Rhoads | Jun 2016 | A1 |
| 20160196587 | Eder | Jul 2016 | A1 |
| 20160198657 | Gupta | Jul 2016 | A1 |
| 20160202239 | Voros et al. | Jul 2016 | A1 |
| 20160202755 | Connor | Jul 2016 | A1 |
| 20160203279 | Srinivas et al. | Jul 2016 | A1 |
| 20160203316 | Mace et al. | Jul 2016 | A1 |
| 20160222100 | Monje-Deisseroth et al. | Aug 2016 | A1 |
| 20160222450 | Schrodi et al. | Aug 2016 | A1 |
| 20160224724 | Zhao et al. | Aug 2016 | A1 |
| 20160224869 | Clark-Polner | Aug 2016 | A1 |
| 20160225073 | Xiao et al. | Aug 2016 | A1 |
| 20160225074 | Xiao et al. | Aug 2016 | A1 |
| 20160228056 | Hooker et al. | Aug 2016 | A1 |
| 20160228392 | Singh et al. | Aug 2016 | A1 |
| 20160237487 | Yu et al. | Aug 2016 | A1 |
| 20160239919 | Eder | Aug 2016 | A1 |
| 20160243190 | Barriere et al. | Aug 2016 | A1 |
| 20160243215 | Barouch et al. | Aug 2016 | A1 |
| 20160244836 | Li et al. | Aug 2016 | A1 |
| 20160244837 | Bare et al. | Aug 2016 | A1 |
| 20160244840 | Chilton et al. | Aug 2016 | A1 |
| 20160249152 | Jin et al. | Aug 2016 | A1 |
| 20160250228 | Kreppner et al. | Sep 2016 | A1 |
| 20160251720 | Schulze et al. | Sep 2016 | A1 |
| 20160253324 | Altshuller et al. | Sep 2016 | A1 |
| 20160253330 | Altshuller et al. | Sep 2016 | A1 |
| 20160256112 | Brockway et al. | Sep 2016 | A1 |
| 20160259883 | Grinchuk et al. | Sep 2016 | A1 |
| 20160260302 | Ellers et al. | Sep 2016 | A1 |
| 20160260303 | Strulovitch et al. | Sep 2016 | A1 |
| 20160261997 | Gladstone | Sep 2016 | A1 |
| 20160265055 | Iakoubova et al. | Sep 2016 | A1 |
| 20160271144 | Kreppner et al. | Sep 2016 | A1 |
| 20160281105 | Cong et al. | Sep 2016 | A1 |
| 20160281164 | Bare et al. | Sep 2016 | A1 |
| 20160282941 | Aksenova et al. | Sep 2016 | A1 |
| 20160002925 | Taylor et al. | Oct 2016 | A1 |
| 20160295371 | Zhyshko et al. | Oct 2016 | A1 |
| 20160300183 | Berger et al. | Oct 2016 | A1 |
| 20160303111 | Nordsiek et al. | Oct 2016 | A1 |
| 20160303172 | Zitvogel et al. | Oct 2016 | A1 |
| 20160306075 | Heng et al. | Oct 2016 | A1 |
| 20160307138 | Heng et al. | Oct 2016 | A1 |
| 20160310442 | Deshpande et al. | Oct 2016 | A1 |
| 20160314055 | Bagchi et al. | Oct 2016 | A1 |
| 20160319352 | Iakoubova et al. | Nov 2016 | A1 |
| 20160323839 | Davis et al. | Nov 2016 | A1 |
| 20160323841 | Davis et al. | Nov 2016 | A1 |
| 20160333328 | Minshull et al. | Nov 2016 | A1 |
| 20160338617 | Ashe et al. | Nov 2016 | A1 |
| 20160338644 | Connor | Nov 2016 | A1 |
| 20160340691 | Minshull et al. | Nov 2016 | A1 |
| 20160344738 | Dotan et al. | Nov 2016 | A1 |
| 20160345260 | Johnson et al. | Nov 2016 | A1 |
| 20160352768 | Lefebvre et al. | Dec 2016 | A1 |
| 20160353294 | Wang et al. | Dec 2016 | A1 |
| 20160355886 | Tan et al. | Dec 2016 | A1 |
| 20160356665 | Felemban et al. | Dec 2016 | A1 |
| 20160356666 | Bilal et al. | Dec 2016 | A1 |
| 20160359683 | Bartfai-Walcott et al. | Dec 2016 | A1 |
| 20160371782 | Jones et al. | Dec 2016 | A1 |
| 20160372123 | Kjoerling et al. | Dec 2016 | A1 |
| 20160378427 | Sharma et al. | Dec 2016 | A1 |
| 20160378942 | Srinivas et al. | Dec 2016 | A1 |
| 20170004409 | Chu et al. | Jan 2017 | A1 |
| 20170006135 | Siebel et al. | Jan 2017 | A1 |
| 20170006140 | Park et al. | Jan 2017 | A1 |
| 20170007574 | Spencer et al. | Jan 2017 | A1 |
| 20170009295 | Rigoutsos et al. | Jan 2017 | A1 |
| 20170013533 | Felemban et al. | Jan 2017 | A1 |
| 20170014032 | Khair | Jan 2017 | A1 |
| 20170014108 | Mazurowski | Jan 2017 | A1 |
| 20170016896 | Eastman et al. | Jan 2017 | A1 |
| 20170017904 | Heng et al. | Jan 2017 | A1 |
| 20170021204 | Baek | Jan 2017 | A1 |
| 20170022563 | Iakoubova et al. | Jan 2017 | A1 |
| 20170022564 | Begovich et al. | Jan 2017 | A1 |
| 20170027940 | Peeper et al. | Feb 2017 | A1 |
| 20170028006 | Ricard et al. | Feb 2017 | A1 |
| 20170029888 | Cargill et al. | Feb 2017 | A1 |
| 20170029889 | Cargill et al. | Feb 2017 | A1 |
| 20170032100 | Shaked et al. | Feb 2017 | A1 |
| 20170035011 | Grob et al. | Feb 2017 | A1 |
| 20170037470 | Kirkpatrick et al. | Feb 2017 | A1 |
| 20170046347 | Zhou et al. | Feb 2017 | A1 |
| 20170046499 | Hu et al. | Feb 2017 | A1 |
| 20170046615 | Schupp-Omid et al. | Feb 2017 | A1 |
| 20170051019 | Bunnik et al. | Feb 2017 | A1 |
| 20170051359 | Pegtel et al. | Feb 2017 | A1 |
| 20170052945 | Takeuchi et al. | Feb 2017 | A1 |
| 20170056468 | Eisenbud et al. | Mar 2017 | A1 |
| 20170061073 | Sadhasivam | Mar 2017 | A1 |
| 20170067121 | Kelsey et al. | Mar 2017 | A1 |
| 20170068795 | Liu et al. | Mar 2017 | A1 |
| 20170071884 | Page et al. | Mar 2017 | A1 |
| 20170072851 | Shenoy et al. | Mar 2017 | A1 |
| 20170073756 | Jensen et al. | Mar 2017 | A1 |
| 20170074878 | Oberoi et al. | Mar 2017 | A1 |
| 20170076209 | Sisk et al. | Mar 2017 | A1 |
| 20170076303 | Pickton et al. | Mar 2017 | A1 |
| 20170078400 | Binder et al. | Mar 2017 | A1 |
| 20170088900 | Anjamshoaa et al. | Mar 2017 | A1 |
| 20170091673 | Gupta et al. | Mar 2017 | A1 |
| 20170097347 | Eastman et al. | Apr 2017 | A1 |
| 20170098240 | Yang et al. | Apr 2017 | A1 |
| 20170098257 | Keller | Apr 2017 | A1 |
| 20170098278 | Carges et al. | Apr 2017 | A1 |
| 20170099836 | Bruck et al. | Apr 2017 | A1 |
| 20170100446 | Clarot et al. | Apr 2017 | A1 |
| 20170103190 | Abraham et al. | Apr 2017 | A1 |
| 20170105004 | Chen et al. | Apr 2017 | A1 |
| 20170105005 | Chen et al. | Apr 2017 | A1 |
| 20170106178 | Altschul et al. | Apr 2017 | A1 |
| 20170107583 | Black et al. | Apr 2017 | A1 |
| 20170108502 | Mulvihill et al. | Apr 2017 | A1 |
| 20170112792 | Lu et al. | Apr 2017 | A1 |
| 20170116383 | Ziavras et al. | Apr 2017 | A1 |
| 20170116624 | Moore et al. | Apr 2017 | A1 |
| 20170116653 | Smith et al. | Apr 2017 | A1 |
| 20170117064 | Lepine et al. | Apr 2017 | A1 |
| 20170119662 | Maisel et al. | May 2017 | A1 |
| 20170124520 | Chakra et al. | May 2017 | A1 |
| 20170124528 | Chakra et al. | May 2017 | A1 |
| 20170126009 | Chen et al. | May 2017 | A1 |
| 20170126332 | Biswas et al. | May 2017 | A1 |
| 20170127110 | Chaar et al. | May 2017 | A1 |
| 20170127180 | Shields et al. | May 2017 | A1 |
| 20170132537 | Chavez | May 2017 | A1 |
| 20170135041 | Miller et al. | May 2017 | A1 |
| 20170135647 | Morris et al. | May 2017 | A1 |
| 20170137879 | Narain et al. | May 2017 | A1 |
| 20170140122 | Kupfer et al. | May 2017 | A1 |
| 20170140424 | Canny et al. | May 2017 | A9 |
| 20170145503 | Schrodi et al. | May 2017 | A1 |
| 20170151217 | Sarpotdar et al. | Jun 2017 | A1 |
| 20170151964 | Kim et al. | Jun 2017 | A1 |
| 20170156344 | Wakefield | Jun 2017 | A1 |
| 20170157249 | Kupper et al. | Jun 2017 | A1 |
| 20170159045 | Serber et al. | Jun 2017 | A1 |
| 20170159138 | Tarcic et al. | Jun 2017 | A1 |
| 20170167287 | Jacobs et al. | Jun 2017 | A1 |
| 20170168070 | Oberoi et al. | Jun 2017 | A1 |
| 20170169912 | Gogotsi et al. | Jun 2017 | A1 |
| 20170171807 | Noh et al. | Jun 2017 | A1 |
| 20170171889 | Biswas et al. | Jun 2017 | A1 |
| 20170172472 | Wedekind et al. | Jun 2017 | A1 |
| 20170172473 | Wedekind et al. | Jun 2017 | A1 |
| 20170173262 | Veltz | Jun 2017 | A1 |
| 20170177435 | Chattha et al. | Jun 2017 | A1 |
| 20170177542 | Chattha et al. | Jun 2017 | A1 |
| 20170177813 | Yao et al. | Jun 2017 | A1 |
| 20170180214 | Azevedo et al. | Jun 2017 | A1 |
| 20170180798 | Goli et al. | Jun 2017 | A1 |
| 20170181098 | Shinohara | Jun 2017 | A1 |
| 20170181628 | Burnette et al. | Jun 2017 | A1 |
| 20170183243 | Reitmeyer et al. | Jun 2017 | A1 |
| 20170191134 | Gudmundsson et al. | Jul 2017 | A1 |
| 20170193647 | Huang et al. | Jul 2017 | A1 |
| 20170195823 | Shinohara | Jul 2017 | A1 |
| 20170196481 | Rundell et al. | Jul 2017 | A1 |
| 20170199845 | Azar et al. | Jul 2017 | A1 |
| 20170201297 | Stratigos | Jul 2017 | A1 |
| 20170213345 | Eslami et al. | Jul 2017 | A1 |
| 20170214799 | Perez et al. | Jul 2017 | A1 |
| 20170217018 | Skrinde | Aug 2017 | A1 |
| 20170219451 | Chaudhary et al. | Aug 2017 | A1 |
| 20170222753 | Angelopoulos et al. | Aug 2017 | A1 |
| 20170223653 | Weitnauer et al. | Aug 2017 | A1 |
| 20170224268 | Altini et al. | Aug 2017 | A1 |
| 20170226164 | Izum et al. | Aug 2017 | A1 |
| 20170228810 | Shang et al. | Aug 2017 | A1 |
| 20170228998 | Fu et al. | Aug 2017 | A1 |
| 20170231221 | Iatrou et al. | Aug 2017 | A1 |
| 20170233809 | Hackney et al. | Aug 2017 | A1 |
| 20170233815 | Timmons | Aug 2017 | A1 |
| 20170235894 | Cox et al. | Aug 2017 | A1 |
| 20170236060 | Ignatyev | Aug 2017 | A1 |
| 20170238850 | Gonzales et al. | Aug 2017 | A1 |
| 20170238879 | Ducreux | Aug 2017 | A1 |
| 20170242972 | Hu et al. | Aug 2017 | A1 |
| 20170244777 | Ouyang et al. | Aug 2017 | A1 |
| 20170246963 | Lee et al. | Aug 2017 | A1 |
| 20170247673 | Isaksen | Aug 2017 | A1 |
| 20170002625 | Beim et al. | Sep 2017 | A1 |
| 20170002705 | Esposito et al. | Sep 2017 | A1 |
| 20170255888 | McCord et al. | Sep 2017 | A1 |
| 20170255945 | McCord et al. | Sep 2017 | A1 |
| 20170259050 | Altschul et al. | Sep 2017 | A1 |
| 20170259178 | Aghdaie et al. | Sep 2017 | A1 |
| 20170259942 | Ziarno | Sep 2017 | A1 |
| 20170261645 | Kleeman et al. | Sep 2017 | A1 |
| 20170264805 | Athan | Sep 2017 | A1 |
| 20170265044 | Lundsgaard et al. | Sep 2017 | A1 |
| 20170268066 | Gatto et al. | Sep 2017 | A1 |
| 20170268954 | Ocalan | Sep 2017 | A1 |
| 20170276655 | Li | Sep 2017 | A1 |
| 20170280717 | Bedoukian et al. | Oct 2017 | A1 |
| 20170281092 | Burnette et al. | Oct 2017 | A1 |
| 20170281747 | Bunnik et al. | Oct 2017 | A1 |
| 20170284839 | Ojala | Oct 2017 | A1 |
| 20170286594 | Reid et al. | Oct 2017 | A1 |
| 20170286608 | Srinivas et al. | Oct 2017 | A1 |
| 20170286838 | Cipriani et al. | Oct 2017 | A1 |
| 20170287522 | Imao | Oct 2017 | A1 |
| 20170289323 | Gelvin et al. | Oct 2017 | A1 |
| 20170289812 | Werb | Oct 2017 | A1 |
| 20170290024 | Ouyang et al. | Oct 2017 | A1 |
| 20170292159 | Shiffman et al. | Oct 2017 | A1 |
| 20170295503 | Govindaraju et al. | Oct 2017 | A1 |
| 20170296104 | Ryan et al. | Oct 2017 | A1 |
| 20170298126 | Baum et al. | Oct 2017 | A1 |
| 20170300814 | Shaked et al. | Oct 2017 | A1 |
| 20170300824 | Peng et al. | Oct 2017 | A1 |
| 20170301017 | Magdelinic et al. | Oct 2017 | A1 |
| 20170302756 | Chou et al. | Oct 2017 | A1 |
| 20170304248 | Puder et al. | Oct 2017 | A1 |
| 20170306745 | Harding et al. | Oct 2017 | A1 |
| 20170308672 | Martin et al. | Oct 2017 | A1 |
| 20170308846 | de Mars et al. | Oct 2017 | A1 |
| 20170310697 | Lefebvre et al. | Oct 2017 | A1 |
| 20170310972 | Wang et al. | Oct 2017 | A1 |
| 20170310974 | Guleryuz et al. | Oct 2017 | A1 |
| 20170311895 | Sereno et al. | Nov 2017 | A1 |
| 20170312289 | Dugan Stocks et al. | Nov 2017 | A1 |
| 20170312315 | Braughuer et al. | Nov 2017 | A1 |
| 20170316150 | Deciu et al. | Nov 2017 | A1 |
| 20170322928 | Gotchev et al. | Nov 2017 | A1 |
| 20170330431 | Wedig et al. | Nov 2017 | A1 |
| 20170331899 | Binder et al. | Nov 2017 | A1 |
| 20170337711 | Ratner et al. | Nov 2017 | A1 |
| 20170344554 | Ha et al. | Nov 2017 | A1 |
| 20170344555 | Yan et al. | Nov 2017 | A1 |
| 20170344556 | Wu et al. | Nov 2017 | A1 |
| 20170344954 | Xu et al. | Nov 2017 | A1 |
| 20170346609 | Li et al. | Nov 2017 | A1 |
| 20170347242 | Ching et al. | Nov 2017 | A1 |
| 20170347297 | Li et al. | Nov 2017 | A1 |
| 20170350705 | D'Alberto et al. | Dec 2017 | A1 |
| 20170351689 | Vasudevan et al. | Dec 2017 | A1 |
| 20170351806 | Beim | Dec 2017 | A1 |
| 20170351811 | Zhao et al. | Dec 2017 | A1 |
| 20170353825 | D'Alberto et al. | Dec 2017 | A1 |
| 20170353826 | D'Alberto et al. | Dec 2017 | A1 |
| 20170353827 | D'Alberto et al. | Dec 2017 | A1 |
| 20170353865 | Li et al. | Dec 2017 | A1 |
| 20170353941 | D'Alberto et al. | Dec 2017 | A1 |
| 20170359584 | Said et al. | Dec 2017 | A1 |
| 20170363738 | Kaino | Dec 2017 | A1 |
| 20170364596 | Wu et al. | Dec 2017 | A1 |
| 20170364817 | Raykov et al. | Dec 2017 | A1 |
| 20170369534 | Bunnik et al. | Dec 2017 | A1 |
| 20170374521 | Zhyshko et al. | Dec 2017 | A1 |
| 20170374619 | San Vicente et al. | Dec 2017 | A1 |
| 20180000102 | Jackson et al. | Jan 2018 | A1 |
| 20180003722 | Tseng et al. | Jan 2018 | A1 |
| 20180005149 | Dhingra | Jan 2018 | A1 |
| 20180006957 | Ouyang et al. | Jan 2018 | A1 |
| 20180010136 | Hunt et al. | Jan 2018 | A1 |
| 20180010185 | Ebert et al. | Jan 2018 | A1 |
| 20180010197 | Beane-Ebel et al. | Jan 2018 | A1 |
| 20180010198 | Anjamshoaa et al. | Jan 2018 | A1 |
| 20180011110 | Landi et al. | Jan 2018 | A1 |
| 20180014771 | Merchant-Borna et al. | Jan 2018 | A1 |
| 20180017392 | Claudel et al. | Jan 2018 | A1 |
| 20180017545 | Hisamatsu et al. | Jan 2018 | A1 |
| 20180017564 | Sanada et al. | Jan 2018 | A1 |
| 20180017570 | Arashida et al. | Jan 2018 | A1 |
| 20180018683 | Yee et al. | Jan 2018 | A1 |
| 20180019862 | Kliewer et al. | Jan 2018 | A1 |
| 20180020951 | Kaifosh et al. | Jan 2018 | A1 |
| 20180021279 | Hamilton-Reeves et al. | Jan 2018 | A1 |
| 20180024029 | Ota et al. | Jan 2018 | A1 |
| 20180031589 | Tamezane et al. | Feb 2018 | A1 |
| 20180032876 | Altshuller et al. | Feb 2018 | A1 |
| 20180032938 | Scriffignano et al. | Feb 2018 | A1 |
| 20180033088 | Besman et al. | Feb 2018 | A1 |
| 20180034912 | Binder et al. | Feb 2018 | A1 |
| 20180035605 | Guan et al. | Feb 2018 | A1 |
| 20180038994 | Hamann et al. | Feb 2018 | A1 |
| 20180039316 | Brown et al. | Feb 2018 | A1 |
| 20180046926 | Achin et al. | Feb 2018 | A1 |
| 20180049636 | Miller et al. | Feb 2018 | A1 |
| 20180049638 | Ewers et al. | Feb 2018 | A1 |
| 20180051344 | Barreto et al. | Feb 2018 | A1 |
| 20180058202 | Disko et al. | Mar 2018 | A1 |
| 20180060458 | Zhao et al. | Mar 2018 | A1 |
| 20180060513 | Tang et al. | Mar 2018 | A1 |
| 20180060738 | Achin et al. | Mar 2018 | A1 |
| 20180060744 | Achin et al. | Mar 2018 | A1 |
| 20180062941 | Brown et al. | Mar 2018 | A1 |
| 20180064666 | Lu et al. | Mar 2018 | A1 |
| 20180067010 | Kim et al. | Mar 2018 | A1 |
| 20180067118 | Kim et al. | Mar 2018 | A1 |
| 20180071285 | Palczewski et al. | Mar 2018 | A1 |
| 20180075357 | Subramanian et al. | Mar 2018 | A1 |
| 20180077146 | Lonas | Mar 2018 | A1 |
| 20180077663 | Davis et al. | Mar 2018 | A1 |
| 20180078605 | Spencer et al. | Mar 2018 | A1 |
| 20180078747 | Altschul et al. | Mar 2018 | A1 |
| 20180078748 | Altschul et al. | Mar 2018 | A1 |
| 20180080081 | Akoulitchev et al. | Mar 2018 | A1 |
| 20180085168 | Valdes et al. | Mar 2018 | A1 |
| 20180085355 | Abramovitch et al. | Mar 2018 | A1 |
| 20180087098 | Gregg | Mar 2018 | A1 |
| 20180089389 | Hu et al. | Mar 2018 | A1 |
| 20180093418 | Lappas et al. | Apr 2018 | A1 |
| 20180093419 | Lappas et al. | Apr 2018 | A1 |
| 20180094317 | Dudley, Jr. et al. | Apr 2018 | A1 |
| 20180095450 | Lappas et al. | Apr 2018 | A1 |
| 20180108431 | Beim et al. | Apr 2018 | A1 |
| 20180111051 | Xue et al. | Apr 2018 | A1 |
| 20180114128 | Libert et al. | Apr 2018 | A1 |
| 20180116987 | Singh et al. | May 2018 | A1 |
| 20180120133 | Blank et al. | May 2018 | A1 |
| 20180122020 | Blank et al. | May 2018 | A1 |
| 20180124181 | Binder et al. | May 2018 | A1 |
| 20180124407 | Bright-Thomas et al. | May 2018 | A1 |
| 20180128824 | Mani et al. | May 2018 | A1 |
| 20180129902 | Li | May 2018 | A1 |
| 20180132720 | Miller et al. | May 2018 | A1 |
| 20180132725 | Vogl et al. | May 2018 | A1 |
| 20180143986 | Sinha et al. | May 2018 | A1 |
| 20180148180 | Fagundes et al. | May 2018 | A1 |
| 20180148182 | Fagundes et al. | May 2018 | A1 |
| 20180148776 | Guo et al. | May 2018 | A1 |
| 20180157758 | Arrizabalaga et al. | Jun 2018 | A1 |
| 20180160982 | Laszlo et al. | Jun 2018 | A1 |
| 20180162549 | Ziarno | Jun 2018 | A1 |
| 20180164439 | Droz et al. | Jun 2018 | A1 |
| 20180166962 | Kim et al. | Jun 2018 | A1 |
| 20180170575 | Ziarno | Jun 2018 | A1 |
| 20180171407 | Schrodi et al. | Jun 2018 | A1 |
| 20180176556 | Zhao et al. | Jun 2018 | A1 |
| 20180176563 | Zhao et al. | Jun 2018 | A1 |
| 20180176582 | Zhao et al. | Jun 2018 | A1 |
| 20180181910 | Zhang et al. | Jun 2018 | A1 |
| 20180182116 | Rhoads | Jun 2018 | A1 |
| 20180182181 | Dolan et al. | Jun 2018 | A1 |
| 20180185519 | Dharmakumar et al. | Jul 2018 | A1 |
| 20180189564 | Freitag et al. | Jul 2018 | A1 |
| 20180191867 | Siebel et al. | Jul 2018 | A1 |
| 20180192936 | Widge et al. | Jul 2018 | A1 |
| 20180193652 | Srivastava et al. | Jul 2018 | A1 |
| 20180201948 | Gonzalez Morales et al. | Jul 2018 | A1 |
| 20180206489 | Plettner et al. | Jul 2018 | A1 |
| 20180207248 | Castex | Jul 2018 | A1 |
| 20180211677 | Klejsa et al. | Jul 2018 | A1 |
| 20180212787 | Lee et al. | Jul 2018 | A1 |
| 20180213348 | Natarajan et al. | Jul 2018 | A1 |
| 20180214404 | Rosenberg et al. | Aug 2018 | A1 |
| 20180216099 | Serber et al. | Aug 2018 | A1 |
| 20180216100 | Serber et al. | Aug 2018 | A1 |
| 20180216101 | Serber et al. | Aug 2018 | A1 |
| 20180216132 | Cong et al. | Aug 2018 | A1 |
| 20180216197 | Davicioni et al. | Aug 2018 | A1 |
| 20180217141 | Sasso | Aug 2018 | A1 |
| 20180217143 | Sasso et al. | Aug 2018 | A1 |
| 20180218117 | Beim et al. | Aug 2018 | A1 |
| 20180222388 | Shenoy et al. | Aug 2018 | A1 |
| 20180225585 | Dong et al. | Aug 2018 | A1 |
| 20180227930 | Ouyang et al. | Aug 2018 | A1 |
| 20180232421 | Dialani et al. | Aug 2018 | A1 |
| 20180232434 | Geyik et al. | Aug 2018 | A1 |
| 20180232661 | Li et al. | Aug 2018 | A1 |
| 20180232700 | Li et al. | Aug 2018 | A1 |
| 20180232702 | Dialani et al. | Aug 2018 | A1 |
| 20180232904 | Zakharevich et al. | Aug 2018 | A1 |
| 20180235549 | Sereno et al. | Aug 2018 | A1 |
| 20180236027 | Barriere et al. | Aug 2018 | A1 |
| 20180237825 | Ehrich et al. | Aug 2018 | A1 |
| 20180239829 | Dialani et al. | Aug 2018 | A1 |
| 20180240535 | Harper et al. | Aug 2018 | A1 |
| 20180245154 | Tsalik et al. | Aug 2018 | A1 |
| 20180246696 | Sharma et al. | Aug 2018 | A1 |
| 20180251819 | Pichaud et al. | Sep 2018 | A1 |
| 20180251842 | Iakoubova et al. | Sep 2018 | A1 |
| 20180254041 | Harper | Sep 2018 | A1 |
| 20180260515 | Narain et al. | Sep 2018 | A1 |
| 20180260717 | Li et al. | Sep 2018 | A1 |
| 20180262433 | Ouyang et al. | Sep 2018 | A1 |
| 20180263606 | Orringer et al. | Sep 2018 | A1 |
| 20180263962 | Sarpotdar et al. | Sep 2018 | A1 |
| 20180271980 | Altschul et al. | Sep 2018 | A1 |
| 20180275146 | Narain et al. | Sep 2018 | A1 |
| 20180275629 | Watanabe | Sep 2018 | A1 |
| 20180276325 | Polovick et al. | Sep 2018 | A1 |
| 20180276497 | Madabhushi et al. | Sep 2018 | A1 |
| 20180276498 | Madabhushi et al. | Sep 2018 | A1 |
| 20180276570 | Watanabe | Sep 2018 | A1 |
| 20180277146 | Chen et al. | Sep 2018 | A1 |
| 20180277250 | Garbett et al. | Sep 2018 | A1 |
| 20180278693 | Binder et al. | Sep 2018 | A1 |
| 20180278694 | Binder et al. | Sep 2018 | A1 |
| 20180002923 | Suthanthiran et al. | Oct 2018 | A1 |
| 20180282736 | Lyerly et al. | Oct 2018 | A1 |
| 20180285765 | Nandagopal et al. | Oct 2018 | A1 |
| 20180285900 | Bhattacharyya et al. | Oct 2018 | A1 |
| 20180291398 | Cong et al. | Oct 2018 | A1 |
| 20180291459 | Al-Deen Ashab et al. | Oct 2018 | A1 |
| 20180291474 | Miick et al. | Oct 2018 | A1 |
| 20180292412 | Wischhusen et al. | Oct 2018 | A1 |
| 20180293462 | Ambati et al. | Oct 2018 | A1 |
| 20180293501 | Ambati et al. | Oct 2018 | A1 |
| 20180293511 | Bouillet et al. | Oct 2018 | A1 |
| 20180293538 | Berger et al. | Oct 2018 | A1 |
| 20180293759 | Moore | Oct 2018 | A1 |
| 20180293778 | Appu et al. | Oct 2018 | A1 |
| 20180295375 | Ratner | Oct 2018 | A1 |
| 20180300333 | Wang et al. | Oct 2018 | A1 |
| 20180300639 | Abbas | Oct 2018 | A1 |
| 20180303354 | Li | Oct 2018 | A1 |
| 20180303906 | Caspi et al. | Oct 2018 | A1 |
| 20180305762 | Cargill et al. | Oct 2018 | A1 |
| 20180310529 | Funaya et al. | Nov 2018 | A1 |
| 20180312923 | Luke et al. | Nov 2018 | A1 |
| 20180312926 | Klee et al. | Nov 2018 | A9 |
| 20180314964 | Takano et al. | Nov 2018 | A1 |
| 20180315507 | Mortazavi et al. | Nov 2018 | A1 |
| 20180317140 | Zhang | Nov 2018 | A1 |
| 20180317794 | Mackellar et al. | Nov 2018 | A1 |
| 20180322203 | Zhang et al. | Nov 2018 | A1 |
| 20180323882 | Breton et al. | Nov 2018 | A1 |
| 20180326173 | Ewers et al. | Nov 2018 | A1 |
| 20180327740 | Gifford et al. | Nov 2018 | A1 |
| 20180327806 | Hung et al. | Nov 2018 | A1 |
| 20180327844 | Deciu et al. | Nov 2018 | A1 |
| 20180334721 | Narain et al. | Nov 2018 | A1 |
| 20180336534 | Kim | Nov 2018 | A1 |
| 20180338017 | Mekuria et al. | Nov 2018 | A1 |
| 20180338282 | San Vicente et al. | Nov 2018 | A1 |
| 20180340231 | LaFleur et al. | Nov 2018 | A1 |
| 20180340515 | Huyn | Nov 2018 | A1 |
| 20180341958 | Hanowell | Nov 2018 | A1 |
| 20180343304 | Binder et al. | Nov 2018 | A1 |
| 20180343482 | Loheide et al. | Nov 2018 | A1 |
| 20180344841 | Bunnik et al. | Dec 2018 | A1 |
| 20180349514 | Alzate Perez et al. | Dec 2018 | A1 |
| 20180353138 | Doheny et al. | Dec 2018 | A1 |
| 20180357361 | Frenkel et al. | Dec 2018 | A1 |
| 20180357362 | Frenkel et al. | Dec 2018 | A1 |
| 20180357529 | Song et al. | Dec 2018 | A1 |
| 20180357565 | Syed et al. | Dec 2018 | A1 |
| 20180357726 | Besman et al. | Dec 2018 | A1 |
| 20180358118 | Bagaev et al. | Dec 2018 | A1 |
| 20180358125 | Bagaev et al. | Dec 2018 | A1 |
| 20180358128 | Bagaev et al. | Dec 2018 | A1 |
| 20180358132 | Bagaev et al. | Dec 2018 | A1 |
| 20180359608 | Ching et al. | Dec 2018 | A1 |
| 20180360892 | Pamer et al. | Dec 2018 | A1 |
| 20180365521 | Dai et al. | Dec 2018 | A1 |
| 20180369238 | Anton et al. | Dec 2018 | A1 |
| 20180369696 | Aghdaie et al. | Dec 2018 | A1 |
| 20180371553 | Steelman et al. | Dec 2018 | A1 |
| 20180375743 | Lee | Dec 2018 | A1 |
| 20180375940 | Binder et al. | Dec 2018 | A1 |
| 20190000750 | Maisel et al. | Jan 2019 | A1 |
| 20190001219 | Sardari et al. | Jan 2019 | A1 |
| 20190004996 | Azar et al. | Jan 2019 | A1 |
| 20190005586 | Lei et al. | Jan 2019 | A1 |
| 20190010548 | Diatchenko et al. | Jan 2019 | A1 |
| 20190010554 | Narain et al. | Jan 2019 | A1 |
| 20190014587 | Zhang | Jan 2019 | A1 |
| 20190015035 | Merfeld et al. | Jan 2019 | A1 |
| 20190015622 | Ewers et al. | Jan 2019 | A1 |
| 20190017117 | Barr et al. | Jan 2019 | A1 |
| 20190017123 | Davicioni et al. | Jan 2019 | A1 |
| 20190020530 | Au et al. | Jan 2019 | A1 |
| 20190024174 | Begovich et al. | Jan 2019 | A1 |
| 20190024497 | Harding et al. | Jan 2019 | A1 |
| 20190032136 | Shiffman et al. | Jan 2019 | A1 |
| 20190033078 | D'Alberto et al. | Jan 2019 | A1 |
| 20190034473 | Jha et al. | Jan 2019 | A1 |
| 20190034474 | Nandagopal et al. | Jan 2019 | A1 |
| 20190036779 | Bajaj | Jan 2019 | A1 |
| 20190036780 | Evans et al. | Jan 2019 | A1 |
| 20190036801 | Natarajan et al. | Jan 2019 | A1 |
| 20190036816 | Evans et al. | Jan 2019 | A1 |
| 20190037558 | Zhang | Jan 2019 | A1 |
| 20190057170 | Burriesci | Feb 2019 | A1 |
| 20190339416 | Elkabetz | Nov 2019 | A1 |
| 20190340534 | McMahan | Nov 2019 | A1 |
| 20200193234 | Pai | Jun 2020 | A1 |
| 20200225385 | O'Donncha | Jul 2020 | A1 |
| Entry |
|---|
| Rune Prytz, (“Machine learning methods for vehicle predictive maintenance using off-board and on-board data”), 2014, Halmstad University Dissertations No. 9, Halmstad University Press, pp. 1-96. (Year: 2014). |
| “File Compression Possibilities”. A Brief guide to compress a file in 4 different ways. https://www.gadgetcouncil.com/compress-1GB-files-into-10-mb/. |
| Arcangel, Cory. “On Compression” (2013), 13 pages. |
| Baraniuk, R. G., “Compressive sensing [lecture notes],” IEEE, Signal Processing Magazine, vol. 24, No. 4, 2007, 9 pages. |
| Ben-Gal, I. (2005). “On the Use of Data Compression Measures to Analyze Robust Designs”, 54 (3). IEEE Transactions on Reliability: 381-388. |
| Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 1-122. |
| Cai, J.F.; Candes, E.J.; Shen, Z.W. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20, 1956-1982. |
| Caione, C.; Brunelli, D.; Benini, L. Distributed compressive sampling for lifetime optimization in dense wireless sensor networks. IEEE Trans. Ind. Inf. 2012, 8, 30-40. |
| Candes, E. J., M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted 1 1 minimization,” Journal of Fourier Analysis and Applications, vol. 14, No. 5-6, 2008, pp. 877-905. |
| Candes, E.J.; Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9, 717-772. |
| Candes, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52. |
| CCITT Study Group VIII und die Joint Photographic Experts Group (JPEG) von ISO/IEC Joint Technical Committee 1/Subcommittee 29/Working Group 10 (1993), “Annex D—Arithmetic coding”, in ITU-T, Recommendation T.81: Digital Compression and Coding of Continuous-tone Still images—Requirements and guidelines. |
| Cevher, V., A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa, “Compressive sensing forbackground subtraction,” in Computer Vision—ECCV 2008. Springer, 2008, pp. 155-168. |
| Chanda P, Bader JS, Elhaik E; Elhaik; Bader (Jul. 27, 2012). “HapZipper: sharing HapMap populations just got easier”, Nucleic Acids Research. 40 (20): e159. doi:10.1093/nar/gks709. PMC 3488212. PMID 22844100. |
| Charbiwala, Z., Y. Kim, S. Zahedi, J. Friedman, and M. B. Srivastava, “Energy efficient sampling for event detection in wireless sensor networks,” in Proceedings of the 14th ACM/IEEE international symposium on Low power electronics and design. ACM, 2009, pp. 419-424. |
| Cheng, J.; Ye, Q.; Jiang, H.; Wang, D.; Wang, C. STCDG: An efficient data gathering algorithm based on matrix completion for wireless sensor networks. IEEE Trans. Wirel. Commun. 2013, 12, 850-861. |
| Christley S, Lu Y, Li C, Xie X; Lu; Li; Xie (Jan. 15, 2009). “Human genomes as email attachments”. Bioinformatics. 25 (2): 274-5. doi:10.1093/bioinformatics/btn582. PMID 18996942. |
| Claude Elwood Shannon (1948), Alcatel-Lucent, ed., “A Mathematical Theory of Communication.”, Bell System Technical Journal 27 (3-4). |
| Coalson, Josh. “FLAC Comparison,” 5 pages. |
| Donoho, D. L., “Compressed sensing,” IEEE Transactions on, Information Theory, vol. 52, No. 4, pp. 1289-1306, 2006. |
| en.wikipedia.org/wiki/Data_compression, 17 pages. |
| Gleichman, S.; Eldar, Y.C. “Blind Compressed Censing.” IEEE Trans. Inf. Theory 2011, 57, 6958-6975. |
| Goel, S., and T. Imielinski, “Prediction-based monitoring in sensor networks: taking lessons from mpeg,” ACM SIGCOMM Computer Communication Review, vol. 31, No. 5, pp. 82-98, 2001. |
| Goldstein, T.; O'Donoghue, B.; Setzer, S.; Baraniuk, R. Fast alternating direction optimization methods. SIAM J. Imaging Sci. 2014, 7, 1588-1623. |
| Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2013. |
| Grimes, C. A., “Design of a wireless sensor network for long-term, in-situ monitoring of an aqueous environment,” Sensors, vol. 2, No. 11, pp. 455-472, 2002. |
| Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Siences, Maui, HI, USA, Jan. 4-7, 2000; p. 223. |
| Hilbert, Martin; López, Priscila (Apr. 1, 2011). “The World's Technological Capacity to Store, Communicate, and Compute Information”. Science. 332 (6025): 60-65. Bibcode:2011Sci . . . 332 . . . 60H. doi:10.1126/science.1200970. PMID 21310967. |
| Hu, Y.; Zhang, D.; Ye, J.; Li, X.; He, X. Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2117-2130. |
| Huffman, David Albert (Sep. 1952), “A method for the construction of minimum-redundancy codes” (in German), Proceedings of the IRE 40 (9): pp. 1098-1101, doi:10.1109/JRPROC.1952.273898. |
| Kadkhodaie, M.; Christakopoulou, K.; Sanjabi, M.; Banerjee. A. Accelerated alternating direction method of multipliers. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, Aug. 10-13, 2015; pp. 497-506. |
| Kong, L.; Xia, M.; Liu, X.Y.; Chen, G.; Gu, Y.; Wu, M.Y.; Liu, X. Data loss and reconstruction in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 2818-2828. |
| Kong, L.; Xia, M.; Liu, X.Y.; Chen, G.; Gu, Y.; Wu, M.Y.; Liu, X. Supplemental Document—Data loss and reconstruction in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 2818-2828. |
| Korn, D.; et al. “RFC 3284: The VCDIFF Generic Differencing and Compression Data Format”. Internet Engineering Task Force. (2002). |
| Korn, D.G.; Vo, K.P. (1995), B. Krishnamurthy, ed., Vdelta: Differencing and Compression, Practical Reusable Unix Software, New York: John Wiley & Sons, Inc. |
| Lachowski, R.; Pellenz, M.E.; Penna, M.C.; Jamhour, E.; Souza, R.D. An efficient distributed algorithm for constructing spanning trees in wireless sensor networks. Sensors 2015, 15, 1518-1536. |
| Lane, Tom. “JPEG Image Compression FAQ, Part 1”. Internet FAQ Archives. Independent JPEG Group. |
| Li, S.X.; Gao, F.; Ge, G.N.; Zhang, S.Y. Deterministic construction of compressed sensing matrices via algebraic curves. IEEE Trans. Inf. Theory 2012, 58, 5035-5041. |
| Liu, X.Y.; Zhu, Y.; Kong, L.; Liu, C.; Gu, Y.; Vasilakos, A.V.; Wu, M.Y. CDC: Compressive data collection for wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 2188-2197. |
| Liu, Y.; He, Y.; Li, M.; Wang, J.; Liu, K.; Li, X. Does wireless sensor network scale? A measurement study on GreenOrbs. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 1983-1993. |
| Luo, C., F. Wu, J. Sun, and C. W. Chen, “Compressive data gathering for large-scale wireless sensor networks,” ACM, Proceedings of the 15th annual international conference on Mobile computing and networking, pp. 145-156, 2009. |
| Luo, C., F. Wu, J. Sun, and C. W. Chen, “Efficient measurement generation and pervasive sparsity for compressive data gathering,” Wireless Communications, IEEE Transactions on, vol. 9, No. 12, pp. 3728-3738, 2010. |
| Luo, C.; Wu, F.; Sun, J.; Chen, C.W. Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th ACM International Conference on Mobile Computing and Networking, Beijing, China, Sep. 20-25, 2009; pp. 145-156. |
| M. Hosseini, D. Pratas, and A. Pinho. 2016. A survey on data compression methods for biological sequences. Information 7(4):(2016): 56. |
| Mahdi, O.A.; Mohammed, M.A.; Mohamed, A.J. (Nov. 2012). “Implementing a Novel Approach an Convert Audio Compression to Text Coding via Hybrid Technique”. International Journal of Computer Science Issues. 9 (6, No. 3): 53-59. |
| Mahmud, Salauddin (Mar. 2012). “An Improved Data Compression Method for General Data”. International Journal of Scientific & Engineering Research. 3(3):2. |
| Mahoney, Matt. “Rationale for a Large Text Compression Benchmark”. Florida Institute of Technology. (2006) cs.fit.edu/mmahoney/compression/rationale.htm. |
| Marak, Laszlo. “On image compression” University of Marne la Vallee (2013). |
| Mittal, S.; Vetter, J. (2015), “A Survey Of Architectural Approaches for Data Compression in Cache and Main Memory Systems”, IEEE Transactions on Parallel and Distributed Systems, IEEE. |
| Navqi, Saud; Naqvi, R.; Riaz, R.A.; Siddiqui, F. (Apr. 2011). “Optimized RTL design and implementation of LZW algorithm for high bandwidth applications” Electrical Review. 2011 (4): 279-285. |
| Pavlichin DS, Weissman T, Yona G; Weissman; Yona (Sep. 2013). “The human genome contracts again”. Bioinformatics. 29 (17): 2199-202. doi:10.1093/bioinformatics/btt362. PMID 23793748. |
| Pujar, J.H.; Kadlaskar, L.M. (May 2010). “A New Lossless Method of Image Compression and Decompression Using Huffman Coding Techniques” Journal of Theoretical and Applied Information Technology. 15 (1): 18-23. |
| Roughan, M.; Zhang, Y.; Willinger, W.; Qiu, L.L. Spatio-temporal compressive sensing and internet traffic matrices. IEEE ACM Trans. Netw. 2012, 20, 662-676. |
| Scully, D.; Carla E. Brodley (2006). “Compression and machine learning: A new perspective on feature space vectors” Data Compression Conference, 2006. |
| Shmilovici A.; Kahiri Y.; Ben-Gal I.; Hauser S. (2009). “Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm” 33(2). Computational Economics: 131-154. |
| Shuman, D.I.; Narang, S.K.; Frossard, P.; Ortega, A.; Vandergheynst, P. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 2013, 30, 83-98. |
| Sullivan, G. J.; Ohm, J.-R.; Han, W.-J.; Wiegand, T., (Dec. 2012). “Overview of the High Efficiency Video Coding (HEVC) Standard” IEEE Transactions on Circuits and Systems for Video Technology. IEEE. 22 (12). |
| Toh, K.C.; Yun, S. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. 2010, 6, 615-640. |
| Wang, Donghao, Wan, Jiangwen, Nie, Zhipeng, Zhang, Qiang, and Fei, Zhijie, “Efficient Data Gathering Methods in Wireless Sensor Networks Using GBTR Matrix Completion”, Sensors 2016, 16(9), 1532; doi:10.3390/s1601532. |
| Wolfram, Stephen (2002). A New Kind of Science. Wolfram Media, Inc. p. 1069. ISBN 1-57955-008-8. |
| Xiang, L., J. Luo, C. Deng, A. V. Vasilakos, and W. Lin, “Dual-level compressed aggregation: Recovering fields of physical quantities from incomplete sensory data,” arXiv preprint arXiv:1107.4873, 2011. |
| Xiang, L.; Luo, J.; Rosenberg, C. Compressed data aggregation: Energy-efficient and high-fidelity data collection. IEEE Acm Trans. Netw. 2013, 21, 1722-1735. |
| Yoon, S.; Shahabi, C. The Clustered AGgregation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks. ACM Trans. Sens. Netw. 2007, 3, 3. |
| Zhang Z., and B. D. Rao, “Sparse signal recovery with temporally correlated source vectors using sparse bayesian learning,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, pp. 912-926, 2011. |
| Zheng, H., S. Xiao, X. Wang, and X. Tian, “Energy and latency analysis for in-network computation with compressive sensing in wireless sensor networks,” INFOCOM, pp. 2811-2815, 2012. |
| Breiman, Leo (Aug. 1996). “Bagging predictors”. Machine Learning. 24 (2): 123-140. doi:10.1007/bf00058655. |
| Jeffrey H. Altschul, Lynne Sebastian, and Kurt Heidelberg, “Predictive Modeling in the Military: Similar Goals, Divergent Paths”, Preservation Research Series 1, SRI Foundation, 2004. |
| forteconsultancy.wordpress.com/2010/05/17/wondering-what-lies-ahead-the-power-of-predictive-modeling/. |
| “Hospital Uses Data Analytics and Predictive Modeling To Identify and Allocate Scarce Resources to High-Risk Patients, Leading to Fewer Readmissions”. Agency for Healthcare Research and Quality. Jan. 29, 2014, Retrieved Jan. 29, 2014. |
| Banerjee. Imon. “Probabilistic Prognostic Estimates of Survival in Metastatic Cancer Patients (PPES-Met) Utilizing Free-Text Clinical Narratives”. Scientific Reports. 8 (10037 (2018)). doi:10.1038/s41598-018-27946-5. |
| “Implementing Predictive Modeling in R for Algorithmic Trading”. Oct. 7, 2016. Retrieved Nov. 25, 2016. |
| “Predictive-Model Based Trading Systems, Part 1—System Trader Success”. System Trader Success. Jul. 22, 2013. Retrieved Nov. 25, 2016. |
| Augustin, N.H.; Sauleau, E-A; Wood, S.N. (2012). “On quantile quantile plots for generalized linear models”. Computational Statistics and Data Analysis. 56: 2404-2409. doi:10.1016/j.csda.2012.01.026. |
| Brian Junker (Mar. 22, 2010). “Additive models and cross-validation”. |
| Fahrmeier, L.; Lang, S. (2001). “Bayesian Inference for Generalized Additive Mixed Models based on Markov Random Field Priors”. Journal of the Royal Statistical Society, Series C. 50: 201-220. |
| Greven, Sonja; Kneib, Thomas (2010). “On the behaviour of marginal and conditional AIC in linear mixed models”. Biometrika. 97: 773-789, doi:10.1093/biomet/asq042. |
| Gu, C.; Wahba, G. (1991). “Minimizing GCV/GML scores with multiple smoothing parameters via the Newton method”. SIAM Journal on Scientific and Statistical Computing. 12. pp. 383-398. |
| Kim, Y.J.; Gu, C. (2004). “Smoothing spline Gaussian regression: more scalable computation via efficient approximation”. Journal of the Royal Statistical Society, Series B. 66. pp. 337-356. |
| Marra, G.; Wood, S.N. (2012). “Coverage properties of confidence intervals for generalized additive model components”. Scandinavian Journal of Statistics. 39: 53-74. doi:10.1111/j.1467-9469.2011.00760.x. |
| Nelder, John; Wedderburn, Robert (1972). “Generalized Linear Models”. Journal of the Royal Statistical Society. Series A (General). Blackwell Publishing. 135 (3): 370-384. doi:10.2307/2344614. JSTOR 2344614. |
| Reiss, P.T.; Ogden, T.R. (2009). “Smoothing parameter selection for a class of semiparametric linear models”. Journal of the Royal Statistical Society, Series B. 71: 505-523. doi:10.1111/j.1467-9868.2008.00695.x. |
| Rigby, R.A.; Stasinopoulos, D.M. (2005). “Generalized additive models for location, scale and shape (with discussion)”. Journal of the Royal Statistical Society, Series C. 54: 507-554. doi:10.1111/j.1467-9876.2005.00510.x. |
| Rue, H.; Martino, Sara; Chopin, Nicolas (2009). “Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion)”. Journal of the Royal Statistical Society, Series B. 71: 319-392. doi:10.1111/j.1467-9868.2008.00700.x. |
| Schmid, M.; Hothorn, T. (2008). “Boosting additive models using component-wise P-splines”. Computational Statistics and Data Analysis. 53: 298-311. doi:10.1016/j.csda.2008.09.009. |
| Senn, Stephen (2003). “A conversation with John Nelder”. Statistical Science. 18 (1): 118-131. doi:10.1214/ss/1056397489. |
| Silverman, B.W. (1985). “Some Aspects of the Spline Smoothing Approach to Non-Parametric Regression Curve Fitting (with discussion)”. Journal of the Royal Statistical Society, Series B. 47. pp. 1-53. |
| Umlauf, Nikolaus; Adler, Daniel; Kneib, Thomas; Lang, Stefan; Zeileis, Achim. “Structured Additive Regression Models: An R Interface to BayesX”. Journal of Statistical Software. 63 (21): 1-46. |
| Wahba, G. (1983). “Bayesian Confidence Intervals for the Cross Validated Smoothing Spline”. Journal of the Royal Statistical Society, Series B. 45. pp. 133-150. |
| Wood, S. N. (2000). “Modelling and smoothing parameter estimation with multiple quadratic penalties”. Journal of the Royal Statistical Society. Series B. 62 (2): 413-428. doi:10.1111/1467-9868.00240. |
| Wood, S. N.; Pya, N.; Saefken, B. (2016). “Smoothing parameter and model selection for general smooth models (with discussion)”. Journal of the American Statistical Association. 111: 1548-1575. doi:10.1080/01621459.2016.1180986. |
| Wood, S.N. (2011). “Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models”. Journal of the Royal Statistical Society, Series B. 73: 3-36. |
| Wood, Simon N. (2008). “Fast stable direct fitting and smoothness selection for generalized additive models”. Journal of the Royal Statistical Society, Series B. 70 (3): 495-518. arXiv:0709.3906. doi:10.1111/j.1467-9868.2007.00646.x. |
| Zeger, Scott L.; Liang, Kung-Yee; Albert, Paul S. (1988). “Models for Longitudinal Data: A Generalized Estimating Equation Approach”. Biometrics. International Biometric Society. 44 (4): 1049-1060. doi:10.2307/2531734. JSTOR 2531734. PMID 3233245. |
| International Search Report and Written Opinion, dated Apr. 23, 2020 for International Application PCT/US20/15698, 13 pages. |
| Nasir Ahmed, T. Natarajan, Kamisetty Ramamohan Rao (Jan. 1974), “Discrete Cosine Transform” (in German), IEEE Transactions on Computers C-23 (1): pp. 90-93, doi:10.1109/T-C.1974.223784. |
| Graphics & Media Lab Video Group (2007), “Lossless Video Codecs Comparison, 2007,” Moscow State University, Mar. 2007, CS MSU Graphics & Media Lab, 131 pages. |
| Number | Date | Country | |
|---|---|---|---|
| 20200285983 A1 | Sep 2020 | US |
| Number | Date | Country | |
|---|---|---|---|
| 62813664 | Mar 2019 | US |