The following terms are used in this description:
We describe a UMA-to-SIP convergence (USC) gateway that bridges communication between UMA mobile devices and other communication systems including, for example, IMS based wireless networks and IP PBX/Centrex services. By using such a UMA-to-SIP gateway, the mobile devices can participate in SIP-based communication session without using a SIP client that is hosted in the mobile devices.
Referring to
USC Gateway 200 can also can establish traditional network connections with a PSTN network 204 or a standard mobile network 206. The connections are established using standard methods, through an IP Network 208. In some examples, USC 200 connects to a Softswitch & Media Gateway 210 to transmit data to a standard PSTN phone 214 over a PSTN network 212. In some example, USC 200 connects to a signaling gateway 216 through NCG 202 to transmit data over an SS7 Network Signal Transfer Point (STP) server 218 in the mobile network 206. The STP server 218 has access to a Short Message Service Center (SMSC) server 220, a Home Location Register (HLR) server 222, and an MSC 224.
Referring to
Again, from the point of view of the IMS network 300, the USC Gateway 200 behaves like a SIP User Agent (SIP Client) on behalf of MS 100. It translates and converts legacy GSM circuit-switched interactions with MS 100 into IP-based SIP and IMS compliant protocols used in IMS and IP PBX/Centrex services. USC 200 can communicate with an IMS Call Session Control Function (CSCF) server 302, an IMS Application Server (AS) 306, and a VCCF server 304 in the IMS network 300. To IMS AS 306 and IP PBX/Centrex 203, UMA mobile device appear just like any other SIP/IMS client.
System and protocol architectures of the USC Gateway are shows in
Referring to
Referring to
In some examples, a UMA mobile station (MS) 100 dials a telephone number to call a first party 650 (Step 600). The USC Gateway 200 receives the dialed number and sends an SIP invite to the appropriate Media Gateway (MGW) 210 (Step 602), which forwards the invite on to a PSTN 212 (Step 603). The PSTN 212 sends an alert to the first party 650 (Step 604), who then answers the call (Step 605). The PSTN 212 returns an ANM message to the MGW 210 (Step 606), which forwards a SIP OK message back to USC Gateway 200 (Step 608). USC Gateway sends a “Call Answered” message back to MS 100 (Step 610) and sets up the call with the first party as a UMA conversation (Step 612). The conversation segment between MGW 210 and MS2650 is initiated as a voice conversation using standard techniques (Step 614).
While on the active call with the first party, the subscriber 115 can initiate three-way calling by inviting another third party 652 to join the call. In some examples, the subscriber dials a star code (e.g., “*3”) to indicate that he wishes to initiate three-way calling, followed by a telephone number (e.g., “781 111 5678”) for the third party 652 (Step 616). In some examples, the USC Gateway 200 does the call bridging and voice media stream mixing to set up the three-way calling. The USC Gateway 200 uses standard techniques to initiate the call with the third party 652, sending an SIP invite to the appropriate MGW 210 (Step 618), who sends an IAM message to the appropriate PSTN 212 (Step 619), which sends an alert to the third party 652 (Step 620). The third party 652 answers (Step 621), and the PSTN 212 sends an ANM message back to the MGW 210 (Step 622). MGW 210 sends an SIP OK message back to the USC Gateway 200 (Step 624). USC Gateway 200 then mixes all three call legs among the parties and sends a “Call Answered” message back to MS 100 (Step 626). The call leg between the third party 652 and MGW 210 is set up as a Voice Conversation (628), while the call leg between MS 100 and MW 210 is a UMA conversation (Step 630).
Referring to
In some examples, the extension “301” is dialed from the UMA MS 100 (Step 702). The USC Gateway 200 recognizes this as a valid extension dialing plan and forwards the call to an IP PBX 202 as a “SIP INVITE to extension 301” (Step 704). A remote office desktop IP phone 700 rings (Step 706). An SIP message that the phone is ringing is forward from the IP phone 700 to the IP PBX 202 (Step 708 to the USC Gateway 200 (Step 710) to MS 100 (Step 712). The third party answers the IP phone 700, which sends an SIP OK message to IP PBX 202 (Step 714), which forwards the OK message to USC Gateway 200 (Step 716), which sends a “Call Answered” message to MS 100 (Step 718). A UMA Voice Conversation is initiated between MS 100 and IP phone 700 (Step 720).
Without the USC Gateway acting (or proxying) as a SIP User Agent on behalf of the UMA Handset, complicated network setups are required to implement such as Mobile PBX service. Typical implementations use mechanisms such as CAMEL to trigger or force call routing to force-route the dial digits (“301”) into the IP PBX or IP Centrex.
The approach described here requires no CAMEL triggers, no force-call routing, no change to UMA handset; no special software to download, and no change to UMA, GSM, IP PBX/Centrex protocols & networks. Mobile service providers only need to deploy the USC Gateway in their network to rollout Mobile/Wireless IP PBX service with UMA handsets.
Accordingly, other embodiments are within the scope of the following claims.