Data-driven actions for network forms

Information

  • Patent Grant
  • 7673228
  • Patent Number
    7,673,228
  • Date Filed
    Wednesday, March 30, 2005
    19 years ago
  • Date Issued
    Tuesday, March 2, 2010
    14 years ago
Abstract
Systems and/or methods are described that enable a data-driven action associated with altering a data instance of a network form without altering and/or having access to the data instance. These systems and/or methods, in one embodiment, render a result of a data-driven action for a network form without transforming the network form's data instance. In another embodiment, the systems and/or methods map a data-driven action to a view-centric logical representation of the electronic form.
Description
TECHNICAL FIELD

This invention relates to actions for network forms.


BACKGROUND

Electronic forms are commonly used to collect information. Electronic forms may be used locally or over a communication network, such as an intranet or the Internet. For electronic forms used locally, a user's computer locally accesses view information and data information about an electronic form. With this view information, the user's computer may enable the user to view and enter data into the electronic form. With this data information, the user's computer may enable data actions for the electronic form, like validating data entered into a field, adding data from multiple fields and populating the result into another field, and the like.


For electronic forms used with a network, a user's computer communicates with a network computer to enable use of the electronic form. In so doing, often the user's network browser receives view information but not data information from the network computer. This view information may be used by the user's network browser to permit the user to view and enter information into the electronic form.


To enable data actions for the electronic form, the user's network browser often needs to communicate with the network computer for each data action. A user may, for instance, enter a price for a product in one data-entry field of a network form and a quantity of these products into another data-entry field. A data action may calculate a total price by multiplying the product's price by its quantity. To present this total price in the form, often the user's network browser sends the price and the quantity to the network computer and waits for the network computer to calculate the total, create new view information for the entire form but now including this total, and send it to the network browser. The network browser may then present the total to the user based on this new view information.


Communicating with the network computer, however, may slow the user's network browser enough to negatively affect the user's editing experience. In some cases, the network computer may take an appreciable amount of time to receive the request from the browser, perform the data action, and send new view information to the browser. Also, communicating with the network computer may be slow because of the network or how the browser communicates with it (e.g., with a dial-up modem), thereby potentially affecting a user's editing experience.


In addition, having the network computer perform data actions expends some of the network computer's resources. Expending these resources may slow or inhibit the network computer's ability to service other users.


Accordingly, this invention arose out of concerns associated with performing data actions for network forms.


SUMMARY

Systems and/or methods (“tools”) are described that enable a data-driven action associated with altering a data instance of a network form without altering and/or having access to the data instance.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an exemplary operating environment in which various embodiments can operate.



FIG. 2 is a flow diagram of an exemplary process for creating a view-centric data-driven action.



FIG. 3 illustrates an exemplary view of a network form.



FIG. 4 is a flow diagram of an exemplary process for performing a data-driven action associated with altering a data instance of a network form and/or rendering a result of a data-driven action.



FIG. 5 illustrates the view of FIG. 3 with edits.



FIG. 6 illustrates the view of FIG. 5 with an additional edit and results from performing a data-driven action.





The same numbers are used throughout the disclosure and figures to reference like components and features.


DETAILED DESCRIPTION

Overview


The following disclosure describes one or more tools enabling a data-driven action associated with altering a data instance of a network form without altering and/or having access to the data instance. In one embodiment, a tool performs a data-driven action without local access to a network form's data instance and without communicating non-locally to access the data instance, such as by a roundtrip with a network computer having the data instance.


In another embodiment, a tool renders a result of a data-driven action for a network form without transforming the network form's data instance. The tool may do so without necessitating access to and/or an alteration of the data instance. This may permit a user to edit a control in a network form and view the results of a data-driven action driven by the user's edit without requiring that the tool access or alter the network form's data instance. This may permit a user to edit the form and view the result of the action driven by that edit without waiting for a roundtrip to a network computer having the data instance. Not having to perform a roundtrip may improve a user's editing experience by making it smoother, faster, and/or more seamless. Not having to perform a roundtrip to view an action's result may also reduce the resources needed by the network computer servicing the network form.


In still another embodiment, a tool builds a relation mapping a data-driven action to an electronic form's view template. The tool may do so by transforming an action's data-centric map of an electronic form's data instance to a view-centric map of the electronic form's view template. This view-centric map may be used, for example, to enable a tool to perform the data-driven action without needing access to the network form's data instance.


Exemplary Operating Environment


Before describing the tools in detail, the following discussion of an exemplary operating environment is provided to assist the reader in understanding where and how the tools may be employed. The description provided below constitutes but one example and is not intended to limit application of the tools to any one particular operating environment.



FIG. 1 illustrates one such operating environment generally at 100 comprising a computer 102, a communication network 104, and a network computer 106. The computer is shown comprising one or more processor(s) 108 and computer-readable media 110. The processor(s) are capable of accessing and/or executing the computer-readable media. The computer-readable media comprises a network browser 112, an event log 114, and received media 116. The dashed lines between the received media and media of the network computer show that these indicated media may be downloaded by the computer from the network computer.


The communication network enables communication between the computer and the network computer and may comprise one or more of an intranet, like a company's internal network, the Internet, and the like.


The network computer is shown comprising computer-readable media 118. This computer-readable media comprises a network form 120 comprising a data instance 122, a schema 124 governing the network form, and data-centric data-driven actions 126. The network form's data instance is a particular data instance of the network form; thus, if the structure or data of the network form is changed (such as by a user entering information into a view of the network form), the network form's data instance is altered at some point in time to reflect the change. The data-centric data-driven actions are actions driven by data changes in the data instance and are mapped to the data instance.


The network computer's computer-readable media is also shown comprising view information 128, a view template 130, view-centric actions 132, an actor application 134, and initial data 136. The view information, view template, view-centric actions, actor application, and initial data may be combined or separate.


The view information is information sufficient for the network browser to display an editable view of the network form. This view information may also be sufficient for the network browser and/or the actor application to display an alteration to the editable view resulting from execution of an action. In one embodiment, the view information comprises HyperText Machine Language (HTML) resulting from a transformation declared in XML Stylesheet Language Transformation (XSLT) of an extensible Markup Language (XML) embodiment of the data instance. This HTML is usable by the network browser to display the network form. Also in this embodiment, the network form's schema comprises XML Schema (XSD). This schema may comprise data-centric actions to validate the network form.


The view template comprises a view-centric logical representation of the network form. The view template's structure is, in one embodiment, one in which view information may be mapped sufficient for the actor application and/or the browser to build a view of the network form. The view template's structure may also, in another embodiment, be one in which actions are related sufficient for the actor application to perform actions in response to a user's interaction with a portion of the view template.


The view-centric actions comprise data-driven actions, which may be identified with or mapped to a position or node in the view template.


The actor application, in conjunction with or separate from the network browser, is capable of performing data-driven actions without altering and/or accessing the network form's data instance 122.


The initial data comprises stored data, such as default data. Default data may comprise, for example, values for simple fields (like date, currency, and name fields), and a number of repetitions for lists, tables, and rows. Other stored data may comprise data previously entered into the network form, such as when a form is altered, submitted, and later re-opened for viewing or further editing.


Various embodiments of these elements, and particularly an exemplary process for creating view-centric data-driven actions, are set forth in greater detail below. After describing this process, exemplary tools enabling these and other actions are described.


Data-Driven Actions


Many data-driven actions for electronic forms are related to a form's data instance, such as by being mapped to the form's data instance. But this relation may require accessing the data instance, which may be undesirable for electronic forms accessed over a network.


An exemplary process 200 for creating a view-centric data-driven action is shown in FIG. 2 and described below. This process creates a view-centric data-driven action by transforming an existing data-centric data-driven action having a relation to a network form's data instance to a data-driven action having a relation to the network form's view template. Process 200 is illustrated as a series of blocks representing individual operations or acts performed by elements of the operating environment 100 of FIG. 1, such as actor application 134. This and other processes described herein may be implemented in any suitable hardware, software, firmware, or combination thereof; in the case of software and firmware, these processes may represent a set of operations implemented as computer-executable instructions stored in computer-readable media 118 and executable by processor(s) of network computer 106 and/or in computer-readable media 110 and executable by processors 108.


To illustrate the process 200 a purchase order 300 showing an example of network form 120 is set forth in FIG. 3. In the purchase order, a view of controls are shown, here for a name field 302, a phone field 304, item fields 306a and 306b, quantity fields 308a and 308b, unit price fields 310a and 310b, total fields 312a and 312b, and a grand total field 314. The purchase order's schema, data instance, and view template are helpful in describing the process and so are set forth below.


The schema governing the data instance of the network form may be represented as:

















root



name



phone



orders



    order



      itemid



      quantity



      unitPrice



      total



total










The data instance governed by this schema may be represented as:

















 <root>



  <name></name>



  <phone></phone>



  <orders>



    <order>



      <itemid></itemid>



      <quantity></quantity>



      <unitPrice></unitPrice>



      <total></total>



    </order>



    <order>



      <itemid></itemid>



      <quantity></quantity>



      <unitPrice></unitPrice>



      <total></total>



    </order>



  </orders>



  <total></total>



</root>










And, the view template for this form may be represented as:

















V1 - /root



  T1 - name



  T2 - phone



  R1 - orders/order



    T1 - itemid



    T2 - quantity



    T3 - price



    T4 - total



  T3 - total










Returning to FIG. 2, at block 202 a tool (e.g., actor application 134) finds a relation mapping a data-driven action (e.g., one of the data-centric data-driven actions 126 of FIG. 1) to data instance 122. This relation may comprise a navigation path, such as an XML path language (XPath) expression.


Continuing the illustrated embodiment, assume that the data instance has two data-centric data-driven actions. These actions may be represented as:

















target=“/root/orders/order/total”



expression=“../quantity *../unitPrice”










and

















target=“/root/total”



expression=“sum(../orders/order/total)”










The first action is structured to multiply the data in the data instance's quantity node by the data in the data instance's unit price node. The second action is structured to sum all of the data in the data instance's total nodes that are child nodes to the orders node.


The navigation paths may be extracted from these data-centric data-driven actions, which in this case are XPath expressions. The tools extract the following XPaths:

/root/orders/order/total
and
/root/total


As shown, these XPaths map to the data instance. The first maps to the two total nodes that are children to the “orders” node (rendered as the total fields 312a and 312b in FIG. 3). The second maps to the total node that is a child of just the root node (rendered as the grand total field 314 in FIG. 3).


At block 204, the tool builds a view template path corresponding to the navigation path. The tool may correlate the navigation path to the view template to transform the navigation path into the view template path. The tool may also compare the portion of the data instance mapped by the navigation path to the structure of the view template. If the tool finds a node of the view template that corresponds to the mapped portion of the data instance, the tool may build a view template path mapping this node.


Continuing the illustrated embodiment, the tool determines which view template node corresponds to the data instance node mapped by the navigation path. The view template may be represented as:

















V1 - /root



  T1 - name



  T2 - phone



  R1 - orders/order



    T1 - itemid



    T2 - quantity



    T3 - price



    T4 - total



  T3 - total










The tool determines that the data instance node mapped by the navigation path of: “/root/orders/order/total”, which is:

















  <root><orders><order><total></total>



</order></orders></root>










corresponds in the view template to:

V1/R1/T4


Similarly, the tool determines that the data instance node for the second data-driven action corresponds to:

V1/T3


Alternatively, the tool transforms the navigation path by determining the node of the view template corresponding to the schema node mapped by the navigation path. In some cases the structure of the schema governing the electronic form is more easily or accurately parsed, thereby making the tool's determination easier or more accurate. As shown above, correlating the schema node of “/root/orders/order/total” may be correlated to:

















V1 - /root



  R1 - orders/order



    T4 - total











to find “V1/R1/T4” of the view template.


In some cases, no view template node corresponds with the data instance node mapped by the navigation path. One such case is where a data instance node to which an action is mapped is not capable of affecting the form's view. If a node of a data instance (or schema) has a related action that alters data in a node that is not viewable, for instance, then that action may not have a corresponding node in the view template.


If the tool determines that the mapped-to portion of the data instance does not have a corresponding node in the view template, the tool does not proceed. If it determines otherwise, it proceeds to block 206. In the illustrated embodiment, both of the data-centric data-driven actions are capable of affecting the view and have a corresponding node in the view template. The tool builds view template paths to these corresponding nodes.


At block 206, the tool replaces the navigation path mapping the data-driven action to the data instance with a view template path mapping the data-driven action to the view template.


Continuing the illustrated embodiment, the navigation paths for the data-driven actions are:

/root/orders/order/total
and
/root/total


The tools replace these navigation paths with view template paths. Thus, the data-centric data-driven actions are transformed to view-centric data-driven actions, such as:

















target=“V1/R1/T4”



expression=“../T2 *../T3”










and

target=“V1/T3” expression=“sum( . . . /R1/T4)”


At block 208, the tool may, in some embodiments, annotate the view template with the data-driven action. The view template paths indicate a node or nodes of the view template to which an action is mapped. The tool may annotate these nodes to indicate that the action may be triggered by a change to these nodes. The view template may also be annotated with the action itself, thereby combining the action and the view template.


Continuing the illustrated embodiment, the tools annotate the view template with the view-centric actions:

















  V1 - /root



    T1 - name



    T2 - phone



    R1 - orders/order



      T1 - itemid



      T2 - quantity



        data_action =



          {



            target =



../T4



            expression



= Multiply(Select(../T2), Select(../T3))



          }



      T3 - price



        data_action =



          {



            target =



../T4



            expression



= Multiply(Select(../T2), Select(../T3))



          }



      T4 - total



        data_action =



          {



            target =



../../T3



            expression



= Sum(Select(../R1/T4))



          }



    T3 - total










This annotated view template indicates that data for the node “V1/R1/T2” (shown with the quantity field 308a) and “V1/R1/T3” (shown with the quantity field 310b) may be multiplied and the result placed in the “V1/R1/T4” node (shown with the total field 312a). The view template also indicates the same for each iteration of these nodes (e.g., fields 308b, 310b, and 312b).


The view template also indicates that data for each of nodes “V1/R1/T4” (shown as total fields 312a and 312b) may be summed and the result placed in another node, that of “V1/T3” (shown with grand total field 314).


Performing a Data-Driven Action for a Network Form


As part of an exemplary process 400 shown in FIG. 4, the tools perform data-driven actions associated with altering a data instance of a network form without altering and/or having access to the data instance. Also in this process, a tool renders a result of a data-driven action for a network form without transforming the network form's data instance. Process 400 is illustrated as a series of blocks representing individual operations or acts performed by elements of the operating environment 100 of FIG. 1, such as actor application 134.


At block 402, network browser 112 receives a user's choice to edit a network form. Assume, by way of example, that the user is browsing forms available over a network and selects to edit purchase order 300 of FIG. 3.


At block 404, the network browser receives information sufficient to enable computer 102 to display and receive edits to the network form. This information may comprise computer-readable media from network computer 106 of FIG. 1, such as view information 128, view template 130, view-centric actions 132, actor application 134, and initial data 136. With the view information and view template, the actor application and/or the network browser displays an editable view of the form.


In one embodiment, the actor application builds an editable view of the form by mapping pieces of the view information to the view template. These pieces are viewable pieces, such as HTML, which the actor application may concatenate into an overall view of the form. These view pieces may comprise, for instance, renderable HTML for data-entry fields, buttons, and other controls.


At block 406, the computer renders the network form chosen by the user. In the illustrated embodiment, the actor application renders the purchase order of FIG. 3.


At block 408, the network browser receives an edit to a control of the network form. The user may edit the form by entering data into a field, selecting a button, and the like.


Continuing the illustrated embodiment, the network browser receives data entered into name field 302. This data is pushed into the view, shown in FIG. 5.


At block 410, the actor application determines if an action is associated with the edit. In one embodiment, the actor application analyzes actions to determine if any are associated with (e.g., map to) the node edited by the user. In another embodiment, the actor application navigates the view template to find actions associated with the edit (if there are any). If there are no data-driven actions associated with the edit, the actor application returns to block 408 to receive additional edits from the user. If there are data-driven actions, the actor application proceeds to block 412 (or skips to block 414).


Continuing the illustrated embodiment, the actor application navigates the view template annotated with actions (shown above) to determine if any action is associated with “V1/T1” node (the “name node”), rendered as the name field 302 in FIGS. 3 and 5. This node does not have an action associated with it. The actor application then returns to block 408. The network browser receives other edits from the user; entry of the user's phone number into the phone field 304, shown in FIG. 5, and an item identifier into item node 306a, also shown in FIG. 5. These entries are also not associated with a data-driven action.


The user next enters a quantity into the quantity field 308a, received at block 408, and shown in FIG. 5. The actor application determines if an action is associated with this edit at block 410.


Continuing the illustrated embodiment, the actor application navigates the view template to determine if an action is associated with the received edit. The annotated view template may be represented as:

















  V1 - /root



    T1 - name



    T2 - phone



    R1 - orders/order



      T1 - itemid



      T2 - quantity



        data_action =



          {



            target =



../T4



            expression



= Multiply(Select(../T2), Select(../T3))



          }



      T3 - price



        data_action =



          {



            target =



../T4



            expression



= Multiply(Select(../T2), Select(../T3))



          }



      T4 - total



        data_action =



          {



            target =



../../T3



            expression



= Sum(Select(../R1/T4))



          }



    T3 - total










The actor application navigates this view template and determines that the following data-driven action is associated with the user's edit to the quantity node:

















        data_action =



          {



            target =



../T4



            expression



= Multiply(Select(../T2), Select(../T3))



          }










At block 412, the actor application determines whether or not performing the associated action will affect the view. Alternatively, the actor application may skip block 412 to block 414.


The actor application may determine if the action will affect the view by navigating the view template to determine which nodes of the view template may be changed by performing the action.


In the ongoing embodiment, the actor application determines that the data-driven action associated with the quantity node multiplies data in the “V1/R1/T2” node by the data in the “V1/R1/T3” node, and places this result in the target node “V1/R1/T4”. Thus, the data “17” in quantity field 308a is multiplied by no data (zero) in the unit price field 310a, the result of which (“0”) is to be placed in the total field 312a. In this case, the result of performing the action does not change the view. The total field 312a already has a zero. In this case the actor application may forgo performing the action associated with this quantity node and/or other actions, such as updating data for the form (i.e., do not perform block 416) and rendering the results of performing this action (i.e., do not perform block 418). If the actor application forgoes performing the action and/or these other actions, it returns to block 408.


Returning to block 408, the network browser receives another edit, this time entry of a unit price to the unit price field 310a. The price is shown in FIG. 6 at field 310a (“299.99”).


The actor application then determines at block 410 that the action is associated with the edit. Continuing the illustrated embodiment, the actor application navigates the view template annotated with actions (shown above) and determines that an action is associated with “V1/R1/T3” node (the “price” node).


Navigating the view template given above, the actor application determines that the following data-driven action is associated with the user's edit to the price node:

















        data_action =



          {



            target =



../T4



            expression



= Multiply(Select(../T2), Select(../T3))



          }










The actor application then determines that the action will affect the view. It does so by navigating the view template to determine which nodes of the view template may be changed by performing the action.


In the ongoing embodiment, the actor application determines that the data-driven action associated with the quantity node multiplies data in the “V1/R1/T2” node by the data in the “V1/R1/T3” node, and places this result in the target node “V1/R1/T4”. Thus, the data “17” shown in quantity field 308a is multiplied by “299.99” shown in unit price field 310a, the result of which may be different that the zero currently rendered in the total field 312a.


At block 414 the actor application performs the action without accessing and/or altering the form's data instance. In this exemplary process, the actor application uses the view template rather than a data instance, thereby freeing the actor application from having to access or alter the form's data instance. The actor application may perform the data-driven action, in some cases, without any non-local communication, thereby potentially improving the user's editing experience. In one embodiment, the actor application performs the action by executing an expression and locating a node of the view template into which the result may be rendered.


In the ongoing embodiment, the actor application multiplies the data entered into the quantity field, “17”, by the data entered into the unit price field “299.99”, for a result of “5099.83”.


At block 416, the actor application updates the data for the form. This data for the form may be locally stored, which may permit fewer roundtrips to the network computer. In the ongoing embodiment, the actor application updates the zero for the first total node (rendered as the total field 312a) with the result “5099.83”. The actor application may proceed directly to block 418 to render this result in the view, but may also first determine if this data change triggers any other actions. If so, the actor application may perform all of the triggered actions (some actions may trigger another action, which triggers another action, and so forth) before rendering the different actions' results.


Similarly to block 408, 410, 412, and 414, the actor application may proceed to receive data (e.g., a result from a performed action), determine in the node into which the data is received is associated with an action, determine if that action may affect the view, and perform the action. Thus, the actor application in the ongoing embodiment receives the result of the action performed above to the total node. The actor application may then determine whether or not the node to which this “edit” is made (e.g., a result automatically received from performance of the action) has another action associated with it. If so, it may then determine whether or not performing that other action will affect the view, and if so, may then perform the other action.


In the ongoing embodiment, the actor application determines that the result for the total node has another associated action. This action may be represented as:

















        data_action =



          {



            target =



../../T3



            expression



= Sum(Select(../R1/T4))



          }










Thus, the total node (“V1/R1/T4”) has an associated data-driven action. This action sums the data of the total node and all other total nodes. The result of this summation is then targeted for the “V1/T3” total node (rendered as the grand total field 314).


The actor application next determines that performing this summation action may affect the view. The actor application performs this action, summing the data of the first and second total nodes, which are “5099.83” and “0”, for a result of “5099.83”.


The actor application may record this data entered into and resulting from actions, such as in a locally stored hierarchically structured data tree or event log 114. The data tree, with the data and results of the ongoing embodiment, may be represented as:

















(V1)



(Dave, T1)



(425-555-1234, T2)



  (R1_1)



    (1756, T1)



    (17, T2)



    (299.99, T3)



    (5099.83, T4)



  (R1_2)



    (, T1)



    (, T2)



    (, T3)



    (, T4)



(5099.83, T3)










At block 418 the actor application and/or network browser renders the result of the data-driven action(s) performed without transforming the form's data instance. The actor application may also, in another embodiment, render changes to the view without accessing or altering the data instance.


The actor application may keep track of which controls in the view need to be updated by marking nodes associated with these controls, and then rendering each of these nodes for new data once all of the actions have been performed (but with results being rendered).


Alternatively, the actor application may re-render all of the form, though this may take additional time or resources compared with selective re-rendering.


To selectively re-render parts of the view, the actor application may determine which of the pieces of information from view information 128 of FIG. 1 are associated with the nodes of the view template that have been changed, such as by marking these nodes dirty. For the above view template, the marked nodes are “V1/R1_1/T4” and “V1/T3”. The actor application may then push the results into these pieces of the view or re-render each of these pieces with the results added.


As shown in FIG. 6, the view of the purchase order shows the user the results of data-driven actions. These results, shown in the total field 312a and the grand total field 314, are accurate renderings of how the view may look if the data-driven actions were instead associated with the data instance. Thus, this view may be identical to the view shown by placing the results of these actions into a data instance, transforming the data instance, and rendering the transformation.


In some cases, however, a data-driven action may require communication across a network, such as to access a data instance for the form or a database having data needed to perform an action (e.g., validation of entered data against data in a database). In these cases, the actor application may access the network, thereby forgoing many of the blocks of process 400.


The actor application and/or network browser may record the user's edits and/or the results of performing various actions. This record of edits and/or results may be sent to network computer 106, such as when sending it will not appreciably hinder a user's editing experience, or on submittal by the user.


The network computer, responsive to receiving this event log, alters the data instance of the network form. It may do so infrequently, thereby potentially reducing the resources needed to service the network form.


For the ongoing illustration, the actor application records the user's edits to the view into event log 114 and communicates this event log to the network computer. The network computer updates data instance 122 with information from the event log. The data instance represented above at the beginning of the description relating to FIG. 2 may be changed by the network computer using the event log, in this case to:

















  <root>



    <name>Dave</name>



    <phone>425-555-1234</phone>



    <orders>



      <order>



        <itemid>1756</itemid>



        <quantity>17</quantity>



<unitPrice>299.99</unitPrice>



        <total>5099.83</total>



      </order>



      <order>



        <itemid></itemid>



        <quantity></quantity>



        <unitPrice></unitPrice>



        <total></total>



      </order>



    </orders>



    <total>5099.83</total>



 </root>










CONCLUSION

Systems and/or methods are described that enable a data-driven action associated with altering a data instance of a network form without altering and/or having access to the data instance. Although the invention has been described in language specific to structural features and/or methodological steps, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or steps described. Rather, the specific features and steps are disclosed as preferred forms of implementing the claimed invention.

Claims
  • 1. A system comprising: one or more processors;one or more computer-readable media storing computer-readable instructions therein that, when executed by the one or more processors, cause the system to perform acts including:obtaining, over a network from a server configured to maintain a data instance of a network form, a downloaded data instance of the network form;rendering an editable view of the network form, the editable view of the network form being derived at the computing device from the downloaded data instance of the network form by: extracting one or more navigation paths configured to map one or more data-centric data driven actions to the data instance; andtransforming the one or more data-centric data driven actions to corresponding view-centric data driven actions to enable data-driven actions through the editable view of the network form by replacing the extracted one or more navigation paths with corresponding view template paths to map the one or more data-centric data-driven actions to a view template;receiving data through the editable view of a network form, the data capable of driving an action associated with the data instance of the network form maintained at the server if the data alters the data instance; andperforming the action through the editable view of the network form using a corresponding said view-centric data driven action without altering the data instance maintained at the server.
  • 2. The system of claim 1, further comprising determining which node of a view-centric logical representation of the network form the data is associated with, and wherein the act of performing the action comprises performing the action associated with the node.
  • 3. The system of claim 1, wherein the act of performing the action is performed without accessing the data instance following the act of receiving the data.
  • 4. The system of claim 1, further comprising determining that the data is capable of driving the action.
  • 5. The system of claim 1, further comprising determining if a result of the action is capable of driving another action associated with the data instance if the result alters the data instance and, if the result of the action is capable of driving another action, performing the other action without altering the data instance.
  • 6. The system of claim 1, further comprising rendering a result of the act of performing the action without transforming the data instance.
  • 7. The system of claim 1, further comprising updating locally stored data for the network form with a result of the act of performing the action.
  • 8. The system of claim 1, further comprising determining if a result of performing the action is capable of altering the editable view.
  • 9. The system of claim 1, wherein the action comprises a validation operation.
  • 10. One or more computer-readable media storing computer-readable instructions therein that, when executed by a computing device, cause the computing device to perform acts comprising: obtaining, over a network from a server configured to maintain a data instance of a network form, a downloaded data instance of the network form;outputting an editable view of the network form, the editable view of the network form derived at the computing device from the downloaded data instance of the network form by: determining one or more navigation paths to map one or more data-centric data-driven actions to the data instance;extracting the one or more navigation paths; andtransforming the one or more data-centric data driven actions to corresponding view-centric data driven actions to enable data-driven actions through the editable view of the network form by replacing the extracted one or more navigation paths with corresponding view template paths to map the one or more data-centric data-driven actions to a view template;receiving a result of a said data-driven action for the network form that is performed through the editable view of the network form using a said view-centric data driven action; andrendering the result of the data-driven action in the editable view of the network form without altering the network form's data instance maintained at the server.
  • 11. The media of claim 10, further comprising performing the data-driven action without altering the network form's data instance.
  • 12. The media of claim 10, wherein the act of rendering is performed without accessing the network form's data instance.
  • 13. The media of claim 10, wherein the acts of receiving and rendering are performed without a roundtrip to a network computer having the network form's data instance.
  • 14. The media of claim 10, wherein the act of rendering the result comprises re-rendering a portion of the editable view associated with a node having the result.
  • 15. The media of claim 10, further comprising marking a node of a view-centric logical representation of the network form that is associated with the result and wherein the act of rendering the result comprises re-rendering the node.
  • 16. A method performed by a client computing device comprising: obtaining, over a network from a server configured to maintain a data instance of a network form, a downloaded data instance of the network form;outputting an editable view of the network form, the editable view of the network form derived at the computing device from the downloaded data instance of the network form by: determining one or more navigation paths to map one or more data-centric data-driven actions to the data instance;extracting the one or more navigation paths;transforming the one or more data-centric data driven actions to corresponding view-centric data driven actions to enable data-driven actions through the editable view of the network form by replacing the extracted one or more navigation paths with corresponding view template paths to map the one or more data-centric data-driven actions to a view template;receiving a result of a said data-driven action for the network form that is performed through the editable view of the network form using a said view-centric data driven action; andrendering the result of the data-driven action in the editable view of the network form without altering the network form's data instance maintained at the server.
US Referenced Citations (233)
Number Name Date Kind
4498147 Agnew et al. Feb 1985 A
4910663 Bailey Mar 1990 A
4926476 Covey May 1990 A
5140563 Thinesen Aug 1992 A
5228100 Takeda et al. Jul 1993 A
6251273 Betts et al. Oct 1993 B1
5410646 Tondevold et al. Apr 1995 A
5438659 Notess et al. Aug 1995 A
5581686 Koppolo et al. Dec 1996 A
5664133 Malamud et al. Sep 1997 A
5704029 Wright, Jr. Dec 1997 A
5778372 Cordell et al. Jul 1998 A
5826031 Nielsen Oct 1998 A
5826265 Van Huben et al. Oct 1998 A
5845122 Nielsen et al. Dec 1998 A
5873088 Hayashi et al. Feb 1999 A
5905492 Straub et al. May 1999 A
5907621 Bachman et al. May 1999 A
5915112 Boutcher Jun 1999 A
5953731 Glaser Sep 1999 A
6012066 Discount et al. Jan 2000 A
6021403 Horvitz et al. Feb 2000 A
6031989 Cordell et al. Feb 2000 A
6044205 Reed et al. Mar 2000 A
6052710 Saliba et al. Apr 2000 A
6057837 Hatakeda et al. May 2000 A
6058413 Flores et al. May 2000 A
6065043 Domenikos et al. May 2000 A
6069626 Cline et al. May 2000 A
6085685 Kraft et al. Jul 2000 A
6088679 Barkley Jul 2000 A
6096096 Murphy et al. Aug 2000 A
6097382 Rosen et al. Aug 2000 A
6105012 Chang et al. Aug 2000 A
6167523 Strong Dec 2000 A
6192367 Hawley et al. Feb 2001 B1
6219423 Davis Apr 2001 B1
6243088 McCormack et al. Jun 2001 B1
6272506 Bell Aug 2001 B1
6279042 Ouchi Aug 2001 B1
6282709 Reha et al. Aug 2001 B1
6292941 Jollands Sep 2001 B1
6311221 Raz et al. Oct 2001 B1
6314415 Mukherjee Nov 2001 B1
6336214 Sundaresan Jan 2002 B1
6343377 Gessner et al. Jan 2002 B1
6344862 Williams et al. Feb 2002 B1
6345278 Hitchcock et al. Feb 2002 B1
6381742 Forbes et al. Apr 2002 B2
6393469 Dozier et al. May 2002 B1
6397264 Stasnick et al. May 2002 B1
6421777 Pierre-Louis Jul 2002 B1
6476828 Burkett et al. Nov 2002 B1
6490601 Markus et al. Dec 2002 B1
6502103 Frey et al. Dec 2002 B1
6507856 Chen et al. Jan 2003 B1
6535229 Kraft Mar 2003 B1
6546554 Schmidt et al. Apr 2003 B1
6589290 Maxwell et al. Jul 2003 B1
6613098 Sorge et al. Sep 2003 B1
6615276 Mastrianni et al. Sep 2003 B1
6631519 Nicholson et al. Oct 2003 B1
6633315 Sobeski et al. Oct 2003 B1
6635089 Burkett et al. Oct 2003 B1
6651217 Kennedy et al. Nov 2003 B1
6654932 Bahrs et al. Nov 2003 B1
6701486 Weber et al. Mar 2004 B1
6704906 Yankovich et al. Mar 2004 B1
6720985 Silverbrook et al. Apr 2004 B1
6748569 Brooke et al. Jun 2004 B1
6763343 Brooke et al. Jul 2004 B1
6845380 Su et al. Jan 2005 B2
6848078 Birsan et al. Jan 2005 B1
6862689 Bergsten et al. Mar 2005 B2
6871345 Crow et al. Mar 2005 B1
6883168 James et al. Apr 2005 B1
6889359 Conner et al. May 2005 B1
6901403 Bata et al. May 2005 B1
6915454 Moore et al. Jul 2005 B1
6925609 Lucke Aug 2005 B1
6950980 Malcolm Sep 2005 B1
6950987 Hargraves et al. Sep 2005 B1
6957395 Jobs et al. Oct 2005 B1
6993722 Greer et al. Jan 2006 B1
7000179 Yankovich et al. Feb 2006 B2
7003548 Barck et al. Feb 2006 B1
7032170 Poulose Apr 2006 B2
7043687 Knauss et al. May 2006 B2
7058663 Johnston et al. Jun 2006 B2
7076728 Davis et al. Jul 2006 B2
7081882 Sowden et al. Jul 2006 B2
7086042 Abe et al. Aug 2006 B2
7107539 Abbott et al. Sep 2006 B2
7124167 Bellotti et al. Oct 2006 B1
7168035 Bell et al. Jan 2007 B1
7191394 Ardeleanu et al. Mar 2007 B1
7200665 Eshghi et al. Apr 2007 B2
7200816 Falk et al. Apr 2007 B2
7213200 Abe et al. May 2007 B2
7237114 Rosenberg Jun 2007 B1
7249328 Davis Jul 2007 B1
7281018 Begun et al. Oct 2007 B1
7284208 Matthews Oct 2007 B2
7287218 Knotz et al. Oct 2007 B1
7296017 Larcheveque et al. Nov 2007 B2
7337391 Clarke et al. Feb 2008 B2
7337392 Lue Feb 2008 B2
7346840 Ravishankar et al. Mar 2008 B1
7373595 Jones et al. May 2008 B2
7412649 Emek et al. Aug 2008 B2
7424671 Elza et al. Sep 2008 B2
7428699 Kane et al. Sep 2008 B1
7441200 Savage Oct 2008 B2
7496632 Chapman et al. Feb 2009 B2
7496837 Larcheveque et al. Feb 2009 B1
7543228 Kelkar et al. Jun 2009 B2
7549115 Kotler Jun 2009 B2
7584417 Friend Sep 2009 B2
7613996 Dallett et al. Nov 2009 B2
20010016880 Cai et al. Aug 2001 A1
20010044850 Raz et al. Nov 2001 A1
20010051928 Brody Dec 2001 A1
20010056411 Lindskog et al. Dec 2001 A1
20020023113 Hsing et al. Feb 2002 A1
20020026441 Kutay et al. Feb 2002 A1
20020032768 Voskuil Mar 2002 A1
20020052769 Navani et al. May 2002 A1
20020053021 Rice et al. May 2002 A1
20020070973 Croley Jun 2002 A1
20020083145 Perinpanathan Jun 2002 A1
20020083148 Shaw et al. Jun 2002 A1
20020091738 Rohrabaugh et al. Jul 2002 A1
20020107885 Brooks et al. Aug 2002 A1
20020111699 Melli et al. Aug 2002 A1
20020111932 Roberge et al. Aug 2002 A1
20020129056 Conant Sep 2002 A1
20020152222 Holbrook Oct 2002 A1
20020152244 Dean et al. Oct 2002 A1
20020156846 Rawat et al. Oct 2002 A1
20020174417 Sijacic et al. Nov 2002 A1
20020178187 Rasmussen et al. Nov 2002 A1
20020184188 Mandyam et al. Dec 2002 A1
20020184485 Dray et al. Dec 2002 A1
20020194219 Bradley et al. Dec 2002 A1
20020196281 Audleman et al. Dec 2002 A1
20020198935 Crandall Dec 2002 A1
20030004951 Chokshi Jan 2003 A1
20030007000 Carlson et al. Jan 2003 A1
20030037303 Bodlaender Feb 2003 A1
20030038788 Demartines et al. Feb 2003 A1
20030038846 Hori et al. Feb 2003 A1
20030055828 Koch et al. Mar 2003 A1
20030110443 Yankovich et al. Jun 2003 A1
20030126555 Aggarwal et al. Jul 2003 A1
20030135825 Gertner et al. Jul 2003 A1
20030140160 Raz et al. Jul 2003 A1
20030172113 Cameron et al. Sep 2003 A1
20030182327 Ramanujam et al. Sep 2003 A1
20030188260 Jensen et al. Oct 2003 A1
20030189593 Yarvin Oct 2003 A1
20030200506 Abe et al. Oct 2003 A1
20030204481 Lau Oct 2003 A1
20030204511 Brundage et al. Oct 2003 A1
20030210428 Bevlin et al. Nov 2003 A1
20030218620 Lai et al. Nov 2003 A1
20030237047 Borson Dec 2003 A1
20040003031 Brown et al. Jan 2004 A1
20040010752 Chan et al. Jan 2004 A1
20040015783 Lennon et al. Jan 2004 A1
20040024842 Witt Feb 2004 A1
20040030991 Hepworth et al. Feb 2004 A1
20040039881 Shoebridge et al. Feb 2004 A1
20040039990 Bakar et al. Feb 2004 A1
20040046789 Inanoria Mar 2004 A1
20040054966 Busch et al. Mar 2004 A1
20040083426 Sahu Apr 2004 A1
20040139400 Allam et al. Jul 2004 A1
20040148514 Fee et al. Jul 2004 A1
20040148571 Lue Jul 2004 A1
20040162741 Flaxer et al. Aug 2004 A1
20040163046 Chu et al. Aug 2004 A1
20040181543 Wu et al. Sep 2004 A1
20040189708 Larcheveque et al. Sep 2004 A1
20040189716 Paoli Sep 2004 A1
20040205525 Murren et al. Oct 2004 A1
20040205571 Adler et al. Oct 2004 A1
20040205605 Adler et al. Oct 2004 A1
20040205653 Hadfield et al. Oct 2004 A1
20040216084 Brown et al. Oct 2004 A1
20040237030 Malkin Nov 2004 A1
20040268229 Paoli Dec 2004 A1
20050033626 Kruse et al. Feb 2005 A1
20050050066 Hughes Mar 2005 A1
20050060647 Doan et al. Mar 2005 A1
20050065933 Goering Mar 2005 A1
20050071752 Marlatt Mar 2005 A1
20050091305 Lange et al. Apr 2005 A1
20050108624 Carrier May 2005 A1
20050114764 Gudenkauf et al. May 2005 A1
20050149726 Joshi et al. Jul 2005 A1
20050257148 Goodman et al. Nov 2005 A1
20050268217 Garrison Dec 2005 A1
20060010386 Khan Jan 2006 A1
20060026500 Qa 'Im-maqami' Feb 2006 A1
20060031757 Vincent Feb 2006 A9
20060041838 Khan Feb 2006 A1
20060075245 Meier Apr 2006 A1
20060085409 Rys et al. Apr 2006 A1
20060107206 Koskimies May 2006 A1
20060129583 Catorcini et al. Jun 2006 A1
20060136422 Matveief et al. Jun 2006 A1
20060155857 Feenan et al. Jul 2006 A1
20060161559 Bordawekar et al. Jul 2006 A1
20060161837 Kelkar et al. Jul 2006 A1
20060173865 Fong Aug 2006 A1
20060184393 Ewin et al. Aug 2006 A1
20060248468 Constantine et al. Nov 2006 A1
20070005611 Takasugi et al. Jan 2007 A1
20070036433 Teutsch Feb 2007 A1
20070074106 Ardeleanu et al. Mar 2007 A1
20070088554 Harb et al. Apr 2007 A1
20070094589 Paoli Apr 2007 A1
20070100877 Paoli May 2007 A1
20070118538 Ahern et al. May 2007 A1
20070130500 Rivers-Moore et al. Jun 2007 A1
20070130504 Betancourt et al. Jun 2007 A1
20070208769 Boehm et al. Sep 2007 A1
20070276768 Pallante Nov 2007 A1
20080126402 Sikchi et al. May 2008 A1
20080134162 James Jun 2008 A1
20090070411 Chang et al. Mar 2009 A1
20090119580 Rohrabaugh et al. May 2009 A1
20090177961 Fortini Jul 2009 A1
Foreign Referenced Citations (4)
Number Date Country
10171662 Jun 1998 JP
10-2207805 Aug 1998 JP
10207805 Aug 1998 JP
WO0157720 Aug 2001 WO
Related Publications (1)
Number Date Country
20060230338 A1 Oct 2006 US