The present disclosure relates to the field of display technology, particularly to a data driving circuit and a driving method thereof, a data driving system and a display device.
In the conventional pixel arrangement manner, any output channel of the data driving circuit corresponds to a fixed color. As shown in
In displays of Sub Pixel Rendering (SPR) type, one data line is generally connected to sub-pixels of different colors.
An object of the present disclosure lies in providing a data driving mechanism which can mitigate or avoid gray scale loss.
In a first aspect, a data driving circuit comprising a plurality of sub-circuits is provided. Each sub-circuit comprises: a plurality of digital to analog conversion units, each digital to analog conversion unit being used for only driving sub-pixels of one color; a plurality of data line interface units, each data line interface unit being connected to one data line; and a plurality of switch units, connected between the plurality of digital to analog conversion units and the plurality of data line interface units, and configured to turn on or off under the control of control signals, so as to enable each of the plurality of data line interface units to be connected to different digital to analog conversion units when driving sub-pixels of different colors.
In an implementation, each data line interface unit comprises an operational amplifier module.
In an implementation, each sub-circuit comprises N adjacent digital to analog conversion units, N adjacent data line interface units and a plurality of switch units connected to the N adjacent digital to analog conversion units and the N adjacent data line interface units, wherein N is a number of types of colors of the sub-pixels.
In an implementation, each digital to analog conversion unit is connected to N adjacent data line interface units via N switch units, and each data line interface unit is connected to N adjacent digital to analog conversion units via N switch units.
In an implementation, the value of N is 3. In each sub-circuit: a first data line interface unit is connected to a first digital to analog conversion unit through a first switch unit, and is connected to a second digital to analog conversion unit through a second switch unit; a second data line interface unit is connected to a second digital to analog conversion unit through a third switch unit, and is connected to a third digital to analog conversion unit through a fourth switch unit; and a third data line interface unit is connected to the third digital to analog conversion unit through a fifth switch unit, and is connected to the first digital to analog conversion unit through a sixth switch unit.
In an implementation, the data driving circuit comprises two switch unit control interfaces for receiving the control signals. Each switch unit is configured to turn on or off in response to levels applied to the two switch unit control interfaces, so that each of the plurality of data line interface units is connected to different digital to analog conversion units when driving sub-pixels of different colors.
In another aspect, a data driving system is provided, comprising the data driving circuit as stated above.
In an implementation, the data driving system further comprises a timing controller. The timing controller is connected with the data driving circuit for providing the control signals, so that each of the plurality of data line interface units is connected to different digital to analog conversion units when driving sub-pixels of different colors.
In an implementation, the data driving circuit comprises two switch unit control interfaces. The control signal is used for controlling level states of the two switch unit control interfaces.
In an implementation, the data driving system further comprises N Gamma circuits, wherein N is a number of types of colors of the sub-pixels. Respective digital to analog conversion units driving sub-pixels of the same color are connected to the same Gamma circuit.
In yet another aspect, a display device is provided, comprising the data driving system as stated above.
In an implementation, each digital to analog conversion unit in the data driving circuit is connected to two data line interface units via two switch units, and each data line interface units are connected to two digital to analog conversion units via two switch units. The display device further comprises a pixel array, the pixel array comprising a plurality of sub-pixel arrays, each sub-pixel array comprising three columns of sub-pixels and three data lines, wherein in each sub-pixel array, a sub-pixel of the 4x+1th row and a sub-pixel of the 4x+3th row of sub-pixels of a first column, a sub-pixel of the 4x+2th row of sub-pixels of a second column, a sub-pixel of the 4x+4th row of sub-pixels of a third column are sub-pixels of a first color; a sub-pixel of the 4x+4th row of sub-pixels of the first column, a sub-pixel of the 4x+1th row and a sub-pixel of the 4x+3th row of sub-pixels of the second column, a sub-pixel of the 4x+2th row of sub-pixels of the third column are sub-pixels of a second color; and other sub-pixels are sub-pixels of a third color, wherein x is an integer greater than or equal to 0, and wherein a first data line is connected to the sub-pixels of the first color in the sub-pixels of the first column and the sub-pixels of the second color in the sub-pixels of the third column in another adjacent sub-pixel array, a second data line is connected to the sub-pixels of the second color in the sub-pixels of the second column and the sub-pixels of the second color and sub-pixels of the third color in the sub-pixels of the first column, and a third data line is connected to the sub-pixels of the third color in the sub-pixels of the third column and the sub-pixels of the first color and the sub-pixels of the third color in the sub-pixels of the second column.
In yet another aspect, a method for driving the data driving circuit as stated above is provided, comprising: providing the control signals to the data driving circuit, so that each of the plurality of data line interface units is connected to different digital to analog conversion units when driving sub-pixels of different colors.
According to embodiments of the present disclosure, by controlling on-off of the switch unit, one data line interface unit is enabled to be connected to different digital to analog conversion units when driving sub-pixels of different colors, and each digital to analog conversion unit is used for only driving sub-pixels of one color. In this way, a reference voltage can be provided to the digital to analog conversion unit for driving different color display by a single physical Gamma circuit, without having to use a digital Gamma circuit. Therefore, gray scale loss caused by adjustment using the digital Gamma circuit can be avoided fundamentally.
In order to enable the purposes, technical solutions and advantages of embodiments of the present disclosure to be clearer, next, the embodiments of the present disclosure will be described clearly and completely with reference to the drawings. Apparently, the embodiments to be described are only a part of rather than all of the embodiments of the present disclosure. Based on the embodiments of the present disclosure, all other embodiments obtained by the ordinary skilled person in the art on the premise of not paying any creative work belong to the claimed scope of the present disclosure.
The data line interface units 11, 12 and 13 here can be interfaces or interface components for accessing to data lines. In an implementation, each of the data line interface units 11, 12 and 13 can comprise an operational amplifier module OPA. The operational amplifier module OPA can amplify the data voltage outputted by the digital to analog conversion unit and output it to a corresponding data line.
When the data driving circuit 100 as shown in
When the sub-pixels of row S1 are scanned, the switch unit 31 between the digital to analog conversion unit 1 and the data line interface unit 11 is turned on, and other switch units (switch units 32, 33) connected by the digital to analog conversion unit 1 and other switch units (switch units 34, 35) connected by the data line interface unit 11 are turned off, thereby connecting the data line interface unit 11 to the digital to analog conversion unit 1. According to the same manner, the data line interface unit 12 is connected to the digital to analog conversion unit 22, and the data line interface unit 13 is connected to the digital to analog conversion unit 23. In this way, the blue sub-pixel of row S1 and column R1 as shown in
When the sub-pixels of row S2 are scanned, by controlling on-off of the respective switch units, the data line interface unit 13 is connected to the digital to analog conversion unit 22, the data line interface unit 11 is connected to the digital to analog conversion unit 23, and the data line interface unit 12 is connected to the digital to analog conversion unit 1. In this way, the blue sub-pixel B of row S2 and column R2 as shown in
When the sub-pixels of row S3 are scanned, by controlling on-off of the respective switch units, the data line interface unit 11 is connected to the digital to analog conversion unit 1, the data line interface unit 12 is connected to the digital to analog conversion unit 22, and the data line interface unit 13 is connected to the digital to analog conversion unit 23. In this way, the blue sub-pixel of row S3 and column R1 as shown in
When the sub-pixels of row S4 are scanned, by controlling on-off of the respective switch units, the data line interface unit 11 is connected to the digital to analog conversion unit 22, the data line interface unit 12 is connected to the digital to analog conversion unit 23, and the data line interface unit 13 is connected to the digital to analog conversion unit 1. In this way, the blue sub-pixel of row S4 and column R3 as shown in
The driving process of the sub-pixels of rows S5-S8 can be identical with the driving process of the sub-pixels of rows S1-S4, which will not be repeated here.
In the above driving process of the data driving circuit 100, for respective columns of sub-pixels driven by one sub-circuit, all blue sub-pixels B are accessed to the digital to analog conversion unit 1, all red sub-pixels R are accessed to the digital to analog conversion unit 22, and all green sub-pixels G are accessed to the digital to analog conversion unit 23. In actual applications, it only needs to connect the digital to analog conversion unit 1 to a physical Gamma circuit for driving the blue sub-pixels, connect the digital to analog conversion unit 22 to a physical Gamma circuit for driving the red sub-pixels, and connect the digital to analog conversion unit 23 to a physical Gamma circuit for driving the green sub-pixels. Since there is no need to use the digital Gamma circuit, gray scale loss caused by adjustment using the digital Gamma circuit can be avoided fundamentally.
It should be noted that for pixel arrays arranged in different manners, the specific connecting manners of respective switch units in the data driving circuit according to the embodiment of the present disclosure may not be all the same without deviating from the spirit and the scope of the present disclosure.
When the data driving circuit 200 is driven, the operations of respective sub-circuits can be identical. Next, the driving process of the sub-circuit C20 will be explained with reference to
When the sub-pixels of row S1 are scanned, by controlling on-off of the respective switch units, the data line interface unit 11 is connected to the digital to analog conversion unit 1, the data line interface unit 12 is connected to the digital to analog conversion unit 22, and the data line interface unit 13 is connected to the digital to analog conversion unit 23. In this way, the blue sub-pixel of row S1 and column R4 is accessed to the digital to analog conversion unit 1, the red sub-pixel of row S1 and column R5 is accessed to the digital to analog conversion unit 22, and the green sub-pixel of row S1 and column R6 is accessed to the digital to analog conversion unit 23.
When the sub-pixels of row S2 are scanned, by controlling on-off of the respective switch units, the data line interface unit 13 is connected to the digital to analog conversion unit 1, the data line interface unit 11 is connected to the digital to analog conversion unit 22, and the data line interface unit 12 is connected to the digital to analog conversion unit 23. In this way, the red sub-pixel of row S2 and column R3 is accessed to the digital to analog conversion unit 22, the green sub-pixel of row S2 and column R4 is accessed to the digital to analog conversion unit 23, and the blue sub-pixel of row S2 and column R5 is accessed to the digital to analog conversion unit 1.
When the sub-pixels of row S3 are scanned, by controlling on-off of the respective switch units, the data line interface unit 11 is connected to the digital to analog conversion unit 1, the data line interface unit 12 is connected to the digital to analog conversion unit 22, and the data line interface unit 13 is connected to the digital to analog conversion unit 23. In this way, the blue sub-pixel of row S3 and column R4 is accessed to the digital to analog conversion unit 1 the red sub-pixel of row S3 and column R5 is accessed to the digital to analog conversion unit 22, and the green sub-pixel of row S3 and column R6 is accessed to the digital to analog conversion unit 23.
When the sub-pixels of row S4 are scanned, by controlling on-off of the respective switch units, the data line interface unit 11 is connected to the digital to analog conversion unit 1, the data line interface unit 12 is connected to the digital to analog conversion unit 22, and the data line interface unit 13 is connected to the digital to analog conversion unit 23. In this way, the red sub-pixel of row S4 and column R3 is accessed to the digital to analog conversion unit 22, the green sub-pixel of row S4 and column R4 is accessed to the digital to analog conversion unit 23, and the blue sub-pixel of row S4 and column R5 is accessed to the digital to analog conversion unit 1.
The driving process of the sub-pixels of rows S5-S8 can be identical with the driving process of the sub-pixels of rows S1-S4, which will not be repeated here.
In the above driving process of the data driving circuit 200, for respective columns of sub-pixels driven by one sub-circuit, all blue sub-pixels B are accessed to the digital to analog conversion unit 1, all red sub-pixels R are accessed to the digital to analog conversion unit 22, and all green sub-pixels G are accessed to the digital to analog conversion unit 23. In actual applications, it only needs to connect the digital to analog conversion unit 1 to a physical Gamma circuit for driving the blue sub-pixels, connect the digital to analog conversion unit 22 to a physical Gamma circuit for driving the red sub-pixels, and connect the digital to analog conversion unit 23 to a physical Gamma circuit for driving the green sub-pixels. Since there is no need to use the digital Gamma circuit, gray scale loss caused by adjustment using the digital Gamma circuit can be avoided fundamentally.
It can be seen that the data driving circuits 100, 200 according to the embodiments of the present disclosure can use a single physical Gamma circuit to drive a pixel array in which one data line is connected to sub-pixels of a plurality of different colors, so as to avoid gray scale loss caused by adjustment using digital Gamma circuits.
It should be understood that although the above embodiments are explained with respect to the number N of types of the colors of the sub-pixels is three (red, green, blue), in actual application, the colors of the sub-pixels can also be four or more. In such a case, one digital to analog conversion unit can still be connected to N data line interface units through N switch units, and one data line interface unit can be connected to N digital to analog conversion units through N switch units. Each data line interface unit can, when driving sub-pixels of a particular color, be connected to a digital to analog conversion unit to which the particular color corresponds. Such a technical solution still falls within the scope of the present disclosure.
In addition, in the above embodiments, the arrangement manner of the sub-pixels of the Zth row and the sub-pixels of the Z+4Yth (Z, Y are both integers) row and the connection relationship with the data lines are completely the same, as shown in
For different sub-pixel arrangements, there are generally no more than four types of sub-pixel rows. Hence, corresponding control can be realized by four or less switch state combinations. Certainly, when there are more than four switch state combinations being required, more than two switch unit control interfaces can be used.
As shown in
In another aspect of the present disclosure, a method for driving the above data driving circuit is also provided, comprising: providing the control signals to the data driving circuit, so that each of the plurality of data line interface units is connected to different digital to analog conversion units when driving sub-pixels of different colors.
What is stated above are only specific embodiments of the present disclosure; however, the claimed scope of the present disclosure is not limited to this. Any modifications or replacements that can be easily conceived by the skilled person familiar with the present technical field on the basis of the specific embodiments disclosed should be covered within the claimed scope of the present disclosure. Therefore, the claimed scope of the present disclosure is only defined by the claims attached.
Number | Date | Country | Kind |
---|---|---|---|
201510446805.3 | Jul 2015 | CN | national |
The present application is a continuation application of U.S. Ser. No. 15/107,837, which is the U.S. national phase entry of PCT/CN2016/070232, with an international filing date of Jan. 6, 2016 and claiming the benefit of Chinese Patent Application No. 201510446805.3, filed on Jul. 27, 2015, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
20030117360 | Bu | Jun 2003 | A1 |
20070290980 | Lin | Dec 2007 | A1 |
20100039453 | Chaji | Feb 2010 | A1 |
20100182349 | Miyazaki | Jul 2010 | A1 |
20120249603 | Ban | Oct 2012 | A1 |
20140002510 | Woo | Jan 2014 | A1 |
20150220462 | Kim et al. | Aug 2015 | A1 |
20160042695 | Park | Feb 2016 | A1 |
20160055803 | Kim | Feb 2016 | A1 |
20170328767 | Zheng | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
101363979 | Nov 2009 | CN |
102013227 | Apr 2011 | CN |
102347011 | Feb 2012 | CN |
203287664 | Nov 2013 | CN |
104766564 | Jul 2015 | CN |
104966482 | Oct 2015 | CN |
2012077181 | Feb 2012 | JP |
Entry |
---|
“International Search Report and Written Opinion,” PCT/CN2016/070232 (dated Feb. 2, 2017). |
Scully, Op-Amp Buffer, Jan. 2, 2007, TUFTS Robotics Electronics Tutorial, pp. 1-2. |
“Office Action,” CN Application No. 201510446805.3 (dated Mar. 3, 2017). |
“Second Office Action,” CN Application No. 201510446805.3 (dated Nov. 23, 2017). |
Number | Date | Country | |
---|---|---|---|
20200118522 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15107837 | US | |
Child | 16711351 | US |