Data encoding using frail watermarks

Information

  • Patent Grant
  • 7054463
  • Patent Number
    7,054,463
  • Date Filed
    Thursday, March 28, 2002
    22 years ago
  • Date Issued
    Tuesday, May 30, 2006
    18 years ago
Abstract
Image, video, or audio data is encoded with both a frail and a robust watermark. The two watermarks respond differently to different forms of processing (e.g., copying the object may render the frail watermark unreadable), permitting an original object to be distinguished from a processed object. Appropriate action can then taken in response thereto.
Description
FIELD OF THE INVENTION

The present application relates to digital watermarking, and particularly relates to digital watermarking techniques employing both frail and robust watermarks.


BACKGROUND AND SUMMARY OF THE INVENTION

For expository convenience, the following discussion focuses on an exemplary application of the disclosed technology—encoding the images printed on banknotes with both frail and robust watermarks. As noted later, however, the technology also finds application beyond image watermarking, including in video and audio watermarking.


The problem of casual counterfeiting of banknotes first arose two decades ago, with the introduction of color photocopiers. A number of techniques were proposed to address the problem.


U.S. Pat. No. 5,659,628 (assigned to Ricoh) is one of several patents noting that photocopiers can be equipped to recognize banknotes and prevent their photocopying. The Ricoh patent particularly proposed that the red seal printed on Japanese yen notes is a pattern well-suited for machine recognition. U.S. Pat. No. 5,845,008 (assigned to Omron), and U.S. Pat. Nos. 5,724,154 and 5,731,880 (both assigned to Canon) show other photocopiers that sense the presence of the seal emblem on banknotes, and disable a photocopier in response.


Other technologies proposed that counterfeiting might be deterred by uniquely marking the printed output from each color photocopier, so that copies could be traced back to the originating machine. U.S. Pat. No. 5,568,268, for example, discloses the addition of essentially-imperceptible patterns of yellow dots to printed output; the pattern is unique to the machine. U.S. Pat. No. 5,557,742 discloses a related arrangement in which the photocopier's serial number is printed on output documents, again in essentially-imperceptible form (small yellow lettering). U.S. Pat. No. 5,661,574 shows an arrangement in which bits comprising the photocopier's serial number are represented in the photocopier's printed output by incrementing, or decrementing, pixel values (e.g. yellow pixels) at known locations by fixed amounts (e.g. +/−30), depending on whether the corresponding serial number bit is a “1” or a “0.”


Recent advances in color printing technology have greatly increased the level of casual counterfeiting. High quality scanners are now readily available to many computer users, with 300 dpi scanners available for under $100, and 600 dpi scanners available for marginally more. Similarly, photographic quality color ink-jet printers are commonly available from Hewlett-Packard Co., Epson, etc. for under $300.


These tools pose new threats. For example, a banknote can be doctored (e.g. by white-out, scissors, or less crude techniques) to remove/obliterate the visible patterns on which prior art banknote detection techniques relied to prevent counterfeiting. Such a doctored document can then be freely scanned or copied, even on photocopiers designed to prevent processing of banknote images. The removed pattern(s) can then be added back in, e.g. by use of digital image editing tools, permitting free reproduction of the banknote.


In accordance with aspects of the present invention, these and other current threats are addressed by digitally watermarking banknotes, and equipping devices to sense such watermarks and respond accordingly.


(Watermarking is a quickly growing field of endeavor, with several different approaches. The present assignee's work is reflected in the earlier-cited related applications, as well as in U.S. Pat. Nos. 5,841,978, 5,748,783, 5,710,834, 5,636,292, 5,721,788, and laid-open PCT application WO97/43736. Other work is illustrated by U.S. Pat. Nos. 5,734,752, 5,646,997, 5,659,726, 5,664,018, 5,671,277, 5,687,191, 5,687,236, 5,689,587, 5,568,570, 5,572,247, 5,574,962, 5,579,124, 5,581,500, 5,613,004, 5,629,770, 5,461,426, 5,743,631, 5,488,664, 5,530,759,5,539,735, 4,943,973, 5,337,361, 5,404,160, 5,404,377, 5,315,098, 5,319,735, 5,337,362, 4,972,471, 5,161,210, 5,243,423, 5,091,966, 5,113,437, 4,939,515, 5,374,976, 4,855,827, 4,876,617, 4,939,515, 4,963,998, 4,969,041, and published foreign applications WO 98/02864, EP 822,550, WO 97/39410, WO 96/36163, GB 2,196,167, EP 777,197, EP 736,860, EP 705,025, EP 766,468, EP 782,322, WO 95/20291, WO 96/26494, WO 96/36935, WO 96/42151, WO 97/22206, WO 97/26733. Some of the foregoing patents relate to visible watermarking techniques. Other visible watermarking techniques (e.g. data glyphs) are described in U.S. Pat. Nos. 5,706,364, 5,689,620, 5,684,885, 5,680,223, 5,668,636, 5,640,647, 5,594,809.


Most of the work in watermarking, however, is not in the patent literature but rather in published research. In addition to the patentees of the foregoing patents, some of the other workers in this field (whose watermark-related writings can by found by an author search in the INSPEC database) include I. Pitas, Eckhard Koch, Jian Zhao, Norishige Morimoto, Laurence Boney, Kineo Matsui, A. Z. Tirkel, Fred Mintzer, B. Macq, Ahmed H. Tewfik, Frederic Jordan, Naohisa Komatsu, and Lawrence O'Gorman.


The artisan is assumed to be familiar with the foregoing prior art.


In the present disclosure it should be understood that references to watermarking encompass not only the assignee's watermarking technology, but can likewise be practiced with any other watermarking technology, such as those indicated above.


The physical manifestation of watermarked information most commonly takes the form of altered signal values, such as slightly changed pixel values, picture luminance, picture colors, DCT coefficients, instantaneous audio amplitudes, etc. However, a watermark can also be manifested in other ways, such as changes in the surface microtopology of a medium, localized chemical changes (e.g. in photographic emulsions), localized variations in optical density, localized changes in luminescence, etc. Watermarks can also be optically implemented in holograms and conventional paper watermarks.)


In accordance with an exemplary embodiment of the present invention, an object—such as a banknote image—is encoded with two watermarks. One is relatively robust, and withstands various types of corruption, and is detectable in the object even after multiple generations of intervening distortion. The other is relatively frail, so that it fails with the first distortion. If a version of the object is encountered having the robust watermark but not the frail watermark, the object can be inferred to have been processed, and thus not an original.


The foregoing and other features and advantages of the present invention will be more readily apparent from the following Detailed Description, which proceeds with reference to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows part of an automatic teller machine employing principles of the present invention.



FIG. 2 shows part of a device (e.g. a photocopier, scanner, or printer) employing principles of the present invention.



FIG. 3 shows part of another device employing principles of the present invention.





DETAILED DESCRIPTION

Watermarks in banknotes and other security documents (passports, stock certificates, checks, etc.—all collectively referred to as banknotes herein) offer great promise to reduce such counterfeiting, as discussed more fully below. Additionally, watermarks provide a high-confidence technique for banknote authentication.


By way of example, consider an automatic teller machine that uses watermark data to provide high confidence authentication of banknotes, permitting it to accept—as well as dispense—cash. Referring to FIG. 1, such a machine (11) is provided with a known optical scanner (13) to produce digital data (15) corresponding to the face(s) of the bill (16). This image set (14) is then analyzed (16) to extract embedded watermark data. In watermarking technologies that require knowledge of a code signal (20) for decoding (e.g. noise modulation signal, crypto key, spreading signal, etc.), a bill may be watermarked in accordance with several such codes. Some of these codes are public—permitting their reading by conventional machines. Others are private, and are reserved for use by government agencies and the like. (C.f. public and private codes in the present assignee's issued patents.)


As noted, banknotes presently include certain visible structures, or markings (e.g., the seal emblem noted in the earlier-cited patents), which can be used as aids to note authentication (either by visual inspection or by machine detection). Desirably, a note is examined by an integrated detection system (24), for both such visible structures (22), as well as the present watermark-embedded data, to determine authenticity.


The visible structures can be sensed using known pattern recognition techniques. Examples of such techniques are disclosed in U.S. Pat. Nos. 5,321,773, 5,390,259, 5,533,144, 5,539,841, 5,583,614, 5,633,952, 4,723,149 and 5,424,807 and laid-open foreign application EP 766,449. The embedded watermark data can be recovered using the scanning/analysis techniques disclosed in the cited patents and publications.


To reduce counterfeiting, it is desirable that document-reproducing technologies recognize banknotes and refuse to reproduce same. Referring to FIG. 2, a photocopier (30), for example, can sense the presence of either a visible structure (32) or embedded banknote watermark data (34), and disable copying if either is present (36). Scanners and printers can be equipped with a similar capability—analyzing the data scanned or to be printed for either of these banknote hallmarks. If either is detected, the software (or hardware) disables further operation.


The watermark detection criteria provides an important advantage not otherwise available. As noted, an original bill can be doctored (e.g. by white-out, scissors, or less crude techniques) to remove/obliterate the visible structures. Such a document can then be freely copied on either a visible structure-sensing photocopier or scanner/printer installation. The removed visible structure can then be added in via a second printing/photocopying operation. If the printer is not equipped with banknote-disabling capabilities, image-editing tools can be used to insert visible structures back into image data sets scanned from such doctored bills, and the complete bill freely printed. By additionally including embedded watermark data in the banknote, and sensing same, such ruses will not succeed.


(A similar ruse is to scan a banknote image on a non-banknote-sensing scanner. The resulting image set can then be edited by conventional image editing tools to remove/obliterate the visible structures. Such a data set can then be printed—even on a printer/photocopier that examines such data for the presence of visible structures. Again, the missing visible structures can be inserted by a subsequent printing/photocopying operation.)


Desirably, the visible structure detector and the watermark detector are integrated together as a single hardware and/or software tool. This arrangement provides various economies, e.g., in interfacing with the scanner, manipulating pixel data sets for pattern recognition and watermark extraction, electronically re-registering the image to facilitate pattern recognition/watermark extraction, issuing control signals (e.g. disabling) signals to the photocopier/scanner, etc.


A related principle (FIG. 3) is to insert an imperceptible watermark having a universal ID (UID) into all documents printed with a printer, scanned with a scanner, or reproduced by a photocopier. The UID is associated with the particular printer/photocopier/scanner in a registry database maintained by the products' manufacturers. The manufacturer can also enter in this database the name of the distributor to whom the product was initially shipped. Still further, the owner's name and address can be added to the database when the machine is registered for warranty service. While not preventing use of such machines in counterfeiting, the embedded UID facilitates identifying the machine that generated a counterfeit banknote. (This is an application in which a private watermark might best be used.)


While the foregoing applications disabled potential counterfeiting operations upon the detection of either a visible structure or watermarked data, in other applications, both criteria must be met before a banknote is recognized as genuine. Such applications typically involve the receipt or acceptance of banknotes, e.g. by ATMs as discussed above and illustrated in FIG. 1.


The foregoing principles (employing just watermark data, or in conjunction with visible indicia) can likewise be used to prevent counterfeiting of tags and labels (e.g. the fake labels and tags commonly used in pirating Levis brand jeans, branded software, etc.)


The reader may first assume that banknote watermarking is effected by slight alterations to the ink color/density/distribution, etc. on the paper. This is one approach. Another is to watermark the underlying medium (whether paper, polymer, etc.) with a watermark. This can be done by changing the microtopology of the medium (a la mini-Braille) to manifest the watermark data. Another option is to employ a laminate on or within the banknote, where the laminate has the watermarking manifested thereon/therein. The laminate can be textured (as above), or its optical transmissivity can vary in accordance with a noise-like pattern that is the watermark, or a chemical property can similarly vary.


Another option is to print at least part of a watermark using photoluminescent ink. This allows, e.g., a merchant presented with a banknote, to quickly verify the presence of *some* watermark-like indicia in/on the bill even without resort to a scanner and computer analysis (e.g. by examining under a black light). Such photoluminescent ink can also print human-readable indicia on the bill, such as the denomination of a banknote. (Since ink-jet printers and other common mass-printing technologies employ cyan/magenta/yellow/black to form colors, they can produce only a limited spectrum of colors. Photoluminescent colors are outside their capabilities. Fluorescent colors—such as the yellow, pink and green dyes used in highlighting markers—can similarly be used and have the advantage of being visible without a black light.)


An improvement to existing encoding techniques is to add an iterative assessment of the robustness of the mark, with a corresponding adjustment in a re-watermarking operation. Especially when encoding multiple bit watermarks, the characteristics of the underlying content may result in some bits being more robustly (e.g. strongly) encoded than others. In an illustrative technique employing this improvement, a watermark is first embedded in an object. Next, a trial decoding operation is performed. A confidence measure (e.g. signal-to-noise ratio) associated with each bit detected in the decoding operation is then assessed. The bits that appear weakly encoded are identified, and corresponding changes are made to the watermarking parameters to bring up the relative strengths of these bits. The object is then watermarked anew, with the changed parameters. This process can be repeated, as needed, until all of the bits comprising the encoded data are approximately equally detectable from the encoded object, or meet some predetermined signal-to-noise ratio threshold.


The foregoing applications, and others, can generally benefit by multiple watermarks. For example, an object (physical or data) can be marked once in the spatial domain, and a second time in the spatial frequency domain. (It should be understood that any change in one domain has repercussions in the other. Here we reference the domain in which the change is directly effected.)


Another option is to mark an object with watermarks of two different levels of robustness, or strength. The more robust watermark withstands various types of corruption, and is detectable in the object even after multiple generations of intervening distortion. The less robust watermark can be made frail enough to fail with the first distortion of the object. In a banknote, for example, the less robust watermark serves as an authentication mark. Any scanning and reprinting operation will cause it to become unreadable. Both the robust and the frail watermarks should be present in an authentic banknote; only the former watermark will be present in a counterfeit.


Still another form of multiple-watermarking is with content that is compressed. The content can be watermarked once (or more) in an uncompressed state. Then, after compression, a further watermark (or watermarks) can be applied.


Still another advantage from multiple watermarks is protection against sleuthing. If one of the watermarks is found and cracked, the other watermark(s) will still be present and serve to identify the object.


The foregoing discussion has addressed various technological fixes to many different problems. Exemplary solutions have been detailed above. Others will be apparent to the artisan by applying common knowledge to extrapolate from the solutions provided above.


For example, the technology and solutions disclosed herein have made use of elements and techniques known from the cited references. Other elements and techniques from the cited references can similarly be combined to yield further implementations within the scope of the present invention. Thus, for example, holograms with watermark data can be employed in banknotes, single-bit watermarking can commonly be substituted for multi-bit watermarking, technology described as using imperceptible watermarks can alternatively be practiced using visible watermarks (glyphs, etc.), techniques described as applied to images can likewise be applied to video and audio, local scaling of watermark energy can be provided to enhance watermark signal-to-noise ratio without increasing human perceptibility, various filtering operations can be employed to serve the functions explained in the prior art, watermarks can include subliminal graticules to aid in image re-registration, encoding may proceed at the granularity of a single pixel (or DCT coefficient), or may similarly treat adjoining groups of pixels (or DCT coefficients), the encoding can be optimized to withstand expected forms of content corruption. Etc., etc., etc. Thus, the exemplary embodiments are only selected samples of the solutions available by combining the teachings referenced above. The other solutions necessarily are not exhaustively described herein, but are fairly within the understanding of an artisan given the foregoing disclosure and familiarity with the cited art.

Claims
  • 1. A method comprising: encoding a set of sampled data with a first watermark that is designed to withstand at least one generation of distortion, and a second watermark that is designed not to withstand even a single generation of distortion; and distributing the sampled data, or a tangible representation thereof, to the public.
  • 2. The method of claim 1 in which the sampled data corresponds to a graphic.
  • 3. A printed object having the graphic produced by the method of claim 2 printed thereon.
  • 4. The method of claim 1 in which the sampled data corresponds to audio.
  • 5. A tangible machine readable storage medium having audio encoded in accordance with claim 4 stored thereon.
  • 6. The method of claim 1 wherein said distortion comprises compression and subsequent decompression with a lossy process.
  • 7. The method of claim 6 wherein the sampled data corresponds to audio.
  • 8. The method of claim 6 wherein the sampled data corresponds to video.
  • 9. The method of claim 1, wherein the watermarking of at least the first watermark is effected by slight alterations to the sampled data's color.
  • 10. The method of claim 9, wherein the distortion comprises at least scanning and reprinting.
  • 11. A computer storage medium having instructions stored thereon for causing a computer programmed thereby to perform a method comprising: encoding a set of sampled data with a first, relatively robust, steganographic watermark; and encoding said set of sampled data with a second, relatively frail, steganographic watermark; wherein the first watermark is reliably conveyed with the data notwithstanding various distortions, and the second watermark is lost with such distortions, wherein an original set of said sampled data can be distinguished from a distorted reproduction.
  • 12. The computer storage medium of claim 11 wherein said sampled data corresponds to audio.
  • 13. The medium of claim 11 wherein said distortions comprise compression and subsequent decompression with a lossy process.
  • 14. The medium of claim 13 wherein the sampled data corresponds to audio.
  • 15. The medium of claim 14 wherein the sampled data corresponds to video.
RELATED APPLICATION DATA

This application is a divisional of application Ser. No. 09/498,223, (now U.S. Pat. No. 6,574,350), filed Feb. 3, 2000. The Ser. No. 09/498,223 application is a continuation-in-part of application Ser. No. 09/287,940, (now U.S. Pat. No. 6,580,819), filed Apr. 7, 1999, which claims priority to abandoned application No. 60/082,228, filed Apr. 16, 1998. The Ser. No. 09/498,223 application is also a continuation of application Ser. No. 09/433,104, (now U.S. Pat. No. 6,636,615), filed Nov. 3, 1999, which is a continuation-in-part of application Ser. No. 09/234,780, filed Jan. 20, 1999 (now U.S. Pat. No. 6,332,031), which claims priority to abandoned application No. 60/071,983, filed Jan. 20, 1998. These applications are incorporated herein by reference.

US Referenced Citations (345)
Number Name Date Kind
3493674 Houghton Feb 1970 A
3569619 Simjian Mar 1971 A
3576369 Wick et al. Apr 1971 A
3585290 Sanford Jun 1971 A
3655162 Yamamoto et al. Apr 1972 A
3703628 Philipson, Jr. Nov 1972 A
3809806 Walker et al. May 1974 A
3838444 Loughlin et al. Sep 1974 A
3914877 Hines Oct 1975 A
3922074 Ikegami et al. Nov 1975 A
3971917 Maddox et al. Jul 1976 A
3977785 Harris Aug 1976 A
3982064 Barnaby Sep 1976 A
3984624 Waggener Oct 1976 A
4025851 Haselwood et al. May 1977 A
4184700 Greenaway Jan 1980 A
4225967 Miwa et al. Sep 1980 A
4230990 Lert, Jr. et al. Oct 1980 A
4231113 Blasbalg Oct 1980 A
4238849 Gassmann Dec 1980 A
4252995 Schmidt et al. Feb 1981 A
4262329 Bright et al. Apr 1981 A
4296326 Haslop et al. Oct 1981 A
4297729 Steynor et al. Oct 1981 A
4313197 Maxemchuk Jan 1982 A
4367488 Leventer et al. Jan 1983 A
4379947 Warner Apr 1983 A
4380027 Leventer et al. Apr 1983 A
4389671 Posner et al. Jun 1983 A
4395600 Lundy et al. Jul 1983 A
4416001 Ackerman Nov 1983 A
4423415 Goldman Dec 1983 A
4425642 Moses et al. Jan 1984 A
4476468 Goldman Oct 1984 A
4528588 Löfberg Jul 1985 A
4532508 Ruell Jul 1985 A
4547804 Greenberg Oct 1985 A
4553261 Froessl Nov 1985 A
4590366 Rothfjell May 1986 A
4595950 Lofberg Jun 1986 A
4618257 Bayne et al. Oct 1986 A
4637051 Clark Jan 1987 A
4639779 Greenberg Jan 1987 A
4647974 Butler et al. Mar 1987 A
4654867 Labedz et al. Mar 1987 A
4660221 Dlugos Apr 1987 A
4663518 Borror et al. May 1987 A
4665431 Cooper May 1987 A
4672605 Hustig et al. Jun 1987 A
4675746 Tetrick et al. Jun 1987 A
4677435 Cause D'Agraives et al. Jun 1987 A
4682794 Margolin Jul 1987 A
4703476 Howard Oct 1987 A
4712103 Gotanda Dec 1987 A
4718106 Weinblatt Jan 1988 A
4723149 Harada Feb 1988 A
4739377 Allen Apr 1988 A
4750173 Bluthgen Jun 1988 A
4765656 Becker et al. Aug 1988 A
4775901 Nakano Oct 1988 A
4776013 Kafri et al. Oct 1988 A
4805020 Greenberg Feb 1989 A
4807031 Broughton et al. Feb 1989 A
4811357 Betts et al. Mar 1989 A
4811408 Goldman Mar 1989 A
4820912 Samyn Apr 1989 A
4835517 van der Gracht et al. May 1989 A
4855827 Best Aug 1989 A
4864618 Wright et al. Sep 1989 A
4866771 Bain Sep 1989 A
4874936 Chandler et al. Oct 1989 A
4876617 Best et al. Oct 1989 A
4879747 Leighton et al. Nov 1989 A
4884139 Pommier Nov 1989 A
4885632 Mabey et al. Dec 1989 A
4888798 Earnest Dec 1989 A
4903301 Kondo et al. Feb 1990 A
4908836 Rushforth et al. Mar 1990 A
4908873 Philibert et al. Mar 1990 A
4918484 Ujiie et al. Apr 1990 A
4920503 Cook Apr 1990 A
4921278 Shiang et al. May 1990 A
4939515 Adelson Jul 1990 A
4941150 Iwasaki Jul 1990 A
4943973 Werner Jul 1990 A
4943976 Ishigaki Jul 1990 A
4944036 Hyatt Jul 1990 A
4947028 Gorog Aug 1990 A
4963998 Maufe Oct 1990 A
4965827 McDonald Oct 1990 A
4967273 Greenberg Oct 1990 A
4969041 O'Grady et al. Nov 1990 A
4972471 Gross et al. Nov 1990 A
4972475 Sant'Anselmo Nov 1990 A
4972476 Nathans Nov 1990 A
4977594 Shear Dec 1990 A
4979210 Nagata et al. Dec 1990 A
4996530 Hilton Feb 1991 A
5003590 Lechner et al. Mar 1991 A
5010405 Schreiber et al. Apr 1991 A
5023907 Johnson Jun 1991 A
5027401 Soltesz Jun 1991 A
5034982 Heninger et al. Jul 1991 A
5036513 Greenblatt Jul 1991 A
5040059 Leberl Aug 1991 A
5053956 Donald Oct 1991 A
5062666 Mowry et al. Nov 1991 A
5063446 Gibson Nov 1991 A
5073899 Collier et al. Dec 1991 A
5073925 Nagata et al. Dec 1991 A
5075773 Pullen et al. Dec 1991 A
5077608 Dubner Dec 1991 A
5077795 Rourke et al. Dec 1991 A
5079648 Maufe Jan 1992 A
5091966 Bloomberg et al. Feb 1992 A
5095196 Miyata Mar 1992 A
5103459 Gilhousen et al. Apr 1992 A
5113437 Best May 1992 A
5113445 Wang May 1992 A
5128525 Stearns et al. Jul 1992 A
5144660 Rose Sep 1992 A
5146457 Veldhuis et al. Sep 1992 A
5148498 Resnikoff et al. Sep 1992 A
5150409 Elsner Sep 1992 A
5161210 Druyvesteyn et al. Nov 1992 A
5166676 Milheiser Nov 1992 A
5168147 Bloomberg Dec 1992 A
5181786 Hujink Jan 1993 A
5185736 Tyrrell et al. Feb 1993 A
5199081 Saito et al. Mar 1993 A
5200822 Bronfin et al. Apr 1993 A
5212551 Conanan May 1993 A
5213337 Sherman May 1993 A
5216724 Suzuki et al. Jun 1993 A
5228056 Schilling Jul 1993 A
5243411 Shirochi et al. Sep 1993 A
5243423 DeJean et al. Sep 1993 A
5245165 Zhang Sep 1993 A
5245329 Gokcebay Sep 1993 A
5247364 Banker et al. Sep 1993 A
5253078 Balkanski et al. Oct 1993 A
5257119 Funada et al. Oct 1993 A
5259025 Monroe Nov 1993 A
5267334 Normille et al. Nov 1993 A
5280537 Sugiyama et al. Jan 1994 A
5288976 Citron Feb 1994 A
5291243 Heckman et al. Mar 1994 A
5293399 Hefti Mar 1994 A
5295203 Krause et al. Mar 1994 A
5299019 Pack et al. Mar 1994 A
5305400 Butera Apr 1994 A
5315098 Tow May 1994 A
5319453 Copriviza et al. Jun 1994 A
5319724 Blonstein et al. Jun 1994 A
5319735 Preuss et al. Jun 1994 A
5321470 Hasuo et al. Jun 1994 A
5325167 Melen Jun 1994 A
5327237 Gerdes et al. Jul 1994 A
5337362 Gormish et al. Aug 1994 A
5349655 Mann Sep 1994 A
5351302 Leighton et al. Sep 1994 A
5371792 Asai et al. Dec 1994 A
5374976 Spannenburg Dec 1994 A
5379345 Greenberg Jan 1995 A
5387941 Montgomery et al. Feb 1995 A
5394274 Kahn Feb 1995 A
5396559 McGrew Mar 1995 A
5398283 Virga Mar 1995 A
5404160 Schober et al. Apr 1995 A
5404377 Moses Apr 1995 A
5408542 Callahan Apr 1995 A
5416307 Danek et al. May 1995 A
5418853 Kanota et al. May 1995 A
5422963 Chen et al. Jun 1995 A
5422995 Aoki et al. Jun 1995 A
5425100 Thomas et al. Jun 1995 A
5428606 Moskowitz Jun 1995 A
5428607 Hiller et al. Jun 1995 A
5428731 Powers Jun 1995 A
5432542 Thibadeau et al. Jul 1995 A
5432870 Schwartz Jul 1995 A
5446488 Vogel Aug 1995 A
5450122 Keene Sep 1995 A
5450490 Jensen et al. Sep 1995 A
5461426 Limberg et al. Oct 1995 A
5463209 Figh Oct 1995 A
5469222 Sprague Nov 1995 A
5469506 Berson et al. Nov 1995 A
5473631 Moses Dec 1995 A
5479168 Johnson et al. Dec 1995 A
5481294 Thomas et al. Jan 1996 A
5488664 Shamir Jan 1996 A
5493677 Balogh Feb 1996 A
5495581 Tsai Feb 1996 A
5496071 Walsh Mar 1996 A
5499294 Friedman Mar 1996 A
5502576 Ramsay et al. Mar 1996 A
5515081 Vasilik May 1996 A
5521722 Colvill et al. May 1996 A
5524933 Kunt et al. Jun 1996 A
5530751 Morris Jun 1996 A
5530759 Braudaway et al. Jun 1996 A
5530852 Meske, Jr. et al. Jun 1996 A
5532920 Hartrick et al. Jul 1996 A
5537223 Curry Jul 1996 A
5539471 Myhrvold et al. Jul 1996 A
5539735 Moskowitz Jul 1996 A
5541662 Adams et al. Jul 1996 A
5544255 Smithies et al. Aug 1996 A
5548646 Aziz et al. Aug 1996 A
5557333 Jungo et al. Sep 1996 A
5559559 Jungo et al. Sep 1996 A
5568179 Diehl et al. Oct 1996 A
5568550 Ur Oct 1996 A
5568570 Rabbani Oct 1996 A
5572010 Petrie Nov 1996 A
5572247 Montgomery Nov 1996 A
5576532 Hecht Nov 1996 A
5579124 Aijala et al. Nov 1996 A
5582103 Tanaka et al. Dec 1996 A
5587743 Montgomery Dec 1996 A
5590197 Chen et al. Dec 1996 A
5594226 Steger Jan 1997 A
5598526 Daniel et al. Jan 1997 A
5602920 Bestler et al. Feb 1997 A
5606609 Houser et al. Feb 1997 A
5611575 Petrie Mar 1997 A
5613004 Cooperman et al. Mar 1997 A
5613012 Hoffman et al. Mar 1997 A
5614940 Cobbley et al. Mar 1997 A
5617119 Briggs et al. Apr 1997 A
5617148 Montgomery Apr 1997 A
5629770 Brassil May 1997 A
5629980 Stefik et al. May 1997 A
5636292 Rhoads Jun 1997 A
5638443 Stefik Jun 1997 A
5638446 Rubin Jun 1997 A
5640193 Wellner Jun 1997 A
5646999 Saito Jul 1997 A
5652626 Kawakami et al. Jul 1997 A
5659164 Schmid Aug 1997 A
5661574 Kawana Aug 1997 A
5663766 Sizer, II Sep 1997 A
5664018 Leighton Sep 1997 A
5665951 Newman et al. Sep 1997 A
5666487 Goodman et al. Sep 1997 A
5668636 Beach et al. Sep 1997 A
5671282 Wolff et al. Sep 1997 A
5673316 Auerbach et al. Sep 1997 A
5687236 Moskowitz et al. Nov 1997 A
5710636 Curry Jan 1998 A
5719939 Tel Feb 1998 A
5721788 Powell et al. Feb 1998 A
5727092 Sandford et al. Mar 1998 A
5735547 Morelle et al. Apr 1998 A
5740244 Indeck et al. Apr 1998 A
5742845 Wagner Apr 1998 A
5745604 Rhoads Apr 1998 A
5761686 Bloomberg Jun 1998 A
5768426 Rhoads Jun 1998 A
5778102 Sandford, II et al. Jul 1998 A
5790693 Graves et al. Aug 1998 A
5790697 Munro et al. Aug 1998 A
5790703 Wang Aug 1998 A
5804803 Cragun et al. Sep 1998 A
5809160 Powell et al. Sep 1998 A
5809317 Kogan et al. Sep 1998 A
5817205 Kaule Oct 1998 A
5818441 Throckmorton et al. Oct 1998 A
5819289 Sanford, II et al. Oct 1998 A
5825871 Mark Oct 1998 A
5825892 Braudaway et al. Oct 1998 A
5838458 Tsai Nov 1998 A
5841978 Rhoads Nov 1998 A
5848144 Ahrens Dec 1998 A
5848413 Wolff Dec 1998 A
5852673 Young Dec 1998 A
5857038 Owada et al. Jan 1999 A
5862218 Steinberg Jan 1999 A
5862260 Rhoads Jan 1999 A
5869819 Knowles et al. Feb 1999 A
5871615 Harris Feb 1999 A
5872589 Morales Feb 1999 A
5875249 Mintzer et al. Feb 1999 A
5892900 Ginter et al. Apr 1999 A
5893101 Balogh et al. Apr 1999 A
5898779 Squilla et al. Apr 1999 A
5900608 Iida May 1999 A
5902353 Reber et al. May 1999 A
5903729 Reber et al. May 1999 A
5905248 Russell et al. May 1999 A
5905251 Knowles May 1999 A
5905800 Moskowitz et al. May 1999 A
5905810 Jones et al. May 1999 A
5913210 Call Jun 1999 A
5915027 Cox et al. Jun 1999 A
5930767 Reber et al. Jul 1999 A
5932863 Rathus et al. Aug 1999 A
5933798 Linnartz Aug 1999 A
5933829 Durst et al. Aug 1999 A
5938726 Reber et al. Aug 1999 A
5938727 Ikeda Aug 1999 A
5939695 Nelson Aug 1999 A
5940595 Reber et al. Aug 1999 A
5943422 Van Wie et al. Aug 1999 A
5949055 Fleet et al. Sep 1999 A
5950173 Perkowski Sep 1999 A
5963916 Kaplan Oct 1999 A
5971277 Cragun et al. Oct 1999 A
5974141 Saito Oct 1999 A
5974548 Adams Oct 1999 A
5978773 Hudetz et al. Nov 1999 A
5979757 Tracy et al. Nov 1999 A
5983218 Syeda-Mahmood Nov 1999 A
5991426 Cox et al. Nov 1999 A
6005501 Wolosewicz Dec 1999 A
6024287 Takai et al. Feb 2000 A
6035177 Moses et al. Mar 2000 A
6052486 Knowlton et al. Apr 2000 A
6064764 Bhaskaran et al. May 2000 A
6122403 Rhoads Sep 2000 A
6166750 Negishi Dec 2000 A
6188787 Ohmae et al. Feb 2001 B1
6198832 Maes et al. Mar 2001 B1
6243480 Zhao et al. Jun 2001 B1
6266430 Rhoads et al. Jul 2001 B1
6301360 Bocionek et al. Oct 2001 B1
6311214 Rhoads Oct 2001 B1
6321648 Berson et al. Nov 2001 B1
6321981 Ray et al. Nov 2001 B1
6324574 Gong Nov 2001 B1
6343204 Yang Jan 2002 B1
6359985 Koch et al. Mar 2002 B1
6700994 Maes et al. Mar 2004 B1
20010017709 Murakami et al. Aug 2001 A1
20010024510 Iwamura Sep 2001 A1
20010026629 Oki Oct 2001 A1
20010030759 Hayashi et al. Oct 2001 A1
20010053299 Matsunoshita et al. Dec 2001 A1
20020001095 Kawakami et al. Jan 2002 A1
20020003891 Hoshino Jan 2002 A1
20020009208 Alattar et al. Jan 2002 A1
20020018228 Torigoe Feb 2002 A1
20020051237 Ohara May 2002 A1
20030021439 Lubin et al. Jan 2003 A1
Foreign Referenced Citations (48)
Number Date Country
2235002 Dec 1998 CA
3806411 Sep 1989 DE
19521969 Feb 1997 DE
366381 Oct 1989 EP
372 601 Jun 1990 EP
411 232 Feb 1991 EP
418 964 Mar 1991 EP
441 702 Aug 1991 EP
493 091 Jul 1992 EP
058 482 Aug 1992 EP
551 016 Jul 1993 EP
581 317 Feb 1994 EP
605 208 Jul 1994 EP
649 074 Apr 1995 EP
705 025 Apr 1996 EP
711061 May 1996 EP
0789480 Aug 1997 EP
872995 Oct 1998 EP
0642060 Apr 1999 EP
1122939 Aug 2001 EP
2063018 May 1981 GB
2067871 Jul 1981 GB
2196167 Apr 1988 GB
2204984 Nov 1988 GB
4-248771 Feb 1992 JP
5242217 Sep 1993 JP
8-30759 Feb 1996 JP
WO 8908915 Sep 1989 WO
WO 9325038 Dec 1993 WO
WO9427228 Nov 1994 WO
WO9504665 Feb 1995 WO
WO9510813 Apr 1995 WO
WO 9510835 Apr 1995 WO
WO 9514289 May 1995 WO
WO 9520291 Jul 1995 WO
WO 9626494 Aug 1996 WO
WO 9627259 Sep 1996 WO
WO9743736 Nov 1997 WO
WO9814887 Apr 1998 WO
WO9820642 May 1998 WO
WO9824050 Jun 1998 WO
WO9840823 Sep 1998 WO
WO9849813 Nov 1998 WO
WO9934277 Jul 1999 WO
WO9936876 Jul 1999 WO
WO0044131 Jul 2000 WO
WO 0108405 Feb 2001 WO
WO 0180169 Oct 2002 WO
Related Publications (1)
Number Date Country
20020172397 A1 Nov 2002 US
Provisional Applications (3)
Number Date Country
60082228 Apr 1998 US
60071983 Jan 1998 US
60134782 May 1999 US
Divisions (1)
Number Date Country
Parent 09498223 Feb 2000 US
Child 10113854 US
Continuations (1)
Number Date Country
Parent 09433104 Nov 1999 US
Child 09498223 US
Continuation in Parts (4)
Number Date Country
Parent 09287940 Apr 1999 US
Child 09498223 US
Parent 09234780 Jan 1999 US
Child 09433104 US
Parent 10113854 May 2000 US
Child 09433104 US
Parent 09574726 May 2000 US
Child 10113854 US