This invention relates to data entry systems, to applications of such data entry systems and to equipment for use therewith.
UK patent GB-B-2,202,664 describes an example of an application for a data entry system for the automated ordering of merchandisable items. Merchandisable items are represented in a printed catalogue or other form of list and are associated with bar codes. A merchandise ordering unit comprises a bar code reader with a telephone transmission capability for use in selecting one or more items from the catalogue and transmitting electronically an order for the merchandise to a processing centre over the public telephone network. The orders for the merchandisable items received in this way are processed in the processing centre. As described, the hand held data entry terminal comprises a calculator-like processing unit with a pen-like bar code reader wand electrically connected to the processing unit via a flexible cable. The processing unit includes a display for displaying information and a telephone transmission capability for transmitting captured data via the telephone network. Although this system works well, it is rather bulky and can be somewhat inconvenient in use as it requires two handed operation, one hand for the processing unit and one hand for the wand. Alternatively, if the processing unit is not carried all the time, it needs to be located in a position where the display on the processing unit can be seen and the keys on the processing unit can be operated. It will be appreciated that particularly where the processing unit is being carried in the hand, operation of the keys on it while holding the wand requires considerable dexterity.
European patent application EP-A-0,094,571 describes a self-contained portable data entry terminal positioned within a portable wand-type enclosure. The wand contains a bar code optical reader, signal conditioning electronics, a microprocessor, a memory and a rechargeable battery. The optical reader is operable as a transmitter/receiver so that readout of data stored in the memory is possible. An example of the use of the portable data terminal is described in which captured bar code data can be output from the memory via the optical reader to an optical receiver and from there via an audio coupler to a telephone line for transmission to a remote station. Another example is described where the bar code data relates to items on a menu in a restaurant. Captured menu selections can be output from the memory via the optical reader to an optical receiver and from there via a computer to a printer in a kitchen. Also described is the programming of the portable data entry terminal using an optical transmitter to input data via the optical reader. The wand includes a beeper for indicating the correct reading of a bar code and the current memory loading. The wand described in EP-A-0,094,571 is relatively simple in construction, and although it is readily portable, it does not provide any confirmation of what has been read.
A further portable data entry terminal manufactured by Telxon Corporation is described in an article entitled “Telxon Corporation, Portable Data Collection and Entry Systems” published by McGraw-Hill in 1989 and referenced “R51-832-101 SKU/UPC Marking and Reading Equipment”. The article describes various models of data entry terminals similar to that described in UK patent GB-8-2,202,664. Data from the terminals can be transmitted to a remote station via various telecommunication options including direct connect modems and acoustic couplers. The data entry terminals have a generally rectangular format, similar to a large scientific calculator with a rectangular display and an array of keys. For most models, a separate bar code reader wand is provided which is connected to the data entry terminal via a flexible cable, requiring a two-handed operation as described above. One model PTC-620 has the same basic format as the other terminals, but is described as being for simple applications and features a snap-on reversible head for one-handed operation with either the left or the right hand. However, this terminal is still relatively bulky and cumbersome and in use it is easy inadvertently to operate one or more keys in the array of keys.
An object of the present invention is to provide a data entry system which mitigates the problems of the prior art.
In accordance with an aspect of the invention, there is provided a data entry system comprising a hand held data entry unit, the hand held unit comprising a reading sensor for sensing commands and/or data and for producing input signals in response to the sensed commands and/or data, rewritable storage for information relating to selectable items, a controller connected to receive and process the input signals from the sensor for responding to the commands to control the hand held unit and/or to the data to select the item and a display screen for displaying a user readable representation of the commands and/or stored information for the selected item, and a telecommunications interface for telephonic transmission of information relating to a selected item or items from the storage to a remote processing centre and for telephonic transmission of information relating to selectable items from the remote processing centre to the storage.
The provision of a hand held unit having an integral sensor, control, storage, display means with a telecommunications interface enables the unit to be used in a particularly efficient and self-contained manner for the capture, processing, storage, display and transmission of data. The inclusion of the display in the hand held unit enables the user to verify the data being captured without taking his or her eyes off the areas in which data capture is taking place.
Preferably, the telecommunications interface is integral to the hand held unit. The provision of a telecommunications interface in the hand held unit enables captured data to be used for direct telephonic transmission of the captured data via a telephone network to a remote processing centre. It also allows for data and/or commands to be received from the remote data processing centre.
Preferably, the hand held unit includes a rechargeable power source. There can be provided a base unit separate from the hand held unit, wherein the base unit includes a charger unit and the base unit and the hand held unit are provided with respective interconnectable electrical connectors for recharging the rechargeable power source.
In some embodiments of the invention, the data entry system can comprise a base unit separate from the hand held unit, wherein the base unit and the hand held unit are provided with a wireless data link which is operable for bidirectional data transfer between the hand held unit and the base unit, and wherein the base unit includes a telecommunications interface for telephonic transmission of information relating to a selected item or items from the storage to a remote processing centre and for telephonic transmission of information relating to selectable items from the remote processing centre to the storage. In this embodiment, the wireless data link preferably comprises, in the base unit and the hand held unit, optical transmitters and/or receivers which cooperate when the hand held unit is in the rest position to provide a two way optical data link for transferring data from the hand held unit to the base unit and/or from the base unit to the hand held unit. In other embodiments it could comprise respective radio frequency, rather than optical, transmitters and receivers, or indeed other types of transmitters and receivers.
In preferred embodiments of the invention, the telecommunications interface is an interface for connection to a wireless telephony network. This provides for a particularly advantageous implementation of the invention, which can then be used without the need to plug in the data entry system to, for example, a conventional wired telephone network.
In a preferred embodiment of the invention the telecommunications interface is a cellular telephone network interface. In this embodiment of the invention, particularly where the telecommunications interface is incorporated in the hand held unit, the data entry system can be used with the convenience, for example, of a portable cellular phone. Cellular telephone networks are now common place and give a very wide area of coverage. This facilitates the use of a data entry system in accordance with the invention in, for example, a user's home or workplace.
Alternatively, the telecommunications interface can be a satellite telephone network interface, or some other form of wireless telephone interface, for example a telephone interface for a telephone network based on highly localised transponder stations.
Where the telecommunications interface is intended to interface with an analogue telephone network, the telecommunications interface includes a modem.
By arranging that the reading sensor can be used for the input of commands for controlling the hand held unit, the number of user input means (e.g., keys) can be kept to a minimum, reducing the possibility of inadvertent operation. Preferably, there are provided one or two manually operable switches for scrolling the display in a first and/or second direction for selectively displaying a plurality of data stored in the storage. The scrolling of the display enables a large number of items to be accessed with a relatively compact display. In a preferred embodiment of the invention, the first and/or second switches are the only switches on the hand held unit. Preferably also, operation of the first and/or second switches in predetermined operational states of the hand held unit causes predetermined functions other than scrolling functions to be performed (e.g., powering-up or powering-down of the hand held unit). By the provision of only two keys on the hand held unit, the possibility of accidentally operating an incorrect key can be reduced, and also the hand held unit can be kept particularly compact.
Preferably, the hand held unit comprises a sensor for reading coded data, the controller being arranged to access the stored information for selectable items to determine natural language characters or images corresponding to the coded data for display. The invention finds particular, but not exclusive application to the reading of bar codes and/or binary dot codes, whereby the sensor is a bar code and/or dot code reader. It will be appreciated that the invention also applies to other forms of codes.
The hand held data entry unit may comprise a reading head including a reading sensor for producing input signals, wherein the reading sensor traces movements of the reading head and wherein the controller is responsive to signals from the sensor representative of the movements for identifying characters traced by the reading head as captured data. In this manner data entry can be made in an advantageous manner by tracing out the characters of the data to be input or characters representing commands for controlling the operation of the data entry system.
Preferably, the controller is user programmable to cause the captured data to be displayed on the display either in a first orientation suitable for reading displayed data when the hand held unit is held in a user's right hand, or in a second orientation suitable for reading displayed data when the hand held unit is held in a user's left hand. In a preferred embodiment the display has a substantially rectangular display screen with a longitudinal axis arranged substantially parallel to a longitudinal axis of the hand held unit. For example, for right handed operation, a string of characters could, for example, be displayed along the display from an end nearest to the sensor to the end furthest therefrom, whereas for left handed operation, the same string of characters would be displayed from the end of the display furthest from the sensor to the end nearest thereto.
A data entry system comprising a hand held unit with or without a base unit as described above, can also include means for displaying a plurality of selectable items with associated data sources for user selection of an item by operation of the hand held unit and a remote processing centre for processing user selections transmitted from the hand held unit. The controller in the hand held unit is preferably arranged to respond to appropriate commands input, for example via the reading sensor, to issue coded instructions via the telecommunications interface to the data processing centre and to receive programming data (e.g., relating to information for selectable items) from the programming centre for storage in the hand held unit.
The data entry system may additionally be arranged to provide the functions of a telephone to permit audio communication. In particular, if a cellular telephone interface is provided in a hand held unit, this unit can advantageously combine the functions of the data entry unit and a cellular telephone.
Accordingly, the invention also provides a data entry system additionally comprising means for displaying a plurality of selectable items with associated data sources for user selection of an item by operation of the hand held unit and a remote processing centre for processing user selections transmitted from the hand held unit. Preferably, the hand held unit is programmable remotely from the processing centre.
In a preferred embodiment of the invention, the hand held unit is configured as an elongate unit such that it may be held by a user in the manner of a pen or quill with the reading sensor being located in a reading head at or adjacent to one end of the hand held unit. The configuration of the hand held unit such that it may be held in the manner of a pen or quill means that the unit can be held in a familiar and comfortable manner. Also, it facilitates the provision of user input means (e.g. switches) on the hand held unit to be located such that inadvertent operation thereof can easily be avoided.
Preferably the reading sensor is located in a reading head which is releasably attached to the hand held unit. This enables alternative types of reading head to be connected to the hand held unit and/or for faulty reading heads to be replaced easily.
The invention also provides a merchandising system comprising a data entry system of this type wherein the selectable items are merchandisable items and the remote processing centre initiates processing of user orders of the selectable merchandisable items.
Thus, a data entry system in accordance with the invention, especially a data entry system comprising a hand held unit including a telecommunications interface for use with a wireless telephony system, such as a cellular network telephone system, provides a particularly advantageous device for use, for example, for “home shopping”. It enables the user to make shopping selections from a catalogue or from a series of options displayed on a television screen from the comfort of his or her home without the need to connect the device to a conventional telephone network. A hand held unit including a wireless telephone network interface such as a cellular network interface finds particular application where the user of the system is travelling from place to place and may need to perform data entry functions when they are far from a conventional wired telephone network socket.
A data entry system or a merchandising system as described above preferably includes a verification device in the form of a verification card (e.g., a credit, payment or other validation card) or like carrier carrying a verification bar code and/or dot code for verification of a user identity. Operation of the data entry system subsequent to an initial data capture operation can then be made dependent on the identification of authorised coded data.
The invention also provides a carrier for a plurality of data and/or command codes (e.g., bar and/or dot codes) for association with means for displaying a plurality of selectable items in a data entry system or a merchandising system as defined above, wherein the carrier carries a plurality of codes, each for a respective one of a plurality of natural language and/or numeric characters, and a plurality of commands for controlling the operation of the data entry or merchandising system, each code being associated with a visual representation of the corresponding natural language or numeric character or command and/or of a graphical representation thereof. This avoids the need for a complete coded data source to be associated with each selectable item in, for example, a catalogue, rather a composite code can be built up by capturing a desired sequence of individual codes. By including the command characters as well, the need for a lot of keys on the data entry device can be avoided.
As an alternative to the use of bar codes, other data representations could be used. Indeed, if the data entry device is provided with a reading sensor in the form of a camera or other scanning sensor rather than a bar code reader, and the data entry device is provided with character or image recognition logic, graphical or alphanumeric data representations can be captured directly. One application of an embodiment of the pen with a camera head as its sensor could be for fingerprint recognition.
As an example of a possible mode of operation, a command character (e.g., a bar code) can be read using the reading head (e.g., a bar code reading head) and this can be used to load down remote data from a remote station. This is particularly advantageous mode of operation where the data entry system can set up a telephone connection to the remote station automatically, for example where the data entry device has cellular telephone capabilities.
The carrier is preferably in the form of a sheet of material. The various characters and commands could be arranged in the manner of a standard typewriter keyboard layout to facilitate entry of individual codes to make up a desired code sequence (e.g., for a specific product code).
Exemplary embodiments of the invention will be described hereinafter, by way of example only, with reference to the accompanying drawings in which like reference numerals are used for like features and in which:
The pen 10 has an elongate body 12 with, in the present example, external dimensions of approximately 120 mm by 40 mm, although the dimensions may be larger or smaller as desired subject to technical limitations. A reading head 14, for example a red or infra-red optical reading head (e.g., a laser diode) suitable for reading bar codes is located at one end of the pen. Other types of reading head may be provided. The reading head is preferably-replaceable for interchanging types of reading head. A removable battery cover 16 covering a battery compartment is located at the other end of the pen. As an alternative to a compartment for removable batteries, a removable and/or fixed rechargeable battery pack could be provided instead. Also, the reading head in the present embodiment is arranged to read with a reading angle of between 0.degree. to 45.degree. to the normal to the bar code to be read.
On the upper surface of the pen shown in
Any suitable display technology can be used which enables the displayed information to be read over a wide enough angular range such that it can be read by the user when the pen is held at an angle suitable for reading a bar code. In this way it is not necessary to change the orientation of the pen in order to read the display. In view of the low power consumption and advantageous readability characteristics, a 2 line by 16 character supertwist LCD display screen is employed in the preferred embodiment giving a viewing area of approximately 60 mm by 16 mm with a character size of approximately 3 mm by 5.5 mm. The display is preferably located towards the end of the pen 10 opposite to the reading head 14 with its longitudinal axis substantially parallel to the longitudinal axis of the pen 10.
With the pen 10 held between thumb and forefinger with the user's hand below the pen as viewed in
The switches 22 and 24 are used to control basic operations of the data entry system and for control of the sequential display of stored information (scrolling of the display) as will be explained later. The indicator light 26 is used to report successful scanning of a bar code. The indicator light 28 is used when rechargeable batteries (70,
On the lower surface of the pen 10 shown in
Turning now to
The base unit includes a generally rectangular housing 42 with a raised portion 44 containing a power supply unit (102,
Towards the front of the base unit housing 42, a recess is formed which is configured as a cradle 56 for receiving the pen 10.
An optical receiver 62 and an optical transmitter 64 are located in the bottom of the recess for cooperating with the optical transmitter 32 and optical receiver 34, respectively, when the pen is located in the cradle 56. The optical receiver 62 and the optical transmitter 64 are surrounded by a wall 63 which also forms a shroud between the optical receiver 62 and the optical transmitter 64. The wall 63 cooperates with the recess 33 in the pen 10 to prevent external light reaching the optical link, and the shroud between the optical receiver 62 and the optical transmitter 64 prevents light from the two optical paths between the pen and the base unit and between the base unit and the pen from interfering with each other. It will be appreciated that alternative configurations are possible, for example the wall could be provided on the pen and the recess on the base unit, although this could mean that the pen was less comfortable to use.
First and second base contacts 60 and 61 are also located in the recess for cooperating with the contacts 30 and 31 on the pen 10 when it is inserted in the cradle 56, thus enabling rechargeable batteries (70,
The pen 10 can also be provided with a socket for directly charging the internal rechargeable batteries using an AC mains supply or a DC supply. In the first case the pen will include a transformer, in the second a transformer/rectifier could be incorporated in, for example, a mains plug.
On a further raised portion 66, one or two base unit indicator lights are provided. The first base unit indicator light 67 is for indicating the base unit is receiving mains power and is turned on. Optionally, the second base unit indicator light 68 can used to indicate that rechargeable battery (70,
In the present embodiment, other connections are made directly to the processor rather than via the bus. Thus, in the present embodiment, signals relating to data captured by the reader head 14 are passed directly to the processor 74 to be processed.
The manual switch 22 is also connected directly to the processor. In use this switch serves as a “scroll-down” key. The second manual switch 24, which in use serves as a “scroll-up” key, is, however, connected to the processor via a power control module (PCM) 72. This is because the switch 24 also serves as a “power-up” key for turning the pen on or powering it up after it has been powered down. The power control module 72 responds to operation of the key 24 in a powered down state to connect the battery 70 to the processor 74. The power control module 72 also controls the charging of the battery 70 when the contacts 30 and 31 are connected to the corresponding contacts 60 and 61 in the cradle 56 of the base unit 40. The indicator light 67 (e.g., an LED or NEON) is connected to the processor 74 and indicates when the base unit is connected to the mains. The optional indicator light 68 (e.g., an LED or NEON) is connected to the power control module 72 to indicate when the battery 70 is being charged.
The processor is programmed by means of control programs and data stored in the ROM 76 and, in use, in the RAM 78, to receive signals from the reading head 14, to interpret those signals and to derive data therefrom which are displayed on the display 20 and stored in the RAM 78 for subsequent transmission via the optical interface as will be described in more detail below.
A modem 100 is connected via an optical link 106 to an optical receiver 62 and an optical transmitter 64. The optical interface 106 converts signals from the optical receiver 62 to data to be passed to the modem 100 and converts data from the modem 100 to signals to be transmitted by the optical transmitter 64. A further interface (e.g. a standard V24/RS232 interface—not shown) for connection to a personal computer (not shown) could also be provided. Also a socket for a connection to a standard telephone handset (not shown) could be provided. The modem 100 can be a conventional modem generally comprising a master control unit 112, a data pump 114 and memory 118. The master control unit 112 is connected to receive data from the optical interface 106 (and/or from a V24/RS232 interface, if a personal computer is connected). Data from the data pump 114 are coupled via a line interface 116 to the telephone line 50. The data pump 116 is also connected via an audio interface 120 to a speaker 110 for monitoring the transmission of data via the telephone line 50.
At this point it should be explained that the operation of reading a bar code is performed by the processor 74 in a conventional manner. Thus, where the head 14 comprises a red or infra-red light source and a light sensor, signals representing changing levels of reflected illuminations are supplied to the processor 74. Firmware stored in the ROM 76, or in other embodiments possibly hard-wired in the processor 74, is used then to decode the changing levels of reflected illumination to generate a numerical value. On successful reading of a bar code the good read light 26 is illuminated.
The processor tests the numerical values to determine whether the sensed code relates to data or a command. A look up table containing the numerical values for individual commands (not shown) is configured in the ROM 76 and/or RAM 78. By accessing this table, input commands can be identified. The controlling software is aware of which commands can be executed for the current processing state. On identifying a currently executable command, the processor 74 executes that command and causes the display of a human readable command description for user verification purposes. The processor causes an error message to be displayed on the display screen if a non-executable command (e.g., a command has been input at a wrong time) has been input.
If the code does not relate to a recognised command, it is treated as data. The data are then stored in RAM as the result of reading a bar code and are used to address a description of the item referenced by the bar code value from a further look-up table. If a description of the item corresponding to the bar code value is stored in the ROM 76 and/or the RAM 78 in a suitable data structure so that the bar code value can be used either directly or indirectly to address the appropriate description, then the item description can readily be displayed instead of or as well as the bar code value for user verification purposes. If the bar code is not read correctly, then an error message is displayed on the display screen.
The item description data can relate, for example, to items from a merchandising catalogue. In the this case the rewritable storage capacity of the pen (e.g. the RAM 78) is chosen to be sufficient to store all the items from one or more merchandising catalogues. If the data is stored in volatile memory, this data is downloaded from the remote processing centre via the telecommunications link on restoring power to the memory in the pen. Preferably, if volatile memory is used, power is supplied to the memory even when the pen is “switched off”. An integral rechargeable back-up battery can be provided in addition to the battery 70 to maintain power to a volatile memory when the battery 70 is being changed. If non-volatile memory is provided, then this data can be retained during a period when no power is supplied to the memory. However, through the use of rewritable memory and control logic enabling the memory to be updated using data downloaded from the remote processing centre, it is possible to keep the pen's memory up to date on a full list of merchandisable items, including product description, availability, price, etc. Then on reading a bar code relating to an item stored in memory the display on the pen can indicate a description of the item corresponding to the code read, its availability and price. If the code read is not recognised, for example, the pen can be programmed automatically to call up the remote processing centre to check on whether an update of the pen's storage is needed when the pen is replaced in the base unit.
In a first step, S1, the pen 10 is removed from the base unit 40.
In step S2, “Up” key switch 24 is operated. The power control module senses operation of this key switch and powers up the processor 74, which performs a series of diagnostic checks, calibrates itself and then displays an initial message (e.g., “Ready”) on the display 20.
In step S3 the “Down” and “Up” scroll keys switches 22 and 24 are operated to scroll though a number of initial options pre-stored within the ROM 76 or the RAM 78 and presented on successive screens of data items on the display 20.
In this example of operation, in step S4, when an option “Left-handed operation” is encountered on the screen, the pen is scanned over the “Enter” command bar code on the command sheet of
Other options which could be provided in this manner could, for example, be the selected of one of a number of operating languages.
In step S5, the scroll key switches 22 and 24 are again operated until the option “Ready” is encountered once more. Then a series of merchandise selections can be entered by the user by scanning the bar codes for the desired merchandise selections and the command bar codes “Enter”, “Clear”, “Quantity”, etc., as appropriate. As each bar code is scanned successfully, the good read indicator 26 lights and the data read by the bar code reader is displayed on the screen. Either the alphanumeric value of the bar code read is displayed or, if a description of the item corresponding to the bar code value is stored in the RAM or the ROM, then this can be displayed instead of or as well as the bar code value.
Step S5 can be repeated as often as desired until all the desired items have been entered, or until the RAM 78 has become full or nearly full, in which case a “Memory full” error message is displayed on the display screen 20.
If desired, the items entered and stored in the RAM 78 could be checked by selecting a “Check Entries” option with the scroll key switches 22 and 24. In this case the items entered can then be checked in sequence using the scroll key switches 22 and 24, and if necessary corrected by scanning the correct command bar code while the appropriate item is displayed.
In the example shown in
After this, in step S7 the pen is placed in the cradle on the base unit and the “Down” key switch 22 is pressed to download the data from the pen. This causes the data for the telephone number to be downloaded to the modem 100 via the optical link 106. The downloading of the telephone number causes the base unit automatically to call the desired number and, once the normal modem handshaking is completed, to transfer the data stored in the RAM 78 in the pen 10. Preferably, in addition to the actual data stored, the processor 74 in the pen 10 automatically adds error correcting codes to enable the processing centre 108 to verify that successful transmission has occurred. The processing centre 108 then sends a message to confirm (or otherwise) whether successful transmission occurred after checking the error correcting codes. This message is then displayed on the display 20 of the pen 10.
It will be appreciated that the steps Si to S7 illustrated above merely form one possible method of operation. In an alternative embodiment of the invention, the scrolling function is only used for stepping though items which have already been entered into the pen, whether in the form of selectable items downloaded from the remote processing centre and/or items selected by means of the reading head. All other command functions are input by reading appropriate command codes from a command sheet. For this embodiment therefore, a command sheet should include commands for left and right handed operation, or a command for changing handedness. Then, to change between left and right-handed operation, it is merely necessary to scan an appropriate command bar code.
In a final step (not shown in
The software stored in the pen also permits the loading of data from the processing centre or another remote computer. The programming is performed using a series of commands preceded by dot codes. The programming commands are thus known as “dot” commands and cover operations such as RAM PEEK, RAM POKE, ROM PEEK, DISPLAY, SENSE, GET INFO, GET FIRST ITEM, GET NEXT ITEM, GET PREVIOUS ITEM, AMEND ITEM, DELETE ITEM, CLEAR ORDER, CLEAR CATALOGUE, ADD CATALOGUE ITEM, and AMEND CATALOGUE ITEM. In this way, a significant amount of catalogue data and/or program software can be held in the processing centre and be sent to the pens only when required. Where programs are to be downloaded, rewritable program storage will be needed in the pen, for example by implementing the ROM 76 in flash PROM technology.
The processing centre can also send commands to a hand held unit to instruct the user to scan in a personal identification number (PIN) possibly with the scanning of a further verification number from, for example a verification device in the form of a verification card (e.g., a credit, payment or other validation card) or like carrier carrying a verification bar code and/or dot code for verification of a user identity. Alternatively, the verification device can be scanned prior to any connection to a remote processing centre. In this case a connection can then be made to the remote processing centre for verification of the user identity. Operation of the data entry system subsequent to an initial data capture operation can then be made dependent on the identification of authorised coded data and a PIN number.
Although in the above embodiments, the pens 10 are intended for manual scanning of bar codes, it will be appreciated that they could also be used for reading other optically readable codes, such as binary dot codes, by the provision of appropriate control software for programming the processor 74. Alternatively, in place of the sensor head 14 which is intended to be manually scanned, a self-scanning head could be provided.
The invention is also applicable to the reading of other coded data sources such as, for example, magnetic strips, graphical representations and/or alphanumeric characters, by the provision of an appropriate reading head and control logic.
Alternative removable heads could be attached to the tip of the pen by a screw, bayonet, friction or other appropriate attachment arrangement.
For example, the data entry pen could be provided with a reading head which is responsive to movement of the pen for tracing out desired codes and or commands. In particular, by the provision of a rolling ball in a holder in the reading head, of rotation sensing means in the manner of a personal computer mouse for tracing movements of the ball and suitable interpretation logic in software or special purpose hardware, for defining a series of vectors as the pen is moved over a surface and for performing pattern recognition on the resulting vector patterns to identify control and/or alphanumeric characters traced out by the pen head, it is possible directly to input information into the pen by “writing” down those characters. By limiting the range of characters to be recognised (e.g., corresponding to the numerals and commands shown in
The embodiment of
The embodiment of
In the embodiment of
accepting data from the head 14;
accepting data from the switches 22 and 24;
driving the indicator 26;
processing the data received from the head in the manner described with respect to the previous embodiments in order to extract the necessary information;
controlling the flow of data in and out of the RAM 78;
controlling the flow of data in and out of the ROM 76;
interfacing with the power control module 72;
implementing the modem function for use with an analogue telephony system and also providing the necessary processing and control for integration with a digital telephony system and/or a cellular telephone network;
controlling the loudspeaker 95 permitting the progress of calls to be monitored;
accepting input from a microphone 152 to enable the pen in combination with the loudspeaker 95 to operate as a hand set for the purposes of audio telephony;
controlling the flow of data to an optional printer socket (not shown) allowing a user to print out information relative to the code being scanned in a predefined format;
controlling the output of data via an optical link 153 to a peripheral device (e.g., a printer) using for example, infra red light;
controlling an interface to the display 20, the display interface functions being performed in the ASIC.
The optical link 153 could be implemented using the optical link technology described above for interfacing a hand held unit with a base station. Indeed, the printer or other peripheral device could be implement as, or connected to a base station for the hand held unit.
The ASIC comprises the system controller 165 that controls the operation of the pen and of its associated components. In this embodiment system controller 165 consists of a microcontroller core incorporated into the ASIC. In other embodiments it could consist of some other control means using, for example, one or more finite state machines.
If the system controller 165 is a microcontroller core, then the data that controls its operation is stored in an internal ROM 163 together with the external ROM 76. Alternatively, there could be no internal ROM 163 and the system controller 165 will then obtain all the data from the external ROM 76. Alternatively, again, the internal ROM 163 could be used exclusively without an external ROM 78. However, this would reduce the flexibility of the device. The use of the internal ROM 163 is advantageous where a pre-defined amount of the operations to be performed are fixed for all pen types, whilst the remainder of the operation is dependent on a particular model, to take account for example of language variations, number of switches used to enter data, etc. The RAM 161 in the ASIC can be used by the system controller 165 as a scratch pad RAM to speed up operations and in order to reserve the maximum amount of RAM 78 for the storage of the main data. This “main data” includes data identifying information relating to selectable items of, for example, a merchandising catalogue, which can be down loaded by telephonic transmissions from a remote station.
The microcontroller receives requests via the bus 84 which is connected to the external bus 84 illustrated in
RAM 161 could be used as a short term data store leaving the RAM 78 to store the main data, the data in RAM 78 being retained by the battery 70. An additional battery (not shown) could be provided for data retention to prevent the loss of data from the RAM 78 or the RAM 161 in the event of failure of the battery 70.
The switch interface 155 responds to the operation of the switch 22 and ensures that the system controller 165 receives signals which are devoid of bounce (resulting for example from multiple operations of the switch due to the spring operation within the switch).
The head interface 156 carries out the necessary signal conditioning as required on receiving signals from the head 14. The signal conditioning will depend on the exact configuration of the head and preferably comprises simple buffering of the data read. Alternatively, it could be implemented to provide at least some of the bar code conversion operations as will be apparent to one skilled in the art.
Selector 159 is controlled by the system controller 165 and functions in such a manner to allow the microphone 152 and the speaker 95 to provide standard audio telephony transmission or to allow the system controller to transfer the data over the telephony network using, in the present embodiment, conventional cellular telephone technology.
Thus the selector 159 enables the data entry device to be used as a conventional cellular telephone for the transmission of audio signals. In conventional telephony mode, the selector 159 takes signals from the microphone 152 that have been processed by the signal processor 158 and directs the output to the line interface 116. The processing performed by the processor 158 can comprise, as will be apparent to one skilled in the art, conventional operations of buffering the microphone to filter out any frequencies not required and to amplify the signal to a suitable level. Received audio data is directed to the audio interface 157 which performs necessary signal conditioning before passing the signal to the speaker 95.
In the data transfer mode, the selector takes the output from the data formatter 160, which has prepared the data to be transmitted over the cellular telephone network, and directs this to the line interface 152. The speaker 95 is then used to output any tones or audio messages indicating errors, correct operation, etc., again via the audio interface 157.
Switching between modes can be accomplished using the keys and/or the scanning sensor of the hand held unit in the manner described above for the entry of data and/or commands.
The output formatter 164 prepares the data to be transmitted to a remote printer via an optical link 153 (not shown). This transmission could be in any one of a number of forms, for example, infra red light using technology as described above for interfacing the pen with a base unit. Alternatively, other remote link technology, for example a radio link, could be provided.
Although specific embodiments of the invention have been described hereinabove, it will be appreciated that many modifications and/or additions are possible within the scope of the present invention.
Thus, for example, although in the presently preferred embodiments described above the hand held unit is configured with the shape of a pen, it will be appreciated that the hand held unit could be configured in other shapes as desired in other applications, for example in the shape of a pistol.
Although in the examples of the pen and base unit described with reference to
The data from the memory of the pen (e.g., the complete list of items which could be ordered from a catalogue) could conveniently be output in alphanumeric form via a modem to a facsimile (fax) machine for printing the content of the memory.
In the preferred embodiments described above, catalogue data is down-loaded into the pen from a remote processing system by telephone, over the telecommunications interface. However, as an alternative to down-loading, for example a complete catalogue, via the telephone line, other data entry means could be provided for the bulk of the data, the telephone line then only being used for updating the stored data. For example the pen and/or the base unit as appropriate could be provided with a socket or connector or reader for a memory device (such as a plug-in ROM, a smart card, etc.).
Although no speaker is illustrated in the examples of the pen described with reference to
Although in the examples described above the plane of the display in generally parallel to the axis of the pen, the plane of the display 20 could be arranged to slope progressively towards the axis of the pen away from the head end of the pen to reduce the angle between the normal to the plane of the display and the line of sight of the user.
Also, although in the present examples two mechanical key switches are provided, in other embodiments one key switch only could be provided. Operating that key switch a predetermined number of times within a short period could be used to emulate the provision of two key switches for scrolling and other functions. More key switches could also be provided in other embodiments. For example, a numerical keypad could be provided. However, in preferred embodiments of the invention, the number of keys should be kept as low as possible for any particular application. As in the embodiments described above, two key switches are preferred. The control sheet or data carrier effectively forms a keyboard extension for the pen.
Although in the example of a card or other carrier shown in
Also, as mentioned above, in appropriate embodiments of the invention, codes other than bar codes or dot codes could be used. For example a symbol blob code could be used, this requiring about 1 Kbyte of storage for decoding purposes. Indeed, in other embodiments of the invention full character recognition (OCR) could be employed where the reading sensor is in the form of a camera or other scanning sensor incorporated in the reading head. With a camera and appropriate recognition logic, the pen could be used, for example, for fingerprint recognition, either as an aim in itself, or for user validation purposes.
In a merchandising system, where bar codes or other codes are associated with merchandisable items, this could be achieved simply by means of a printed catalogue, or some other form of list, or as a result of codes applied to examples of the products in question, or as a result of codes displayed, for example, on a TV screen with images relating to those products. The only requirement is that the display of the codes are readable by the data entry system of the present invention.
Features from the respective embodiments of the invention described above could also be combined as desired to provide a configuration appropriate for a particular application.
Thus, for example, the audio telephony functions described with reference to the embodiment of
Although in the specific embodiments described above the telecommunications interface for the telephonic transmission of information is only provided in a hand held unit where no base unit with a telecommunications interface is provided, it will be appreciated that a hand held unit with a telecommunications interface could be combined with a base unit also having a telecommunications interface, either of the same or a different type.
Number | Date | Country | Kind |
---|---|---|---|
9321133.2 | Oct 1993 | GB | national |
This application is a continuation of U.S. patent application Ser. No. 12/348,051, filed on Jan. 2, 2009 (now U.S. Pat. No. 7,920,898), which is a continuation of U.S. patent application Serial No. 11/515,152, filed on Aug. 31, 2006 (now U.S. Pat. No. 7,505,785), which is a continuation of U.S, patent application Ser. No. 10/869,215, filed on Jun. 15, 2004 (now U.S. Pat. No. 7,139,591), which is a continuation of U.S. patent application Ser. No. 09/548,565, filed on Apr. 13, 2000 (now abandoned), which is a continuation of U.S. patent application Ser. No. 08/619,682, filed on May 23, 1996 (now U.S. Pat. No. 6,058,304), filed as a 371 national stage application of international application No. PCT/GB94/02101, on Sep. 27, 1994, which claims priority to GB 9321133.2, filed on Oct. 13, 1993, the content of each of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3810101 | Avery | May 1974 | A |
3906166 | Cooper et al. | Sep 1975 | A |
3956740 | Jones et al. | May 1976 | A |
4004133 | Hannan et al. | Jan 1977 | A |
4016542 | Azure | Apr 1977 | A |
4071697 | Bushnell et al. | Jan 1978 | A |
4153937 | Poland | May 1979 | A |
4241409 | Nolf | Dec 1980 | A |
4251798 | Swartz et al. | Feb 1981 | A |
RE30671 | Poland | Jul 1981 | E |
4279021 | See et al. | Jul 1981 | A |
4295181 | Change et al. | Oct 1981 | A |
4399331 | Brown et al. | Aug 1983 | A |
4415065 | Sandstedt | Nov 1983 | A |
4482802 | Aizawa et al. | Nov 1984 | A |
4490853 | Nally et al. | Dec 1984 | A |
4503288 | Kessler | Mar 1985 | A |
4545023 | Mizzi et al. | Oct 1985 | A |
4569421 | Sandstedt | Feb 1986 | A |
4575621 | Dreifus et al. | Mar 1986 | A |
4587630 | Straton et al. | May 1986 | A |
4591974 | Dornbush et al. | May 1986 | A |
4607156 | Koppenaal et al. | Aug 1986 | A |
4621189 | Kumar et al. | Nov 1986 | A |
4622437 | Bloom et al. | Nov 1986 | A |
4653086 | Keltern et al. | Mar 1987 | A |
4654482 | DeAngelis | Mar 1987 | A |
4654514 | Watson et al. | Mar 1987 | A |
4654867 | Labedz et al. | Mar 1987 | A |
4688026 | Scribner et al. | Aug 1987 | A |
4697281 | O'Sullivan | Sep 1987 | A |
4706090 | Hasiguchi et al. | Nov 1987 | A |
4712242 | Rajasekaran et al. | Dec 1987 | A |
4724521 | Carron et al. | Feb 1988 | A |
4725694 | Auer et al. | Feb 1988 | A |
4725977 | Izumi et al. | Feb 1988 | A |
4731726 | Allen, III | Mar 1988 | A |
4734858 | Schlafly | Mar 1988 | A |
4757022 | Shults | Jul 1988 | A |
4760387 | Ishii | Jul 1988 | A |
4775928 | Kendall et al. | Oct 1988 | A |
4776003 | Harris | Oct 1988 | A |
4777646 | Harris | Oct 1988 | A |
4785420 | Little | Nov 1988 | A |
4800255 | Imran | Jan 1989 | A |
4800505 | Axelrod et al. | Jan 1989 | A |
4803652 | Maeser et al. | Feb 1989 | A |
4805134 | Calo et al. | Feb 1989 | A |
4806742 | Swartz et al. | Feb 1989 | A |
4812843 | Champion et al. | Mar 1989 | A |
4816660 | Swartz et al. | Mar 1989 | A |
4816904 | McKenna et al. | Mar 1989 | A |
4823311 | Hunter et al. | Apr 1989 | A |
4825057 | Swartz et al. | Apr 1989 | A |
4831647 | D'Avello et al. | May 1989 | A |
4835372 | Gombrich et al. | May 1989 | A |
4835374 | Swartz et al. | May 1989 | A |
4837800 | Freeburg et al. | Jun 1989 | A |
4845350 | Shepard et al. | Jul 1989 | A |
4845658 | Gifford | Jul 1989 | A |
4845740 | Tokuyama et al. | Jul 1989 | A |
4850003 | Huebeck et al. | Jul 1989 | A |
4850009 | Zook et al. | Jul 1989 | A |
4857713 | Brown | Aug 1989 | A |
4857716 | Gombrich et al. | Aug 1989 | A |
4870402 | DeLuca et al. | Sep 1989 | A |
4882757 | Fisher et al. | Nov 1989 | A |
4885574 | Negishi et al. | Dec 1989 | A |
4885580 | Noto et al. | Dec 1989 | A |
4887265 | Felix | Dec 1989 | A |
4894523 | Chadima, Jr. et al. | Jan 1990 | A |
4896026 | Krichever et al. | Jan 1990 | A |
4897532 | Swartz et al. | Jan 1990 | A |
4907264 | Seiler et al. | Mar 1990 | A |
4914732 | Henderson et al. | Apr 1990 | A |
4916411 | Lymer | Apr 1990 | A |
4916441 | Gombrich | Apr 1990 | A |
4924462 | Sojka | May 1990 | A |
4927986 | Daly | May 1990 | A |
4928300 | Ogawa et al. | May 1990 | A |
4947028 | Gorog | Aug 1990 | A |
4961043 | Koenck | Oct 1990 | A |
4966821 | Bishop et al. | Oct 1990 | A |
4969830 | Daly et al. | Nov 1990 | A |
4972457 | O'Sullivan | Nov 1990 | A |
4974170 | Bouve et al. | Nov 1990 | A |
4983318 | Matsumoto et al. | Jan 1991 | A |
4991197 | Morris | Feb 1991 | A |
4991199 | Parekh et al. | Feb 1991 | A |
4995402 | Smith | Feb 1991 | A |
5003164 | Barkan | Mar 1991 | A |
5003472 | Perrill | Mar 1991 | A |
5008927 | Weiss et al. | Apr 1991 | A |
5008952 | Davis et al. | Apr 1991 | A |
5019764 | Chang | May 1991 | A |
5019974 | Beckers | May 1991 | A |
5020090 | Morris | May 1991 | A |
5020135 | Kasparian et al. | May 1991 | A |
5021640 | Muroi | Jun 1991 | A |
5021642 | Chadima, Jr. et al. | Jun 1991 | A |
5023438 | Wakatsuki et al. | Jun 1991 | A |
D317910 | Hawkins et al. | Jul 1991 | S |
5029183 | Tymes | Jul 1991 | A |
5031098 | Miller et al. | Jul 1991 | A |
5031119 | Dulaney et al. | Jul 1991 | A |
5046082 | Zicker et al. | Sep 1991 | A |
5046084 | Barrett et al. | Sep 1991 | A |
5047614 | Bianco | Sep 1991 | A |
5047617 | Shepard et al. | Sep 1991 | A |
5055660 | Bertagna et al. | Oct 1991 | A |
5059778 | Zouzoulas et al. | Oct 1991 | A |
5065003 | Wakatsuki et al. | Nov 1991 | A |
5067164 | Denker et al. | Nov 1991 | A |
5068838 | Klausner et al. | Nov 1991 | A |
5070536 | Mahany et al. | Dec 1991 | A |
5075538 | Swartz et al. | Dec 1991 | A |
5077784 | Fujita et al. | Dec 1991 | A |
5080456 | Katz et al. | Jan 1992 | A |
5081343 | Chadima, Jr. et al. | Jan 1992 | A |
5095197 | Chadima, Jr. et al. | Mar 1992 | A |
5095503 | Kowalski | Mar 1992 | A |
5095538 | Durboraw | Mar 1992 | A |
5100098 | Hawkins | Mar 1992 | A |
5101439 | Kiang | Mar 1992 | A |
5103080 | Barkan | Apr 1992 | A |
5107100 | Shepard et al. | Apr 1992 | A |
5110226 | Sherman et al. | May 1992 | A |
5111498 | Guichard et al. | May 1992 | A |
5117098 | Swartz | May 1992 | A |
5121115 | Andros et al. | Jun 1992 | A |
5122914 | Hanson | Jun 1992 | A |
5123064 | Hacker et al. | Jun 1992 | A |
5125039 | Hawkins | Jun 1992 | A |
5126545 | Barkan | Jun 1992 | A |
5127041 | O'Sullivan | Jun 1992 | A |
5128776 | Scorse et al. | Jul 1992 | A |
5130520 | Shepard et al. | Jul 1992 | A |
5133076 | Hawkins et al. | Jul 1992 | A |
5133081 | Mayo | Jul 1992 | A |
RE34034 | O'Sullivan | Aug 1992 | E |
5136147 | Metlitsky et al. | Aug 1992 | A |
5138140 | Siemiatkowski et al. | Aug 1992 | A |
5142550 | Tymes | Aug 1992 | A |
5144119 | Chadima, Jr. et al. | Sep 1992 | A |
5144121 | Chadima, Jr. et al. | Sep 1992 | A |
5157687 | Tymes | Oct 1992 | A |
5161248 | Bertiger et al. | Nov 1992 | A |
5168148 | Giebel | Dec 1992 | A |
5171977 | Morrison | Dec 1992 | A |
5173691 | Sumner | Dec 1992 | A |
5182441 | Chadima, Jr. et al. | Jan 1993 | A |
5184314 | Kelly et al. | Feb 1993 | A |
5187353 | Metlitsky et al. | Feb 1993 | A |
5187355 | Chadima, Jr et al. | Feb 1993 | A |
5187356 | Chadima, Jr. et al. | Feb 1993 | A |
5187805 | Bertiger et al. | Feb 1993 | A |
5189287 | Parienti | Feb 1993 | A |
5189291 | Siemiatkowski | Feb 1993 | A |
5189356 | Rovner | Feb 1993 | A |
5189632 | Paajanen et al. | Feb 1993 | A |
5195130 | Weiss et al. | Mar 1993 | A |
5195183 | Miller et al. | Mar 1993 | A |
5196683 | Marom et al. | Mar 1993 | A |
5198651 | Barkan et al. | Mar 1993 | A |
5200913 | Hawkins et al. | Apr 1993 | A |
5201067 | Grube et al. | Apr 1993 | A |
5202825 | Miller et al. | Apr 1993 | A |
5208446 | Martinez | May 1993 | A |
5212628 | Bradbury | May 1993 | A |
5216233 | Main et al. | Jun 1993 | A |
5218187 | Koenck et al. | Jun 1993 | A |
5218188 | Harrison | Jun 1993 | A |
5218191 | Chadima, Jr. et al. | Jun 1993 | A |
5221838 | Gutman et al. | Jun 1993 | A |
5222138 | Balabon et al. | Jun 1993 | A |
5225822 | Shiraishi | Jul 1993 | A |
5227614 | Danielson et al. | Jul 1993 | A |
5227802 | Pullman et al. | Jul 1993 | A |
5227863 | Bilbrey | Jul 1993 | A |
5233172 | Chadima, Jr. et al. | Aug 1993 | A |
5233502 | Beatty et al. | Aug 1993 | A |
5241488 | Chadima, Jr. et al. | Aug 1993 | A |
5243452 | Baur | Sep 1993 | A |
5247162 | Swartz et al. | Sep 1993 | A |
5248929 | Burke | Sep 1993 | A |
5249218 | Sainton | Sep 1993 | A |
5250789 | Johnsen | Oct 1993 | A |
5250792 | Swartz et al. | Oct 1993 | A |
5258606 | Chadima, Jr. et al. | Nov 1993 | A |
5260697 | Barrett et al. | Nov 1993 | A |
5266787 | Mazz et al. | Nov 1993 | A |
5272323 | Martino | Dec 1993 | A |
5272353 | Barkan et al. | Dec 1993 | A |
5278487 | Koenck | Jan 1994 | A |
5280498 | Tymes et al. | Jan 1994 | A |
5285426 | Teodoridis | Feb 1994 | A |
5288976 | Citron et al. | Feb 1994 | A |
5288985 | Chadima, Jr. et al. | Feb 1994 | A |
5289378 | Miller et al. | Feb 1994 | A |
5294782 | Kumar | Mar 1994 | A |
5294784 | Tooley et al. | Mar 1994 | A |
5295014 | Toda | Mar 1994 | A |
5297216 | Sklarew | Mar 1994 | A |
5297247 | Kan | Mar 1994 | A |
5301222 | Fujiwara | Apr 1994 | A |
5302813 | Goren | Apr 1994 | A |
5303288 | Duffy et al. | Apr 1994 | A |
5306899 | Marom et al. | Apr 1994 | A |
5306900 | Metlitsky et al. | Apr 1994 | A |
5307263 | Brown | Apr 1994 | A |
5307497 | Feigenbaum et al. | Apr 1994 | A |
5308966 | Danielson et al. | May 1994 | A |
5309351 | McCain et al. | May 1994 | A |
5309500 | Koma et al. | May 1994 | A |
5313051 | Brigida et al. | May 1994 | A |
5313053 | Koenck et al. | May 1994 | A |
5317691 | Traeger | May 1994 | A |
5319363 | Welch et al. | Jun 1994 | A |
5319548 | Germain | Jun 1994 | A |
5322991 | Hanson | Jun 1994 | A |
5324922 | Roberts | Jun 1994 | A |
5324925 | Koenck et al. | Jun 1994 | A |
5327308 | Hanson | Jul 1994 | A |
5331136 | Koenck et al. | Jul 1994 | A |
5331137 | Swartz | Jul 1994 | A |
5331580 | Miller et al. | Jul 1994 | A |
5333116 | Hawkins et al. | Jul 1994 | A |
5333176 | Burke et al. | Jul 1994 | A |
5334824 | Martinez | Aug 1994 | A |
5335170 | Petteruti et al. | Aug 1994 | A |
5335276 | Thompson et al. | Aug 1994 | A |
5337346 | Uchikura | Aug 1994 | A |
5337358 | Axelrod et al. | Aug 1994 | A |
5339239 | Manabe et al. | Aug 1994 | A |
5340978 | Rostoker et al. | Aug 1994 | A |
5343239 | Lappington et al. | Aug 1994 | A |
5345071 | Dumont | Sep 1994 | A |
5347115 | Sherman et al. | Sep 1994 | A |
5347632 | Filepp et al. | Sep 1994 | A |
5349678 | Morris et al. | Sep 1994 | A |
5353331 | Emery et al. | Oct 1994 | A |
5353334 | O'Sullivan | Oct 1994 | A |
5359182 | Schilling | Oct 1994 | A |
5363031 | Miller et al. | Nov 1994 | A |
5367563 | Sainton | Nov 1994 | A |
5368562 | Blomquist et al. | Nov 1994 | A |
5369260 | Schuessler | Nov 1994 | A |
5371348 | Kumar et al. | Dec 1994 | A |
5371858 | Miller et al. | Dec 1994 | A |
5379057 | Clough et al. | Jan 1995 | A |
5386455 | Cooper | Jan 1995 | A |
5392447 | Schlack et al. | Feb 1995 | A |
5393965 | Bravman et al. | Feb 1995 | A |
5400068 | Ishida et al. | Mar 1995 | A |
5401944 | Bravman et al. | Mar 1995 | A |
5402117 | Zijderhand | Mar 1995 | A |
5406491 | Lima | Apr 1995 | A |
5408250 | Bier | Apr 1995 | A |
5410141 | Koenck et al. | Apr 1995 | A |
5412417 | Tozuka | May 1995 | A |
5412660 | Chen | May 1995 | A |
5418560 | Yasuda | May 1995 | A |
5418812 | Reyes et al. | May 1995 | A |
5424524 | Ruppert et al. | Jun 1995 | A |
5425077 | Tsoi | Jun 1995 | A |
5426594 | Wright et al. | Jun 1995 | A |
5428617 | Urushima | Jun 1995 | A |
5434994 | Shaheen et al. | Jul 1995 | A |
5436654 | Boyd | Jul 1995 | A |
5436954 | Nishiyama et al. | Jul 1995 | A |
5442541 | Hube et al. | Aug 1995 | A |
5442783 | Oswald et al. | Aug 1995 | A |
5444763 | Lazaridis et al. | Aug 1995 | A |
D363281 | Buhrmann | Oct 1995 | S |
5457629 | Miller et al. | Oct 1995 | A |
5463305 | Koenck | Oct 1995 | A |
5463547 | Markowitz et al. | Oct 1995 | A |
5465207 | Boatwright et al. | Nov 1995 | A |
5465401 | Thompson | Nov 1995 | A |
5467403 | Fishbine | Nov 1995 | A |
5468947 | Danielson et al. | Nov 1995 | A |
5468948 | Koenck et al. | Nov 1995 | A |
5468949 | Swartz et al. | Nov 1995 | A |
5471042 | Kirkeby et al. | Nov 1995 | A |
5475375 | Barrett et al. | Dec 1995 | A |
5477042 | Wang | Dec 1995 | A |
5478998 | Charych et al. | Dec 1995 | A |
5479441 | Tymes | Dec 1995 | A |
5485370 | Moss et al. | Jan 1996 | A |
5485504 | Ohnsorge | Jan 1996 | A |
5485505 | Norman | Jan 1996 | A |
5490283 | Chin | Feb 1996 | A |
5491507 | Umezawa et al. | Feb 1996 | A |
5493199 | Koenck et al. | Feb 1996 | A |
5497339 | Bernard | Mar 1996 | A |
5504595 | Marom et al. | Apr 1996 | A |
5508599 | Koenck | Apr 1996 | A |
5517434 | Hanson et al. | May 1996 | A |
5519205 | Rostoker et al. | May 1996 | A |
5519577 | Dudas et al. | May 1996 | A |
5522089 | Kikinis et al. | May 1996 | A |
5526481 | Parks et al. | Jun 1996 | A |
5528266 | Arbeitman et al. | Jun 1996 | A |
5528285 | Morikawa et al. | Jun 1996 | A |
5528490 | Hill | Jun 1996 | A |
5528621 | Heiman et al. | Jun 1996 | A |
5530754 | Garfinkle | Jun 1996 | A |
5537608 | Beatty et al. | Jul 1996 | A |
5541398 | Hanson | Jul 1996 | A |
5542115 | Wong et al. | Jul 1996 | A |
5543588 | Bisset et al. | Aug 1996 | A |
5546538 | Cobbley et al. | Aug 1996 | A |
5550646 | Hassan et al. | Aug 1996 | A |
5550715 | Hawkins | Aug 1996 | A |
5550754 | McNelley et al. | Aug 1996 | A |
5553312 | Gattey et al. | Sep 1996 | A |
5555443 | Ikehama | Sep 1996 | A |
5555459 | Kraus et al. | Sep 1996 | A |
5565671 | Kirkeby et al. | Oct 1996 | A |
5568536 | Tiller et al. | Oct 1996 | A |
5579489 | Dornier et al. | Nov 1996 | A |
5579535 | Orlen et al. | Nov 1996 | A |
5584054 | Tyneski et al. | Dec 1996 | A |
5585789 | Haneda | Dec 1996 | A |
5590373 | Whitley et al. | Dec 1996 | A |
5594470 | Meyerson et al. | Jan 1997 | A |
5595264 | Trotta, Jr. | Jan 1997 | A |
5600800 | Kikinis et al. | Feb 1997 | A |
5602854 | Luse et al. | Feb 1997 | A |
5602963 | Bissonnette et al. | Feb 1997 | A |
5606594 | Register et al. | Feb 1997 | A |
5612732 | Yuyama et al. | Mar 1997 | A |
5617236 | Wang et al. | Apr 1997 | A |
5619684 | Goodwin et al. | Apr 1997 | A |
5625673 | Grewe | Apr 1997 | A |
5634080 | Kikinis | May 1997 | A |
5638113 | Lappington et al. | Jun 1997 | A |
5640196 | Wellner | Jun 1997 | A |
5640444 | O'Sullivan | Jun 1997 | A |
5646389 | Bravman et al. | Jul 1997 | A |
5664231 | Postman et al. | Sep 1997 | A |
5665956 | La et al. | Sep 1997 | A |
5666530 | Clark et al. | Sep 1997 | A |
5668876 | Falk et al. | Sep 1997 | A |
5671374 | Postman et al. | Sep 1997 | A |
5675524 | Bernard | Oct 1997 | A |
5680633 | Koenck et al. | Oct 1997 | A |
5689648 | Diaz et al. | Nov 1997 | A |
5694546 | Reisman | Dec 1997 | A |
5706290 | Shaw | Jan 1998 | A |
5729591 | Bailey | Mar 1998 | A |
5745559 | Weir | Apr 1998 | A |
5754645 | Metroka et al. | May 1998 | A |
5754655 | Hughes et al. | May 1998 | A |
5760834 | Rostoker | Jun 1998 | A |
5761621 | Sainton et al. | Jun 1998 | A |
5771354 | Crawford | Jun 1998 | A |
5793957 | Kikinis et al. | Aug 1998 | A |
D397679 | Hawkins et al. | Sep 1998 | S |
5812953 | Griffith et al. | Sep 1998 | A |
5815142 | Allard et al. | Sep 1998 | A |
5821523 | Bunte et al. | Oct 1998 | A |
5822230 | Kikinis et al. | Oct 1998 | A |
5825732 | Arataki | Oct 1998 | A |
5835732 | Kikinis et al. | Nov 1998 | A |
5845073 | Carlin et al. | Dec 1998 | A |
5850358 | Danielson et al. | Dec 1998 | A |
5854985 | Sainton et al. | Dec 1998 | A |
5866888 | Bravman et al. | Feb 1999 | A |
5870561 | Jarvis et al. | Feb 1999 | A |
5873039 | Najafi | Feb 1999 | A |
5884323 | Hawkins et al. | Mar 1999 | A |
5894594 | Foladare | Apr 1999 | A |
5899855 | Brown | May 1999 | A |
5900875 | Haitani et al. | May 1999 | A |
5902988 | Durbin | May 1999 | A |
5923735 | Swartz et al. | Jul 1999 | A |
5932863 | Rathus et al. | Aug 1999 | A |
5952998 | Clancy et al. | Sep 1999 | A |
5969698 | Richard et al. | Oct 1999 | A |
6000000 | Hawkins et al. | Dec 1999 | A |
6006100 | Koenck et al. | Dec 1999 | A |
6006274 | Hawkins et al. | Dec 1999 | A |
6009399 | Spille | Dec 1999 | A |
6016135 | Biss et al. | Jan 2000 | A |
6058304 | Callaghan et al. | May 2000 | A |
6081534 | Sipila | Jun 2000 | A |
6118939 | Nack et al. | Sep 2000 | A |
6134453 | Sainton et al. | Oct 2000 | A |
6177950 | Robb | Jan 2001 | B1 |
6192255 | Lewis et al. | Feb 2001 | B1 |
RE37141 | O'Sullivan | Apr 2001 | E |
D440542 | Hawkins et al. | Apr 2001 | S |
6219681 | Hawkins et al. | Apr 2001 | B1 |
6281883 | Barker | Aug 2001 | B1 |
6295372 | Hawkins et al. | Sep 2001 | B1 |
D449283 | Sipher et al. | Oct 2001 | S |
6300946 | Lincke et al. | Oct 2001 | B1 |
6317797 | Clark et al. | Nov 2001 | B2 |
6330618 | Hawkins et al. | Dec 2001 | B1 |
6343318 | Hawkins et al. | Jan 2002 | B1 |
6366935 | Hawkins et al. | Apr 2002 | B2 |
6371081 | Hawkins et al. | Apr 2002 | B1 |
D457162 | Hawkins et al. | May 2002 | S |
D457526 | Hawkins et al. | May 2002 | S |
6388870 | Canova, Jr. et al. | May 2002 | B1 |
6388877 | Canova, Jr. et al. | May 2002 | B1 |
6397259 | Lincke et al. | May 2002 | B1 |
6442637 | Hawkins et al. | Aug 2002 | B1 |
6448988 | Haitani et al. | Sep 2002 | B1 |
D466115 | Hawkins et al. | Nov 2002 | S |
D466502 | Hawkins et al. | Dec 2002 | S |
D466877 | Hawkins et al. | Dec 2002 | S |
D467235 | Hawkins et al. | Dec 2002 | S |
6493464 | Hawkins et al. | Dec 2002 | B1 |
6516202 | Hawkins et al. | Feb 2003 | B1 |
6539476 | Marianetti et al. | Mar 2003 | B1 |
6587700 | Meins et al. | Jul 2003 | B1 |
6601111 | Peacock et al. | Jul 2003 | B1 |
6671389 | Marzke et al. | Dec 2003 | B1 |
6687345 | Swartz et al. | Feb 2004 | B1 |
6728786 | Hawkins et al. | Apr 2004 | B2 |
6755946 | Patton et al. | Jun 2004 | B1 |
6816480 | Monroe et al. | Nov 2004 | B1 |
6820049 | Monroe et al. | Nov 2004 | B1 |
7505785 | Callaghan | Mar 2009 | B2 |
7139591 | Callaghan | Oct 2009 | C1 |
6058304 | Callaghan | Apr 2010 | C1 |
20010007334 | Wilz, Sr. et al. | Jul 2001 | A1 |
20050259797 | Swartz et al. | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
2739157 | Mar 1979 | DE |
A-3814728 | Nov 1989 | DE |
A-4109482 | Sep 1992 | DE |
0094571 | Nov 1983 | EP |
0 149 762 | Jul 1985 | EP |
0149762 | Jul 1986 | EP |
0 317 496 | Jun 1989 | EP |
0 338 075 | Oct 1989 | EP |
0 349 430 | Jan 1990 | EP |
0 486 973 | May 1992 | EP |
0519838 | Dec 1992 | EP |
0 530 416 | Mar 1993 | EP |
0529721 | Mar 1993 | EP |
0536481 | Apr 1993 | EP |
0 378 775 | Apr 1995 | EP |
0 651 543 | May 1995 | EP |
97900179.9 | Jan 1996 | EP |
0 531 645 | Mar 1997 | EP |
0519838 | Apr 1998 | EP |
2183071 | May 1987 | GB |
2202664 | Sep 1988 | GB |
2 216 319 | Oct 1989 | GB |
2229562 | Sep 1990 | GB |
2 246 491 | Sep 1994 | GB |
2 289 555 | Nov 1995 | GB |
59 198034 | Nov 1984 | JP |
63-172558 | Jul 1988 | JP |
63 311563 | Dec 1988 | JP |
63311563 | Dec 1988 | JP |
1173262 | Jul 1989 | JP |
01173262 | Jul 1989 | JP |
1-233582 | Sep 1989 | JP |
01-276862 | Nov 1989 | JP |
01-311364 | Dec 1989 | JP |
1 314462 | Dec 1989 | JP |
1-319882 | Dec 1989 | JP |
2-19983 | Jan 1990 | JP |
02 144681 | Jun 1990 | JP |
02144681 | Jun 1990 | JP |
03-074958 | Mar 1991 | JP |
3-109891 | May 1991 | JP |
3-141481 | Jun 1991 | JP |
A-4-17494 | Jan 1992 | JP |
4-24149 | Feb 1992 | JP |
04024149 | Feb 1992 | JP |
4-174085 | Jun 1992 | JP |
04 348463 | Dec 1992 | JP |
04348463 | Dec 1992 | JP |
05 241994 | Sep 1993 | JP |
05241994 | Sep 1993 | JP |
06 090309 | Mar 1994 | JP |
3-1098891 | Jun 2008 | JP |
WO 8707106 | Nov 1987 | WO |
WO 8904016 | May 1989 | WO |
WO 9100574 | Jan 1991 | WO |
WO 9214329 | Aug 1992 | WO |
9315466 | Aug 1993 | WO |
WO 9316550 | Aug 1993 | WO |
WO 9316550 | Sep 1993 | WO |
WO 9411967 | May 1994 | WO |
WO 9412938 | Jun 1994 | WO |
Number | Date | Country | |
---|---|---|---|
20110246336 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12348051 | Jan 2009 | US |
Child | 13036987 | US | |
Parent | 11515152 | Aug 2006 | US |
Child | 12348051 | US | |
Parent | 10869215 | Jun 2004 | US |
Child | 11515152 | US | |
Parent | 09548565 | Apr 2000 | US |
Child | 10869215 | US | |
Parent | 08619682 | US | |
Child | 09548565 | US |