The present invention relates to a data excluding device, in particular, a data excluding device connected to a bus to which a plurality of nodes is connected.
Conventionally, as a purpose for preventing theft of a vehicle, for example, immobilizer function is mounted on a vehicle (For example, patent document 1). In the immobilizer function, an immobilizer ECU (=node) performs verification of an electronic key. When the electronic key is not matched with the authorized electronic key, starting of an engine is not performed.
[PTL 1]
Patent Literature 1: JP 2006-21598A
[PTL 2]
Patent Literature 2: JP 2006-212093A
However, recently as a purpose for stealing the vehicle on which the immobilizer function is mounted, act to allow operate the engine by replacing the immobilizer ECU or the engine ECU is rife. In other words, since the ECU itself is changed, engine control is performed as if the authorized ECU is operated. For this reason, it is impossible to prevent theft of the vehicle by the vehicle side, and the vehicle get stolen.
When the inside of the vehicle is illegally invaded as theft purpose, and an illegal ECU is mounted on the vehicle, it is impossible to prevent it. Further, it is possible to start the engine, and as a result the vehicle is stolen.
For this reason, when it is judged that the situation where the occurrence of the vehicle theft is presumed causes, bus failure is generated on network connecting a plurality of ECUs, and operation as a normal vehicle can not be performed (for example, patent document 2).
However, in this case, communication of all ECU is not available, and thereby a function which requires to maintain if security ECU etc. is not illegally exchanged is lost.
The present invention is to provide a data excluding device which can eliminate only communication with a particular node.
In one aspect, the present invention provides a data excluding device which connected to a bus connecting between a plurality of nodes having a function for discarding data when receiving continuous dominant equal to or greater than a prescribed bit during data reception. When ID of data received via the bus matches a specific ID, the data excluding device outputs the continuous dominant equal to or greater than the prescribed bit to the bus. Thereafter, the data excluding device stops outputting of the dominant.
In above configurations, when the ID of data received via the bus matches the specific ID, the data excluding device transmits RTR for distinguishing whether the data is a data frame or a remote frame for requesting to send the data frame, and subsequently outputs the continuous dominant equal to or greater than the prescribed bit to the bus.
As described above, according to the present invention, when the ID of data received via the bus is a particular ID, the continuous dominant equal to or greater than the prescribed bit to the bus is output to the bus, and then the output of the dominant is stopped. For this reason, it is possible to eliminate only communication with a particular node.
According to the present invention, data from the particular node can surely be excluded.
Hereafter, a data excluding device of the present invention will be explained with reference to
The above ECU 2 includes an immobilizer ECU for performing authentication of an electronic key, an engine ECU for performing control of engine, and so on, and performs CAN communication with each other. In those ECU 2, each different ID is assigned.
Next, CAN communication adopted with the embodiment of the present invention will be explained before explaining about the theft sensor 4 and the data excluding device 5 of the present invention. The above ECU 2 performs CAN communication each other by transmitting and receiving digital data consisting of H-level signal and L-level signal.
In the embodiment of the present invention, H-level signal is “recessive”, and L-level signal is “dominant” For example, when the recessive and the dominant are simultaneously output from two ECUs, the dominant is the priority, an electrical potential of the bus 3 is the dominant, and the dominant is transmitted.
As shown in
The ID includes ID assigned to each ECU 2 mentioned above. The RTR is to identify whether the data is a data frame or a remote frame for requesting transmission of the data frame.
In CAN communication, “bit stuffing rule” is adopted. The bit stuffing rule is intended to synchronize, and is a mechanism that one bit of a signal opposite to the transmitted signal is inserted when the same signal is continuous for example 6 bits on the bus 3.
The data excluding device 5 of the present invention eliminates data of illegal ECU using an error processing performed in this CAN communication. First, this error processing will be explained with reference to
The ECU 2 performs operation as shown in
When the other ECUs B and C receives the 7 bits (a prescribed bit) continuous dominant, they detects as a bit stuffing rule violation, transmits an error flag (secondary) of 7 bits continuous dominant, and eliminates the data received before now (
Furthermore, if the ECU 2 detects an error when receiving data, the error flag (secondary) of 7 bits continuous dominant is output. The ECU 2 of the transmitting side transmits the error flan (secondary) of 7 bits continuous dominant as a form error that the bus is dominant even if data is output, and then retransmits data.
The theft sensor 4 is a sensor for detecting that each ECU 2 is illegally replaced, and outputs ID (=specific ID) of illegal ECU illegally replaced to a data excluding device 5. As a method for detecting an illegal replacement, for example, detecting that connection between the ECU 2 and the bus 3 is separated is considered.
Next, the data excluding device 5 will be explained. The data excluding device 5 consists of a non-volatile memory (not shown) in which ID of the illegal ECU is set, and a control circuit (not shown) for performing elimination of the ID of the illegal ECU. In the memory, ID of the illegal ECU from the theft sensor 4 is stored. Also, it is possible to set ID of the illegal ECU by using a resistor without using a memory. The control circuit may be composed of a predetermined logic circuit (hard circuit), microcomputer, or combination of them.
An operation of the in-vehicle communication system 1 will be explained with reference to
Thereby, as shown in
In the illegal ECU, since the bus 3 is dominant despite transmitting data, the error flag (secondary) of 7 bits continuous dominant is transmitted, and then data is retransmitted. For this reason, since the illegal ECU continues to retransmit data, there is a concern that communication of the other ECU 2 can not be performed. However, the ECU 2 in CAN communication counts the number of transmission of the error flag, is moved to an error-passive state when the number of transmission is equal to or greater than a predetermined number of times, and becomes in a transmission standby state. Thus, the illegal ECU becomes in a transmission standby state at the same time, and data transmission from the other ECU 2 is given priority. As a result, the above concern is resolved.
Further, in the above embodiment, when ID of data matches ID of the illegal ECU, the data excluding device 5 output dominant after RTR is transmitted. Thereby, it is possible to properly eliminate data from the illegal ECU.
Also, in the above embodiment, a case that data is normal frame is explained, but it is not limited thereto. As shown in
Furthermore, in the above embodiment, the data excluding device 5 outputs 7 bits dominant after transmitting RTR, but it is not limited thereto. As shown in
Further, in the above embodiment, the data excluding device 5 outputs 7 bits dominant when matching ID of the illegal ECU, but it is not limited thereto. A bit length of dominant is not limited to 7 bits. For example, a bit length of dominant may be a bit length such as a bit stuffing rule violation is detected.
Furthermore, in the above embodiment, the theft sensor 4 detects the illegal ECU, and only data of the illegal ECU is eliminated, but it is not limited thereto. For example, in a case that it is hardly possible that which ECU is replaced, when situations that it is suspect such as theft, for example, a big impact, entry into the vehicle, opening of the door and so on is detected, it is possible to eliminate only data of a specific ECU 2 such as immobilizer ECU, or engine ECU etc. from a plurality of ECUs.
Furthermore, according to the above embodiment, only data of the illegal ECU which is detected by the theft sensor 4 is excluded, but it is not limited thereto. According to the data excluding device 5 of the present invention, it is possible to eliminate only data from a specific ECU 2. For this reason, for example, it is considered that it is possible to exclude data from the ECU 2 transmitting data which is not to be delivered to the other party.
The illustrated embodiments of the present invention have been described for illustrative purposes only, and not by way of limiting the invention. Accordingly, the present invention can be implemented with various modifications made thereto within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2013-150623 | Jul 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/069049 | 7/17/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/008833 | 1/22/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8737426 | Fredriksson | May 2014 | B1 |
20130227650 | Miyake | Aug 2013 | A1 |
20140250531 | Moeller | Sep 2014 | A1 |
20150291128 | Satake | Oct 2015 | A1 |
20160259941 | Vasudevan | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
2006-021598 | Jan 2006 | JP |
2006-212093 | Aug 2006 | JP |
Entry |
---|
Marco Di Natale, “Understanding and using the Controller Area Network”, Oct. 30, 2008. |
International Search Report dated Oct. 21, 2014, issued for PCT/JP2014/069049. |
Number | Date | Country | |
---|---|---|---|
20160368457 A1 | Dec 2016 | US |