The present application is related to U.S. patent application Nos. entitled “Business Intelligence Document” application Ser. No. 12/971,462, Publication Number 2012/0159465; entitled “Data Mining within a Business Intelligence Document” application Ser. No. 12/971,638, Publication Number 2012/0158643; entitled “Automated Generation of Analytic and Visual Behavior” application Ser. No. 12/971,725, Publication Number 2012/0158754; entitled “Decision Application Publication” application Ser. No. 12/971,782, Publication Number 2012/0158732; entitled “Representation of an Interactive Document as a Graph of Entities” application Ser. No. 12/972,205, Publication Number 2012/0159312; and entitled “Representation of an Interactive Document as a Graph of Entities” application Ser. No. 12/972,249, Publication Number 2012/0159333, all filed concurrently herewith and all of which are specifically incorporated by reference herein for all that they disclose or teach.
Business intelligence (BI) refers to a broad category of applications and technologies for gathering, storing, analyzing, and providing access to data to help information workers (IWs) make better business decisions. BI applications typically address activities such as decision support systems, querying, reporting, online analytical processing (OLAP), statistical analysis, forecasting, and data mining. A variety of data sources may be accessed to provide input data relevant to the objectives of each BI application.
Discovering the data sources capable of providing this relevant input data can be difficult and time-consuming. First, a developer typically visits Web sites of numerous data source companies to determine which of them, if any, offer the relevant data in a package and at a price that meets the developer's needs. Second, upon identifying the appropriate data sources and data offered thereby, the developer purchases the data via separate transactions with each data source company. Third, the companies may deliver the purchased data to the developer in different formats, e.g., via Web service, Microsoft EXCEL® spreadsheet, a DVD of CSV data, XML data, RSS feeds, etc.
Furthermore, the step of determining whether a data source company offers the relevant data is particularly challenging. While a data source company may offer a directory of data feeds and display samples of the data to the developer (e.g., in a chart), such companies do not typically allow a developer to interact with a particular data feed, especially in combination with his or her own data and business logic, until he or she pays for the access. As such, the customer is unable to do a trial run with the data feed to make sure it provides the right data for a desired objective.
Implementations described and claimed herein address the foregoing problems by providing a data marketplace infrastructure that allows a data source company or a third party to associate a data feed to a customizable preview application having analytic and visual features (e.g., business logic and a user interface). A potential customer can use discovery services of the data marketplace infrastructure to identify one or more data feeds offering data in a domain of interest of the potential customer. The data feed can transmit the customizable preview application to allow the potential customer to interact with the sample data from the data feed before purchasing the data. The potential customer may also customize the preview application so as to change the default application behavior in a manner that improves the potential customer's understanding and appreciation of the data feed.
In some implementations, articles of manufacture are provided as computer program products. One implementation of a computer program product provides a computer program storage medium readable by a computer system and encoding a computer program. Other implementations are also described and recited herein.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
A data marketplace in the described technology represents a cloud-based service or an on-premises/off-premises service that provides a marketplace for information, such as data, web services, and analytics. Content providers can use a data marketplace to make their datasets available to a wide online audience. Developers can write code on any platform to consume datasets received from a data marketplace. Subscribers can use a data marketplace to find datasets that address their needs through rich discovery features and purchase access to such datasets through a consistent transaction and billing framework. Example billing scenarios may include without limitation pay-as-you-go transactions, monthly subscriptions, enterprise volume licensing, pure virtual billing, etc. In one implementation, a data marketplace provides a subscriber with a data feed sourcing data with a consistent presentation and an ability to automatically generate new proxy classes (e.g., to make the communications between the data feed and a data consumer transparent).
In
In one implementation, a BI document defines the BI application using a data structure of arbitrary expressions that can be specified by a non-programmer. In one implementation, a BI application defined by sets of such arbitrary expressions are grouped into distinct entities, which may have input variables and output variables, wherein the relationships among inputs and outputs of these entities defined by the sets of expressions that define the entities. The expressions are generally not unique to any particular system but may be evaluated by either a local or remote system. However, an entity (and therefore the contained expressions) may be designated for local or remote computation on local or remote data, thereby directing computation to an appropriate system based on this designation.
Individual entities may be connected into a pipeline of entities, such that an output of one entity (e.g., an external equation set entity for remote computation) is connected to the input of another entity (e.g., an internal equation set entity of local computation), and so on. The input and output formats of connected entities are matched, such that the data output by one entity is compatible with the input format (e.g., schema) required by the entity to which that data is input. The pipeline-connection of multiple entities allows a user to specify a BI application for evaluating complex and arbitrary combinations of expressions using local or remote data and computation to obtain sophisticated BI solutions.
Furthermore, a non-programmer can develop a BI application defined by such expressions. In some implementations, the skill level adequate for a person to develop a BI application defined by expressions may be similar to the skill level adequate to use a spreadsheet software application, such as Microsoft EXCEL®.
An expression is a symbolic representation of a computation to be performed and may include operators and operands. Example operators of an expression may include without limitation mathematical operators (e.g., addition, subtraction, etc.), relational transformations (e.g., group, ungroup, join, filter, sort, etc.), aggregate transformations over nested structures (e.g., hierarchical filtering), classifiers (e.g., Bayesian algorithm that classified an unstructured set of data), BI aggregations and transformations, and arbitrary or customized transform expressions (e.g., sets of rules, equations, and/or constraints). Example operands of an expression may include without limitation data (e.g., numbers or strings), hierarchical data (such as records, tuples, and sequences), symbols that represent data, and other expressions that resolve to specific data. An expression may thus be recursive in that an expression may be defined by other expressions.
For example, an expression may take the form of a symbolic representation of an algebraic expression, such as x2+2xy+y2, where x and y are symbols that represent data or other expressions. A symbol may represent any type of data, including without limitation an integer, a rational number, a string, a Boolean, a sequence of data (potentially infinite), a tuple, or a record. In some implementations, a symbol may also represent an irrational number, although in other implementation, a symbol may be prohibited from representing an irrational number. Any expression may take the form of an equation, such as E=mc2, where E, m, and c are symbols representing data or other expressions. An expression may also take the form of a functional definition, such as ƒ(x)=x2−1, where f is a symbol representing the function, x is a symbol representing an operand or argument of the function, and x2−1 is an expression that defines the function. In addition, an expression may take the form of a function invocation, such as ƒ(3), which indicates that the function ƒ is to be invoked with an argument of “3”.
An expression may be solved by an expression engine (see expression engine 216 in
In evaluating an expression, the expression engine may apply the operators to the operands to the extent that the operators and operands are defined and to the extent that the expression engine is configured to apply the operators to the operands. For example, where the symbol x represents the number “3” and the symbol “y” is not yet defined, the expression x2+2xy+y2 may be solved by replacing the known symbol “x” with the value it represents (e.g., 22+2·2·y+y2) and then applying the operators to the operands to solve the entire expression as 4+4y+y2. Where the symbol x represents the number “3” and the symbol y represents the string “hello”, the expression x2+2xy+y2 may be solved as 4+4·hello+hello2, since the expression engine may not be configured to perform arithmetic operations on the string “hello”.
Each expression can further specify a data source, whether local or remote. For example, an expression in which data values for x are taken from a local data source and data values for y are taken from a remote data source may be declared as follows:
|x2+2xy+y2|
where x in local_table_contacts·Age and y in remote_table_contacts·Income
Furthermore, each expression can further designate local or remote computation. For example, the computation entity may be specifically identified for an expression as such:
x2+2xy+y2|local source·Solver
or
x2+2xy+y2|remote source·Solver
In some implementations, expressions without a computation identifier are deemed local by default.
In some implementations, expression may be declarative. A declarative expression can identify a computation to be performed without specifying how to compute it. A declarative expression may be contrasted with an imperative expression, which may provide an algorithm or other specification for computing the expression. Declarative expressions may be input manually, such as into a field in a spreadsheet tool, or created through a declaration-generating control, such as a visual control element associated with a visualization.
In some implementations, expressions may be immutable. An expression is immutable if it cannot be changed. For example, once a definition is given to an immutable expression, such as if E=mc2 is designated immutable, the expression E cannot later be given a different definition. One advantage of immutability is that a BI application having one or more expressions designated as immutable prevents users of the BI application from altering those expressions. Where expressions are being solved in a distributed execution environment, immutability may be advantageous in that devices can rely on the immutable expression having the same definition throughout the lifetime of the expression. Immutability of expressions can make it easier for independent parts of a BI application to execute in parallel.
As discussed, a BI application may be defined by a data structure of expressions. In one implementation, the BI application is represented by a graph of nodes or entities specified in the BI document, wherein one or more expressions are partitioned into individual entities and connected via related inputs and outputs. Based on the BI document, the BI application can provide spreadsheet-like, incremental recalculation behavior (“recalc”), solving expressions as the data upon which they depend changes. In addition, the BI tool and the BI document are coordinated to allow BI and other operations over heterogeneous complex data, including data sourced from local and remote data sources.
In one implementation, declarative expressions are recorded in the BI document to define one or more entities in the graph, each entity representing without limitation a data structure, an external data source, a control element, an external event source, a visualization, or an update service. In one implementation, each entity transforms its inputs (if any) into its outputs (if any) and is associated with:
More details pertaining to entities are described with regard to
A client 112 (e.g., a client computer system) initially discovers a data feed for possible subscription (e.g., via communications 114 and 116) using a variety of mechanisms. In one implementation, the client 112 provides an identifier (e.g., a URI) of the data warehouse 102 and more specifically, of the specific data feed of interest. In another example, the data warehouse 108 generates and maintains a search index of text residing in expression of the business logic and user interface features of a data feed, wherein the client 112 can submit search queries to search on the text or patterns thereof in order to discover one or more data feeds of interest offered by the data warehouse 108. If the expressions associated with a data feed satisfy the search queries (e.g., as provided in a discovery request), then the data feed can be returned in discovery results to the client 112. A user can then select a data feed from the discovery results to receive a preview applications associated with the selected data feed. In this manner, the data warehouse 108 assists the client 112 in identifying a data feed that may be relevant to a particular business intelligence objective. It should be understood that a web service or other application may be employed to distribute search queries to multiple data sources and to aggregate search results from across the multiple data sources. Other discovery mechanisms for identifying a data feed of interest may also be employed.
In one example, the data warehouse 108 offers a data feed 118, which the client 112 selects (e.g., from a set of search results, from a directory of data feeds, via a provided identifier, etc.). The client 112 can also select to receive a preview application 120 associated with the data feed (e.g., as represented by a sample visualization and underlying business logic and data). The preview application, including any sample data, business logic and user interfaces associated therewith, is specific to the selected data feed, as represented by the dashed line 122 encompassing the preview application 120 and the data warehouse 108. Expressions of the preview application 120 are evaluated at the client 112, providing the client 112 with an interactive preview of sample data, business logic, and user interfaces.
In another example, the data warehouse 102 offers a data feed 124, which the client 112 selects for preview via a preview application 126 of the data feed. The preview application 126, including any business logic and user interfaces associated therewith, is specific to the selected data feed, as represented by the dashed line 128 encompassing the preview and the data warehouse 102. Expressions of the preview application 126 are evaluated at the client 112, providing the client 112 as an interactive preview of some sample data, business logic, and user interfaces. Furthermore, in contrast to the preview application 120 associated with the data feed of the data warehouse 108, the preview application 126 associated with the data feed for data warehouse 102 is shown with customization icons (e.g., icon 130), which allow the client 112 to customize an associated visualization. For example, the customization icon 130 provides editable access to underlying data, business logic and user interfaces associated with a visualization 132, allowing customization (e.g., the altering of business logic expressions) by virtue of a control element 134. The client 112 can therefore manipulate the control element 134 to alter the sample data, business logic, and user interfaces received from the data warehouse 102 in the preview application 126.
A runtime component (e.g., data binder and expression engine 136) evaluates preview applications 120 and 126, including the sample data and expressions representing sample business logic and user interfaces. In this manner, a user at the client 112 can view the preview, including manipulating the present control elements (e.g., a slider control) and, for some preview applications, customize the underlying data, business logic and user interfaces. Furthermore, the client 112 can save the state of such customizations and save them locally or return them to the associated data warehouse.
Furthermore, in one implementation, the expressions and data of the preview application can be in the form of textual data, which can be transferred from the preview application to another BI application at the client (e.g., via copy or cut, and paste logic or drag and drop logic). In this manner, a user can easily use preview applications to develop their own BI applications.
The data warehouse 202 also includes one or more processors 212, one or more user and communication interfaces 214 (e.g., a display interface, keyboard/mouse interface, touch screen interface, a wireless or wired network interface, etc.), and its own local storage 215 (e.g., local RAM or flash memory, magnetic storage, a solid state drive, etc.). In addition, the data warehouse 202 includes one or more runtime components (e.g., data feed behavior manager 220) for providing customizable analytic and visual behavior to a data feed. In one implementation, the data feed behavior manager 220 receives sample data, business logic and user interfaces associated with a selected data feed and forwards them to a requesting client (e.g., the local computing system 200) as a preview application. The runtime components may also include without limitation a discovery service manager 218 for indexing text in business logic and user interface expressions and for processing discovery (e.g., search) requests against such indices, an expression engine 216 for evaluating business logic and user interface expressions, and a data-application binder for binding local (e.g., from local data store 221, which may reside in the data warehouse 202 and remote data (e.g., accessible from other WAN-connected systems) to expressions when preparing the preview application.
Each entity can represent without limitation a data structure (e.g., a table or a hierarchical table), a terminal entity (e.g., a visualization or update service), a set of expressions with its bindings to identified data, an external data source (e.g., a remote data source, a query-able data source, a non-query-able data source, a control element that provides user interaction to allow data input, a remote service, etc.), and external event sources (e.g., timers). Each entity also defines the format of its one or more inputs and/or outputs. If the entity has an input, the entity further defines the source of the input data. The one or more expressions specified by each entity define transforms to be performed by the entity on its inputs (if any), the result of which is the output (if any) of the entity.
Individual entities may be characterized in a variety of ways, as described with regard to the example list below:
It should be understood that other types of entities and connections are also contemplated in other implementations. In particular, multiple entities may be connected in a pipeline to produce a complex and arbitrary sequence of expressions designated for local and/or remote computation.
As data that is input to an entity changes, the expression engine re-evaluates the expressions specified by the entity. Accordingly, data changes and re-computation results can ripple through the directed graph, changing the output data that is altered by the re-computations and leaving the outputs of other entities unchanged (where the initial data changes do not ripple to these entities). This incremental change provides a spreadsheet-like recalculation (“recalc”) effect—some data changes in the spreadsheet when data is changed, while other data remains unchanged.
Turning back to
A control element source entity 312 also has no input and one output. The output data of the control element source entity 312 changes based on the state of an associated control element (e.g., a visual slider control), which can be manipulated by a user. For example, the associated control element may be presented to the user as a slider that the user can slide back and forth within a predetermined range to change the output value of the entity 312. A control element source entity 318 is also connected to the input of a visualization entity 309.
As illustrated, individual entities may be connected into a pipeline, where the local or remote location of the data and the computation for one entity are immaterial to any previous or subsequent entity in the pipeline. For example, an output of the invariable data source entity 302 is connected to the external equation set entity 314 and an output connected to the internal equation set entity 306. The external equation set entity 314 has one output connected to an input of the internal equation set entity 306. It should be understood that the input and output formats of connected entities are compatible to allow a first entity to output data directly to a second entity.
Further, among other connections, inputs to the internal equation set entity 306 are connected to outputs of the invariable data source entity 302, the event source entity 304, and the control element source entity 312. Also, as shown, outputs of the entities 306, 314 and 318 are input to the visualization entity 309, which has three inputs and no outputs. The visualization entity 309 alters a visualization presented to the user based on the data received at its inputs from the entities 306, 314, and 318. In this manner, changes to the outputs of the entities 306, 314, and 318 results in changes to the visual display viewed by user.
The data feed behavior manager 410 receives the sample data, business logic and user interfaces from the expression engine 408 and forwards them in a preview application 412 to the requesting local system 404. In one implementation, the preview application 412 includes individual expressions and data representing the sample data 414, business logic 416, and user interfaces 418 for the preview. In another implementation, the data feed behavior manager 410 forwards the BI document 402 to the local system 404 as a preview application. In yet another implementation, the data feed behavior manager 410 generates a new BI document that includes representations of and/or references to the sample data, business logic, and user interfaces and forwards it to the local system 404 as a preview application. Other configurations and formats for the preview application are also contemplated.
The local system 404 receives the preview application 412, sending it to a data-application binder 420, which binds local data 422 and any other available data (e.g., local or remote solution data) to the expressions in the preview application 412. A local expression engine 424 evaluates the expressions in light of the bound data and outputs a solution 426 (e.g., a visualization). It should also be understood that the expressions in the preview application 412 may be evaluated locally or remotely, based on references associated with individual entities specified in the preview application 412.
A download operating 504 downloads and executes a client-based runtime component capable of binding data to expressions and evaluating expressions to produce solutions. The runtime component may also provide discovery (e.g., a search interface), cut/copy and paste, and/or drag and drop capabilities for the client. If the runtime component is already resident at the client, downloading the runtime component may be bypassed.
Another downloading operation 506 downloads to the client a preview application associated with the data feed of interest. The preview application includes sample data, business logic, and one or more user interfaces for the data feed. A binding operation 508 binds available data to the expressions at the client. An evaluation operation 510 evaluates the expressions (e.g., at the client or a remote system), and a presentation operation 512 presents the resulting solution at the client (e.g., via a visualization). As previously mentioned, it should be understood that certain specified data and expressions may not be available locally or certain data and expressions may be designated for evaluation at a remote data source. For such data and expressions, the binding operations 508 and the evaluation operation 510 may be offloaded to a remote system for execution.
A customization operation 514, another evaluation operation 516, and another presentation operation 518 may also be executed. The preview application includes controls (e.g., a link, a button, etc.) through which a user can access a customization mode. The customization mode allows a user to modify expressions and data of the preview application. In one such mode, a customization user interface feature (such as control element 804 in
A retrieval operation 606 retrieves the sample data and BI document associated with the requested data feed. The BI document, or a portion thereof, specifies the expressions and data of the preview application, such as through an entity graph representation. A binding operation 608 binds the available data to the expressions specified in the BI document, and an evaluation operation 610 evaluates the expressions to the extent possible based on the available data. A preview operation 612 sends the resulting preview application to the requesting client. A receiving operation 614 can also receive a customized version of the application from the requester for possible storage by the data source, which may make the customized application available to other requesters in the future.
The new histogram visual element 802 is also based on input data and transformations, some of which are defined by a user through the control element 804. In the case of the control element 804, a user can configure a “constraint” transformation using a user-entered equation and an “allocation” transformation using a drop down box offering various selections (e.g., “Distribute Equally,” “Weighted,” etc.) Other transformations may also be applied to the input data in the configuration of the histogram visual 802 or any other visual element.
Other application controls are also shown in
The system bus 23 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, a switched fabric, point-to-point connections, and a local bus using any of a variety of bus architectures. The system memory may also be referred to as simply the memory, and includes read only memory (ROM) 24 and random access memory (RAM) 25. A basic input/output system (BIOS) 26, containing the basic routines that help to transfer information between elements within the computer 20, such as during start-up, is stored in ROM 24. The computer 20 further includes a hard disk drive 27 for reading from and writing to a hard disk, not shown, a magnetic disk drive 28 for reading from or writing to a removable magnetic disk 29, and an optical disk drive 30 for reading from or writing to a removable optical disk 31 such as a CD ROM, a DVD, or other optical media.
The hard disk drive 27, magnetic disk drive 28, and optical disk drive 30 are connected to the system bus 23 by a hard disk drive interface 32, a magnetic disk drive interface 33, and an optical disk drive interface 34, respectively. The drives and their associated computer-readable media provide nonvolatile storage of computer-readable instructions, data structures, program modules and other data for the computer 20. It should be appreciated by those skilled in the art that any type of computer-readable media which can store data that is accessible by a computer, such as magnetic cassettes, flash memory cards, digital video disks, random access memories (RAMs), read only memories (ROMs), and the like, may be used in the example operating environment.
A number of program modules may be stored on the hard disk, magnetic disk 29, optical disk 31, ROM 24, or RAM 25, including an operating system 35, one or more application programs 36, other program modules 37, and program data 38. A user may enter commands and information into the personal computer 20 through input devices such as a keyboard 40 and pointing device 42. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 21 through a serial port interface 46 that is coupled to the system bus, but may be connected by other interfaces, such as a parallel port, game port, or a universal serial bus (USB). A monitor 47 or other type of display device is also connected to the system bus 23 via an interface, such as a video adapter 48. In addition to the monitor, computers typically include other peripheral output devices (not shown), such as speakers and printers.
The computer 20 may operate in a networked environment using logical connections to one or more remote computers, such as remote computer 49. These logical connections are achieved by a communication device coupled to or a part of the computer 20; the invention is not limited to a particular type of communications device. The remote computer 49 may be another computer, a server, a router, a network PC, a client, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 20, although only a memory storage device 50 has been illustrated in
When used in a LAN-networking environment, the computer 20 is connected to the local network 51 through a network interface or adapter 53, which is one type of communications device. When used in a WAN-networking environment, the computer 20 typically includes a modem 54, a network adapter, a type of communications device, or any other type of communications device for establishing communications over the wide area network 52. The modem 54, which may be internal or external, is connected to the system bus 23 via the serial port interface 46. In a networked environment, program modules depicted relative to the personal computer 20, or portions thereof, may be stored in the remote memory storage device. It is appreciated that the network connections shown are example and other means of and communications devices for establishing a communications link between the computers may be used.
In an example implementation, an expression engine, a data feed behavior manager, a discover services manager, and other modules and services may be embodied by instructions stored in memory 22 and/or storage devices 29 or 31 and processed by the processing unit 21. Source data, BI documents, preview applications, expressions, and other data may be stored in memory 22 and/or storage devices 29 or 31 as persistent datastores. Further, local computing systems, remote data sources and/or services, and other associated logic represent hardware and/or software configured to provide BI functionality for network-connected systems. Such services may be implemented using a general purpose computer and specialized software (such as a server executing service software), a special purpose computing system and specialized software (such as a mobile device or network appliance executing service software), or other computing configurations.
Some embodiments may comprise an article of manufacture. An article of manufacture may comprise a storage medium to store logic. Examples of a storage medium may include one or more types of computer-readable storage media capable of storing electronic data, including volatile memory or non-volatile memory, removable or non-removable memory, erasable or non-erasable memory, writeable or re-writeable memory, and so forth. Examples of the logic may include various software elements, such as software components, programs, applications, computer programs, application programs, system programs, machine programs, operating system software, middleware, firmware, software modules, routines, subroutines, functions, methods, procedures, software interfaces, application program interfaces (API), instruction sets, computing code, computer code, code segments, computer code segments, words, values, symbols, or any combination thereof. In one embodiment, for example, an article of manufacture may store executable computer program instructions that, when executed by a computer, cause the computer to perform methods and/or operations in accordance with the described embodiments. The executable computer program instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, and the like. The executable computer program instructions may be implemented according to a predefined computer language, manner or syntax, for instructing a computer to perform a certain function. The instructions may be implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language.
The embodiments of the invention described herein are implemented as logical steps in one or more computer systems. The logical operations of the present invention are implemented (1) as a sequence of processor-implemented steps executing in one or more computer systems and (2) as interconnected machine or circuit modules within one or more computer systems. The implementation is a matter of choice, dependent on the performance requirements of the computer system implementing the invention. Accordingly, the logical operations making up the embodiments of the invention described herein are referred to variously as operations, steps, objects, or modules. Furthermore, it should be understood that logical operations may be performed in any order, unless explicitly claimed otherwise or a specific order is inherently necessitated by the claim language.
The above specification, examples, and data provide a complete description of the structure and use of exemplary embodiments of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended. Furthermore, structural features of the different embodiments may be combined in yet another embodiment without departing from the recited claims.
Number | Name | Date | Kind |
---|---|---|---|
4633430 | Cooper | Dec 1986 | A |
5669007 | Tateishi | Sep 1997 | A |
6691100 | Alavi et al. | Feb 2004 | B1 |
6865720 | Otani et al. | Mar 2005 | B1 |
6931589 | Baltsan et al. | Aug 2005 | B2 |
7028306 | Boloker et al. | Apr 2006 | B2 |
7263663 | Ballard et al. | Aug 2007 | B2 |
7315861 | Seibel et al. | Jan 2008 | B2 |
7343585 | Lau et al. | Mar 2008 | B1 |
7349947 | Slage et al. | Mar 2008 | B1 |
7440902 | Greenstein et al. | Oct 2008 | B2 |
7506243 | Kotler et al. | Mar 2009 | B2 |
7603620 | Erol et al. | Oct 2009 | B2 |
7752314 | Trevor et al. | Jul 2010 | B2 |
7752536 | Megiddo et al. | Jul 2010 | B2 |
7774791 | Appelbaum et al. | Aug 2010 | B1 |
7802230 | Mendicino et al. | Sep 2010 | B1 |
7900111 | Kim et al. | Mar 2011 | B1 |
7908186 | Gabelmann et al. | Mar 2011 | B2 |
8135655 | Oaten et al. | Mar 2012 | B2 |
8332772 | Janzen et al. | Dec 2012 | B2 |
8473473 | Wang et al. | Jun 2013 | B2 |
8589172 | Alonso et al. | Nov 2013 | B2 |
8635211 | Jiang et al. | Jan 2014 | B2 |
20010047372 | Gorelik et al. | Nov 2001 | A1 |
20020065673 | Rooke | May 2002 | A1 |
20020066782 | Swaminathan et al. | Jun 2002 | A1 |
20020091609 | Markowski | Jul 2002 | A1 |
20020169658 | Adler | Nov 2002 | A1 |
20020191199 | Imada et al. | Dec 2002 | A1 |
20030040962 | Lewis | Feb 2003 | A1 |
20030041104 | Wingard et al. | Feb 2003 | A1 |
20030144868 | MacIntyre et al. | Jul 2003 | A1 |
20040015481 | Zinda | Jan 2004 | A1 |
20040098358 | Roediger | May 2004 | A1 |
20040153992 | Molina-Moreno et al. | Aug 2004 | A1 |
20040162842 | Ono et al. | Aug 2004 | A1 |
20040181519 | Anwar | Sep 2004 | A1 |
20050004911 | Goldberg et al. | Jan 2005 | A1 |
20050043961 | Torres et al. | Feb 2005 | A1 |
20050187809 | Falkenhainer | Aug 2005 | A1 |
20050231392 | Meehan et al. | Oct 2005 | A1 |
20060074882 | Scherer et al. | Apr 2006 | A1 |
20060080400 | Guha | Apr 2006 | A1 |
20070038657 | Denton et al. | Feb 2007 | A1 |
20070046664 | Raspl et al. | Mar 2007 | A1 |
20070061711 | Bodin et al. | Mar 2007 | A1 |
20070112714 | Fairweather | May 2007 | A1 |
20070118394 | Cahoon | May 2007 | A1 |
20070124285 | Wright et al. | May 2007 | A1 |
20070136326 | Mcclement et al. | Jun 2007 | A1 |
20070179941 | Huang et al. | Aug 2007 | A1 |
20070185746 | Chieu et al. | Aug 2007 | A1 |
20070250764 | Jiang et al. | Oct 2007 | A1 |
20070265995 | Remington et al. | Nov 2007 | A1 |
20070294614 | Jacquin et al. | Dec 2007 | A1 |
20080040346 | Aggarwal et al. | Feb 2008 | A1 |
20080058969 | Nixon et al. | Mar 2008 | A1 |
20080178083 | Bergman et al. | Jul 2008 | A1 |
20080183710 | Serjeantson et al. | Jul 2008 | A1 |
20080184140 | Koerner | Jul 2008 | A1 |
20080189438 | Zimmerer et al. | Aug 2008 | A1 |
20080195930 | Tolle | Aug 2008 | A1 |
20080209314 | Sylthe et al. | Aug 2008 | A1 |
20080215559 | Fontoura et al. | Sep 2008 | A1 |
20080238925 | Meehan et al. | Oct 2008 | A1 |
20080271127 | Naibo et al. | Oct 2008 | A1 |
20080288889 | Hunt et al. | Nov 2008 | A1 |
20080294996 | Hunt et al. | Nov 2008 | A1 |
20080306981 | Jiang et al. | Dec 2008 | A1 |
20080307334 | Chaudhri et al. | Dec 2008 | A1 |
20080319829 | Hunt et al. | Dec 2008 | A1 |
20090037363 | Kozlov et al. | Feb 2009 | A1 |
20090049422 | Hage et al. | Feb 2009 | A1 |
20090094674 | Schwartz et al. | Apr 2009 | A1 |
20090100360 | Janzen et al. | Apr 2009 | A1 |
20090100407 | Bouillet et al. | Apr 2009 | A1 |
20090125553 | Dickinson | May 2009 | A1 |
20090138415 | Lancaster | May 2009 | A1 |
20090172024 | Hsu et al. | Jul 2009 | A1 |
20090172773 | Moore | Jul 2009 | A1 |
20090216758 | Tuttle et al. | Aug 2009 | A1 |
20090225082 | Hargrove et al. | Sep 2009 | A1 |
20090254971 | Herz et al. | Oct 2009 | A1 |
20090287814 | Robertson et al. | Nov 2009 | A1 |
20090300544 | Psenka et al. | Dec 2009 | A1 |
20090312992 | Chen et al. | Dec 2009 | A1 |
20090322739 | Rubin et al. | Dec 2009 | A1 |
20090327878 | Grandison et al. | Dec 2009 | A1 |
20100070448 | Omoigui | Mar 2010 | A1 |
20100088258 | Oaten et al. | Apr 2010 | A1 |
20100100561 | Cooper et al. | Apr 2010 | A1 |
20100106853 | Kashiyama et al. | Apr 2010 | A1 |
20100131255 | Beckman et al. | May 2010 | A1 |
20100131293 | Linthicum et al. | May 2010 | A1 |
20100138231 | Linthicum et al. | Jun 2010 | A1 |
20100145902 | Boyan et al. | Jun 2010 | A1 |
20100179951 | Mcphail | Jul 2010 | A1 |
20100198697 | Brown et al. | Aug 2010 | A1 |
20100205178 | Bush et al. | Aug 2010 | A1 |
20100241620 | Manister et al. | Sep 2010 | A1 |
20100287459 | Mital et al. | Nov 2010 | A1 |
20110029636 | Smyth et al. | Feb 2011 | A1 |
20110072000 | Haas et al. | Mar 2011 | A1 |
20110072001 | Basu et al. | Mar 2011 | A1 |
20110072046 | Chi | Mar 2011 | A1 |
20110093430 | B'Far et al. | Apr 2011 | A1 |
20110131253 | Peukert et al. | Jun 2011 | A1 |
20110179020 | Ozzie et al. | Jul 2011 | A1 |
20110231385 | Wang et al. | Sep 2011 | A1 |
20110295795 | Venkatasubramanian et al. | Dec 2011 | A1 |
20110295853 | Li et al. | Dec 2011 | A1 |
20120158643 | Mital et al. | Jun 2012 | A1 |
20120158732 | Mital et al. | Jun 2012 | A1 |
20120158754 | Mital et al. | Jun 2012 | A1 |
20120159312 | Mital et al. | Jun 2012 | A1 |
20120159333 | Mital et al. | Jun 2012 | A1 |
20120159465 | Mital et al. | Jun 2012 | A1 |
Entry |
---|
“Windows Azure and Cloud Computing”, Retrieved at << http://oakleafblog.blogspot.com/2010/09/windows-azure-and-cloud-computing-posts—09.html >>,Sep. 9, 2010, pp. 1-68. |
Delaney, Andrew, “Direct Data Feed Services”, Retrieved at << http://www.a-teamgroup.com/?dl—id=7460&dl—cm=on&dl—la=0&dl—Is=0 >>, Jun. 2010, pp. 8. |
McNee et al., “Creating Auction Ads for Marketplaces”, Retrieved at << http://e-articles.info/e/a/title/Creating-Auction-Ads-for-Marketplaces/ >>, Apr. 2007, pp. 1-2. |
Biddick, Michael, “Six Questions to Ask Before Buying End-To-End APM”, Retrieved at << http://www.networkcomputing.com/end-to-end-apm/6-questions-to-ask-before-buying-end-to-end-apm.php >>,Jun. 21, 2010, pp. 1-9. |
“Document Processing System”—Published Date: Nov. 16, 2007; http://www.wolfram.com/products/mathematica/analysis/content/DocumentProcessingSystems.html. |
“How to Customize Ubuntu into your own custom distribution,” Retrieved at <<http://www.linuxquestions.org/questions/ubuntu-63/how-to-customize-ubuntu-into-your-own-custom-distribution-663412/>>, Aug. 17, 2008, 10 pages. |
“Introduction to the XML Pipeline Definition Language (XPL)”—Retrieved Date: Sep. 15, 2010; http://www.orbeon.com/orbeon/doc/reference-xpl-pipelines. |
“LeoStatistic—building histogram, curve fit, multivariate regression, data modeling software,” Retrieved at <<http://www.leokrut.com/leostatistic.html>> Retrieved Date Sep. 21, 2010, pp. 1-6. |
“Optimizing forms processing”—Retrieved Date: Sep. 15, 2010; http://www.movetonow.com/content/optimizing—forms—processing. |
“Publishing applications to market place,” Retrieved at <<https://help.creator.zoho.com/Publishing-applications-to-market-place.html>>, Retrieved Date Nov. 26, 2010, pp. 1-5. |
“Quella Business Intelligence Package,” Retrieved at <<http://www.shareit.com/product.html?cookies=1&productid=300100398&affiliateid=2000122751>>, 1 page. |
“Square your search results with Google Squared,” Retrieved at <<http://googleblog.blogspot.com/2009/06/square-your-search-results-with-google.html>>, Jun. 2009, pp. 1-4. |
“User Customization,” Retrieved at <<http://docstore.mik.ua/orelly/perl3/tk/ch16—01.htm>>, Retrieved Date Nov. 26, 2010, pp. 1-4. |
Ayachit et al., “Customizing ParaView,” Retrieved at <<http://www.itk.org/Wiki/images/7/77/Branding—paper.pdf>>, Oct. 2009, 3 pages. |
Banerjee, Atanu, “The 2007 Microsoft Office System and Other Platform Technologies for Building Composite Applications,” Retrieved at <<http://msdn.microsoft.com/en-us/library/bb220802.aspx>>, Dec. 2006, 14 pages. |
Collins, J., “Using Innovation in Technology to Create New Business Models,” Retrieved at <<http://www.theshiftonline.com/?p=666>>, Oct. 25, 2010, 3 pages. |
Frisch, A. et al. “Streaming XML transformations using term rewriting”—Published Date: 2007; http://pauillac.inria.fr/˜frisch/xstream/long.pdf. |
Gardarin, G. et al. “XML-based Components for Federating Multiple Heterogeneous Data Sources” Lecture Notes in Computer Science —Published Date: 1999; http://dntt.free.fr/publi/er1999.pdf. |
Janeiro, et al., “Improving the Development of Service-Based Applications Through Service Annotations,” Retrieved at <<http://www.rn.inf.tu-dresden.de/uploads/Publikationen/AnnotationPaperWWW-Internet2009.pdf>>, 2009, 8 pages. |
Jelinek, J. et al. “XML Visualization Using Tree Rewriting”—Published Date: 2004; http://mummy.intranet.gr/includes/docs/Conferences/—02—XMLvisualization-Jelinek-SCCG04.pdf. |
Johnson, et al., “Building ETL Processes for Business Intelligence Solutions,” Retrieved at <<http://www.ca.com/files/whitepapers/ca-erwin-building-etl-processes-sql-wp-us-en.pdf>>, Jul. 10, 2008, 6 pages. |
Mostarda et al., “MU: an hybrid language for Web Mashups,” Retrieved at <<http://em-up.googlecode.com/svn/wiki/papers/www2009.pdf>>, 2009, 10 pages. |
Nagel, Nick, “Enterprise Data Modeling Using XML Schema,” Retrieved at <<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.6120&rep=rep1&type=pdf>>, 2007, 30 pages. |
Page, S. “XSL Pipeline Processing”—Published Date: Jul. 2, 2007; http://www.usingxml.com/Transforms/XslPipelines. |
Ravindran, Karthik, “Integrating LOB Systems with the Microsoft Office System,” Retrieved at <<http://msdn.microsoft.com/en-us/library/bb896607.aspx>>, Nov. 2007, pp. 1-18. |
Spillner et al., “Flexible Human Service Interfaces,” Retrieved at <<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.7734&rep=rep1&type=pdf>>, 2007, 7 pages. |
White, Colin J., “IBM enterprise analytics for the intelligent e-business,” Retrieved at <<http://sysdoc.doors.ch/IBM/bi.pdf>>, Sep. 2001, 34 pages. |
“Non-final Office Action Issued in U.S. Appl. No. 12/971,638”, Mailed Date: Aug. 30, 2012, Filed Date: Dec. 17, 2010, 18 Pages. |
“Non-final Office Action Issued in U.S. Appl. No. 12/971,725”, Mailed Date: Aug. 21, 2012, Filed Date: Dec. 17, 2010, 10 Pages. |
“Final Office Action Issued in U.S. Appl. No. 12/971,725”, Mailed Date: May 1, 2013, Filed Date: Dec. 17, 2010, 14 Pages. |
“Non-final Office Action Issued in U.S. Appl. No. 12/971,782”, Mailed Date: Jul. 13, 2012, Filed Date: Dec. 17, 2010, 7 Pages. |
“Final Office Action Issued in U.S. Appl. No. 12/971,782”, Mailed Date: Jan. 31, 2013, Filed Date: Dec. 17, 2010, 10 Pages. |
“Final Office Action Issued in U.S. Appl. No. 12/971,462”, Mailed Date: Sep. 18, 2013, Filed Date: Dec. 17, 2010, 24 Pages. |
“Non-final Office Action Issued in U.S. Appl. No. 12/971,462”, Mailed Date: Mar. 21, 2013, Filed Date: Dec. 17, 2010, 21 Pages. |
“Non-Final Office Action Issued in U.S. Appl. No. 12/972,205”, Mailed Date: Nov. 26, 2012, Filed Date: Dec. 17, 2010, 32 Pages. |
“Final Office Action Issued in U.S. Appl. No. 12/972,205”, Mailed Date: Jun. 7, 2013, Filed Date: Dec. 17, 2010, 35 Pages. |
“Final Office Action Issued in U.S. Appl. No. 12/971,638”, Mailed Date: Feb. 25, 2014, Filed Date: Dec. 17, 2010, 11 Pages. |
“Non-final Office Action Issued in U.S. Appl. No. 12/971,725”, Mailed Date: Jun. 23, 2014, Filed Date: Dec. 17, 2010, 18 Pages. |
“Non-final Office Action Issued in U.S. Appl. No. 12/971,782”, Mailed Date: Apr. 10, 2014, Filed Date: Dec. 17, 2010, 10 Pages. |
“Non-Final Office Action Issued in U.S. Appl. No. 12/972,249”, Mailed Date: Jul. 31, 2014, Filed Date: Dec. 17, 2010, 30 Pages. |
Number | Date | Country | |
---|---|---|---|
20120158644 A1 | Jun 2012 | US |