The present invention concerns a data input device and a device including a data input device.
Many portable computer or electronic devices, such as laptop computers, mobile telephones, portable multimedia players, include a tactile data input device. The tactile data input device may include a touch input interface such as a touchpad, a trackball, jog wheel or click wheel, for scrolling or selecting items from a menu for example. A user provides input by touching and moving the touch input interface or by touching and sliding a finger or stylus across the touch input interface.
A problem with such a tactile data input device is that no tactile feedback as regards the movement, position or orientation of the touch input interface is provided to the user. A user is therefore “tactilly blind” in that he/she cannot feel the effect of his/her actions on the computer or electronic device using his/her sense of touch but must depend on a visual or auditory response from the computer or electronic device. There is for example no way for a user to sense the volume level that he/she has previously selected via the touch input interface of a tactile data input device just by touching the touch input interface, i.e. without looking at a display or listening to an audio feedback signal provided by the device.
An object of the invention is to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative. A further object of the present invention is to provide an improved data input device that provides a user with tactile feedback.
At least one of these objects is achieved by a data input device comprising a two or three-dimensional touch input interface having a touch sensing mechanism and a plurality of regions, i.e. areas or volumes of any size or shape, of material that is arranged to change its shape, size or rheology on application of a voltage. The data input device is arranged to at least temporarily activate a final region of material touched by a user by applying a voltage in that region to change the shape/size/rheology of material in that region on detection of a user's touch in that region by the touch sensing mechanism, and thereby provide a tactile indication of the final region touched by the user. Each region may comprise electrodes or be arranged so that a voltage can be applied thereto in order to change the shape, size and/or rheology of at least part of the material in that region, a single pair of electrodes may for example be arranged to activate a plurality of regions of material. The touch input interface may be stationary, i.e. non-displaceable and non-rotatable, with respect to the data input device and/or a device that contains the data input device.
Such a data input device may provide a user with a simple, intuitive, tactile indication of a previous movement/position of a user's finger/stylus over a touch input interface and, since it may be arranged to have no moving/rotating mechanical parts, it can eliminate the potential failures that can occur in data input devices comprising moving/rotating mechanical tactile indicators, such as a conventional mechanical slider or rotatable wheel. A user may, for example, be able use his fingertip or a stylus to feel the volume level that has been selected via a linear touch input interface (i.e. whether the volume is high or low) simply by tactilly determining how far along the touch input interface the tactile indication has been provided and without needing to look at a graphic icon on a display or to listen to an audio feedback signal.
The expression “touch input interface” is intended to mean an interface via which a user provides input, such as commands and/or information, by touching and moving the touch input interface or by touching and sliding a finger, a stylus or some other object over the touch input interface. It is not intended to include an interface, such as a push-button or touch screen area, via which a user provides input by merely touching or pressing said interface. The touch input interface may be used to control one or more functions of one or more devices, to navigate/scroll within an application or between different applications of a device or to control a cursor on a display of a device and thereby select different functions, commands or applications.
It should be noted that a “plurality of regions of material” does not necessarily mean that each region of material is separate and distinct from other regions. A data input device consistent with aspects described herein could namely comprise a single area/volume of material that is in effect divided into a plurality of regions by arranging electrodes within said area/volume of material to locally activate one or more parts of the area/volume of material.
It should be understood that a data input device according to the present invention need not necessarily be arranged to activate a single region of material but it may be arranged to activate a plurality of adjacent regions of material to facilitate the tactile indication of the final region(s) of material touched by the user.
According to an embodiment, the material may be an electroactive polymer (EAP) (also known as “electronic muscle” or “artificial muscle”) whose size/shape is reversibly modified when a voltage is applied to it. Alternatively, the material may be a smart fluid whose properties can be changed by applying an electric or magnetic field, such as an electro-rheological fluid whose viscosity and volume can be reversibly changed by in response to the application of an electric field. The material may alternatively be a piezoelectric material whose dimensions change (reversibly) when an electric field is applied thereto (the so-called converse piezoelectric effect). A data input device may comprise a plurality of different materials that are arranged to change their shape, size or rheology on application of an applied voltage in different regions thereof.
According to an embodiment, the data input device may be arranged to at least temporarily activate all regions of material touched by a user as the user is touching them by applying a voltage to the regions touched by a user to change the shape/size of material in each of those regions on detection of a user's touch in those regions by the touch sensing mechanism. A user will therefore feel as though he/she is moving a virtual mechanical slider under his fingertip/stylus since the sequentially activated regions will follow (target track) the movement of his/her fingertip/stylus.
According to another embodiment, the data input device may be arranged to cause an activated region of material to become de-activated, such as by removing the voltage applied to that region, so that the material in that region returns to its original shape/size or a deactivated shape/size if/when a user subsequently touches an region of material adjacent to the activated region of material.
According to a further embodiment, the data input device may be arranged to apply sequentially increasing/decreasing voltages to regions that have been sequentially activated.
According to an embodiment, the data input device may be arranged to cause the final region touched by a user to provide further tactile feedback, such as to cause it to pulsate, vibrate, heat up, cool down or move.
According to another embodiment, the data input device may arranged to de-activate all activated regions of material when the touch input interface/the data input device is out of operation, i.e. when the input interface/the data input device has been switched off or has not been used for a predetermined amount of time. In this way battery and processing power may be saved while the input interface/the data input device is not in operation. According to a further embodiment, the data input device may include a storage unit that is arranged to store information concerning the final region of material touched by a user or user preferences. A data input device may be arranged to re-activate a de-activate a final region of material touched by a user using information in the storage unit when the touch input interface/the data input device is brought back into operation or on request from a user.
According to another embodiment, the touch input interface may be a planar surface, is in the form of a disc or constitutes at least part of a three dimensional shape, operative to input data to a processor for example based on a location of user contact on the touch surface.
According to a further embodiment, the plurality of regions of material may be arranged to cover the entire area/volume of the touch input interface so as to provide a smoother and more continuous feel as a user slides a finger/stylus over the touch input interface.
Further, a device may be a portable device, such as a mobile telephone, media player, Personal Communications System (PCS) terminal, Personal Data Assistant (PDA), laptop computer, games console, mixing console, palmtop receiver, camera or television.
According to yet another embodiment, the touch input interface of the device may be recessed in a surface so as to protect any activated region(s) from being damaged if the device is dropped for example or from any non-activated regions from being accidentally activated.
The present invention will hereinafter be further explained by means of non-limiting examples with reference to the appended schematic figures where;
It should be noted that the drawings have not been drawn to scale and that the dimensions of certain features have been exaggerated for the sake of clarity.
Each cavity 20 contains a region 22a, 22b, 22c, 22d and 22e of material that is arranged to change its shape, size or rheology on application of an applied voltage. The material may be an electroactive polymer (EAP), such as an ionic electroactive polymer or an ionomeric polymer-metal composite or a carbon nanotube. Each cavity 20 may be completely or only partly filled with EAP, whereby, in the latter case, the EAP may be surrounded by electrolyte 24 in the form of a gel for example in order to protect the EAP.
Each cavity 20 is provided with two electrodes 26 and when a voltage is applied between the electrodes 26, the EAP 22a, 22b, 22c, 22d, 22e reacts and changes its size. Since the shielding layer 16 is more flexible than the bottom and side walls of the cavities 20 the EAP will expand or contract and thus raise or lower the flexible shielding layer 16 in the activated EAP region.
The device 10 comprises a touch sensing mechanism 28 located below the solid substrate 18 in the illustrated embodiment, which may comprise a resistive, capacitive or piezoelectric touch panel. A display 12 may be provided under the touch sensing mechanism 28. According to an alternative embodiment of the invention the touch sensing mechanism 28 may comprise piezoelectric material that is arranged to generate an applied voltage that may be used to change the size/shape/rheology of the EAP 22a, 22b, 22c, 22d, 22e when a user touches the touch input interface 14.
If a user slides his/her finger along the shielding layer 16 from region 22a to region 22d, in order to increase the volume of music being played by a device 10, the pressure exerted on the touch input interface 14 will force the EAP regions 22a-22d and surrounding electrolyte to be forced downwards onto an area of the underlying touch sensing mechanism 28. The data input/selection made by the user will be communicated to an appropriate part of the device 10, such as to a control unit thereof and the volume of music being played will be changed to the level selected by the user. The device 10 will at least temporarily activate the final region 22d of EAP touched by the user by applying a voltage to the electrodes in that region 22d to change the size of material in that region 22d and thereby provide a tactile indication of the final region 22d touched by the user.
According to an embodiment of the invention the device 10 is arranged to at least temporarily activate all regions of material touched by a user 22a-22d by applying a voltage to the electrodes 26 in all of these regions 22a-22d sequentially on detection of a user's touch in these regions 22a-22d by the touch sensing mechanism 28. Activated regions 22a-22c of material may then become de-activated by removing the voltage applied to the electrodes 26 in those regions 22s-22c, so that the material in those regions 22a-22c returns to its original shape/size or a deactivated shape/size if/when a user subsequently touches an region of material adjacent to the activated region of material. For example, as a user slides his finger from region 22a to 22b, region 22a will become de-activated when region 22b is activated in order to give the user the impression that he/she is moving a conventional mechanical slider, said slider being constituted by sequentially activated regions of material.
The touch input interface 14 shows an activated region 32 of material as the user would see it. It should be noted that even though the activated region 32 is visible to a user (and may be made more visible so by illuminating it for example) the aim of the invention is to provide a tactically detectable region (32) that may be detected by a user's sense of touch alone. It should be noted that the final region of material touched by a user may be activated by lowering at least the region(s) surrounding the final region instead of, or as well as activating the final region of material touched by user by raising it.
If a user puts his/her finger or thumb onto the touch input interface 14 to feel for the activated region, the data input device may be arranged not to activate any region of material before the user has touched the activated region 32, i.e. the user initiates data input and consequently the activation of other regions of material by touching the activated region 32 first (as would be the case if the activated region 32 was a conventional mechanical slider) and then sliding his/her finger or thumb so that it touches a region of material that is adjacent to the activated region 32. However the touch input device 30 may alternatively or additionally arranged to allow a user to initiate data input and consequently the activation of other regions without having to touch the activated region 32 first.
A data input device according to the present invention may be arranged to have a “start friction” meaning that a user may move his finger over an activated/de-activated region just to detect its location while applying a low force/pressure in the z-direction (i.e. the direction perpendicular to the plane of an activated/de-activated region in which direction the region is pressed to activate/de-activate it). The user may then press the activated/de-activated region harder to activate/de-activate it. A sensor, such as a resistive touch array, may for example be used to detect how hard a user is pressing an activated/de-activated region whereby the start friction may be overcome if the user presses a region with a force in the z-direction that exceeds a predetermined threshold. This more closely simulates the feeling of pushing a conventional mechanical slider.
The data input device 30 may be arranged to automatically de-activate the activated region 32 of material if/when the touch input interface 14 and/or the data input device 30 and/or the device 10 operated thereby is out of operation or has not been used for a predetermined time in order to save processing and battery power. The data input device 30 may comprise a storage unit 34 that is arranged to store information concerning the final region of material touched by a user, namely activated region 32. The data input device 30 may thus be arranged to re-activate a de-activated final region of material touched by a user using information stored in the storage unit 34 when the touch input interface 14 and/or the data input device 30 is brought back into operation or on receiving a request from a user. The storage unit 34 may also be used to store a user's preferences.
Such a touch input interface 14 is comparable to a conventional mechanical control slider 36 as regards how it feels to a user although the touch input interface 14 of a data input device according to the present invention may be arranged to have no mechanically moving parts.
A device 10 according to the present invention may of course comprise a plurality of touch input interfaces 14 whereby a user can determine the movement/position/orientation of a plurality of touch input interfaces 14 using his/her sense of touch alone.
Further modifications of the invention within the scope of the claims would be apparent to a skilled person. For example, even though the claims are directed to a data input device having a plurality of regions of material that is arranged to change its shape, size or rheology on application of an applied voltage, the data input device according to the present invention could alternatively comprise a plurality of regions of material that is arranged to change its shape, size or rheology on application of magnetic field in which case each region need not necessarily comprise electrodes.
Furthermore, the data input device according to the present invention may also be used for outputting forces to a user thereof as well as, or instead of being used for inputting data.