This nonprovisional application claims priority under 35 U.S.C. ยง119(a) on Patent Application No. 10-2004-0078089 filed in Repulic of Korea on Sep. 30, 2004, the entire contents of which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates to a data integrated circuit (IC) and an apparatus for driving a plasma display panel (PDP) using the same, and more particularly to a data IC capable of improving display quality and an apparatus for driving a PDP using the same.
2. Description of the Background Art
A plasma display panel (PDP) emits light from a fluorescent body by ultraviolet (UV) rays of 147 nm generated when an inactive mixed gas such as He+Xe, Ne+Xe, and He+Xe+Ne is discharged to display images including characters and graphics. Such a PDP is easily made thin and large and provides significantly improved picture quality due to recent development of technology. In particular, wall charges are accumulated on the surface of a three-electrode AC surface discharge type PDP during discharge and electrodes are protected against sputtering generated by discharge such that the three-electrode AC surface discharge type PDP is driven by a low voltage and has a long life.
Referring to
The transparent electrodes 12Y and 12Z are commonly formed of indium-tin-oxide (ITO) on the top substrate 10. The metal bus electrodes 13Y and 13Z are commonly formed of metal such as Cr on the transparent electrodes 12Y and 12Z to reduce reduction in a voltage caused by the transparent electrodes 12Y and 12Z having high resistance. A top dielectric layer 14 and a protective layer 16 are laminated on the top substrate 10 on which the scan electrode Y and the sustain electrode Z are formed in parallel. Wall charges generated during plasma discharge are accumulated on the top dielectric layer 14. The protective layer 16 prevents the top dielectric layer 14 from being damaged by sputtering generated during plasma discharge and improves efficiency of emitting secondary electrons. MgO is commonly used as the protective layer 16.
A bottom dielectric layer 22 and a partition wall 24 are formed on the bottom substrate 18 on which the address electrode X is formed. The surfaces of the bottom dielectric layer 22 and the partition wall 24 are coated with a fluorescent body layer 26. The address electrode X is formed to intersect the scan electrode Y and the sustain electrode Z. The partition wall 24 is formed to run parallel with the address electrode X to prevent the UV rays and the visible rays generated by discharge from leaking to an adjacent discharge cell. The fluorescent body layer 26 is excited by the UV rays generated during plasma discharge to generate any one visible ray among red, green, and blue visible rays. An inactive mixed gas is implanted into a discharge space provided between the top and bottom substrates 10 and 18 and the partition wall 24.
In order to realize gray scales of an image, a PDP divides a frame into various sub fields having a different number of light emissions to perform time division driving. Each sub field is divided into an initializing period for initializing the entire screen, an address period for selecting a scan line and for selecting a cell from the selected scan line, and a sustain period for realizing gray scales in accordance with the number of times the discharge is made.
Here, the initializing period is divided into a set up period to which a rising ramp waveform is supplied and a set down period to which a falling ramp waveform is supplied. For example, when an image is displayed by 256 gray scales, as illustrated in
Referring to
The scan driving part 34 supplies a reset pulse, a scan pulse, and a sustain pulse to the scan electrodes Y1 to Yn. Here, the reset pulse and the sustain pulse are commonly supplied to all of the scan electrodes Y1 to Yn and the scan pulse is sequentially supplied to the scan electrodes Y1 to Yn.
The address driving part 32 generates data pulses (driving voltage) corresponding to image data provided from the outside and supplies them to the address electrodes X1 to Xk. Here, the data pulses are supplied to be synchronized with the scan pulse sequentially supplied to the scan electrodes Y1 to Yn.
The sustain driving part 36 supplies an electrode negative voltage (an electrode negative bias voltage) and the sustain pulse (the driving voltage) to the sustain electrodes Z1 to Zn. Here, the electrode negative voltage and the sustain pulse are commonly supplied to all of the sustain electrodes Z1 to Zn.
Referring to
According to the background art PDP, in order to cause sustain discharge, the sustain pulse having a high voltage value is alternately supplied to the scan electrodes Y and the sustain electrodes Z during the sustain period. Here, the sustain pulse having the high voltage value passes through the discharge cells that are equivalent to capacitors and is supplied to the output parts 42 of the data IC 40.
However, in the background art PDP, the brightness displayed by the address electrodes X connected to the output parts 42 positioned in the center of the data IC 40 is different from the brightness displayed by the address electrodes X connected to the output parts 42 positioned at the end portions of the data IC 40, such that spot-like noise is generated due to the difference in the brightness, which deteriorates display quality. Such a phenomenon occurs because the amount of the ground voltage GND supplied to the output parts 42 positioned at the center part of the data IC 40 is insufficient due to the fact that there are only two end terminals 44 and 46 that receive the ground voltage GND. As a result, the output parts 42 positioned at the center part of the data IC 40 are significantly affected by the high sustain voltage. In particular, the more the capacitor components of the discharge cells are and the larger the number of output parts 42 included in the data IC 40 is, the more significant the difference in the brightness becomes. For instance, to provide a PDP having a high resolution, a large number of output parts 42 may be provided in the data IC 40. In that case, however, the above problem of inconsistent brightness on the panel occurs due to the configuration of the data IC, thereby deteriorating the picture quality of the panel. This problem is also prominent in PDPs that use a single scan method.
Accordingly, an object of the present invention is to solve at least the above and other problems and disadvantages of the background art.
It is another object of the present invention to provide a data integrated circuit (IC) capable of improving display quality and an apparatus for driving a plasma display panel (PDP) using the same.
According to the data IC of the present invention and the apparatus for driving a PDP using the same, it is possible to display images with uniform brightness by supplying a ground voltage directly to the center part of the data IC.
According to an aspect of the present invention, there is provided an integrated circuit (IC) device for controlling a plurality of electrodes in a plasma display device, the IC device comprising: a plurality of output parts coupled to the plurality of electrodes; first and second terminals coupled to end portions of the IC device; and at least one third terminal between the first and second terminals and to supply a predetermined voltage to the IC device.
According to anther aspect of the present invention, there is provided a plasma display apparatus having discharge cells at intersections of scan electrodes and address electrodes, the plasma display apparatus comprising: a driving part including one or more integrated circuit (IC) devices to control the address electrodes, the IC device including a plurality of output parts coupled to at least some of the plurality of address electrodes, first and second terminals coupled to end portions of the IC device, and at least one third terminal between the first and second terminals and to supply a predetermined voltage to the IC device.
These and other objects of the present application will become more readily apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will be described in detail with reference to the following drawings in which like numerals refer to like elements.
Preferred embodiments of the present invention will be described in a more detailed manner with reference to the drawings.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to
Referring to
The scan driving part 134 supplies a reset pulse, a scan pulse, and a sustain pulse to the scan electrodes Y1 to Yn. Here, the reset pulse and the sustain pulse are commonly supplied to all of the scan electrodes Y1 to Yn and the scan pulse is sequentially supplied to the scan electrodes Y1 to Yn. The reset pulse, the scan pulse, and the sustain pulse as the driving voltage of the scan electrodes are supplied to the scan driving part 134.
The address driving part 132 generates data pulses (driving voltage) corresponding to image data provided from the outside and supplies them to the address electrodes X1 to Xm. Here, the data pulses are supplied to be synchronized with the scan pulse sequentially supplied to the scan electrodes Y1 to Yn. The data pulses as the driving voltage of the address electrodes are supplied to the address driving part 132.
The sustain driving part 136 supplies an electrode negative voltage (an electrode negative bias voltage) and the sustain pulse (the driving voltage) to the sustain electrodes Z1 to Zn. Here, the electrode negative voltage and the sustain pulse are commonly supplied to all of the sustain electrodes Z1 to Zn. The electrode negative voltage and the sustain voltage as the driving voltage of the sustain voltage are supplied to the sustain driving part 136.
Referring to
Further, the data IC 50 includes a first input terminal 54, a second input terminal 56, and a third input terminal 58. The first input terminal 54, the second input terminal 56, and the third input terminal 58 may be terminals on a chip in which the integrated circuit is formed and may be outside connection terminals provided in a package that stores the chip to be connected to the corresponding terminals on the chip.
The first input terminal 54 is provided at one end of the data IC 50 to receive a ground voltage GND and supplies the received ground voltage GND to the output parts 52. The second input terminal 56 is provided at another end of the data IC 50 to receive a ground voltage GND and supplies the received ground voltage GND to the output parts 52. The third input terminal 58 is provided at the center or the center part of the data IC 50 to receive a predetermined voltage Vp and supplies the received predetermined voltage Vp to the output parts 52. Here, the predetermined voltage Vp is set as the ground voltage GND.
In another example, a plurality of third input terminals 58 may be provided at certain intervals on the outer surface of the data IC 50 between the first and second terminals 54 and 56. This configuration may be beneficial especially when a large number of output parts 52 are provided in the data IC 50.
Referring to
When the predetermined voltage Vp is supplied to the common terminal of the first logic part 60 and the second logic part 62 (that is, the third input terminal 58 and the common terminal are electrically connected to each other), a sufficient amount of ground voltage (GND) is supplied to the output parts 52 positioned at or near the center part of the data IC 50.
As described above, when a sufficient amount of ground voltage GND is supplied to the output parts 52 of the data IC 50, the sustain voltage supplied via the discharge cells is supplied to the ground voltage GND. Therefore, it is possible to prevent the output parts 52 positioned at or near the center part of the data IC 50 from being affected by the sustain voltage.
As noted by an experiment, the data IC 50 according to the present invention can display images with uniform brightness without deteriorating display quality even when the sustain pulse is set as a high voltage of no less than 100V. Also, according to the experiment, the data IC 50 according to the present invention can display images with uniform brightness without deteriorating display quality even when the number of output parts 52 is larger than 96 (that is, even when the data IC 50 includes a large number of channels).
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2004-0078089 | Sep 2004 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
20020033810 | Matsuyama | Mar 2002 | A1 |
20040164931 | Han et al. | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
1339771 | Mar 2002 | CN |
3-225949 | Oct 1991 | JP |
5-46115 | Feb 1993 | JP |
5-303601 | Nov 1993 | JP |
6-297765 | Oct 1994 | JP |
2000-103111 | Apr 2000 | JP |
2002-014625 | Jan 2002 | JP |
2002-328390 | Nov 2002 | JP |
10-2001-0082964 | Aug 2001 | KR |
460722 | Oct 2001 | TW |
525134 | Mar 2003 | TW |
Number | Date | Country | |
---|---|---|---|
20060066514 A1 | Mar 2006 | US |