Data Storage Devices (DSDs) are often used to record data onto or to reproduce data from a storage media. One type of storage media includes a rotating magnetic disk where a magnetic head of the DSD can read and write data in tracks on a surface of the disk.
Data stored on the disk may become susceptible to corruption or data loss due to a variety of conditions. For example, data stored on a particular area of the disk surface may become unreadable if the DSD is dropped and components of the DSD contact the disk surface. In another example, contaminants or surface defects may also cause loss or corruption of data written on the disk.
The features and advantages of the embodiments of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the disclosure and not to limit the scope of what is claimed.
In the following detailed description, numerous specific details are set forth to provide a full understanding of the present disclosure. It will be apparent, however, to one of ordinary skill in the art that the various embodiments disclosed may be practiced without some of these specific details. In other instances, well-known structures and techniques have not been shown in detail to avoid unnecessarily obscuring the various embodiments.
In the example embodiment of
DSD 106 includes controller 120 which includes circuitry such as one or more processors for executing instructions and can include a microcontroller, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), hard-wired logic, analog circuitry and/or a combination thereof. In one implementation, controller 120 can include a System on a Chip (SoC).
Host interface 126 is configured to interface DSD 106 with host 101 and may interface according to a standard such as, for example, PCI express (PCIe), Serial Advanced Technology Attachment (SATA), or Serial Attached SCSI (SAS). As will be appreciated by those of ordinary skill in the art, host interface 126 can be included as part of controller 120.
Sensor 142 detects an environmental condition of DSD 106, such as a temperature, acceleration, or vibration of DSD 106, and provides an input to controller 120 based on the detected condition. In some embodiments, controller 120 may modify operation of DSD 106 based on the input received from sensor 142. As discussed in more detail below, controller 120 may also set a last resort zone of NVM media as available for storing data if it is determined that an environmental condition has reached a threshold.
In the example of
As appreciated by those of ordinary skill in the art, disk 150 may form part of a disk pack with additional disks radially aligned below disk 150. In addition, head 136 may form part of a head stack assembly including additional heads with each head arranged to read data from and write data to a corresponding surface of a disk in a disk pack.
Disk 150 includes a number of radial spaced, concentric tracks (not shown) for storing data on a surface of disk 150. The tracks on disk 150 are grouped together into zones of tracks (e.g., zones 152 and last resort zone 154) with each track divided into a number of sectors that are spaced circumferentially along the tracks.
In some implementations, the tracks on disk 150 are written by a write element of head 136 using Shingled Magnetic Recording (SMR) so as to overlap adjacent tracks. SMR provides a way of increasing the amount of data that can be stored in a given area on disk 150 by overlapping tracks like roof shingles. The non-overlapping portion then serves as a narrow track that can be read by a read element of head 136.
Although a higher number of tracks per inch is ordinarily possible with SMR, the overlap in tracks can generally prevent new writes to a previously overlapped track since such new writes would affect data written in the overlapping track. For this reason, tracks are usually sequentially written in SMR implementations to avoid affecting previously written data.
In the embodiment of
In
In other embodiments, last resort zone 154 can be located in different portions of disk 150 or in a portion of solid state memory 128. In one embodiment, last resort zone 154 is located in an Inside Diameter (ID) portion of disk 150. The ID portion of disk 150 may be associated with a higher risk of data loss due to an increased amount of contaminants near the ID portion or from other disk surface irregularities caused by clamping disk 150 to a spindle (not shown). In other embodiments, last resort zone 154 can be assigned during operation or factory testing as a zone with more than a predetermined number of defects or errors.
In addition to disk 150, the NVM media of DSD 106 also includes solid state memory 128 for storing data. While the description herein refers to solid state memory generally, it is understood that solid state memory may comprise one or more of various types of memory devices such as flash integrated circuits, Chalcogenide RAM (C-RAM), Phase Change Memory (PC-RAM or PRAM), Programmable Metallization Cell RAM (PMC-RAM or PMCm), Ovonic Unified Memory (OUM), Resistance RAM (RRAM), NAND memory (e.g., Single-Level Cell (SLC) memory, Multi-Level Cell (MLC) memory, or any combination thereof), NOR memory, EEPROM, Ferroelectric Memory (FeRAM), Magnetoresistive RAM (MRAM), other discrete NVM chips, or any combination thereof. Where DSD 106 stores data in solid state memory 128, last resort zone 154 could be a location such as a page, block, die, etc. in solid state memory 128 that may have certain detected or known weaknesses/conditions similar to those described above, and the embodiments described herein can equally apply to such cases as well.
Volatile memory 140 can include, for example, a Dynamic Random Access Memory (DRAM) which can be used by DSD 106 to temporarily store data. Data stored in volatile memory 140 can include data read from NVM media (e.g., disk 150 or solid state memory 128), data to be written to NVM media, instructions loaded from firmware of DSD 106 for execution by controller 120, or data used in executing firmware of DSD 106.
As shown in the embodiment of
In operation, host interface 126 receives read and write commands from host 101 via host interface 126 for reading data from and writing data to the NVM media of DSD 106. In response to a write command from host 101, controller 120 may buffer the data to be written for the write command in volatile memory 140.
For data to be written to disk 150, controller 120 can encode the buffered data into write signal 32 which is provided to head 136 for magnetically writing data to the surface of disk 150.
In response to a read command for data stored on disk 150, controller 120 positions head 136 via VCM control signal 30 to magnetically read the data stored on the surface of disk 150. Head 136 sends the read data as read signal 32 to controller 120 for decoding, and the data is buffered in volatile memory 140 for transferring to host 101.
For data to be stored in solid state memory 128, controller 120 receives data from host interface 126 and may buffer the data in volatile memory 140. In one implementation, the data is then encoded into charge values for charging cells (not shown) of solid state memory 128 to store the data.
In response to a read command for data stored in solid state memory 128, controller 120 in one implementation reads current values for cells in solid state memory 128 and decodes the current values into data that can be transferred to host 101. Such data may be buffered by controller 120 before transferring the data to host 101 via host interface 126.
In some implementations, translation table 22 is used as part of an indirection process for SMR zones on disk 150. When data is updated for a particular LBA, the update is often written in a different location on disk 150 than where the data for the LBA was previously written to avoid having to rewrite an entire SMR zone of overlapping tracks. A translation table, such as translation table 22, can be used to keep track of where the current versions of the data are stored for a particular LBA.
As shown in
The PBAs in translation table 22 indicate locations in the NVM media of DSD 106 such as locations on disk 150 or in solid state memory 128. Entries 24 of translation table 22 include PBAs for last resort zone 154 and entries 26 of translation table 22 include PBAs for portions of the NVM media that are outside of last resort zone 154. In the example of
As noted above, the physical location of last resort zone 154 is not limited to an OD portion of disk 150 in other embodiments. Similarly, the range of PBAs identifying last resort zone 154 is not limited to a particular range of PBAs. For example, the range of PBAs for last resort zone 154 in other embodiments may occur at the end of a total PBA range for the NVM media or between the end and beginning of the total PBA range for the NVM media.
In the example of
Although entries 26 have been allocated LBAs 0 to m, the LBAs for entries 26 do not need to be sequentially ordered with respect to their respective PBAs. Moreover, the use of LBA indirection for disk 150 or solid state memory 128 can result in a non-sequential ordering of LBAs with respect to the corresponding PBAs.
Once a storage capacity associated with entries 26 has reached a threshold, controller 120 can set last resort zone 154 as available for storing data by allocating LBAs to entries 24 for last resort zone 154. This can ordinarily allow for DSD 106 to reduce the likelihood of data loss or corruption by waiting until all or most of the NVM media outside of last resort zone 154 has been used before storing data in the more vulnerable last resort zone 154.
In other embodiments, controller 120 can set last resort zone 154 as available for storing data based on whether an environmental condition for the NVM media has reached a threshold. For example, sensor 142 may detect a high operating temperature for solid state memory 128 or disk 150 that may make it more likely to encounter an error in storing or retrieving data from the NVM media. Sensor 142 can provide an input to controller 120 indicating a high temperature condition, and controller 120 may then set last resort zone 154 as available for storing data by allocating LBAs to entries 24 for last resort zone 154. This can ordinarily allow for DSD 106 to save less vulnerable portions of the NVM media for storing data when there is less likely to be an error due to the environmental condition. Controller 120 may also follow particular write settings to safeguard against data loss when storing data in last resort zone 154 or may store a duplicate copy of the data to protect against data loss or corruption due to the environmental condition.
In another example, sensor 142 may detect an environmental condition of a high vibration condition that may make it more likely to encounter an error in storing or retrieving data from the NVM media. Sensor 142 can provide an input to controller 120 indicating the high vibration condition, and controller 120 may then set last resort zone 154 as available for storing data by allocating LBAs to entries 24 for last resort zone 154. Different write settings can then be used when writing data in last resort zone 154 to reduce the likelihood of an error during the environmental condition.
In yet other embodiments, controller 120 can set last resort zone 154 as available for storing data when both a current data storage capacity and an environmental condition have reached a threshold. In other words, controller 120 may only set last resort zone 154 as available after a certain amount of data has been stored outside of last resort zone 154 and sensor 142 detects a particular environmental condition.
As noted above, DSD 106 may also change the way in which it writes data in last resort zone 154 when compared to areas outside of last resort zone 154. For example, controller 120 may perform a write verification process (e.g., a conditioned write verify process) for data written in last resort zone 154 where data is read after it has been written to verify the written data.
In another example, controller 120 may reduce the number of write retries when attempting to write data in a sector of last resort zone 154. In more detail, controller 120 may control head 136 to attempt to write data in a particular sector for a predetermined number of write retries before relocating the data to a different sector such as a spare sector. Controller 120 may reduce the number of write retries such as from ten write retries to only three when writing data in last resort zone 154. This can be done to improve the time for completing write commands in last resort zone 154 since it may be more likely that additional write retries will be unsuccessful if last resort zone 154 has been identified as having a large amount of defects.
In addition, controller 120 may adjust write settings for writing data in last resort zone 154 by changing a track density for writing data in last resort zone 154. In one example, the track density or a number of Tracks Per Inch (TPI) can be decreased so as to reduce the chances of encountering errors when reading or writing data in last resort zone 154. Since more errors can be expected when tracks are in closer proximity to each other, lowering the track density for last resort zone 154 can generally lessen the likelihood of errors in last resort zone 154, which is already more susceptible to errors.
Controller 120 may also limit the types of data written in last resort zone 154. In this regard, the data written in last resort zone 154 may be required to have a duplicate copy stored outside of last resort zone 154 to prevent loss of the data. In one example, last resort zone 154 may be used as a scratch area for performing garbage collection of zones 152 so that a copy of data stored in a particular zone 152 is stored in last resort zone 154 while the zone 152 is garbage collected.
Less stringent write settings may be used based on whether there is a duplicate copy of the data stored outside of last resort zone 154. For example, as long as a copy of the data exists elsewhere in the NVM media, controller 120 may relax the write settings for writing the data in last resort zone 154 by, for example, not performing a write verification of the copy stored in last resort zone 154.
In another implementation, the data written in last resort zone 154 may be data that is accessed with a reading frequency and/or a writing frequency outside of a threshold frequency or data with a lower priority, since this data may be at a higher risk of loss or corruption by being stored in last resort zone 154. In one such example, controller 120 may store cold data in last resort zone 154 that is not frequently accessed for reading or writing.
In block 308, controller 120 determines whether a current data storage capacity and/or an environmental condition has reached a threshold. The threshold for the current data storage capacity can be, for example, a total capacity for the portions of NVM media outside of last resort zone 154 or within a certain percentage of such a total capacity. In some implementations, this can include determining a remaining amount of data capacity available for the portion of the NVM media corresponding to entries 26 or to entries 24 and 26 in translation table 22. In other implementations, the current data storage capacity can include an amount of data stored in the NVM media for the portion of the NVM media corresponding to entries 26 or to entries 24 and 26.
The threshold for an environmental condition can be, for example, a particular temperature or an amount of vibration detected by sensor 142. In other examples, reaching the threshold may require both a certain data storage capacity and a particular environmental condition such as only 95% of the NVM media being available to store data and a temperature of DSD 106 being above a certain operating temperature.
If it is determined in block 308 that the threshold has not been reached, the process will return to block 308 to again determine whether the threshold has been reached. The determination of block 308 may be performed at a fixed interval of time, after certain events of DSD 106, or during idle periods of DSD 106. In some implementations, controller 120 may keep a running total of the current data storage capacity such that the current data storage capacity is updated each time data is stored in the NVM media.
If it is determined that the threshold has been reached in block 308, controller 120 in block 310 sets last resort zone 154 as available for storing data. As discussed above, this can be accomplished by allocating LBAs to last resort zone 154. In block 314, data is written in last resort zone 154 until last resort zone 154 is made available for reuse in block 316. In more detail, last resort zone 154 may be garbage collected or otherwise freed up as part of a maintenance operation of DSD 106. Once last resort zone 154 has been made available for reuse, the process of
In block 404, controller 120 reserves last resort zone 154 as unavailable for storing data. This can be accomplished as noted above with
In block 406, controller 120 determines a current data storage capacity for the NVM media. In some implementations, this can include determining a remaining amount of data capacity available for the portion of the NVM media corresponding to entries 26 or to entries 24 and 26 in translation table 22. In other implementations, the current data storage capacity can include an amount of data stored in the NVM media for the portion of the NVM media corresponding to entries 26 or to entries 24 and 26.
In block 408, controller 120 determines whether a current data storage capacity and/or an environmental condition has reached a threshold as discussed above with reference to block 308 of
If it is determined in block 408 that the threshold has not been reached, the process returns to block 406 to determine a new current data storage capacity. The determination of the current data storage capacity in block 406 may be performed at a fixed interval of time, after certain events of DSD 106, or during idle periods of DSD 106. In some implementations, controller 120 may keep a running total of the current data storage capacity such that the current data storage capacity is updated each time data is stored in the NVM media.
If it is determined that the threshold has been reached in block 408, controller 120 in block 410 sets last resort zone 154 as available for storing data. As discussed above, this can be accomplished by allocating LBAs to last resort zone 154.
In block 412, controller 120 optionally adjusts write settings for last resort zone 154. As noted above, this can, for example, include reading data written in last resort zone 154 to verify that the data has been correctly written, changing a track density for last resort zone 154, or adjusting the number of write retires when writing data in last resort zone 154. The type of data allowed to be stored in last resort zone 154 may also be set in block 412, such as restricting the data stored in last resort zone 154 to copies of data stored elsewhere or restricting the data stored in last resort zone 154 to data of a lower priority or lower frequency of access. In other embodiments, data may be written in last resort zone 154 without any adjustment in write settings or type of data allowed to be stored in last resort zone 154.
In block 414, controller 120 controls head 136 to write data in last resort zone 154. After last resort zone 154 is made available for reuse as discussed above for block 316 of
Those of ordinary skill in the art will appreciate that the various illustrative logical blocks, modules, and processes described in connection with the examples disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. Furthermore, the foregoing processes can be embodied on a computer readable medium which causes a processor or computer to perform or execute certain functions.
To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, and modules have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Those of ordinary skill in the art may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
The various illustrative logical blocks, units, modules, and controllers described in connection with the examples disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The activities of a method or process described in connection with the examples disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. The steps of the method or algorithm may also be performed in an alternate order from those provided in the examples. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable media, an optical media, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an Application Specific Integrated Circuit (ASIC).
The foregoing description of the disclosed example embodiments is provided to enable any person of ordinary skill in the art to make or use the embodiments in the present disclosure. Various modifications to these examples will be readily apparent to those of ordinary skill in the art, and the principles disclosed herein may be applied to other examples without departing from the spirit or scope of the present disclosure. The described embodiments are to be considered in all respects only as illustrative and not restrictive and the scope of the disclosure is, therefore, indicated by the following claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application claims the benefit of U.S. Provisional Application No. 61/968,966 , filed on Mar. 21, 2014, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6018789 | Sokolov et al. | Jan 2000 | A |
6065095 | Sokolov et al. | May 2000 | A |
6078452 | Kittilson et al. | Jun 2000 | A |
6081447 | Lofgren et al. | Jun 2000 | A |
6092149 | Hicken et al. | Jul 2000 | A |
6092150 | Sokolov et al. | Jul 2000 | A |
6094707 | Sokolov et al. | Jul 2000 | A |
6105104 | Guttmann et al. | Aug 2000 | A |
6111717 | Cloke et al. | Aug 2000 | A |
6145052 | Howe et al. | Nov 2000 | A |
6175893 | D'Souza et al. | Jan 2001 | B1 |
6178056 | Cloke et al. | Jan 2001 | B1 |
6191909 | Cloke et al. | Feb 2001 | B1 |
6195218 | Guttmann et al. | Feb 2001 | B1 |
6205494 | Williams | Mar 2001 | B1 |
6208477 | Cloke et al. | Mar 2001 | B1 |
6223303 | Billings et al. | Apr 2001 | B1 |
6230233 | Lofgren et al. | May 2001 | B1 |
6246346 | Cloke et al. | Jun 2001 | B1 |
6249393 | Billings et al. | Jun 2001 | B1 |
6256695 | Williams | Jul 2001 | B1 |
6262857 | Hull et al. | Jul 2001 | B1 |
6263459 | Schibilla | Jul 2001 | B1 |
6272694 | Weaver et al. | Aug 2001 | B1 |
6278568 | Cloke et al. | Aug 2001 | B1 |
6279089 | Schibilla et al. | Aug 2001 | B1 |
6289484 | Rothberg et al. | Sep 2001 | B1 |
6292912 | Cloke et al. | Sep 2001 | B1 |
6310740 | Dunbar et al. | Oct 2001 | B1 |
6317850 | Rothberg | Nov 2001 | B1 |
6327106 | Rothberg | Dec 2001 | B1 |
6337778 | Gagne | Jan 2002 | B1 |
6369969 | Christiansen et al. | Apr 2002 | B1 |
6384999 | Schibilla | May 2002 | B1 |
6388833 | Golowka et al. | May 2002 | B1 |
6405342 | Lee | Jun 2002 | B1 |
6408357 | Hanmann et al. | Jun 2002 | B1 |
6408406 | Parris | Jun 2002 | B1 |
6411452 | Cloke | Jun 2002 | B1 |
6411458 | Billings et al. | Jun 2002 | B1 |
6412083 | Rothberg et al. | Jun 2002 | B1 |
6415349 | Hull et al. | Jul 2002 | B1 |
6425128 | Krapf et al. | Jul 2002 | B1 |
6441981 | Cloke et al. | Aug 2002 | B1 |
6442328 | Elliott et al. | Aug 2002 | B1 |
6445524 | Nazarian et al. | Sep 2002 | B1 |
6449767 | Krapf et al. | Sep 2002 | B1 |
6453115 | Boyle | Sep 2002 | B1 |
6470420 | Hospodor | Oct 2002 | B1 |
6480020 | Jung et al. | Nov 2002 | B1 |
6480349 | Kim et al. | Nov 2002 | B1 |
6480932 | Vallis et al. | Nov 2002 | B1 |
6483986 | Krapf | Nov 2002 | B1 |
6487032 | Cloke et al. | Nov 2002 | B1 |
6490635 | Holmes | Dec 2002 | B1 |
6493173 | Kim et al. | Dec 2002 | B1 |
6499083 | Hamlin | Dec 2002 | B1 |
6519104 | Cloke et al. | Feb 2003 | B1 |
6525892 | Dunbar et al. | Feb 2003 | B1 |
6545830 | Briggs et al. | Apr 2003 | B1 |
6546489 | Frank, Jr. et al. | Apr 2003 | B1 |
6550021 | Dalphy et al. | Apr 2003 | B1 |
6552880 | Dunbar et al. | Apr 2003 | B1 |
6553457 | Wilkins et al. | Apr 2003 | B1 |
6578106 | Price | Jun 2003 | B1 |
6580573 | Hull et al. | Jun 2003 | B1 |
6594183 | Lofgren et al. | Jul 2003 | B1 |
6600620 | Krounbi et al. | Jul 2003 | B1 |
6601137 | Castro et al. | Jul 2003 | B1 |
6603622 | Christiansen et al. | Aug 2003 | B1 |
6603625 | Hospodor et al. | Aug 2003 | B1 |
6604220 | Lee | Aug 2003 | B1 |
6606682 | Dang et al. | Aug 2003 | B1 |
6606714 | Thelin | Aug 2003 | B1 |
6606717 | Yu et al. | Aug 2003 | B1 |
6611393 | Nguyen et al. | Aug 2003 | B1 |
6615312 | Hamlin et al. | Sep 2003 | B1 |
6639748 | Christiansen et al. | Oct 2003 | B1 |
6647481 | Luu et al. | Nov 2003 | B1 |
6654193 | Thelin | Nov 2003 | B1 |
6657810 | Kupferman | Dec 2003 | B1 |
6661591 | Rothberg | Dec 2003 | B1 |
6665772 | Hamlin | Dec 2003 | B1 |
6687073 | Kupferman | Feb 2004 | B1 |
6687078 | Kim | Feb 2004 | B1 |
6687850 | Rothberg | Feb 2004 | B1 |
6690523 | Nguyen et al. | Feb 2004 | B1 |
6690882 | Hanmann et al. | Feb 2004 | B1 |
6691198 | Hamlin | Feb 2004 | B1 |
6691213 | Luu et al. | Feb 2004 | B1 |
6691255 | Rothberg et al. | Feb 2004 | B1 |
6693760 | Krounbi et al. | Feb 2004 | B1 |
6694477 | Lee | Feb 2004 | B1 |
6697914 | Hospodor et al. | Feb 2004 | B1 |
6704153 | Rothberg et al. | Mar 2004 | B1 |
6708251 | Boyle et al. | Mar 2004 | B1 |
6710951 | Cloke | Mar 2004 | B1 |
6711628 | Thelin | Mar 2004 | B1 |
6711635 | Wang | Mar 2004 | B1 |
6711660 | Milne et al. | Mar 2004 | B1 |
6715044 | Lofgren et al. | Mar 2004 | B2 |
6724982 | Hamlin | Apr 2004 | B1 |
6725329 | Ng et al. | Apr 2004 | B1 |
6735650 | Rothberg | May 2004 | B1 |
6735693 | Hamlin | May 2004 | B1 |
6744772 | Eneboe et al. | Jun 2004 | B1 |
6745283 | Dang | Jun 2004 | B1 |
6751402 | Elliott et al. | Jun 2004 | B1 |
6757481 | Nazarian et al. | Jun 2004 | B1 |
6772281 | Hamlin | Aug 2004 | B2 |
6781826 | Goldstone et al. | Aug 2004 | B1 |
6782449 | Codilian et al. | Aug 2004 | B1 |
6791779 | Singh et al. | Sep 2004 | B1 |
6792486 | Hanan et al. | Sep 2004 | B1 |
6799274 | Hamlin | Sep 2004 | B1 |
6811427 | Garrett et al. | Nov 2004 | B2 |
6826003 | Subrahmanyam | Nov 2004 | B1 |
6826614 | Hanmann et al. | Nov 2004 | B1 |
6832041 | Boyle | Dec 2004 | B1 |
6832929 | Garrett et al. | Dec 2004 | B2 |
6845405 | Thelin | Jan 2005 | B1 |
6845427 | Atai-Azimi | Jan 2005 | B1 |
6850443 | Lofgren et al. | Feb 2005 | B2 |
6851055 | Boyle et al. | Feb 2005 | B1 |
6851063 | Boyle et al. | Feb 2005 | B1 |
6853731 | Boyle et al. | Feb 2005 | B1 |
6854022 | Thelin | Feb 2005 | B1 |
6862660 | Wilkins et al. | Mar 2005 | B1 |
6880043 | Castro et al. | Apr 2005 | B1 |
6882486 | Kupferman | Apr 2005 | B1 |
6884085 | Goldstone | Apr 2005 | B1 |
6888831 | Hospodor et al. | May 2005 | B1 |
6892217 | Hanmann et al. | May 2005 | B1 |
6892249 | Codilian et al. | May 2005 | B1 |
6892313 | Codilian et al. | May 2005 | B1 |
6895455 | Rothberg | May 2005 | B1 |
6895500 | Rothberg | May 2005 | B1 |
6898730 | Hanan | May 2005 | B1 |
6910099 | Wang et al. | Jun 2005 | B1 |
6928470 | Hamlin | Aug 2005 | B1 |
6931439 | Hanmann et al. | Aug 2005 | B1 |
6934104 | Kupferman | Aug 2005 | B1 |
6934713 | Schwartz et al. | Aug 2005 | B2 |
6940873 | Boyle et al. | Sep 2005 | B2 |
6943978 | Lee | Sep 2005 | B1 |
6948165 | Luu et al. | Sep 2005 | B1 |
6950267 | Liu et al. | Sep 2005 | B1 |
6954733 | Ellis et al. | Oct 2005 | B1 |
6961814 | Thelin et al. | Nov 2005 | B1 |
6965489 | Lee et al. | Nov 2005 | B1 |
6965563 | Hospodor et al. | Nov 2005 | B1 |
6965966 | Rothberg et al. | Nov 2005 | B1 |
6967799 | Lee | Nov 2005 | B1 |
6968422 | Codilian et al. | Nov 2005 | B1 |
6968450 | Rothberg et al. | Nov 2005 | B1 |
6973495 | Milne et al. | Dec 2005 | B1 |
6973570 | Hamlin | Dec 2005 | B1 |
6976190 | Goldstone | Dec 2005 | B1 |
6983316 | Milne et al. | Jan 2006 | B1 |
6986007 | Procyk et al. | Jan 2006 | B1 |
6986154 | Price et al. | Jan 2006 | B1 |
6995933 | Codilian et al. | Feb 2006 | B1 |
6996501 | Rothberg | Feb 2006 | B1 |
6996669 | Dang et al. | Feb 2006 | B1 |
7002926 | Eneboe et al. | Feb 2006 | B1 |
7003674 | Hamlin | Feb 2006 | B1 |
7006316 | Sargenti, Jr. et al. | Feb 2006 | B1 |
7009820 | Hogg | Mar 2006 | B1 |
7023639 | Kupferman | Apr 2006 | B1 |
7024491 | Hanmann et al. | Apr 2006 | B1 |
7024549 | Luu et al. | Apr 2006 | B1 |
7024614 | Thelin et al. | Apr 2006 | B1 |
7027716 | Boyle et al. | Apr 2006 | B1 |
7028174 | Atai-Azimi et al. | Apr 2006 | B1 |
7031902 | Catiller | Apr 2006 | B1 |
7046465 | Kupferman | May 2006 | B1 |
7046488 | Hogg | May 2006 | B1 |
7050252 | Vallis | May 2006 | B1 |
7054937 | Milne et al. | May 2006 | B1 |
7055000 | Severtson | May 2006 | B1 |
7055017 | Ozaki | May 2006 | B2 |
7055167 | Masters | May 2006 | B1 |
7057836 | Kupferman | Jun 2006 | B1 |
7062398 | Rothberg | Jun 2006 | B1 |
7075746 | Kupferman | Jul 2006 | B1 |
7076604 | Thelin | Jul 2006 | B1 |
7082494 | Thelin et al. | Jul 2006 | B1 |
7088538 | Codilian et al. | Aug 2006 | B1 |
7088545 | Singh et al. | Aug 2006 | B1 |
7092186 | Hogg | Aug 2006 | B1 |
7095577 | Codilian et al. | Aug 2006 | B1 |
7099095 | Subrahmanyam et al. | Aug 2006 | B1 |
7106537 | Bennett | Sep 2006 | B1 |
7106947 | Boyle et al. | Sep 2006 | B2 |
7110202 | Vasquez | Sep 2006 | B1 |
7111116 | Boyle et al. | Sep 2006 | B1 |
7114029 | Thelin | Sep 2006 | B1 |
7120737 | Thelin | Oct 2006 | B1 |
7120806 | Codilian et al. | Oct 2006 | B1 |
7126776 | Warren, Jr. et al. | Oct 2006 | B1 |
7129763 | Bennett et al. | Oct 2006 | B1 |
7133600 | Boyle | Nov 2006 | B1 |
7136244 | Rothberg | Nov 2006 | B1 |
7146094 | Boyle | Dec 2006 | B1 |
7149046 | Coker et al. | Dec 2006 | B1 |
7150036 | Milne et al. | Dec 2006 | B1 |
7155616 | Hamlin | Dec 2006 | B1 |
7171108 | Masters et al. | Jan 2007 | B1 |
7171110 | Wilshire | Jan 2007 | B1 |
7184241 | Mallary | Feb 2007 | B1 |
7194576 | Boyle | Mar 2007 | B1 |
7200698 | Rothberg | Apr 2007 | B1 |
7205805 | Bennett | Apr 2007 | B1 |
7206497 | Boyle et al. | Apr 2007 | B1 |
7215496 | Kupferman et al. | May 2007 | B1 |
7215771 | Hamlin | May 2007 | B1 |
7237054 | Cain et al. | Jun 2007 | B1 |
7240161 | Boyle | Jul 2007 | B1 |
7249365 | Price et al. | Jul 2007 | B1 |
7263709 | Krapf | Aug 2007 | B1 |
7274639 | Codilian et al. | Sep 2007 | B1 |
7274659 | Hospodor | Sep 2007 | B2 |
7275116 | Hanmann et al. | Sep 2007 | B1 |
7280302 | Masiewicz | Oct 2007 | B1 |
7292774 | Masters et al. | Nov 2007 | B1 |
7292775 | Boyle et al. | Nov 2007 | B1 |
7296284 | Price et al. | Nov 2007 | B1 |
7302501 | Cain et al. | Nov 2007 | B1 |
7302579 | Cain et al. | Nov 2007 | B1 |
7304816 | Johnson et al. | Dec 2007 | B2 |
7318088 | Mann | Jan 2008 | B1 |
7319806 | Willner et al. | Jan 2008 | B1 |
7325244 | Boyle et al. | Jan 2008 | B2 |
7330323 | Singh et al. | Feb 2008 | B1 |
7346790 | Klein | Mar 2008 | B1 |
7366641 | Masiewicz et al. | Apr 2008 | B1 |
7369339 | Kojima et al. | May 2008 | B2 |
7369340 | Dang et al. | May 2008 | B1 |
7369343 | Yeo et al. | May 2008 | B1 |
7372650 | Kupferman | May 2008 | B1 |
7373559 | Guha | May 2008 | B2 |
7380147 | Sun | May 2008 | B1 |
7392340 | Dang et al. | Jun 2008 | B1 |
7404013 | Masiewicz | Jul 2008 | B1 |
7406545 | Rothberg et al. | Jul 2008 | B1 |
7415571 | Hanan | Aug 2008 | B1 |
7436610 | Thelin | Oct 2008 | B1 |
7437502 | Coker | Oct 2008 | B1 |
7440214 | Ell et al. | Oct 2008 | B1 |
7451344 | Rothberg | Nov 2008 | B1 |
7471483 | Ferris et al. | Dec 2008 | B1 |
7471486 | Coker et al. | Dec 2008 | B1 |
7486060 | Bennett | Feb 2009 | B1 |
7496493 | Stevens | Feb 2009 | B1 |
7496796 | Kubo et al. | Feb 2009 | B2 |
7518819 | Yu et al. | Apr 2009 | B1 |
7526184 | Parkinen et al. | Apr 2009 | B1 |
7539924 | Vasquez et al. | May 2009 | B1 |
7543117 | Hanan | Jun 2009 | B1 |
7551383 | Kupferman | Jun 2009 | B1 |
7562282 | Rothberg | Jul 2009 | B1 |
7577973 | Kapner, III et al. | Aug 2009 | B1 |
7596797 | Kapner, III et al. | Sep 2009 | B1 |
7599139 | Bombet et al. | Oct 2009 | B1 |
7619841 | Kupferman | Nov 2009 | B1 |
7647544 | Masiewicz | Jan 2010 | B1 |
7649704 | Bombet et al. | Jan 2010 | B1 |
7653927 | Kapner, III et al. | Jan 2010 | B1 |
7656603 | Feb 2010 | B1 | |
7656763 | Jin et al. | Feb 2010 | B1 |
7657149 | Boyle | Feb 2010 | B2 |
7672072 | Boyle et al. | Mar 2010 | B1 |
7673075 | Masiewicz | Mar 2010 | B1 |
7688540 | Mei et al. | Mar 2010 | B1 |
7724461 | McFadyen et al. | May 2010 | B1 |
7725584 | Hanmann et al. | May 2010 | B1 |
7730295 | Lee | Jun 2010 | B1 |
7760458 | Trinh | Jul 2010 | B1 |
7768776 | Szeremeta et al. | Aug 2010 | B1 |
7804657 | Hogg et al. | Sep 2010 | B1 |
7813954 | Price et al. | Oct 2010 | B1 |
7827320 | Stevens | Nov 2010 | B1 |
7839588 | Dang et al. | Nov 2010 | B1 |
7843660 | Yeo | Nov 2010 | B1 |
7852596 | Boyle et al. | Dec 2010 | B2 |
7859782 | Lee | Dec 2010 | B1 |
7872822 | Rothberg | Jan 2011 | B1 |
7898756 | Wang | Mar 2011 | B1 |
7898762 | Guo et al. | Mar 2011 | B1 |
7900037 | Fallone et al. | Mar 2011 | B1 |
7907364 | Boyle et al. | Mar 2011 | B2 |
7929234 | Boyle et al. | Apr 2011 | B1 |
7933087 | Tsai et al. | Apr 2011 | B1 |
7933090 | Jung et al. | Apr 2011 | B1 |
7934030 | Sargenti, Jr. et al. | Apr 2011 | B1 |
7940491 | Szeremeta et al. | May 2011 | B2 |
7944639 | Wang | May 2011 | B1 |
7945727 | Rothberg et al. | May 2011 | B2 |
7949564 | Hughes et al. | May 2011 | B1 |
7974029 | Tsai et al. | Jul 2011 | B2 |
7974039 | Xu et al. | Jul 2011 | B1 |
7982993 | Tsai et al. | Jul 2011 | B1 |
7984200 | Bombet et al. | Jul 2011 | B1 |
7990648 | Wang | Aug 2011 | B1 |
7992179 | Kapner, III et al. | Aug 2011 | B1 |
8004785 | Tsai et al. | Aug 2011 | B1 |
8006027 | Stevens et al. | Aug 2011 | B1 |
8014094 | Jin | Sep 2011 | B1 |
8014977 | Masiewicz et al. | Sep 2011 | B1 |
8019914 | Vasquez et al. | Sep 2011 | B1 |
8040625 | Boyle et al. | Oct 2011 | B1 |
8078943 | Lee | Dec 2011 | B1 |
8079045 | Krapf et al. | Dec 2011 | B2 |
8082433 | Fallone et al. | Dec 2011 | B1 |
8085487 | Jung et al. | Dec 2011 | B1 |
8089719 | Dakroub | Jan 2012 | B1 |
8090902 | Bennett et al. | Jan 2012 | B1 |
8090906 | Blaha et al. | Jan 2012 | B1 |
8091112 | Elliott et al. | Jan 2012 | B1 |
8094396 | Zhang et al. | Jan 2012 | B1 |
8094401 | Peng et al. | Jan 2012 | B1 |
8116020 | Lee | Feb 2012 | B1 |
8116025 | Chan et al. | Feb 2012 | B1 |
8134793 | Vasquez et al. | Mar 2012 | B1 |
8134798 | Thelin et al. | Mar 2012 | B1 |
8139301 | Li et al. | Mar 2012 | B1 |
8139310 | Hogg | Mar 2012 | B1 |
8144419 | Liu | Mar 2012 | B1 |
8145452 | Masiewicz et al. | Mar 2012 | B1 |
8149528 | Suratman et al. | Apr 2012 | B1 |
8154812 | Boyle et al. | Apr 2012 | B1 |
8159768 | Miyamura | Apr 2012 | B1 |
8161328 | Wilshire | Apr 2012 | B1 |
8164849 | Szeremeta et al. | Apr 2012 | B1 |
8174780 | Tsai et al. | May 2012 | B1 |
8190575 | Ong et al. | May 2012 | B1 |
8194338 | Zhang | Jun 2012 | B1 |
8194340 | Boyle et al. | Jun 2012 | B1 |
8194341 | Boyle | Jun 2012 | B1 |
8201066 | Wang | Jun 2012 | B1 |
8271692 | Dinh et al. | Sep 2012 | B1 |
8279550 | Hogg | Oct 2012 | B1 |
8281218 | Ybarra et al. | Oct 2012 | B1 |
8285923 | Stevens | Oct 2012 | B2 |
8289656 | Huber | Oct 2012 | B1 |
8305705 | Roohr | Nov 2012 | B1 |
8307156 | Codilian et al. | Nov 2012 | B1 |
8310775 | Boguslawski et al. | Nov 2012 | B1 |
8315006 | Chahwan et al. | Nov 2012 | B1 |
8316263 | Gough et al. | Nov 2012 | B1 |
8320067 | Tsai et al. | Nov 2012 | B1 |
8324974 | Bennett | Dec 2012 | B1 |
8332695 | Dalphy et al. | Dec 2012 | B2 |
8341337 | Ong et al. | Dec 2012 | B1 |
8350628 | Bennett | Jan 2013 | B1 |
8356184 | Meyer et al. | Jan 2013 | B1 |
8370683 | Ryan et al. | Feb 2013 | B1 |
8375225 | Ybarra | Feb 2013 | B1 |
8375274 | Bonke | Feb 2013 | B1 |
8380922 | DeForest et al. | Feb 2013 | B1 |
8390948 | Hogg | Mar 2013 | B2 |
8390952 | Szeremeta | Mar 2013 | B1 |
8392689 | Lott | Mar 2013 | B1 |
8407393 | Yolar et al. | Mar 2013 | B1 |
8413010 | Vasquez et al. | Apr 2013 | B1 |
8417566 | Price et al. | Apr 2013 | B2 |
8421663 | Bennett | Apr 2013 | B1 |
8422172 | Dakroub et al. | Apr 2013 | B1 |
8427771 | Tsai | Apr 2013 | B1 |
8429343 | Tsai | Apr 2013 | B1 |
8433937 | Wheelock et al. | Apr 2013 | B1 |
8433977 | Vasquez et al. | Apr 2013 | B1 |
8458526 | Dalphy et al. | Jun 2013 | B2 |
8462466 | Huber | Jun 2013 | B2 |
8467151 | Huber | Jun 2013 | B1 |
8489841 | Strecke et al. | Jul 2013 | B1 |
8493679 | Boguslawski et al. | Jul 2013 | B1 |
8498074 | Mobley et al. | Jul 2013 | B1 |
8499198 | Messenger et al. | Jul 2013 | B1 |
8512049 | Huber et al. | Aug 2013 | B1 |
8514506 | Li et al. | Aug 2013 | B1 |
8531791 | Reid et al. | Sep 2013 | B1 |
8554741 | Malina | Oct 2013 | B1 |
8560759 | Boyle et al. | Oct 2013 | B1 |
8565053 | Chung | Oct 2013 | B1 |
8576511 | Coker et al. | Nov 2013 | B1 |
8578100 | Huynh et al. | Nov 2013 | B1 |
8578242 | Burton et al. | Nov 2013 | B1 |
8589773 | Wang et al. | Nov 2013 | B1 |
8593753 | Anderson | Nov 2013 | B1 |
8595432 | Vinson et al. | Nov 2013 | B1 |
8599510 | Fallone | Dec 2013 | B1 |
8601248 | Thorsted | Dec 2013 | B2 |
8611032 | Champion et al. | Dec 2013 | B2 |
8612650 | Carrie et al. | Dec 2013 | B1 |
8612706 | Madril et al. | Dec 2013 | B1 |
8612798 | Tsai | Dec 2013 | B1 |
8619383 | Jung et al. | Dec 2013 | B1 |
8621115 | Bombet et al. | Dec 2013 | B1 |
8621133 | Boyle | Dec 2013 | B1 |
8626463 | Stevens et al. | Jan 2014 | B2 |
8630052 | Jung et al. | Jan 2014 | B1 |
8630056 | Ong | Jan 2014 | B1 |
8631188 | Heath et al. | Jan 2014 | B1 |
8634158 | Chahwan et al. | Jan 2014 | B1 |
8635412 | Wilshire | Jan 2014 | B1 |
8640007 | Schulze | Jan 2014 | B1 |
8654619 | Cheng | Feb 2014 | B1 |
8661193 | Cobos et al. | Feb 2014 | B1 |
8667248 | Neppalli | Mar 2014 | B1 |
8670205 | Malina et al. | Mar 2014 | B1 |
8683295 | Syu et al. | Mar 2014 | B1 |
8683457 | Hughes et al. | Mar 2014 | B1 |
8687306 | Coker et al. | Apr 2014 | B1 |
8693133 | Lee et al. | Apr 2014 | B1 |
8694841 | Chung et al. | Apr 2014 | B1 |
8699159 | Malina | Apr 2014 | B1 |
8699171 | Boyle | Apr 2014 | B1 |
8699172 | Gunderson et al. | Apr 2014 | B1 |
8699175 | Olds et al. | Apr 2014 | B1 |
8699185 | Teh et al. | Apr 2014 | B1 |
8700850 | Lalouette | Apr 2014 | B1 |
8743502 | Bonke et al. | Jun 2014 | B1 |
8749910 | Dang et al. | Jun 2014 | B1 |
8751699 | Tsai et al. | Jun 2014 | B1 |
8755141 | Dang | Jun 2014 | B1 |
8755143 | Wilson et al. | Jun 2014 | B2 |
8756361 | Carlson et al. | Jun 2014 | B1 |
8756382 | Carlson et al. | Jun 2014 | B1 |
8769593 | Elliott et al. | Jul 2014 | B1 |
8773802 | Anderson et al. | Jul 2014 | B1 |
8780478 | Huynh et al. | Jul 2014 | B1 |
8782334 | Boyle et al. | Jul 2014 | B1 |
8793532 | Tsai et al. | Jul 2014 | B1 |
8797669 | Burton et al. | Aug 2014 | B1 |
8799977 | Kapner, III et al. | Aug 2014 | B1 |
9042181 | Flynn | May 2015 | B2 |
20040042105 | Cho | Mar 2004 | A1 |
20040051988 | Jing et al. | Mar 2004 | A1 |
20070171798 | Wada | Jul 2007 | A1 |
20090113702 | Hogg | May 2009 | A1 |
20100083373 | White | Apr 2010 | A1 |
20100306551 | Meyer et al. | Dec 2010 | A1 |
20110002206 | Akahoshi | Jan 2011 | A1 |
20110226729 | Hogg | Sep 2011 | A1 |
20120159042 | Lott et al. | Jun 2012 | A1 |
20120194940 | Yoshida | Aug 2012 | A1 |
20120275050 | Wilson et al. | Nov 2012 | A1 |
20120281963 | Krapf et al. | Nov 2012 | A1 |
20120324980 | Nguyen et al. | Dec 2012 | A1 |
20130031317 | Ryu et al. | Jan 2013 | A1 |
20140201424 | Chen et al. | Jul 2014 | A1 |
20140285922 | Ishii | Sep 2014 | A1 |
Entry |
---|
Anthony P. Sannino, et al., U.S. Appl. No. 14/260,641, filed Apr. 24, 2014, 18 pages. |
Chun Sei Tsai, et al., U.S. Appl. No. 14/227,191, filed Mar. 27, 2014, 25 pages. |
Robert M. Fallone, et al., U.S. Appl. No. 14/295,497, filed Jun. 4, 2014 24 pages. |
Daniel Bai, “Method of Improving Robustness of HDD by Utilization Prioritization,” Power Point Presentation, Dec. 26, 2013, pp. 1-8. |
Number | Date | Country | |
---|---|---|---|
20150269964 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
61968966 | Mar 2014 | US |