This invention relates to magnetic cards and devices and associated payment systems.
A card (e.g., a powered card) may include a dynamic magnetic communications device. Such a dynamic magnetic communications device may take the form of a magnetic encoder or a magnetic emulator. A magnetic encoder may change the information located on a magnetic medium such that a magnetic stripe reader may read changed magnetic information from the magnetic medium. A magnetic emulator may generate electromagnetic fields that directly communicate data to a magnetic stripe reader. Such a magnetic emulator may communicate data serially to a read-head of the magnetic stripe reader.
A card (e.g., a non-powered card) may include a static magnetic communications device. Such a static magnetic communications device may take the form of a magnetic stripe. Data may be programmed onto the magnetic stripe by a magnetic stripe writer that records information onto the magnetic stripe by altering the magnetism of particles (e.g., iron-based particles) distributed along the magnetic stripe. The recorded data may be read by a magnetic stripe reader by swiping the magnetic stripe through the magnetic stripe reader.
All, or substantially all, of the front as well as the back of a card may be a display (e.g., bi-stable, non bi-stable, LCD, LED, or electrochromic display). Electrodes of a display may be coupled to one or more capacitive touch sensors such that a display may be provided as a touch-screen display. Any type of touch-screen display may be utilized. Such touch-screen displays may be operable of determining multiple points of touch. Accordingly, a barcode may be displayed across all, or substantially all, of a surface of a card. In doing so, computer vision equipment such as barcode readers may be less susceptible to errors in reading a displayed barcode.
A card may include a number of output devices to output dynamic information. For example, a card may include one or more RFIDs or IC chips (e.g., EMV chips) to communicate to one or more RFID readers or IC chip readers, respectively. A card may include devices to receive information. For example, an RFID and IC chip (e.g., EMV chip) may both receive information and communicate information to an RFID and IC chip reader, respectively.
A device for receiving wireless information signals may be provided. A light sensing device or sound sensing device may be utilized to receive information wirelessly. A card may include a central processor that communicates data through one or more output devices simultaneously (e.g., an RFID, IC chip, and a dynamic magnetic stripe communications device). The central processor may receive information from one or more input devices simultaneously (e.g., an RFID, IC chip, dynamic magnetic stripe devices, light sensing device, and a sound sensing device). A processor may be coupled to surface contacts such that the processor may perform the processing capabilities of, for example, an EMV chip. The processor may be laminated over and not exposed such that such a processor is not exposed on the surface of the card.
A card may include one or more light transmitters and light receivers. The light transmitters and receivers may be the same, or different, devices. A light transmitter may be able to transmit visible, infrared, or visible and infrared light. A light transmitter may be able to transmit additional types of light (e.g., ultraviolet light). A light receiver may be able to receive visible, infrared, or visible and infrared light. A light receiver may be able to receive additional types of light (e.g., ultraviolet light). A light transmitter may take the form of, for example, an LED. A light receiver may take the form of, for example, a photo-transistor, photo-diode, photo-resistor, or an LED.
A card may include a light transmitter (e.g., an infrared transmitter) about one end of the card and a light receiver (e.g., an infrared receiver) about the opposite end of the card. In doing so, the light transmitter and receiver may be located at a distance from one another (e.g., greater than half an inch, one inch, one and a half inches, two inches, or two and a half inches away from one another) such that the light receiver of the card cannot pick up transmissions from the light transmitter of the card. For example, a light receiver may be located along about a top edge of a card at a particular distance from one side edge (e.g., 1.067 inches from one side edge). A light transmitter may also be located about the top edge at that same particular distance from the other side edge (e.g., 1.067 inches from the other side edge). Accordingly, a programming fixture may include a light transmitter spaced similarly from a light receiver such that the light receiver of the programming fixture may communicate with the light transmitter of the card and the light transmitter of the programming fixture may communicate with the light receiver of that same card. In this manner, cards may be moved through the programming fixture and stopped in front of the programming fixture for programming. A programming module may be included with one or more programming fixtures such that multiple programming fixtures may simultaneously program cards.
The programming module may be able to communicate with an entity (e.g., a remote server) to, for example, download information to be programmed into a memory of a card. The programming module may be able to communicate with an entity (e.g., a remote server) to, for example, upload information confirming data programmed into a memory of a card.
Various types of information may be programmed into a memory of a card. Payment account information, for example, such as the account holder's name, payment account number, discretionary data, and expiration date of the payment account may be programmed into a memory of a card. Account information for one or more accounts (e.g., credit, debit, gift, medical, or security accounts) may be programmed into a memory of a card. Once programmed, a programming module may read the account information back from the card and may, for example, verify that the account information matches account information intended for that card.
A memory of a card may, for example, receive processing instructions (e.g., firmware) that may be executed by a processor of a card. Such processing instructions may include a communication algorithm that may communicate information associated with one or more accounts that may be programmed into a memory of the card. Such information may be communicated as a magnetic stripe message (e.g., one, two, and/or three tracks of magnetic stripe data) to a magnetic stripe reader (e.g., communicated to the magnetic stripe reader after a presence of the magnetic stripe reader has been detected). Accordingly, for example, the magnetic stripe message may be forwarded onto a network entity (e.g., a remote server) to complete a purchase transaction.
The communication algorithm may compute a longitudinal redundancy check (LRC) value prior to communication of the magnetic stripe message. Such an LRC value may be computed as a function of the magnetic stripe message, such that a particular message may yield a unique LRC value (e.g., a unique LRC character). Accordingly, for example, an LRC character may be computed with each magnetic stripe message (e.g., a unique LRC character may be computed for each of a first and a second track of a magnetic stripe data) and then communicated to a magnetic stripe reader (e.g., an LRC character may be appended to each of the first and second magnetic stripe data strings and then communicated to the magnetic stripe reader). The magnetic stripe reader may compute its own LRC character based upon the magnetic stripe message received from a card and may compare the computed LRC character to the LRC character received from the card to determine whether the magnetic stripe message was received correctly.
Certain LRC characters may be known to cause certain magnetic stripe readers to interpret a received magnetic stripe message incorrectly even though the magnetic stripe message may have been received correctly. For example, a magnetic stripe message (e.g., a first track of magnetic stripe data) may yield an LRC exception that is known to cause receive errors in one or more magnetic stripe readers (e.g., the magnetic stripe reader may discard magnetic stripe data associated with certain LRC characters received).
Accordingly, for example, a processor of a powered card may detect that a particular LRC character of a particular magnetic stripe message may be problematic for certain magnetic stripe readers and may modify the magnetic stripe message (e.g., modify at least a portion of a discretionary data field of the magnetic stripe message) so as to change the LRC character associated with the magnetic stripe message prior to communicating the magnetic stripe message. In so doing, for example, LRC characters associated with magnetic stripe messages may be screened and modified, if necessary, so as to increase a likelihood that a magnetic stripe message may be accepted by a magnetic stripe reader.
LRC characters programmed onto static magnetic stripes of non-powered cards may be known to be problematic for certain magnetic stripe readers. Accordingly, for example, prior to programming a static magnetic stripe card, a programming module may first screen LRC characters of the first, second, and/or third tracks of magnetic stripe data for LRC exceptions. If any LRC characters match with any LRC exceptions, the programming module may modify the first, second, and/or third tracks of magnetic stripe data (e.g., modify at least a portion of discretionary data fields within the first, second, and/or third tracks of magnetic stripe data) to change the LRC character. Once modified, the first, second, and/or third tracks of magnetic stripe data may be programmed onto the static magnetic stripe along with the modified LRC characters.
The principles and advantages of the present invention can be more clearly understood from the following detailed description considered in conjunction with the following drawings, in which the same reference numerals denote the same structural elements throughout, and in which:
Multiple displays may be provided on a card. For example, display 113 may be utilized to display a dynamic code such as a dynamic security code. Display 125 may also be provided to display logos, barcodes, as well as multiple lines of information. A display may be a bi-stable display or non bi-stable display. Permanent information 120 may also be included and may include information such as information specific to a user (e.g., a user's name or username) or information specific to a card (e.g., a card issue date or a card expiration date).
Card 100 may include one or more buttons such as buttons 130-134. Such buttons may be mechanical buttons, capacitive buttons, or a combination of mechanical and capacitive buttons.
Message processor 102 may formulate magnetic stripe messages to be communicated by dynamic magnetic stripe communications device 101. A magnetic stripe message may, for example, include a payment account number (e.g., a payment account number comprised of permanent portion 111 and dynamic portion 112). A magnetic stripe message may, for example, include information associated with the cardholder (e.g., permanent information 120).
Message processor 102 may, for example, compute an LRC value (e.g., an LRC character associated with a magnetic stripe message) that may be communicated to a magnetic stripe reader. Message processor 102 may, for example, compare the computed LRC character against a list of LRC exceptions. If the computed LRC character matches an LRC exception, then message processor 102 may modify the magnetic stripe message (e.g., modify at least a portion of a discretionary data field of the magnetic stripe message). Once modified, message processor 102 may recompute the LRC character based on the modified magnetic stripe message and verify that the newly created LRC value does not match any LRC exception. Once verified, message processor 102 may communicate the modified magnetic stripe message and associated LRC character to a magnetic stripe reader.
Architecture 150 may be utilized with any card. Architecture 150 may include processor 120. Processor 120 may have on-board memory for storing information (e.g., a list of LRC exceptions). Any number of components may communicate to processor 120 and/or receive communications from processor 120. For example, one or more displays (e.g., display 140) may be coupled to processor 120. Persons skilled in the art will appreciate that components may be placed between particular components and processor 120. For example, a display driver circuit may be coupled between display 140 and processor 120.
Memory 142 may be coupled to processor 120. Memory 142 may include data that is unique to a particular set of devices (e.g., a set of magnetic stripe readers). For example, memory 142 may store a list of LRC exceptions that are known to cause read errors within a particular set of magnetic stripe readers.
Memory 142 may receive data as received from data input 153 (e.g., an IR receiver). For example, data may be received by memory 142 that may be indicative of a universal identification number associated with a card (e.g., card 100 of
Memory 142 may provide data, such as a universal identification number associated with a card (e.g., card 100 of
Memory 142 may receive data from data input 153 (e.g., an IR receiver) that may be associated with a universal identification number of a card (e.g., card 100 of
Any number of reader communication devices may be included in architecture 150. For example, IC chip 152 may be included to communicate information to an IC chip reader. IC chip 152 may be, for example, an EMV chip. As per another example, RFID 151 may be included to communicate information to an RFID reader. A magnetic stripe communications device may also be included to communicate information to a magnetic stripe reader. Such a magnetic stripe communications device may provide electromagnetic signals to a magnetic stripe reader.
Different electromagnetic signals may be communicated to a magnetic stripe reader to provide different tracks of data. For example, electromagnetic field generators 170, 180, and 185 may be included to communicate separate tracks of information to a magnetic stripe reader. Such electromagnetic field generators may include a coil wrapped around one or more materials (e.g., a magnetic material and/or a non-magnetic material).
Each electromagnetic field generator may communicate information serially to a receiver of a magnetic stripe reader for a particular magnetic stripe track. Read-head detectors 171 and 172 may be utilized to sense the presence of a magnetic stripe reader (e.g., a read-head housing of a magnetic stripe reader). The sensed information may be communicated to processor 120 to cause processor 120 to communicate information serially from electromagnetic generators 170, 180, and 185 to magnetic stripe track receivers in a read-head housing of a magnetic stripe reader. Accordingly, a magnetic stripe communications device may change the information communicated to a magnetic stripe reader at any time.
Processor 120 may, for example, communicate user-specific information and card-specific information through RFID 151, IC chip 152 (e.g., EMV chip 152), data output (e.g., IR data output 154), data input (e.g., IR data input 153) and electromagnetic generators 170, 180, and 185 to readers coupled to information processing servers. Driving circuitry 141 may be utilized by processor 120, for example, to control electromagnetic generators 170, 180, and 185.
Programming module 220 may be coupled to receiver 221 and transmitter 222. Receiver 221 may be coupled to IR transmitter 211 and transmitter 222 may be coupled to IR receiver 212. Accordingly, programming data retrieved from an entity (e.g., programming database 223) may be programmed into memory 213 of card 210.
Programming database 223 may be utilized, for example, to retrieve personal information for a card (e.g., a customer's name, security code, credit card number, expiration date, and discretionary data). This information may be stored on memory 213 of card 210 and utilized by processor 214 to communicate this information through an output device operable to be read by a reader (e.g., an exposed IC chip, RFID, or dynamic magnetic stripe communications device).
Data modification module 230 may receive personal information from programming database 223 and may compute a first, a second, and or a third track of magnetic stripe data based upon the personal information received. In addition, an LRC value may be computed for each track of magnetic stripe data generated. Data modification module 230 may compare each LRC value generated against a list of LRC exceptions that may be provided by LRC exceptions database 224. If a generated LRC value matches an LRC exception, for example, then data modification module 230 may modify the track of magnetic stripe data associated with the generated LRC value. For example, at least a portion of a discretionary data field within a track of magnetic stripe data may be modified so as to change the LRC value associated with the track of magnetic stripe data. The changed LRC value may again be compared against a list of LRC exceptions to verify that the changed LRC value does not match an LRC exception. Once verified, programming module 223 may program the personal data into memory 213 of card 210.
Persons skilled in the art will appreciate that several tracks of magnetic stripe data may be programmed into memory 213 of card 210. For example, card 210 may be associated with multiple payment accounts and may, for example, store a first, a second, and or a third track of magnetic stripe data for each payment account that may be associated with card 210. Accordingly, for example, an LRC value for each track of magnetic stripe data to be stored within memory 213 of card 210 may be compared against a list of LRC exceptions contained within LRC exceptions database 224. If a match exists, then data modification module 230 may modify the offending track of magnetic stripe data (e.g., by modifying at least a portion of a discretionary data field contained within the offending track of magnetic stripe data) so that the associated LRC value may also change.
Database 332 may contain programming information that may be programmed onto the static magnetic stripe of non-powered card 330. Programming information may include, for example, the account holder's name, account number, expiration date, and discretionary data. Modification module 308 may receive the programming information from database 332 and may formulate the first, second, and/or third tracks of magnetic stripe data from the received programming information. Additionally, modification module 308 may compute an LRC value for each of the first, second, and/or third tracks of magnetic stripe data that may be formulated.
Modification module 308 may receive a list of LRC exceptions 338 that may be known to cause errors when certain magnetic stripe readers receive such LRC exceptions. LRC exceptions database 338 may, for example, include a list of magnetic stripe readers and an associated list of LRC values that are known to cause read errors when received by the magnetic stripe readers.
Accordingly, for example, modification module 308 may compute the LRC values for each of the first, second, and/or third tracks of magnetic stripe data generated from programming information received from database 332 and may compare the computed LRC values to the LRC values that may exist within LRC exceptions 338. If a match between the computed LRC values and one or more LRC exceptions exist, then modification module 308 may modify one or more tracks of magnetic stripe data (e.g., at least a portion of the discretionary data fields of the first, second, and/or third tracks of magnetic stripe data) and may recompute the respective one or more LRC values. Once the recomputed LRC values are determined not to match any LRC exception, then modification module may forward the one, two, and/or three tracks of magnetic stripe information to programming module 304. Card 330 may, for example, be swiped through magnetic stripe writer 306 so that the static magnetic stripe of card 330 may be programmed with the one, two, and/or three tracks of magnetic stripe data whose associated LRC values do not match any known LRC exception.
A flow diagram of process sequences is shown in
Step 421 of sequence 420 may include, for example, executing a communication algorithm by a processor of a powered card to compare an LRC value associated with a track of magnetic stripe data stored within the powered card to an LRC exception. If a match exists, then the powered card may communicate the magnetic stripe message in a forward order (e.g., start sentinel, followed by account information, followed by end sentinel, followed by LRC character) regardless of a detected swipe direction. In so doing, for example, errors within magnetic stripe readers that may be caused by receiving a magnetic stripe message in reverse order (e.g., LRC character in reverse bit order, followed by end sentinel in reverse bit order, followed by account information in reverse bit order, followed by start sentinel in reverse bit order) may be obviated.
Step 431 of sequence 430 may include, for example, comparing an LRC character that is associated with a track of magnetic stripe data to a list of known LRC exceptions that may cause read errors to occur within magnetic stripe readers that receive such LRC characters. If the comparison yields a match, then a discretionary data field (e.g., at least one bit of a discretionary data field) may be modified (e.g., as in step 432), so that the corresponding LRC character associated with the track of magnetic stripe data may also change once computed (e.g., as in step 433). A processor of a powered card, for example, may make such a comparison and then modify the magnetic stripe message before communicating the message to a magnetic stripe reader. A processor of a programming module, for example, may make such a comparison and then modify the one or more tracks of magnetic stripe data accordingly before the magnetic stripe data is programmed onto a static magnetic stripe. In step 434, the modified magnetic stripe data and recomputed LRC character may be communicated to a magnetic stripe reader by swiping either of the powered card or non-powered card through the magnetic stripe reader.
Step 441 of sequence 440 may include, for example, comparing an LRC character that is associated with a track of magnetic stripe data to a list of known LRC exceptions that may cause read errors to occur within magnetic stripe readers that receive such LRC characters. If the comparison yields a match, then a data field (e.g., a data field other than a discretionary data field) may be modified (e.g., removing a period after a middle initial of the card holder's name as in step 442), so that the corresponding LRC character associated with the track of magnetic stripe data may also change once computed (e.g., as in step 443). A processor of a powered card, for example, may make such a comparison and then modify the magnetic stripe message before communicating the message to a magnetic stripe reader. A processor of a programming module, for example, may make such a comparison and then modify the track of magnetic stripe data accordingly before the magnetic stripe data is programmed onto a static magnetic stripe. In step 444, the modified magnetic stripe data and recomputed LRC character may be communicated to a magnetic stripe reader by swiping either of the powered card or non-powered card through the magnetic stripe reader.
Persons skilled in the art will appreciate that the present invention is not limited to only the embodiments described. Instead, the present invention more generally involves dynamic information. Persons skilled in the art will also appreciate that the apparatus of the present invention may be implemented in other ways than those described herein. All such modifications are within the scope of the present invention, which is limited only by the claims that follow.
This application claims the benefit of U.S. Provisional Patent Application No. 61/562,165, titled “DATA MODIFICATION FOR MAGNETIC CARDS AND DEVICES,” filed Nov. 21, 2011, which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4353064 | Stamm | Oct 1982 | A |
4394654 | Hofmann-Cerfontaine | Jul 1983 | A |
4614861 | Pavlov et al. | Sep 1986 | A |
4667087 | Quintana | May 1987 | A |
4701601 | Francini et al. | Oct 1987 | A |
4720860 | Weiss | Jan 1988 | A |
4786791 | Hodama | Nov 1988 | A |
4791283 | Burkhardt | Dec 1988 | A |
4797542 | Hara | Jan 1989 | A |
5038251 | Sugiyama et al. | Aug 1991 | A |
5168520 | Weiss | Dec 1992 | A |
5237614 | Weiss | Aug 1993 | A |
5276311 | Hennige | Jan 1994 | A |
5347580 | Molva et al. | Sep 1994 | A |
5361062 | Weiss et al. | Nov 1994 | A |
5412199 | Finkelstein et al. | May 1995 | A |
5434398 | Goldberg | Jul 1995 | A |
5434405 | Finkelstein et al. | Jul 1995 | A |
5478994 | Rahman | Dec 1995 | A |
5479512 | Weiss | Dec 1995 | A |
5479530 | Nair et al. | Dec 1995 | A |
5484997 | Haynes | Jan 1996 | A |
5485519 | Weiss | Jan 1996 | A |
5585787 | Wallerstein | Dec 1996 | A |
5591949 | Bernstein | Jan 1997 | A |
5608203 | Finkelstein et al. | Mar 1997 | A |
5623552 | Lane | Apr 1997 | A |
5657388 | Weiss | Aug 1997 | A |
5834747 | Cooper | Nov 1998 | A |
5834756 | Gutman et al. | Nov 1998 | A |
5856661 | Finkelstein et al. | Jan 1999 | A |
5864623 | Messina et al. | Jan 1999 | A |
5907142 | Kelsey | May 1999 | A |
5913203 | Wong et al. | Jun 1999 | A |
5937394 | Wong et al. | Aug 1999 | A |
5955021 | Tiffany, III | Sep 1999 | A |
5956699 | Wong et al. | Sep 1999 | A |
6025054 | Tiffany, III | Feb 2000 | A |
6045043 | Bashan et al. | Apr 2000 | A |
6076163 | Hoffstein et al. | Jun 2000 | A |
6085320 | Kaliski | Jul 2000 | A |
6095416 | Grant et al. | Aug 2000 | A |
6130621 | Weiss | Oct 2000 | A |
6145079 | Mitty et al. | Nov 2000 | A |
6157920 | Jakobsson et al. | Dec 2000 | A |
6161181 | Haynes, III et al. | Dec 2000 | A |
6176430 | Finkelstein et al. | Jan 2001 | B1 |
6182894 | Hackett et al. | Feb 2001 | B1 |
6189098 | Kaliski | Feb 2001 | B1 |
6199052 | Mitty et al. | Mar 2001 | B1 |
6206293 | Gutman et al. | Mar 2001 | B1 |
6240184 | Huynh et al. | May 2001 | B1 |
6241153 | Tiffany, III | Jun 2001 | B1 |
6256873 | Tiffany, III | Jul 2001 | B1 |
6269163 | Rivest et al. | Jul 2001 | B1 |
6286022 | Kaliski et al. | Sep 2001 | B1 |
6308890 | Cooper | Oct 2001 | B1 |
6313724 | Osterweil | Nov 2001 | B1 |
6389442 | Yin et al. | May 2002 | B1 |
6393447 | Jakobsson et al. | May 2002 | B1 |
6411715 | Liskov et al. | Jun 2002 | B1 |
6446052 | Juels | Sep 2002 | B1 |
6460141 | Olden | Oct 2002 | B1 |
6592044 | Wong et al. | Jul 2003 | B1 |
6607127 | Wong | Aug 2003 | B2 |
6609654 | Anderson et al. | Aug 2003 | B1 |
6631849 | Blossom | Oct 2003 | B2 |
6655585 | Shinn | Dec 2003 | B2 |
6681988 | Stack et al. | Jan 2004 | B2 |
6705520 | Pitroda et al. | Mar 2004 | B1 |
6755341 | Wong et al. | Jun 2004 | B1 |
6764005 | Cooper | Jul 2004 | B2 |
6769618 | Finkelstein | Aug 2004 | B1 |
6805288 | Routhenstein et al. | Oct 2004 | B2 |
6811082 | Wong | Nov 2004 | B2 |
6813354 | Jakobsson et al. | Nov 2004 | B1 |
6817532 | Finkelstein | Nov 2004 | B2 |
6873974 | Schutzer | Mar 2005 | B1 |
6902116 | Finkelstein | Jun 2005 | B2 |
6970070 | Juels et al. | Nov 2005 | B2 |
6980969 | Tuchler et al. | Dec 2005 | B1 |
6985583 | Brainard et al. | Jan 2006 | B1 |
6991155 | Burchette, Jr. | Jan 2006 | B2 |
7013030 | Wong et al. | Mar 2006 | B2 |
7035443 | Wong | Apr 2006 | B2 |
7039223 | Wong | May 2006 | B2 |
7044394 | Brown | May 2006 | B2 |
7051929 | Li | May 2006 | B2 |
7083094 | Cooper | Aug 2006 | B2 |
7100049 | Gasparini et al. | Aug 2006 | B2 |
7100821 | Rasti | Sep 2006 | B2 |
7111172 | Duane et al. | Sep 2006 | B1 |
7114652 | Moullette et al. | Oct 2006 | B2 |
7136514 | Wong | Nov 2006 | B1 |
7140550 | Ramachandran | Nov 2006 | B2 |
7163153 | Blossom | Jan 2007 | B2 |
7195154 | Routhenstein | Mar 2007 | B2 |
7197639 | Juels et al. | Mar 2007 | B1 |
7219368 | Juels et al. | May 2007 | B2 |
7225537 | Reed | Jun 2007 | B2 |
7225994 | Finkelstein | Jun 2007 | B2 |
7246752 | Brown | Jul 2007 | B2 |
7298243 | Juels et al. | Nov 2007 | B2 |
7334732 | Cooper | Feb 2008 | B2 |
7337326 | Palmer et al. | Feb 2008 | B2 |
7346775 | Gasparinl et al. | Mar 2008 | B2 |
7356696 | Jakobsson et al. | Apr 2008 | B1 |
7357319 | Lin et al. | Apr 2008 | B1 |
7359507 | Kaliski | Apr 2008 | B2 |
7360688 | Harris | Apr 2008 | B1 |
7363494 | Brainard et al. | Apr 2008 | B2 |
7380710 | Brown | Jun 2008 | B2 |
7398253 | Pinnell | Jul 2008 | B1 |
7404087 | Teunen | Jul 2008 | B2 |
7424570 | D'Albore et al. | Sep 2008 | B2 |
7427033 | Roskind | Sep 2008 | B1 |
7454349 | Teunen et al. | Nov 2008 | B2 |
7461250 | Duane et al. | Dec 2008 | B1 |
7461399 | Juels et al. | Dec 2008 | B2 |
7472093 | Juels | Dec 2008 | B2 |
7472829 | Brown | Jan 2009 | B2 |
7494055 | Fernandes et al. | Feb 2009 | B2 |
7502467 | Brainard et al. | Mar 2009 | B2 |
7502933 | Jakobsson et al. | Mar 2009 | B2 |
7503485 | Routhenstein | Mar 2009 | B1 |
7516492 | Nisbet et al. | Apr 2009 | B1 |
7523301 | Nisbet et al. | Apr 2009 | B2 |
7530495 | Cooper | May 2009 | B2 |
7532104 | Juels | May 2009 | B2 |
7543739 | Brown et al. | Jun 2009 | B2 |
7559464 | Routhenstein | Jul 2009 | B2 |
7562221 | Nystrom et al. | Jul 2009 | B2 |
7562222 | Gasparini et al. | Jul 2009 | B2 |
7580898 | Brown et al. | Aug 2009 | B2 |
7584153 | Brown et al. | Sep 2009 | B2 |
7591426 | Osterweil et al. | Sep 2009 | B2 |
7591427 | Osterweil | Sep 2009 | B2 |
7602904 | Juels et al. | Oct 2009 | B2 |
7631804 | Brown | Dec 2009 | B2 |
7639537 | Sepe et al. | Dec 2009 | B2 |
7641124 | Brown et al. | Jan 2010 | B2 |
7660902 | Graham et al. | Feb 2010 | B2 |
7828207 | Cooper | Nov 2010 | B2 |
20010034702 | Mockett et al. | Oct 2001 | A1 |
20010047335 | Arndt et al. | Nov 2001 | A1 |
20020059114 | Cockrill et al. | May 2002 | A1 |
20020082989 | Fife et al. | Jun 2002 | A1 |
20020096570 | Wong et al. | Jul 2002 | A1 |
20020120583 | Keresman, III et al. | Aug 2002 | A1 |
20030034388 | Routhenstein et al. | Feb 2003 | A1 |
20030052168 | Wong | Mar 2003 | A1 |
20030057278 | Wong | Mar 2003 | A1 |
20030116635 | Taban | Jun 2003 | A1 |
20030152253 | Wong | Aug 2003 | A1 |
20030163287 | Vock et al. | Aug 2003 | A1 |
20030173409 | Vogt et al. | Sep 2003 | A1 |
20030179909 | Wong et al. | Sep 2003 | A1 |
20030179910 | Wong | Sep 2003 | A1 |
20030226899 | Finkelstein | Dec 2003 | A1 |
20040035942 | Silverman | Feb 2004 | A1 |
20040133787 | Doughty | Jul 2004 | A1 |
20040162732 | Rahim et al. | Aug 2004 | A1 |
20040172535 | Jakobsson | Sep 2004 | A1 |
20040177045 | Brown | Sep 2004 | A1 |
20050043997 | Sohata et al. | Feb 2005 | A1 |
20050080747 | Anderson et al. | Apr 2005 | A1 |
20050086160 | Wong et al. | Apr 2005 | A1 |
20050086177 | Anderson et al. | Apr 2005 | A1 |
20050116026 | Burger et al. | Jun 2005 | A1 |
20050119940 | Concilio et al. | Jun 2005 | A1 |
20050154643 | Doan et al. | Jul 2005 | A1 |
20050228959 | D'Albore et al. | Oct 2005 | A1 |
20060000900 | Fernandes et al. | Jan 2006 | A1 |
20060037073 | Juels et al. | Feb 2006 | A1 |
20060041759 | Kaliski et al. | Feb 2006 | A1 |
20060085328 | Cohen et al. | Apr 2006 | A1 |
20060091223 | Zellner | May 2006 | A1 |
20060161435 | Atef et al. | Jul 2006 | A1 |
20060163353 | Moulette et al. | Jul 2006 | A1 |
20060174104 | Crichton et al. | Aug 2006 | A1 |
20060196931 | Holtmanns et al. | Sep 2006 | A1 |
20060256961 | Brainard et al. | Nov 2006 | A1 |
20070034700 | Poidomani et al. | Feb 2007 | A1 |
20070114274 | Gibbs et al. | May 2007 | A1 |
20070124321 | Szydlo | May 2007 | A1 |
20070139802 | Kuribayashi et al. | Jun 2007 | A1 |
20070152070 | D'Albore | Jul 2007 | A1 |
20070152072 | Frallicciardi et al. | Jul 2007 | A1 |
20070153487 | Frallicciardi et al. | Jul 2007 | A1 |
20070174614 | Duane et al. | Jul 2007 | A1 |
20070192249 | Biffle et al. | Aug 2007 | A1 |
20070241183 | Brown et al. | Oct 2007 | A1 |
20070241201 | Brown et al. | Oct 2007 | A1 |
20070256123 | Duane et al. | Nov 2007 | A1 |
20070291753 | Romano | Dec 2007 | A1 |
20080005510 | Sepe et al. | Jan 2008 | A1 |
20080008315 | Fontana et al. | Jan 2008 | A1 |
20080008322 | Fontana et al. | Jan 2008 | A1 |
20080010675 | Massascusa et al. | Jan 2008 | A1 |
20080016351 | Fontana et al. | Jan 2008 | A1 |
20080019507 | Fontana et al. | Jan 2008 | A1 |
20080028447 | O'Malley et al. | Jan 2008 | A1 |
20080040271 | Hammad et al. | Feb 2008 | A1 |
20080040276 | Hammad et al. | Feb 2008 | A1 |
20080058016 | Di Maggio et al. | Mar 2008 | A1 |
20080059379 | Ramaci et al. | Mar 2008 | A1 |
20080096326 | Reed | Apr 2008 | A1 |
20080126398 | Cimino | May 2008 | A1 |
20080128515 | Di Iorio | Jun 2008 | A1 |
20080148394 | Poidomani et al. | Jun 2008 | A1 |
20080201264 | Brown et al. | Aug 2008 | A1 |
20080209550 | Di Iorio | Aug 2008 | A1 |
20080288699 | Chichierchia | Nov 2008 | A1 |
20080294930 | Varone et al. | Nov 2008 | A1 |
20080302877 | Musella et al. | Dec 2008 | A1 |
20090013122 | Sepe et al. | Jan 2009 | A1 |
20090036147 | Romano | Feb 2009 | A1 |
20090046522 | Sepe et al. | Feb 2009 | A1 |
20090108064 | Fernandes et al. | Apr 2009 | A1 |
20090150295 | Hatch et al. | Jun 2009 | A1 |
20090152365 | Li et al. | Jun 2009 | A1 |
20090242648 | Di Sirio et al. | Oct 2009 | A1 |
20090244858 | Di Sirio et al. | Oct 2009 | A1 |
20090253460 | Varone et al. | Oct 2009 | A1 |
20090255996 | Brown et al. | Oct 2009 | A1 |
20090290704 | Cimino | Nov 2009 | A1 |
20090303885 | Longo | Dec 2009 | A1 |
20110028184 | Cooper | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
05210770 | Aug 1993 | JP |
WO9852735 | Nov 1998 | WO |
WO0247019 | Jun 2002 | WO |
WO2006066322 | Jun 2006 | WO |
WO2006080929 | Aug 2006 | WO |
WO2006105092 | Oct 2006 | WO |
WO2006116772 | Nov 2006 | WO |
WO2008064403 | Jun 2008 | WO |
Entry |
---|
U.S. Appl. No. 60/594,300, Poidomani et al. |
U.S. Appl. No. 60/675,388, Poidomani et al. |
The Bank Credit Card Business. Second Edition, American Bankers Association, Washington, D.C., 1996. |
A Day in the Life of a Flux Reversal. http://www.phrack/org/issues.html?issue=37&id=6#article. As viewed on Apr. 12, 2010. |
Dynamic Virtual Credit Card Numbers. http://homes.cerias.purdue.edu/˜jtli/paper/fc07.pdf. As viewed on Apr. 12, 2010. |
English translation of JP 05210770 A. |
Number | Date | Country | |
---|---|---|---|
61562165 | Nov 2011 | US |