Data pipeline and deep learning system for autonomous driving

Information

  • Patent Grant
  • 11734562
  • Patent Number
    11,734,562
  • Date Filed
    Thursday, December 16, 2021
    3 years ago
  • Date Issued
    Tuesday, August 22, 2023
    a year ago
Abstract
An image captured using a sensor on a vehicle is received and decomposed into a plurality of component images. Each component image of the plurality of component images is provided as a different input to a different layer of a plurality of layers of an artificial neural network to determine a result. The result of the artificial neural network is used to at least in part autonomously operate the vehicle.
Description
BACKGROUND OF THE INVENTION

Deep learning systems used to implement autonomous driving typically rely on captured sensor data as input. In traditional learning systems, the captured sensor data is made compatible with a deep learning system by converting the captured data from a sensor format to a format compatible with the initial input layer of the learning system. This conversion may include compression and down-sampling that can reduce the signal fidelity of the original sensor data. Moreover, changing sensors may require a new conversion process. Therefore, there exists a need for a customized data pipeline that can maximize the signal information from the captured sensor data and provide a higher level of signal information to the deep learning network for deep learning analysis.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.



FIG. 1 is a flow diagram illustrating an embodiment of a process for performing machine learning processing using a deep learning pipeline.



FIG. 2 is a flow diagram illustrating an embodiment of a process for performing machine learning processing using a deep learning pipeline.



FIG. 3 is a flow diagram illustrating an embodiment of a process for performing machine learning processing using component data.



FIG. 4 is a flow diagram illustrating an embodiment of a process for performing machine learning processing using high-pass and low-pass component data.



FIG. 5 is a flow diagram illustrating an embodiment of a process for performing machine learning processing using high-pass, band-pass, and low-pass component data.



FIG. 6 is a block diagram illustrating an embodiment of a deep learning system for autonomous driving.





DETAILED DESCRIPTION

The invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.


A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.


A data pipeline that extracts and provides sensor data as separate components to a deep learning network for autonomous driving is disclosed. In some embodiments, autonomous driving is implemented using a deep learning network and input data received from sensors. For example, sensors affixed to a vehicle provide real-time sensor data, such as vision, radar, and ultrasonic data, of the vehicle's surrounding environment to a neural network for determining vehicle control responses. In some embodiments, the network is implemented using multiple layers. The sensor data is extracted into two or more different data components based on the signal information of the data. For example, feature and/or edge data may be extracted separate from global data such as global illumination data into different data components. The different data components retain the targeted relevant data, for example, data that will eventually be used to identify edges and other features by a deep learning network. In some embodiments, the different data components function as containers that store data highly relevant for identifying certain targeted features but do not themselves identify or detect the features. The different data components extract data to ensure accurate feature detection at an appropriate stage of a machine learning network. In some embodiments, the different data components may then be pre-processed to enhance the particular signal information that they contain. The data components can be compressed and/or down-sampled to increase resource and computational efficiency. The different data components are then provided to the deep learning system at different layers of the system. The deep learning network is able to accurately identify and detect the features associated with the targeted data (e.g., edges, objects, etc.) of the data component using the signal information retained during extraction as input. For example, feature and edge data is provided to the first layer of the network and global data to a later layer of the network. By extracting different data components that each retain their respective targeted signal information, the network more efficiently processes the sensor data. Instead of receiving the sensor data as an initial input to the network, the network is provided with the most useful information at the most appropriate layer of the network. In some embodiments, a more complete version of the captured sensor data is analyzed by the network since the different data components can fully utilize the image resolution of their respective components for their intended purposes. For example, input for features and edges can utilize the entire resolution, bit range, and bit depth for feature and edge data whereas input for global illumination can utilize the entire resolution, bit range, and bit depth for global illumination data.


In some embodiments, an image captured using a sensor on a vehicle is received. For example, an image is captured from a high dynamic range forward-facing camera. As another example, ultrasonic data is captured from a side-facing ultrasonic sensor. In some embodiments, the received image is decomposed into a plurality of component images. For example, feature data is extracted from a captured high dynamic range image. As another example, global illumination data is extracted from the captured high dynamic range image. As another example, the image may be decomposed using high-pass, low-pass, and/or band-pass filters. In some embodiments, each component image of the plurality of component images is provided as a different input to a different layer of a plurality of layers of an artificial neural network to determine a result. For example, an artificial neural network such as a convolutional neural network includes multiple layers for processing input data. The different component images decomposed from the captured image are presented as input to different layers of the neural network. For example, feature data is presented as input to the first layer of the network and global data is presented as input to a later layer (e.g., the third layer) of the network. In some embodiments, the result of the artificial neural network is used to at least in part autonomously operate the vehicle. For example, the result of deep learning analysis using the artificial neural network is used to control the steering, breaking, lighting, and/or warning systems of the vehicle. In some embodiments, the result is used to autonomously match the vehicle's speed to traffic conditions, steer the vehicle to follow a navigational path, avoid collisions when an object is detected, summon the vehicle to a desired location, and warn the user of potential collisions, among other autonomous driving applications.


In some embodiments, a vehicle is affixed with multiple sensors for capturing data. For example, in some embodiments, eight surround cameras are affixed to a vehicle and provide 360 degrees of visibility around the vehicle with a range of up to 250 meters. In some embodiments, camera sensors include a wide forward camera, a narrow forward camera, a rear view camera, forward looking side cameras, and/or rearward looking side cameras. In some embodiments, ultrasonic and radar sensors are used to capture surrounding details. For example, twelve ultrasonic sensors may be affixed to the vehicle to detect both hard and soft objects. In some embodiments, a forward-facing radar is utilized to capture data of the surrounding environment. In various embodiments, radar sensors are able to capture surrounding detail despite heavy rain, fog, dust, and other vehicles. The various sensors are used to capture the environment surrounding the vehicle and the captured image is provided for deep learning analysis.


Using data captured from sensors and analyzed using the disclosed deep learning system, a machine learning result is determined for autonomous driving. In various embodiments, the machine learning result is provided to a vehicle control module for implementing autonomous driving features. For example, a vehicle control module can be used to control the steering, braking, warning systems, and/or lighting of the vehicle. In some embodiments, the vehicle is controlled to navigate roads, match the speed of the vehicle to traffic conditions, keep the vehicle within a lane, automatically change lanes without requiring driver input, transition the vehicle from one freeway to another, exit the freeway when approaching a destination, self-park the vehicle, and summon the vehicle to and from a parking spot, among other autonomous driving applications. In some embodiments, the autonomous driving features include identifying opportunities to move the vehicle into a faster lane when behind slower traffic. In some embodiments, the machine learning result is used determine when autonomous driving without driver interaction is appropriate and when it should be disabled. In various embodiments, the machine learning result is used to assist a driver in driving the vehicle.


In some embodiments, the machine learning result is used to implement a self-parking mode where the vehicle will automatically search for a parking spot and park the vehicle. In some embodiments, the machine learning result is used to navigate the vehicle using a destination from a user's calendar. In various embodiments, the machine learning result is used to implement autonomous driving safety features such as collision avoidance and automatic emergency braking. For example, in some embodiments, the deep learning system detects objects that may impact with the vehicle and the vehicle control module applies the brakes accordingly. In some embodiments, the vehicle control module uses the deep learning analysis to implement a side, front, and/or rear collision warning that warns the user of the vehicle of potential collisions with obstacles alongside, in front, or behind the vehicle. In various embodiments, the vehicle control module can activate warning systems such as collision alerts, audio alerts, visual alerts, and/or physical alerts (such as vibration alerts), among others, to inform the user of an emergency situation or when the driver's attention is necessary. In some embodiments, the vehicle control module can initiate a communication response such as an emergency response call, a text message, a network update, and/or another communication response as appropriate, for example, to inform another party of an emergency situation. In some embodiments, the vehicle control module can adjust the lighting including the high/low beams, brake lights, interior light, emergency lights, etc. based on the deep learning analysis results. In some embodiments, the vehicle control module can further adjust the audio in or around the vehicle including using the horn, modifying the audio (e.g., music, phone calls, etc.) playing from the vehicle's sound system, adjusting the volume of the sound system, playing audio alerts, enabling a microphone, etc. based on deep learning analysis results.



FIG. 1 is a flow diagram illustrating an embodiment of a process for performing machine learning processing using a deep learning pipeline. For example, the process of FIG. 1 may be utilized to implement autonomous driving features for self-driving and driver-assisted automobiles to improve safety and to reduce the risk of accidents. In some embodiments, the process of FIG. 1 pre-processes data captured by sensors for deep learning analysis. By pre-processing the sensor data, the data provided for deep learning analysis is enhanced and results in a more accurate result for controlling a vehicle. In some embodiments, the pre-processing addresses data mismatches between data captured by sensors and data expected by a neural network for deep learning.


At 101, sensor data is received. For example, sensor data is captured by one or more sensors affixed to a vehicle. In some embodiments, the sensors are affixed to the environment and/or other vehicles and data is received remotely. In various embodiments, the sensor data is image data, such as RGB or YUV channels of an image. In some embodiments, the sensor data is captured using a high dynamic range camera. In some embodiments, the sensor data is radar, LiDAR, and/or ultrasonic data. In various embodiments, LiDAR data is data captured using laser light and may includes techniques referred to as Light Detection And Ranging as well as Laser Imaging, Detection and Ranging. In various embodiments, the bit depth of the sensor data exceeds the bit depth of the neural network for deep learning analysis.


At 103, data pre-processing is performed on the sensor data. In some embodiments, one or more pre-processing passes may be performed on the sensor data. For example, the data may be first pre-processed to remove noise, to correct for alignment issues and/or blurring, etc. In some embodiments, two or more different filtering passes are performed on the data. For example, a high-pass filter may be performed on the data and a low-pass filter may be performed on the data. In some embodiments, one or more band pass filters may be performed. For example, one or more band passes may be performed on the data in addition to a high-pass and a low-pass. In various embodiments, the sensor data is separated into two or more data sets such as a high-pass data set and a low-pass data set. In some embodiments, one or more band pass data sets are also created. In various embodiments, the different data sets are different components of the sensor data.


In some embodiments, the different components created by pre-processing the data include a feature and/or edge component and a global data component. In various embodiments, the feature and/or edge component is created by performing a high-pass or band-pass filter on the sensor data and the global data component is created by performing a low-pass or band-pass filter on the sensor data. In some embodiments, one or more different filter techniques may be used to extract feature/edge data and/or global data.


In various embodiments, one or more components of the sensor data are processed. For example, a high-pass component may be processed by removing noise from and/or enhancing local contrast for the image data. In some embodiments, the low-pass component is compressed and/or down-sampled. In various embodiments, different components are compressed and/or down-sampled. For example, components may be compressed, resized, and/or down-sampled as appropriate to adjust the size and/or resolution of the data for inputting the data to a layer of a machine learning model. In some embodiments, the bit depth of the sensor data is adjusted. For example, a data channel of a camera capturing data at 20-bits or another appropriate bit depth is compressed or quantized to 8-bits to prepare the channel for an 8-bit machine learning model. In some embodiments, one or more sensors capture data at a bit depth of 12-bits, 16-bits, 20-bits, 32-bits, or another appropriate bit depth that is larger than the bit depth used by the deep learning network.


In various embodiments, the pre-processing performed at 103 is performed by an image pre-processor. In some embodiments, the image pre-processor is a graphics processing unit (GPU), a central processing unit (CPU), an artificial intelligence (AI) processor, an image signal processor, a tone-mapper processor, or other similar hardware processor. In various embodiments, different image pre-processors are used to extract and/or pre-process different data components in parallel.


At 105, deep learning analysis is performed. For example, deep learning analysis is performed using a machine learning model such as an artificial neural network. In various embodiments, the deep learning analysis receives the processed sensor data for 103 as input. In some embodiments, the processed sensor data is received at 105 as multiple different components, such as a high-pass data component and a low-pass data component. In some embodiments, the different data components are received as inputs to different layers of the machine learning model. For example, a neural network receives a high-pass component as an initial input to the first layer of the network and a low-pass component as input to a subsequent layer of the network.


At 107, the results of the deep learning analysis are provided for vehicle control. For example, the results may be provided to a vehicle control module to adjust the speed and/or steering of the vehicle. In various embodiments, the results are provided to implement autonomous driving functionality. For example, the results may indicate an object that should be avoided by steering the vehicle. As another example, the results may indicate a merging car that should be avoided by braking and changing the vehicle's positioning in the lane.



FIG. 2 is a flow diagram illustrating an embodiment of a process for performing machine learning processing using a deep learning pipeline. For example, the process of FIG. 2 may be utilized to pre-process sensor data, extract image components from the sensor data, pre-process the extracted image components, and then provide the components for deep learning analysis. The results of deep learning analysis may be used to implement autonomous driving to improve safety and to reduce the risk of accidents. In some embodiments, the process of FIG. 2 is used to perform the process of FIG. 1. In some embodiments, step 201 is performed at 101 of FIG. 1; steps 203, 205, 207, and/or 209 are performed at 103 of FIG. 1; and/or step 211 is performed at 105 and/or 107 of FIG. 1. By processing the extracted components of the sensor data, the processed data provided to a machine learning model is enhanced to achieve superior results from deep learning analysis rather than using otherwise non-enhanced data. In the example shown, the results of the deep learning analysis are used for vehicle control.


At 201, sensor data is received. In various embodiments, the sensor data is image data captured from a sensor such as a high dynamic range camera. In some embodiments, the sensor data is captured from one or more different sensors. In some embodiments, the image data is captured using a 12-bit or higher bit depth to increase the fidelity of the data.


At 203, the data is pre-processed. In some embodiments, the data is pre-processed using an image pre-processor such as an image signal processor, a graphics processing unit (GPU), a tone-mapper processor, a central processing unit (CPU), an artificial intelligence (AI) processor, or other similar hardware processor. In various embodiments, linearization, demosaicing, and/or another processing techniques may be performed on the captured sensor data. In various embodiments, pre-processing is performed on the high-resolution sensor data to enhance the fidelity of the captured data and/or to reduce the introduction of errors by subsequent steps. In some embodiments, the pre-processing step is optional.


At 205, one or more image components are extracted. In some embodiments, two image components are extracted. For example, a feature/edge data component of the sensor data is extracted and a global data component of the sensor data is extracted. In some embodiments, a high-pass component and a low-pass component of the sensor data are extracted. In some embodiments, one or more additional band-pass components are extracted from the sensor data. In various embodiments, high-pass, low-pass, and/or band-pass filters are used to extract different components of the sensor data. In some embodiments, the image components are extracted using a tone mapper. In some embodiments, the global data and/or low-pass component data is extracted by down-sampling the sensor data using a binning or similar technique. In various embodiments, the extraction retains and saves the targeted signal information as an image data component but does not actually detect or identify the features related to the targeted information. For example, the extraction of an image component corresponding to edge data results in an image component with targeted signal information for accurately identifying edges but the extraction performed at 205 does not detect the existence of edges in the sensor data.


In some embodiments, the image data component extracted for a first layer of a machine learning network is extracted using a process that preserves the response of the first layer of the deep learning analysis. For example, the relevant signal information for the first layer is preserved such that the result of the analysis performed on the image component after the analysis of the first layer is similar to the analysis performed on the corresponding sensor data prior to extraction into image components. In various embodiments, the results are preserved for filters as small as a 5×5 matrix filter.


In some embodiments, an extracted data component is created by combining multiple channels of the captured image into one or more channels. For example, red, green, and blue channels may be averaged to create a new channel for a data component. In various embodiments, an extracted data component may be constructed from one or more different channels of the source capture data and/or one or more different captured images of different sensors. For example, data from multiple sensors may be combined into a single data component.


In some embodiments, an image pre-processor such as the pre-processor of step 203 is used to extract the different components. In some embodiments, an image signal processor may be used to extract the different components. In various embodiments, a graphics processing unit (GPU) may be used to extract the different components. In some embodiments, a different pre-processor is used to extract different components so that multiple components can be extracted in parallel. For example, an image signal processor may be used to extract a high-pass component and a GPU may be used to extract a low-pass component. As another example, an image signal processor may be used to extract a low-pass component and a GPU may be used to extract a high-pass component. In some embodiments, a tone-mapper processor is used to extract an image component (such as a high-pass component) and a GPU is used to extract a separate image component (such as a low-pass component) in parallel. In some embodiments, the tone-mapper is part of an image signal processor. In some embodiments, multiple instances of similar pre-processors exist to perform extractions in parallel.


At 207, component pre-processing is performed. In some embodiments, an image pre-processor such as the pre-processor of step 203 and/or 205 is used to pre-process one or more components. In some embodiments, a different pre-processor is used to pre-process different components so that the pre-processing can be performed on the different components in parallel. For example, an image signal processor may be used to process a high-pass component and a graphics processing unit (GPU) may be used to process a low-pass component. In some embodiments, a tone-mapper processor is used to process one image component and a GPU is used to process a separate image component in parallel. In some embodiments, multiple instances of similar pre-processors exist for processing different components in parallel.


In various embodiments, the pre-processing includes down-sampling and/or compressing the image component data. In some embodiments, the pre-processing includes removing noise from the component data. In some embodiments, the pre-processing includes compressing or quantizing the captured data from 20-bit down to 8-bit data fields. In some embodiments, the pre-processing includes converting the size of the image component to a lower resolution. For example, an image component may be half, a quarter, an eighth, a sixteenth, one thirty-second, one sixty-fourth, or another appropriate scaling of the original sensor image size. In various embodiments, an image component is reduced to a size appropriate to the input layer of the machine learning model.


At 209, components are provided to the appropriate network layer of the deep learning network. For example, different components may be provided to different layers of the network. In some embodiments, the network is a neural network with multiple layers. For example, the first layer of a neural network receives as input high-pass component data. One of the subsequent network layers receives as input low-pass component data corresponding to global illumination data. In various embodiments, the different components extracted at 205 and pre-processed at 207 are received at different layers of the neural network. As another example, a feature and/or edge data component is provided as input to the first layer of a deep learning network such as an artificial neural network. A global data component is provided to a subsequent layer and can be provided as a compressed and/or down-sampled version of the data since the global data does not require as much precision as feature and/or edge component data. In various embodiments, global data is more easily compressed without losing information and can be provided at a later layer of the network.


In some embodiments, the machine learning model is made up of multiple sequential layers where the one or more subsequent layers receive input data that has a size property that is smaller in size than a previous layer. For example, the first layer to a network may receive an image size similar to the capture image size. Subsequent layers may receive input data that is a half or a quarter of the capture image size. The reduction in input data size reduces the computation of subsequent layers and improves the efficiency of the deep learning analysis. By providing the sensor input data as different components and at different layers, computational efficiency is increased. Earlier layers of the network require increased computation in particular because the amount of data and the data size is larger than subsequent layers. Subsequent layers may be more efficient to compute since the input data has been compressed by previous layers of the network and/or the pre-processing at 207.


At 211, results of the deep learning analysis are provided for vehicle control. For example, machine learning results using the processed image components may be utilized to control a vehicle's movement. In some embodiments, the results correspond to vehicle control actions. For example, results may correspond to the speed and steering of the vehicle. In some embodiments, the results are received by a vehicle control module used to help maneuver the vehicle. In some embodiments, the results are utilized to improve the safety of the vehicle. In various embodiments, the results provided at 211 are determined by performing a deep learning analysis on the components provided at 209.



FIG. 3 is a flow diagram illustrating an embodiment of a process for performing machine learning processing using component data. In the example shown, the process of FIG. 3 is used to extract feature and edge data from sensor data separate from global data. The two data sets are then fed into a deep learning network at different stages to infer vehicle control results. By separating the two components and providing them at different stages, the initial layers of the network can dedicate computational resources to initial edges and feature detection. In some embodiments, the initial stages dedicate resources to the initial identification of the objects such as roads, lane markers, obstacles, vehicles, pedestrians, traffic signs, etc. Subsequent layers can utilize the global data in a more computational efficient manner since the global data is less resource intensive. Since machine learning can be computational and data intensive, a data pipeline utilizing different image components at different stages is utilized to increase the efficiency of the deep learning computation and to reduce data resource requirements needed for the analysis. In some embodiments, the process of FIG. 3 is used to perform the process of FIG. 1 and/or FIG. 2. In some embodiments, step 301 is performed at 101 of FIG. 1 and/or at 201 of FIG. 2; step 303 is performed at 103 of FIG. 1 and/or at 203 of FIG. 2; steps 311 and/or 321 are performed at 103 of FIG. 1 and/or at 205 of FIG. 2; steps 313, 323, and/or 325 are performed at 103 of FIG. 1 and/or at 207 and 209 of FIG. 2; steps 315 and/or 335 are performed at 105 of FIG. 1 and/or at 211 of FIG. 2; and/or step 337 is performed at 107 of FIG. 1 and/or at 211 of FIG. 2.


At 301, sensor data is received. In various embodiments, the sensor data is data captured by one or more sensors of the vehicle. In some embodiments, the sensor data is received as described with respect to step 101 of FIG. 1 and/or step 201 of FIG. 2.


At 303, data pre-processing is performed. For example, the sensor data is enhanced by pre-processing the data. In some embodiments, the data is cleaned up, for example, by performing a de-noising, alignment, or other appropriate filter. In various embodiments, the data is pre-processed as described with respect to step 103 of FIG. 1 and/or step 203 of FIG. 2. In the example shown, processing continues to steps 311 and 321. In some embodiments, processing at 311 and 321 are run in parallel to extract and process different components of the sensor data. In some embodiments, each branch of processing (e.g., the branch starting at 311 and the branch starting at 321) is run sequentially or pipelined. For example, processing is performed starting with step 311 to prepare data for the initial layers of a network. In some embodiments, the pre-processing step is optional.


At 311, feature and/or edge data is extracted from the sensor data. For example, feature data and/or edge data is extracted from the captured sensor data into a component data. In some embodiments, the component data retains the relevant signal information from the sensor data for identifying features and/or edges. In various embodiments, the extraction process preserves the signal information critical for identifying and detecting features and/or edges and does not actually identify or detect the features or edges from the sensor data. In various embodiments, the features and/or edges are detected during one or more analysis steps at 315 and/or 335. In some embodiments, the extracted feature and/or edge data has the same bit depth as the original captured data. In some embodiments, the extracted data is feature data, edge data, or a combination of feature and edge data. In some embodiments, a high-pass filter is used to extract feature and/or edge data from the sensor data. In various embodiments, a tone-mapper processor is calibrated to extract feature and/or edge data from the sensor data.


At 313, pre-processing is performed on the feature and/or edge data. For example, a de-noising filter may be applied to the data to improve the signal quality. As another example, different pre-processing techniques such as local contrast enhancement, gain adjustment, thresholding, noise filtering, etc. may be applied to enhance the feature and edge data prior to deep learning analysis. In various embodiments, the pre-processing is customized to enhance the feature and edge properties of the data rather than applying a more generic pre-processing technique to the sensor data as a whole. In some embodiments, the pre-processing includes performing a compression and/or down-sampling on the extracted data. In some embodiments, the pre-processing step at 313 is optional.


At 315, an initial analysis is performed using the feature and/or edge data. In some embodiments, the initial analysis is a deep learning analysis using a machine learning model such as a neural network. In various embodiments, the initial analysis receives the feature and edge data as input to the first layer of the network. In some embodiments, the initial layer of the network prioritizes the detection of features and/or edges in the captured image. In various embodiments, the deep learning analysis is performed using an artificial neural network such as a convolutional neural network. In some embodiments, the analysis is run on an artificial intelligence (AI) processor.


At 321, global data is extracted from the sensor data. For example, global data is extracted from the captured sensor data into a component data. In some embodiments, the global data corresponds to global illumination data. In some embodiments, the extracted global data has the same bit depth as the original captured data. In some embodiments, a low-pass filter is used to extract global data from the sensor data. In various embodiments, a tone-mapper processor is calibrated to extract global data from the sensor data. Other techniques, such as binning, resampling, and down-sampling may also be used to extract global data. In various embodiments, the extraction process retains data likely to be globally relevant and does not identify and detect the global features from the sensor data. In various embodiments, the global features are detected by the analysis performed at 335.


At 323, pre-processing is performed on the global data. For example, a de-noising filter may be applied to the data to improve the signal quality. As another example, different pre-processing techniques such as local contrast enhancement, gain adjustment, thresholding, noise filtering, etc. may be applied to enhance the global data prior to deep learning analysis. In various embodiments, the pre-processing is customized to enhance the properties of the global data rather than applying a more generic pre-processing technique to the sensor data as a whole. In some embodiments, the pre-processing of the global data includes compressing the data. In some embodiments, the pre-processing step at 323 is optional.


At 325, the global data is down-sampled. For example, the resolution of the global data is reduced. In some embodiments, the global data is reduced in size to improve the computational efficiency of analyzing the data and to configure the global data as input to a later layer of the deep learning network. In some embodiments, the global data is down-sampled by binning, resampling, or another appropriate technique. In some embodiments, the down-sampling is performed using a graphical processing unit (GPU) or an image signal processor. In various embodiments, down-sampling is appropriate for global data since the global data does not have the same resolution requirements as feature and/or edge data. In some embodiments, the down-sampling performed at 325 is performed when the global data is extracted at 321.


At 335, additional deep learning analysis is performed using results of the deep learning analysis on the feature and/or edge data and the global data as input. In various embodiments, the deep learning analysis receives as input the global data at a later layer of the deep learning network. In various embodiments, the expected input data size at the layer receiving the global data is smaller than the expected input data size of the initial input layer. For example, the input size for the global data input layer may be a half or a quarter of the input size for the initial layer of the deep learning network. In some embodiments, the later layers of the network utilize global data to enhance the results of the initial layers. In various embodiments, the deep learning analysis is performed and a vehicle control result is determined. For example, a vehicle control result is determined using a convolutional neural network. In some embodiments, the analysis is run on an artificial intelligence (AI) processor.


At 337, the results of deep learning analysis are provided for vehicle control. For example, machine learning results using the extracted and processed image components are utilized to control a vehicle's movement. In some embodiments, the results correspond to vehicle control actions. In some embodiments, the results are provided as described with respect to step 107 of FIG. 1 and/or step 211 of FIG. 2.



FIG. 4 is a flow diagram illustrating an embodiment of a process for performing machine learning processing using high-pass and low-pass component data. In the example shown, the process of FIG. 4 is used to extract two data components from sensor data and to provide the components to different layers of a deep learning network such as an artificial neural network. The two components are extracted using a high-pass and low-pass filter. In various embodiments, the results are used to implement autonomous driving with improved precision, safety, and/or comfort results. In some embodiments, the process of FIG. 4 is used to perform the process of FIGS. 1, 2, and/or 3. In some embodiments, step 401 is performed at 103 of FIG. 1, at 203 of FIG. 2, and/or at 303 of FIG. 3; step 403 is performed at 103 of FIG. 1, at 205 of FIG. 2, and/or at 311 of FIG. 3; step 413 is performed at 103 of FIG. 1, at 205 of FIG. 2, and/or at 321 of FIG. 3; step 405 is performed at 103 of FIG. 1, at 207 and 209 of FIG. 2, and/or at 313 of FIG. 3; steps 415 and 417 are performed at 103 of FIG. 1, at 207 and 209 of FIG. 2, and/or at 323 and 325 of FIG. 3; step 407 is performed at 105 of FIG. 1, at 211 of FIG. 2, and/or at 315 of FIG. 3; and/or step 421 is performed at 105 of FIG. 1, at 211 of FIG. 2, and/or at 335 of FIG. 3.


At 401, data is pre-processed. In some embodiments, the data is the sensor data captured from one or more sensors such as high dynamic range camera, radar, ultrasonic, and/or LiDAR sensors. In various embodiments, the data is pre-processed as described with respect to 103 of FIG. 1, 203 of FIG. 2, and/or 303 of FIG. 3. Once the data is pre-processed, processing continues to 403 and 413. In some embodiments, steps 403 and 413 are run in parallel.


At 403, a high-pass filter is performed on the data. For example, a high-pass filter is performed on the captured sensor data to extract high-pass component data. In some embodiments, the high-pass filter is performed using a graphics processing unit (GPU), a tone-mapper processer, an image signal processor, or other image pre-processor. In some embodiments, the high-pass data component represents features and/or edges of the captured sensor data. In various embodiments, the high-pass filter is constructed to preserve the response of the first layer of a deep learning process. For example, a high-pass filter is constructed to preserve the response to a small filter at the top of a machine learning network. The relevant signal information for the first layer of the network is preserved such that the result of the analysis performed on a high-pass component data after the first layer is similar to the analysis performed on non-filtered data after the first layer. In various embodiments, the results are preserved for filters as small as a 5×5 matrix filter.


At 413, a low-pass filter is performed on the data. For example, a low-pass filter is performed on the captured sensor data to extract low-pass component data. In some embodiments, the low-pass filter is performed using a graphics processing unit (GPU), a tone-mapper processer, an image signal processor, or other image pre-processor. In some embodiments, the low-pass data component represents global data of the captured sensor data such as global illumination data.


In various embodiments, the filtering performed at 403 and 413 may use the same or different image pre-processors. For example, a tone-mapper processor is used to extract a high-pass data component and a graphics processing unit (GPU) is used to extract a low-pass data component. In some embodiments, the high-pass or low-pass data is extracted by subtracting one of the data components from the original captured data.


At 405 and 415, post-processing is performed on the respective high-pass and low-pass data components. In various embodiments, different post-processing techniques are utilized to enhance the signal quality and/or to reduce the amount of data required to represent the data. For example, a de-noising, demosaicing, local contrast enhancement, gain adjustment, and/or thresholding process, among others, may be performed on the respective high-pass and/or low-pass data components. In some embodiments, the data components are compressed and/or down-sampled. For example, once the high-pass and/or low-pass data is extracted, the respective data components may be compressed to more efficiently utilize the entire bit depth range. In some embodiments, the respective data components are compressed or quantized from a higher bit depth as captured by sensors to a lower bit depth compatible with the deep learning network. For example, a sensor data captured at 12-bits, 16-bits, 20-bits, 32-bits, or another appropriate bit depth per channel may be compressed or quantized to a lower bit depth such as 8-bits per channel. In some embodiments, the post-processing steps at 405 and/or 415 are optional.


At 417, the low-pass data component is down-sampled. In various embodiments, the low-pass data component is fed into the network at a later stage of the network and may be down-sampled to a more efficient resource size. For example, a low-pass data component may be extracted at the full sensor size and reduced to a half or a quarter of the original size. Other percentages of reductions are possible as well. In various embodiments, the low-pass data is down-sampled but retains the relevant signal information. In many scenarios, the low-pass data can be easily down-sampled without losing signal information. By down-sampling the data, the data is more easily and quickly analyzed at a later layer in the deep learning network.


At 407, deep learning analysis is performed on the high-pass data component. In some embodiments, the high-pass data component is fed into the initial layer of the deep learning network and represents the most significant data for feature and edge detection. In various embodiments, the results of the deep learning analysis on the first layer using the high-pass data component are fed into subsequent layers of the network. For example, a neural network may include multiple layers, for example, five or more layers. The first layer receives the high-pass data component as input and the second layer receives the results of the deep learning analysis performed by the first layer. In various embodiments, the second or later layer receives the low-pass data components as additional input to perform additional deep learning analysis.


At 421, additional deep learning analysis is performed using the results of the analysis performed at 407 and the low-pass data component down-sampled at 417. In various embodiments, the deep learning analysis infers a vehicle control result. For example, the result of the deep learning analysis at 407 and 421 is used to control the vehicle for autonomous driving.



FIG. 5 is a flow diagram illustrating an embodiment of a process for performing machine learning processing using high-pass, band-pass, and low-pass component data. In the example shown, the process of FIG. 5 is used to extract three or more data components from sensor data and to provide the components at different layers of a deep learning network such as an artificial neural network. Similar to the process of FIG. 4, a high-pass and low-pass component is extracted. In addition, the process of FIG. 5 extracts one or more band-pass data components. In various embodiments, the decomposition of the sensor data into multiple components that are provided to different layers of the deep learning network allows the deep learning analysis to emphasize different sets of data at different layers of the network.


In some embodiments, the process of FIG. 5 is used to perform the process of FIGS. 1, 2, 3, and/or 4. In some embodiments, step 501 is performed at 103 of FIG. 1, at 203 of FIG. 2, at 303 of FIG. 3, and/or at 401 of FIG. 4. In some embodiments, step 503 is performed at 103 of FIG. 1, at 205 of FIG. 2, at 311 of FIG. 3, and/or at 403 of FIG. 4; step 513 is performed at 103 of FIG. 1, at 205 of FIG. 2, and/or at 311 or 321 of FIG. 3; and/or step 523 is performed at 103 of FIG. 1, at 205 of FIG. 2, at 321 of FIG. 3, and/or at 413 of FIG. 4. In some embodiments, step 505 is performed at 103 of FIG. 1, at 207 and 209 of FIG. 2, at 313 of FIG. 3, and/or at step 405 of FIG. 4; step 515 is performed at 103 of FIG. 1, at 207 and 209 of FIG. 2, at 313, 323 and/or 325 of FIG. 3, and/or at 405, 415, and/or 417 of FIG. 4; and/or step 525 is performed at 103 of FIG. 1, at 207 and 209 of FIG. 2, at 323 and 325 of FIG. 3, and/or at 415 and 417 of FIG. 4. In some embodiments, step 537 is performed at 105 of FIG. 1, at 211 of FIG. 2, at 315 and 335 of FIG. 3; and/or at 407 and 421 of FIG. 4.


At 501, data is pre-processed. In some embodiments, the data is the sensor data captured from one or more sensors such as high dynamic range camera, radar, ultrasonic, and/or LiDAR sensors. In various embodiments, the data is pre-processed as described with respect to 103 of FIG. 1, 203 of FIG. 2, 303 of FIG. 3, and/or 401 of FIG. 4. Once the data is pre-processed, processing continues to 503, 513, and 523. In some embodiments, steps 503, 513, and 523 are run in parallel.


At 503, a high-pass filter is performed on the data. For example, a high-pass filter is performed on the captured sensor data to extract high-pass component data. In some embodiments, the high-pass filter is performed using a graphics processing unit (GPU), a tone-mapper processer, an image signal processor, or another image pre-processor. In some embodiments, the high-pass data component represents features and/or edges of the captured sensor data.


At 513, one or more band-pass filters are performed on the data to extract one or more band-pass data components. For example, a band-pass filter is performed on the captured sensor data to extract component data that includes a mix of feature, edge, intermediate, and/or global data. In various embodiments, one more band-pass components may be extracted. In some embodiments, the low-pass filter is performed using a graphics processing unit (GPU), a tone-mapper processer, an image signal processor, or another image pre-processor. In some embodiments, the band-pass data component represents data that is neither primarily edge/feature data nor primarily global data of the captured sensor data. In some embodiments, the band-pass data is utilized to preserve data fidelity that may be lost using only a high-pass data component and a low-pass data component.


At 523, a low-pass filter is performed on the data. For example, a low-pass filter is performed on the captured sensor data to extract low-pass component data. In some embodiments, the low-pass filter is performed using a graphics processing unit (GPU), a tone-mapper processer, an image signal processor, or other image pre-processor. In some embodiments, the low-pass data component represents global data of the captured sensor data such as global illumination data.


In various embodiments, the filtering performed at 503, 513, and 523 may use the same or different image pre-processors. For example, a tone-mapper processor is used to extract a high-pass data component and a graphics processing unit (GPU) is used to extract band-pass, and/or low-pass data components. In some embodiments, data components are extracted by subtracting one or more data components from the original captured data.


At 505, 515, and 525, post-processing is performed on the respective high-pass, band-pass, and low-pass data components. In various embodiments, different post-processing techniques are utilized to enhance the signal quality and/or to reduce the amount of data required to represent the data. In some embodiments, the different components are compressed and/or down-sampled to the appropriate size for the network layer receiving the data component. In various embodiments, the high-pass data will have a higher resolution than the band-pass data and the band-pass data will have a higher resolution than the low-pass data. In some embodiments, different band-pass data components will also have different resolutions as appropriate for the network layer each is provided as input for. In some embodiments, the respective data components are compressed or quantized from a higher bit depth as captured by sensors to a lower bit depth compatible with the deep learning network. For example, a sensor data captured at 12-bits per channel may be compressed or quantized to 8-bits per channel. In various embodiments, the pre-processing filters are applied as described with respect to 207 of FIG. 2 and/or 405, 415, and/or 417 of FIG. 4.


At 537, deep learning analysis is performed using the data component results of 505, 515, and 525. In some embodiments, the high-pass data component is fed into the initial layer of the deep learning network and represents the most significant data for feature and edge detection. The one or more band-pass data components are fed into middle layer(s) of the network and include additional data for identifying features/edges and/or beneficial intermediate or global information. The low-pass data component is fed into a later layer of the network and includes global information to improve the analysis results of the deep learning network. In performing the deep learning analysis, additional data components representing different sensor data are fed into different layers as the analysis progresses to increase the accuracy of the result. In various embodiments, the deep learning analysis infers a vehicle control result. For example, the result of the deep learning analysis is used to control the vehicle for autonomous driving. In some embodiments, a machine learning result is provided to a vehicle control module to at least in part autonomously operate a vehicle.



FIG. 6 is a block diagram illustrating an embodiment of a deep learning system for autonomous driving. In some embodiments, the deep learning system of FIG. 6 may be used to implement autonomous driving features for self-driving and driver-assisted automobiles. For example, using sensors affixed to a vehicle, sensor data is captured, processed as different input components, and fed into different stages of a deep learning network. The result of deep learning analysis is used by a vehicle control module to assist in the operation of the vehicle. In some embodiments, the vehicle control module is utilized for self-driving or driver-assisted operation of the vehicle. In various embodiments, the processes of FIGS. 1-5 utilize a deep learning system such as the one described in FIG. 6.


In the example shown, deep learning system 600 is a deep learning network that includes sensors 601, image pre-processor 603, deep learning network 605, artificial intelligence (AI) processor 607, vehicle control module 609, and network interface 611. In various embodiments, the different components are communicatively connected. For example, sensor data from sensors 601 is fed to image pre-processor 603. Processed sensor data components of image pre-processor 603 are fed to deep learning network 605 running on AI processor 607. The output of deep learning network 605 running on AI processor 607 is fed to vehicle control module 609. In various embodiment, network interface 611 is used to communicate with remote servers, to make phone calls, to send and/or receive text messages, etc. based on the autonomous operation of the vehicle.


In some embodiments, sensors 601 include one or more sensors. In various embodiments, sensors 601 may be affixed to a vehicle, at different locations of the vehicle, and/or oriented in one or more different directions. For example, sensors 601 may be affixed to the front, sides, rear, and/or roof, etc. of the vehicle in forward-facing, rear-facing, side-facing, etc. directions. In some embodiments, sensors 610 may be image sensors such as high dynamic range cameras. In some embodiments, sensors 601 include non-visual sensors. In some embodiments, sensors 601 include radar, LiDAR, and/or ultrasonic sensors, among others. In some embodiments, sensors 601 are not mounted to the vehicle with vehicle control module 609. For example, sensors 601 may be mounted on neighboring vehicles and/or affixed to the road or environment and are included as part of a deep learning system for capturing sensor data.


In some embodiments, image pre-processor 603 is used to pre-process sensor data of sensors 601. For example, image pre-processor 603 may be used to pre-process the sensor data, split sensor data into one or more components, and/or post-process the one or more components. In some embodiments, image pre-processor 603 is a graphics processing unit (GPU), a central processing unit (CPU), an image signal processor, or a specialized image processor. In various embodiments, image pre-processor 603 is a tone-mapper processor to process high dynamic range data. In some embodiments, image pre-processor 603 is implemented as part of artificial intelligence (AI) processor 607. For example, image pre-processor 603 may be a component of AI processor 607.


In some embodiments, deep learning network 605 is a deep learning network for implementing autonomous vehicle control. For example, deep learning network 605 may be an artificial neural network such as a convolutional neural network (CNN) that is trained using sensor data and used to output vehicle control results to vehicle control module 609. In various embodiments, deep learning network 605 is a multi-stage learning network and can receive input data at two or more different stages of the network. For example, deep learning network 605 may receive feature and/or edge data at a first layer of deep learning network 605 and global data at a later layer (e.g., a second or third, etc. layer) of deep learning network 605. In various embodiments, deep learning network 605 receives data at two or more different layers of the network and may compress and/or downsize the data as it is processed through different layers. For example, the data size at layer one is a resolution that is higher than the data at a subsequent stage. In some embodiments, the data size at layer one is the full resolution of the captured image data and the data at a subsequent layer is a lower resolution (e.g., a quarter of the size) of the captured image data. In various embodiments, the input data received from image pre-processor 603 at subsequent layer(s) of deep learning network 605 matches the internal data resolution(s) of the data that is processed through the one or more previous layers.


In some embodiments, artificial intelligence (AI) processor 607 is a hardware processor for running deep learning network 605. In some embodiments, AI processor 607 is a specialized AI processor for performing inference using a convolutional neural network (CNN) on sensor data. In some embodiments, AI processor 607 is optimized for the bit depth of the sensor data. In some embodiments, AI processor 607 is optimized for deep learning operations such as neural network operations including convolution, dot-product, vector, and/or matrix operations, among others. In some embodiments, AI processor 607 is implemented using a graphics processing unit (GPU). In various embodiments, AI processor 607 is coupled to memory that is configured to provide the AI processor with instructions which when executed cause the AI processor to perform deep learning analysis on the received input sensor data and to determine a machine learning result used to at least in part autonomously operate a vehicle.


In some embodiments, vehicle control module 609 is utilized to process the output of artificial intelligence (AI) processor 607 and to translate the output into a vehicle control operation. In some embodiments, vehicle control module 609 is utilized to control the vehicle for autonomous driving. In some embodiments, vehicle control module 609 can adjust the speed and/or steering of the vehicle. For example, vehicle control module 609 may be used to control a vehicle by braking, steering, changing lanes, accelerating and merging into another lane, etc. In some embodiments, vehicle control module 609 is used to control vehicle lighting such as brake lights, turns signals, headlights, etc. In some embodiments, vehicle control module 609 is used to control vehicle audio conditions such as the vehicle's sound system, playing audio alerts, enabling a microphone, enabling the horn, etc. In some embodiments, vehicle control module 609 is used to control notification systems including warning systems to inform the driver and/or passengers of driving events such as a potential collision or the approach of an intended destination. In some embodiments, vehicle control module 609 is used to adjust sensors such as sensors 601 of a vehicle. For example, vehicle control module 609 may be used to change parameters of one or more sensors such as modifying the orientation, changing the output resolution and/or format type, increasing or decreasing the capture rate, adjusting the captured dynamic range, adjusting the focus of a camera, enabling and/or disabling a sensor, etc. In some embodiments, vehicle control module 609 may be used to change parameters of image pre-processor 603 such as modifying the frequency range of filters, adjusting feature and/or edge detection parameters, adjusting channels and bit depth, etc. In various embodiments, vehicle control module 609 is used to implement self-driving and/or driver-assisted control of a vehicle.


In some embodiments, network interface 611 is a communication interface for sending and/or receiving data including voice data. In various embodiments, a network interface 611 includes a cellular or wireless interface for interfacing with remote servers, to connect and make voice calls, to send and/or receive text messages, etc. For example, network interface 611 may be used to receive an update for the instructions and/or operating parameters for sensors 601, image pre-processor 603, deep learning network 605, AI processor 607, and/or vehicle control module 609. For example, a machine learning model of deep learning network 605 may be updated using network interface 611. As another example, network interface 611 may be used to update firmware of sensors 601 and/or operating parameters of image pre-processor 603 such as image processing parameters. In some embodiments, network interface 611 is used to make emergency contact with emergency services in the event of an accident or near-accident. For example, in the event of a collision, network interface 611 may be used to contact emergency services for help and may inform the emergency services of the location of the vehicle and collision details. In various embodiments, network interface 611 is used to implement autonomous driving features such as accessing calendar information to retrieve and/or update a destination location and/or expected arrival time.


Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.

Claims
  • 1. A method, comprising: receiving an image captured using a sensor on a vehicle;extracting a global data component and a feature data component from the image which form input data, wherein the global data component is associated with global illumination data and the feature data component is associated with edge data;providing the input data to a convolutional neural network comprising a plurality of layers, wherein the plurality of layers are sequential and form respective portions of the convolutional neural network, wherein the feature data component is provided as input to a first layer of the plurality of layers, wherein the global data component and an intermediate result output from a prior layer are provided as input to a second layer of the plurality of layers, and wherein the second layer is subsequent to the first layer; andobtaining, based on a result of the convolutional neural network, information indicating a vehicle control result which informs autonomous operation of the vehicle.
  • 2. The method of claim 1, wherein subsequent to extraction, the global data component is downsampled, and wherein the downsampled global data component is provided as input to the second layer.
  • 3. The method of claim 1, wherein a denoising filter is applied to the extracted global data component.
  • 4. The method of claim 1, wherein the global data component is extracted via a low-pass filter.
  • 5. The method of claim 1, wherein the feature data component is extracted via a high-pass filter.
  • 6. The method of claim 1, wherein one or more of de-noising, demosaicing, local contrast enhancement, gain adjustment, and/or a thresholding process are performed on at least a portion of the input data.
  • 7. The method of claim 1, wherein the first layer is an initial layer of the convolutional neural network.
  • 8. The method of claim 1, wherein a third data component is extracted from the image via a band-pass filter, and wherein the third data component forms part of the input data.
  • 9. The method of claim 1, wherein the third data component is provided to a third layer of the convolutional neural network, and wherein the third layer is subsequent to the first layer and prior to the second layer.
  • 10. The method of claim 1, wherein the vehicle control result is associated with one or more of braking, steering, changing lanes, accelerating, and/or merging into a different lane.
  • 11. A computer program product, the computer program product being embodied in a is non-transitory computer readable storage medium and comprising computer instructions for: receiving an image captured using a sensor on a vehicle;extracting a global data component and a feature data component from the image which form input data, wherein the global data component is associated with global illumination data and the feature data component is associated with edge data;providing the input data to a convolutional neural network comprising a plurality of layers, wherein the plurality of layers are sequential and form respective portions of the convolutional neural network, wherein the feature data component is provided as input to a first layer of the plurality of layers, wherein the global data component and an intermediate result output from a prior layer are provided as input to a second layer of the plurality of layers, and wherein the second layer is subsequent to the first layer; andobtaining, based on a result of the convolutional neural network, information indicating a vehicle control result which informs autonomous operation of the vehicle.
  • 12. The computer program product of claim 11, wherein subsequent to extraction, the global data component is downsampled, and wherein the downsampled global data component is provided as input to the second layer.
  • 13. The computer program product of claim 11, wherein the global data component is extracted via a low-pass filter.
  • 14. The computer program product of claim 11, wherein the feature data component is extracted via a high-pass filter.
  • 15. The computer program product of claim 11, wherein a third data component is extracted from the image via a band-pass filter, and wherein the third data component forms part of the input data.
  • 16. A system, comprising: a plurality of sensors on a vehicle;one or more processors and computer storage media storing instructions that when executed by the processors, cause the processors to:receive at least one image from at least one of the sensors;extract a global data component and a feature data component from the at least one image which form input data, wherein the global data component is associated with global illumination data and the feature data component is associated with edge data;provide the input data to a convolutional neural network comprising a plurality of layers, wherein the plurality of layers are sequential and form respective portions of the convolutional neural network, wherein the feature data component is provided as input to a first layer of the plurality of layers, wherein the global data component and an intermediate result output from a prior layer are provided as input to a second layer of the plurality of layers, and wherein the second layer is subsequent to the first layer; andobtain, based on a result of the convolutional neural network, information indicating a vehicle control result which informs autonomous operation of the vehicle.
  • 17. The system of claim 16, wherein subsequent to extraction, the global data component is downsampled, and wherein the downsampled global data component is provided as input to the second layer.
  • 18. The system of claim 16, wherein the global data component is extracted via a low-pass filter.
  • 19. The system of claim 16, wherein the feature data component is extracted via a high-pass filter.
  • 20. The system of claim 16, wherein a third data component is extracted from the image via a band-pass filter, and wherein the third data component forms part of the input data.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of, and claims priority to, U.S. patent application Ser. No. 16/013,817 titled “DATA PIPELINE AND DEEP LEARNING SYSTEM FOR AUTONOMOUS DRIVING” and filed on Jun. 20, 2018, the disclosure of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (598)
Number Name Date Kind
6882755 Silverstein et al. May 2005 B2
7102669 Skow Sep 2006 B2
7209031 Nakai et al. Apr 2007 B2
7747070 Puri Jun 2010 B2
7904867 Burch et al. Mar 2011 B2
7974492 Nishijima Jul 2011 B2
8165380 Choi et al. Apr 2012 B2
8369633 Lu et al. Feb 2013 B2
8406515 Cheatle et al. Mar 2013 B2
8509478 Haas et al. Aug 2013 B2
8588470 Rodriguez et al. Nov 2013 B2
8744174 Hamada et al. Jun 2014 B2
8773498 Lindbergh Jul 2014 B2
8912476 Fogg et al. Dec 2014 B2
8913830 Sun et al. Dec 2014 B2
8928753 Han et al. Jan 2015 B2
8953673 Tu Feb 2015 B2
8972095 Furuno et al. Mar 2015 B2
8976269 Duong Mar 2015 B2
9008422 Eid et al. Apr 2015 B2
9081385 Ferguson et al. Jul 2015 B1
9275289 Li et al. Mar 2016 B2
9286524 Mei Mar 2016 B1
9586455 Sugai et al. Mar 2017 B2
9672437 McCarthy Jun 2017 B2
9710696 Wang et al. Jul 2017 B2
9738223 Zhang et al. Aug 2017 B2
9754154 Craig et al. Sep 2017 B2
9767369 Furman et al. Sep 2017 B2
9965865 Agrawal et al. May 2018 B1
10133273 Linke Nov 2018 B2
10140252 Powers et al. Nov 2018 B2
10140544 Zhao et al. Nov 2018 B1
10146225 Ryan Dec 2018 B2
10152655 Krishnamurthy et al. Dec 2018 B2
10167800 Chung et al. Jan 2019 B1
10169680 Sachdeva et al. Jan 2019 B1
10192016 Ng et al. Jan 2019 B2
10216189 Haynes Feb 2019 B1
10228693 Micks et al. Mar 2019 B2
10242293 Shim et al. Mar 2019 B2
10248121 VandenBerg, III Apr 2019 B2
10262218 Lee et al. Apr 2019 B2
10282623 Ziyaee et al. May 2019 B1
10296828 Viswanathan May 2019 B2
10303961 Stoffel et al. May 2019 B1
10310087 Laddha et al. Jun 2019 B2
10311312 Yu et al. Jun 2019 B2
10318848 Dijkman et al. Jun 2019 B2
10325178 Tang et al. Jun 2019 B1
10331974 Zia et al. Jun 2019 B2
10338600 Yoon et al. Jul 2019 B2
10343607 Kumon et al. Jul 2019 B2
10359783 Williams et al. Jul 2019 B2
10366290 Wang et al. Jul 2019 B2
10372130 Kaushansky et al. Aug 2019 B1
10373019 Nariyambut Murali et al. Aug 2019 B2
10373026 Kim et al. Aug 2019 B1
10380741 Yedla et al. Aug 2019 B2
10394237 Xu et al. Aug 2019 B2
10395144 Zeng et al. Aug 2019 B2
10402646 Klaus Sep 2019 B2
10402986 Ray et al. Sep 2019 B2
10414395 Sapp et al. Sep 2019 B1
10423934 Zanghi et al. Sep 2019 B1
10436615 Agarwal et al. Oct 2019 B2
10452905 Segalovitz et al. Oct 2019 B2
10460053 Olson et al. Oct 2019 B2
10467459 Chen et al. Nov 2019 B2
10468008 Beckman et al. Nov 2019 B2
10468062 Levinson et al. Nov 2019 B1
10470510 Koh et al. Nov 2019 B1
10474160 Huang et al. Nov 2019 B2
10474161 Huang et al. Nov 2019 B2
10474928 Sivakumar et al. Nov 2019 B2
10489126 Kumar et al. Nov 2019 B2
10489972 Atsmon Nov 2019 B2
10503971 Dang et al. Dec 2019 B1
10514711 Bar-Nahum Dec 2019 B2
10528824 Zou Jan 2020 B2
10529078 Abreu et al. Jan 2020 B2
10529088 Fine et al. Jan 2020 B2
10534854 Sharma et al. Jan 2020 B2
10535191 Sachdeva et al. Jan 2020 B2
10542930 Sanchez et al. Jan 2020 B1
10546197 Shrestha et al. Jan 2020 B2
10546217 Albright et al. Jan 2020 B2
10552682 Jonsson et al. Feb 2020 B2
10559386 Neuman Feb 2020 B1
10565475 Lecue et al. Feb 2020 B2
10567674 Kirsch Feb 2020 B2
10568570 Sherpa et al. Feb 2020 B1
10572717 Zhu et al. Feb 2020 B1
10574905 Srikanth et al. Feb 2020 B2
10579058 Oh et al. Mar 2020 B2
10579063 Haynes et al. Mar 2020 B2
10579897 Redmon et al. Mar 2020 B2
10586280 McKenna et al. Mar 2020 B2
10591914 Palanisamy et al. Mar 2020 B2
10592785 Zhu et al. Mar 2020 B2
10599701 Liu Mar 2020 B2
10599930 Lee et al. Mar 2020 B2
10599958 He et al. Mar 2020 B2
10606990 Tuli et al. Mar 2020 B2
10609434 Singhai et al. Mar 2020 B2
10614344 Anthony et al. Apr 2020 B2
10621513 Deshpande et al. Apr 2020 B2
10627818 Sapp et al. Apr 2020 B2
10628432 Guo et al. Apr 2020 B2
10628686 Ogale et al. Apr 2020 B2
10628688 Kim et al. Apr 2020 B1
10629080 Kazemi et al. Apr 2020 B2
10636161 Uchigaito Apr 2020 B2
10636169 Estrada et al. Apr 2020 B2
10642275 Silva et al. May 2020 B2
10645344 Marman et al. May 2020 B2
10649464 Gray May 2020 B2
10650071 Asgekar et al. May 2020 B2
10652565 Zhang et al. May 2020 B1
10656657 Djuric et al. May 2020 B2
10657391 Chen et al. May 2020 B2
10657418 Marder et al. May 2020 B2
10657934 Kolen et al. May 2020 B1
10661902 Tavshikar May 2020 B1
10664750 Greene May 2020 B2
10671082 Huang et al. Jun 2020 B2
10671886 Price et al. Jun 2020 B2
10678244 Landola et al. Jun 2020 B2
10678839 Gordon et al. Jun 2020 B2
10678997 Ahuja et al. Jun 2020 B2
10679129 Baker Jun 2020 B2
10685159 Su et al. Jun 2020 B2
10685188 Zhang et al. Jun 2020 B1
10692000 Surazhsky et al. Jun 2020 B2
10692242 Morrison et al. Jun 2020 B1
10693740 Coccia et al. Jun 2020 B2
10698868 Guggilla et al. Jun 2020 B2
10699119 Lo et al. Jun 2020 B2
10699140 Kench et al. Jun 2020 B2
10699477 Levinson et al. Jun 2020 B2
10713502 Tiziani Jul 2020 B2
10719759 Kutliroff Jul 2020 B2
10725475 Yang et al. Jul 2020 B2
10726264 Sawhney et al. Jul 2020 B2
10726279 Kim et al. Jul 2020 B1
10726374 Engineer et al. Jul 2020 B1
10732261 Wang et al. Aug 2020 B1
10733262 Miller et al. Aug 2020 B2
10733482 Lee et al. Aug 2020 B1
10733638 Jain et al. Aug 2020 B1
10733755 Liao et al. Aug 2020 B2
10733876 Moura et al. Aug 2020 B2
10740563 Dugan Aug 2020 B2
10740914 Xiao et al. Aug 2020 B2
10748062 Rippel et al. Aug 2020 B2
10748247 Paluri Aug 2020 B2
10751879 Li et al. Aug 2020 B2
10755112 Mabuchi Aug 2020 B2
10755575 Johnston et al. Aug 2020 B2
10757330 Ashrafi Aug 2020 B2
10762396 Vallespi et al. Sep 2020 B2
10768628 Martin et al. Sep 2020 B2
10768629 Song et al. Sep 2020 B2
10769446 Chang et al. Sep 2020 B2
10769483 Nirenberg et al. Sep 2020 B2
10769493 Yu et al. Sep 2020 B2
10769494 Xiao et al. Sep 2020 B2
10769525 Redding et al. Sep 2020 B2
10776626 Lin et al. Sep 2020 B1
10776673 Kim et al. Sep 2020 B2
10776939 Ma et al. Sep 2020 B2
10779760 Lee et al. Sep 2020 B2
10783381 Yu et al. Sep 2020 B2
10783454 Shoaib et al. Sep 2020 B2
10789402 Vemuri et al. Sep 2020 B1
10789544 Fiedel et al. Sep 2020 B2
10790919 Kolen et al. Sep 2020 B1
10796221 Zhang et al. Oct 2020 B2
10796355 Price et al. Oct 2020 B1
10796423 Goja Oct 2020 B2
10798368 Briggs et al. Oct 2020 B2
10803325 Bai et al. Oct 2020 B2
10803328 Bai et al. Oct 2020 B1
10803743 Abari et al. Oct 2020 B2
10805629 Liu et al. Oct 2020 B2
10809730 Chintakindi Oct 2020 B2
10810445 Kangaspunta Oct 2020 B1
10816346 Wheeler et al. Oct 2020 B2
10816992 Chen Oct 2020 B2
10817731 Vailespi et al. Oct 2020 B2
10817732 Porter et al. Oct 2020 B2
10819923 McCauley et al. Oct 2020 B1
10824122 Mummadi et al. Nov 2020 B2
10824862 Qi et al. Nov 2020 B2
10828790 Nemallan Nov 2020 B2
10832057 Chan et al. Nov 2020 B2
10832093 Taralova et al. Nov 2020 B1
10832414 Pfeiffer Nov 2020 B2
10832418 Karasev et al. Nov 2020 B1
10833785 O'Shea et al. Nov 2020 B1
10836379 Xiao et al. Nov 2020 B2
10838936 Cohen Nov 2020 B2
10839230 Charette et al. Nov 2020 B2
10839578 Coppersmith et al. Nov 2020 B2
10843628 Kawamoto et al. Nov 2020 B2
10845820 Wheeler Nov 2020 B2
10845943 Ansari et al. Nov 2020 B1
10846831 Raduta Nov 2020 B2
10846888 Kaplanyan et al. Nov 2020 B2
10853670 Sholingar et al. Dec 2020 B2
10853739 Truong et al. Dec 2020 B2
10860919 Kanazawa et al. Dec 2020 B2
10860924 Burger Dec 2020 B2
10867444 Russell et al. Dec 2020 B2
10871444 Al et al. Dec 2020 B2
10871782 Milstein et al. Dec 2020 B2
10872204 Zhu et al. Dec 2020 B2
10872254 Mangla et al. Dec 2020 B2
10872326 Garner Dec 2020 B2
10872531 Liu et al. Dec 2020 B2
10885083 Moeller-Bertram et al. Jan 2021 B2
10887433 Fu et al. Jan 2021 B2
10890898 Akella et al. Jan 2021 B2
10891715 Li Jan 2021 B2
10891735 Yang et al. Jan 2021 B2
10893070 Wang et al. Jan 2021 B2
10893107 Callari et al. Jan 2021 B1
10896763 Kempanna et al. Jan 2021 B2
10901416 Khanna et al. Jan 2021 B2
10901508 Laszlo et al. Jan 2021 B2
10902551 Mellado et al. Jan 2021 B1
10908068 Amer et al. Feb 2021 B2
10908606 Stein et al. Feb 2021 B2
10909368 Guo et al. Feb 2021 B2
10909453 Myers et al. Feb 2021 B1
10915783 Hallman et al. Feb 2021 B1
10917522 Segalls et al. Feb 2021 B2
10921817 Kangaspunta Feb 2021 B1
10922578 Banerjee et al. Feb 2021 B2
10924661 Vasconcelos et al. Feb 2021 B2
10928508 Swaminathan Feb 2021 B2
10929757 Baker et al. Feb 2021 B2
10930065 Grant et al. Feb 2021 B2
10936908 Ho et al. Mar 2021 B1
10937186 Wang et al. Mar 2021 B2
10943101 Agarwal et al. Mar 2021 B2
10943132 Wang et al. Mar 2021 B2
10943355 Fagg et al. Mar 2021 B2
11215999 Uvarov et al. Jan 2022 B2
20030035481 Hahm Feb 2003 A1
20050162445 Sheasby et al. Jul 2005 A1
20060072847 Cher et al. Apr 2006 A1
20060224533 Thaler Oct 2006 A1
20060280364 Ma et al. Dec 2006 A1
20090016571 Tijerina et al. Jan 2009 A1
20090219994 Tu Sep 2009 A1
20100118157 Kameyama May 2010 A1
20110109736 Mertz May 2011 A1
20120109915 Kamekawa May 2012 A1
20120110491 Cheung May 2012 A1
20120134595 Fonseca et al. May 2012 A1
20120263352 Fan et al. Oct 2012 A1
20150104102 Carreira et al. Apr 2015 A1
20160104438 Han Apr 2016 A1
20160132786 Balan et al. May 2016 A1
20160328856 Mannino et al. Nov 2016 A1
20170011281 Dihkman et al. Jan 2017 A1
20170057514 Toyoda et al. Mar 2017 A1
20170158134 Shigemura Jun 2017 A1
20170206434 Nariyambut et al. Jul 2017 A1
20180012411 Richey et al. Jan 2018 A1
20180018590 Szeto et al. Jan 2018 A1
20180039853 Liu et al. Feb 2018 A1
20180060675 Ji et al. Mar 2018 A1
20180067489 Oder et al. Mar 2018 A1
20180068459 Zhang et al. Mar 2018 A1
20180068540 Romanenko et al. Mar 2018 A1
20180074506 Branson Mar 2018 A1
20180121762 Han et al. May 2018 A1
20180150081 Gross et al. May 2018 A1
20180211403 Hotson et al. Jul 2018 A1
20180247160 Rohani Aug 2018 A1
20180308012 Mummadi et al. Oct 2018 A1
20180314878 Lee et al. Nov 2018 A1
20180357511 Misra et al. Dec 2018 A1
20180374105 Azout et al. Dec 2018 A1
20190023277 Roger et al. Jan 2019 A1
20190025773 Yang et al. Jan 2019 A1
20190042894 Anderson Feb 2019 A1
20190042919 Peysakhovich et al. Feb 2019 A1
20190042944 Nair et al. Feb 2019 A1
20190042948 Lee et al. Feb 2019 A1
20190057314 Julian et al. Feb 2019 A1
20190065637 Bogdoll et al. Feb 2019 A1
20190072978 Levi Mar 2019 A1
20190079526 Vallespi et al. Mar 2019 A1
20190080602 Rice et al. Mar 2019 A1
20190095780 Zhong et al. Mar 2019 A1
20190095946 Azout et al. Mar 2019 A1
20190101914 Coleman et al. Apr 2019 A1
20190108417 Talagala et al. Apr 2019 A1
20190122111 Min et al. Apr 2019 A1
20190130255 Yim et al. May 2019 A1
20190145765 Luo et al. May 2019 A1
20190146497 Urtasun et al. May 2019 A1
20190147112 Gordon May 2019 A1
20190147250 Zhang et al. May 2019 A1
20190147254 Bai et al. May 2019 A1
20190147255 Homayounfar et al. May 2019 A1
20190147335 Wang et al. May 2019 A1
20190147372 Luo et al. May 2019 A1
20190158784 Ahn et al. May 2019 A1
20190180154 Orlov et al. Jun 2019 A1
20190185010 Ganguli et al. Jun 2019 A1
20190187718 Zou Jun 2019 A1
20190189251 Horiuchi et al. Jun 2019 A1
20190197357 Anderson et al. Jun 2019 A1
20190204842 Jafari et al. Jul 2019 A1
20190205402 Sernau et al. Jul 2019 A1
20190205667 Avidan et al. Jul 2019 A1
20190217791 Bradley et al. Jul 2019 A1
20190227562 Mohammadiha et al. Jul 2019 A1
20190228037 Nicol et al. Jul 2019 A1
20190230282 Sypitkowski et al. Jul 2019 A1
20190235499 Kazemi et al. Aug 2019 A1
20190236437 Shin et al. Aug 2019 A1
20190243371 Nister et al. Aug 2019 A1
20190244138 Bhowmick et al. Aug 2019 A1
20190250622 Nister et al. Aug 2019 A1
20190250626 Ghafarianzadeh et al. Aug 2019 A1
20190250640 O'Flaherty et al. Aug 2019 A1
20190258878 Koivisto et al. Aug 2019 A1
20190266418 Xu et al. Aug 2019 A1
20190266610 Ghatage et al. Aug 2019 A1
20190272446 Kangaspunta et al. Sep 2019 A1
20190276041 Choi et al. Sep 2019 A1
20190279004 Kwon et al. Sep 2019 A1
20190286652 Habbecke et al. Sep 2019 A1
20190286972 El Husseini et al. Sep 2019 A1
20190287028 St Amant et al. Sep 2019 A1
20190289281 Badrinarayanan et al. Sep 2019 A1
20190294177 Kwon et al. Sep 2019 A1
20190294975 Sachs Sep 2019 A1
20190311290 Huang et al. Oct 2019 A1
20190318099 Carvalho et al. Oct 2019 A1
20190325088 Dubey et al. Oct 2019 A1
20190325266 Klepper et al. Oct 2019 A1
20190325269 Bagherinezhad et al. Oct 2019 A1
20190325580 Lukac et al. Oct 2019 A1
20190325595 Stein et al. Oct 2019 A1
20190329790 Nandakumar et al. Oct 2019 A1
20190332875 Vallespi-Gonzalez et al. Oct 2019 A1
20190333232 Vallespi-Gonzalez et al. Oct 2019 A1
20190336063 Dascalu Nov 2019 A1
20190339989 Liang et al. Nov 2019 A1
20190340462 Pao et al. Nov 2019 A1
20190340492 Burger et al. Nov 2019 A1
20190340499 Burger et al. Nov 2019 A1
20190347501 Kim et al. Nov 2019 A1
20190349571 Herman et al. Nov 2019 A1
20190354782 Kee et al. Nov 2019 A1
20190354786 Lee et al. Nov 2019 A1
20190354808 Park et al. Nov 2019 A1
20190354817 Shlens et al. Nov 2019 A1
20190354850 Watson et al. Nov 2019 A1
20190370398 He et al. Dec 2019 A1
20190370575 Nandakumar et al. Dec 2019 A1
20190370935 Chang et al. Dec 2019 A1
20190373322 Rojas-Echenique et al. Dec 2019 A1
20190377345 Bachrach et al. Dec 2019 A1
20190377965 Totolos et al. Dec 2019 A1
20190378049 Widmann et al. Dec 2019 A1
20190378051 Widmann et al. Dec 2019 A1
20190382007 Casas et al. Dec 2019 A1
20190384303 Muller et al. Dec 2019 A1
20190384304 Towal et al. Dec 2019 A1
20190384309 Silva et al. Dec 2019 A1
20190384994 Frossard et al. Dec 2019 A1
20190385048 Cassidy et al. Dec 2019 A1
20190385360 Yang et al. Dec 2019 A1
20200004259 Gulino et al. Jan 2020 A1
20200004351 Marchant et al. Jan 2020 A1
20200012936 Lee et al. Jan 2020 A1
20200017117 Milton Jan 2020 A1
20200025931 Liang et al. Jan 2020 A1
20200026282 Choe et al. Jan 2020 A1
20200026283 Barnes et al. Jan 2020 A1
20200026992 Zhang et al. Jan 2020 A1
20200027210 Haemel et al. Jan 2020 A1
20200033858 Xiao Jan 2020 A1
20200033865 Mellinger et al. Jan 2020 A1
20200034665 Ghanta et al. Jan 2020 A1
20200034710 Sidhu et al. Jan 2020 A1
20200036948 Song Jan 2020 A1
20200039520 Misu et al. Feb 2020 A1
20200051550 Baker Feb 2020 A1
20200060757 Ben-Haim et al. Feb 2020 A1
20200065711 Clément et al. Feb 2020 A1
20200065879 Hu et al. Feb 2020 A1
20200069973 Lou et al. Mar 2020 A1
20200073385 Jobanputra et al. Mar 2020 A1
20200074230 Englard et al. Mar 2020 A1
20200086880 Poeppel et al. Mar 2020 A1
20200089243 Poeppel et al. Mar 2020 A1
20200089969 Lakshmi et al. Mar 2020 A1
20200090056 Singhal et al. Mar 2020 A1
20200097841 Petousis et al. Mar 2020 A1
20200098095 Borcs et al. Mar 2020 A1
20200103894 Cella et al. Apr 2020 A1
20200104705 Bhowmick et al. Apr 2020 A1
20200110416 Hong et al. Apr 2020 A1
20200117180 Cella et al. Apr 2020 A1
20200117889 Laput et al. Apr 2020 A1
20200117916 Liu Apr 2020 A1
20200117917 Yoo Apr 2020 A1
20200118035 Asawa et al. Apr 2020 A1
20200125844 She et al. Apr 2020 A1
20200125845 Hess et al. Apr 2020 A1
20200126129 Lkhamsuren et al. Apr 2020 A1
20200134427 Oh et al. Apr 2020 A1
20200134461 Chai et al. Apr 2020 A1
20200134466 Weintraub et al. Apr 2020 A1
20200134848 El-Khamy et al. Apr 2020 A1
20200143231 Fusi et al. May 2020 A1
20200143279 West et al. May 2020 A1
20200148201 King et al. May 2020 A1
20200149898 Felip et al. May 2020 A1
20200151201 Chandrasekhar et al. May 2020 A1
20200151619 Mopur et al. May 2020 A1
20200151692 Gao et al. May 2020 A1
20200158822 Owens et al. May 2020 A1
20200158869 Amirloo et al. May 2020 A1
20200159225 Zeng et al. May 2020 A1
20200160064 Wang et al. May 2020 A1
20200160104 Urtasun et al. May 2020 A1
20200160117 Urtasun et al. May 2020 A1
20200160178 Kar et al. May 2020 A1
20200160532 Urtasun et al. May 2020 A1
20200160558 Urtasun et al. May 2020 A1
20200160559 Urtasun et al. May 2020 A1
20200160598 Manivasagam et al. May 2020 A1
20200162489 Bar-Nahum et al. May 2020 A1
20200167438 Herring May 2020 A1
20200167554 Wang et al. May 2020 A1
20200174481 Van Heukelom et al. Jun 2020 A1
20200175326 Shen et al. Jun 2020 A1
20200175354 Volodarskiy et al. Jun 2020 A1
20200175371 Kursun Jun 2020 A1
20200175401 Shen Jun 2020 A1
20200183482 Sebot et al. Jun 2020 A1
20200184250 Oko Jun 2020 A1
20200184333 Oh Jun 2020 A1
20200192389 ReMine et al. Jun 2020 A1
20200193313 Ghanta et al. Jun 2020 A1
20200193328 Guestrin et al. Jun 2020 A1
20200202136 Shrestha et al. Jun 2020 A1
20200202196 Guo et al. Jun 2020 A1
20200209857 Djuric et al. Jul 2020 A1
20200209867 Valois et al. Jul 2020 A1
20200209874 Chen et al. Jul 2020 A1
20200210717 Hou et al. Jul 2020 A1
20200210769 Hou et al. Jul 2020 A1
20200210777 Valois et al. Jul 2020 A1
20200216064 du Toit et al. Jul 2020 A1
20200218722 Mai et al. Jul 2020 A1
20200218979 Kwon et al. Jul 2020 A1
20200223434 Campos et al. Jul 2020 A1
20200225758 Tang et al. Jul 2020 A1
20200226377 Campos et al. Jul 2020 A1
20200226430 Ahuja et al. Jul 2020 A1
20200238998 Dasalukunte et al. Jul 2020 A1
20200242381 Chao et al. Jul 2020 A1
20200242408 Kim et al. Jul 2020 A1
20200242511 Kale et al. Jul 2020 A1
20200245869 Sivan et al. Aug 2020 A1
20200249685 Elluswamy et al. Aug 2020 A1
20200250456 Wang et al. Aug 2020 A1
20200250515 Rifkin et al. Aug 2020 A1
20200250874 Assouline et al. Aug 2020 A1
20200257301 Weiser et al. Aug 2020 A1
20200257306 Nisenzon Aug 2020 A1
20200258057 Farahat et al. Aug 2020 A1
20200265247 Musk et al. Aug 2020 A1
20200272160 Djuric et al. Aug 2020 A1
20200272162 Hasselgren et al. Aug 2020 A1
20200272859 Iashyn et al. Aug 2020 A1
20200273231 Schied et al. Aug 2020 A1
20200279354 Klaiman Sep 2020 A1
20200279364 Sarkisian et al. Sep 2020 A1
20200279371 Wenzel et al. Sep 2020 A1
20200285464 Brebner Sep 2020 A1
20200286256 Houts et al. Sep 2020 A1
20200293786 Jia et al. Sep 2020 A1
20200293796 Sajjadi et al. Sep 2020 A1
20200293828 Wang et al. Sep 2020 A1
20200293905 Huang et al. Sep 2020 A1
20200294162 Shah Sep 2020 A1
20200294257 Yoo et al. Sep 2020 A1
20200294310 Lee et al. Sep 2020 A1
20200297237 Tamersoy et al. Sep 2020 A1
20200298891 Liang et al. Sep 2020 A1
20200301799 Manivasagam et al. Sep 2020 A1
20200302276 Yang et al. Sep 2020 A1
20200302291 Hong Sep 2020 A1
20200302627 Duggal et al. Sep 2020 A1
20200302662 Homayounfar et al. Sep 2020 A1
20200304441 Bradley et al. Sep 2020 A1
20200306640 Kolen et al. Oct 2020 A1
20200307562 Ghafarianzadeh et al. Oct 2020 A1
20200307563 Ghafarianzadeh et al. Oct 2020 A1
20200309536 Omari et al. Oct 2020 A1
20200309923 Bhaskaran et al. Oct 2020 A1
20200310442 Halder et al. Oct 2020 A1
20200311601 Robinson et al. Oct 2020 A1
20200312003 Borovikov et al. Oct 2020 A1
20200315708 Mosnier et al. Oct 2020 A1
20200320132 Neumann Oct 2020 A1
20200324073 Rajan et al. Oct 2020 A1
20200327192 Hackman et al. Oct 2020 A1
20200327443 Van et al. Oct 2020 A1
20200327449 Tiwari et al. Oct 2020 A1
20200327662 Liu et al. Oct 2020 A1
20200327667 Arbel et al. Oct 2020 A1
20200331476 Chen et al. Oct 2020 A1
20200334416 Vianu et al. Oct 2020 A1
20200334495 Al et al. Oct 2020 A1
20200334501 Lin et al. Oct 2020 A1
20200334551 Javidi et al. Oct 2020 A1
20200334574 Ishida Oct 2020 A1
20200337648 Saripalli et al. Oct 2020 A1
20200341466 Pham et al. Oct 2020 A1
20200342350 Madar et al. Oct 2020 A1
20200342548 Mazed et al. Oct 2020 A1
20200342652 Rowell et al. Oct 2020 A1
20200348909 Das Sarma et al. Nov 2020 A1
20200350063 Thornton et al. Nov 2020 A1
20200351438 Dewhurst et al. Nov 2020 A1
20200356107 Wells Nov 2020 A1
20200356790 Jaipuria et al. Nov 2020 A1
20200356864 Neumann Nov 2020 A1
20200356905 Luk et al. Nov 2020 A1
20200361083 Mousavian et al. Nov 2020 A1
20200361485 Zhu et al. Nov 2020 A1
20200364481 Kornienko et al. Nov 2020 A1
20200364508 Gurel et al. Nov 2020 A1
20200364540 Elsayed et al. Nov 2020 A1
20200364746 Longano et al. Nov 2020 A1
20200364953 Simoudis Nov 2020 A1
20200372362 Kim Nov 2020 A1
20200372402 Kursun et al. Nov 2020 A1
20200380362 Cao et al. Dec 2020 A1
20200380383 Kwong et al. Dec 2020 A1
20200393841 Frisbie et al. Dec 2020 A1
20200394421 Yu et al. Dec 2020 A1
20200394457 Brady Dec 2020 A1
20200394495 Moudgill et al. Dec 2020 A1
20200394813 Theverapperuma et al. Dec 2020 A1
20200396394 Zlokolica et al. Dec 2020 A1
20200398855 Thompson Dec 2020 A1
20200401850 Bazarsky Dec 2020 A1
20200401886 Deng et al. Dec 2020 A1
20200402155 Kurian et al. Dec 2020 A1
20200402226 Peng Dec 2020 A1
20200410012 Moon et al. Dec 2020 A1
20200410224 Goel Dec 2020 A1
20200410254 Pham et al. Dec 2020 A1
20200410288 Capota et al. Dec 2020 A1
20200410751 Omari et al. Dec 2020 A1
20210004014 Sivakumar Jan 2021 A1
20210004580 Sundararaman et al. Jan 2021 A1
20210004611 Garimella et al. Jan 2021 A1
20210004663 Park et al. Jan 2021 A1
20210006835 Slattery et al. Jan 2021 A1
20210011908 Hayes et al. Jan 2021 A1
20210012116 Urtasun et al. Jan 2021 A1
20210012210 Sikka et al. Jan 2021 A1
20210012230 Hayes et al. Jan 2021 A1
20210012239 Arzani et al. Jan 2021 A1
20210015240 Elfakhri et al. Jan 2021 A1
20210019215 Neeter Jan 2021 A1
20210026360 Luo Jan 2021 A1
20210027112 Brewington et al. Jan 2021 A1
20210027117 McGavran et al. Jan 2021 A1
20210030276 Li et al. Feb 2021 A1
20210034921 Pinkovich et al. Feb 2021 A1
20210042575 Firner Feb 2021 A1
20210042928 Takeda et al. Feb 2021 A1
20210046954 Haynes Feb 2021 A1
20210049378 Gautam et al. Feb 2021 A1
20210049455 Kursun Feb 2021 A1
20210049456 Kursun Feb 2021 A1
20210049548 Grisz et al. Feb 2021 A1
20210049700 Nguyen et al. Feb 2021 A1
20210056114 Price et al. Feb 2021 A1
20210056306 Hu et al. Feb 2021 A1
20210056317 Golov Feb 2021 A1
20210056420 Konishi et al. Feb 2021 A1
20210056701 Vranceanu et al. Feb 2021 A1
Foreign Referenced Citations (251)
Number Date Country
2019261735 Jun 2020 AU
2019201716 Oct 2020 AU
110599537 Dec 2010 CN
102737236 Oct 2012 CN
103366339 Oct 2013 CN
104835114 Aug 2015 CN
103236037 May 2016 CN
103500322 Aug 2016 CN
106419893 Feb 2017 CN
106504253 Mar 2017 CN
107031600 Aug 2017 CN
107169421 Sep 2017 CN
107507134 Dec 2017 CN
107885214 Apr 2018 CN
108122234 Jun 2018 CN
107133943 Jul 2018 CN
1073689268 Jul 2018 CN
105318888 Aug 2018 CN
108491889 Sep 2018 CN
108647591 Oct 2018 CN
108710865 Oct 2018 CN
105550701 Nov 2018 CN
108764185 Nov 2018 CN
108845574 Nov 2018 CN
108898177 Nov 2018 CN
109086867 Dec 2018 CN
107103113 Jan 2019 CN
109215067 Jan 2019 CN
109359731 Feb 2019 CN
109389207 Feb 2019 CN
109389552 Feb 2019 CN
106779060 Mar 2019 CN
109579856 Apr 2019 CN
109615073 Apr 2019 CN
106156754 May 2019 CN
106598226 May 2019 CN
106650922 May 2019 CN
109791626 May 2019 CN
109901595 Jun 2019 CN
109902732 Jun 2019 CN
109934163 Jun 2019 CN
109948428 Jun 2019 CN
109949257 Jun 2019 CN
109951710 Jun 2019 CN
109975308 Jul 2019 CN
109978132 Jul 2019 CN
109978161 Jul 2019 CN
110060202 Jul 2019 CN
110069071 Jul 2019 CN
110084086 Aug 2019 CN
110096937 Aug 2019 CN
110111340 Aug 2019 CN
110135485 Aug 2019 CN
110197270 Sep 2019 CN
110310264 Oct 2019 CN
110321965 Oct 2019 CN
110334801 Oct 2019 CN
110399875 Nov 2019 CN
110414362 Nov 2019 CN
110426051 Nov 2019 CN
110473173 Nov 2019 CN
110516665 Nov 2019 CN
110543837 Dec 2019 CN
110569899 Dec 2019 CN
110599864 Dec 2019 CN
110619282 Dec 2019 CN
110619283 Dec 2019 CN
110619330 Dec 2019 CN
110659628 Jan 2020 CN
110688992 Jan 2020 CN
107742311 Feb 2020 CN
110751280 Feb 2020 CN
110826566 Feb 2020 CN
110956185 Apr 2020 CN
110966991 Apr 2020 CN
111027549 Apr 2020 CN
111027575 Apr 2020 CN
111047225 Apr 2020 CN
1074516598 Apr 2020 CN
1081118738 Apr 2020 CN
111126453 May 2020 CN
111158355 May 2020 CN
107729998 Jun 2020 CN
108549934 Jun 2020 CN
111275129 Jun 2020 CN
111275618 Jun 2020 CN
111326023 Jun 2020 CN
111428943 Jul 2020 CN
111444821 Jul 2020 CN
111445420 Jul 2020 CN
111461052 Jul 2020 CN
111461053 Jul 2020 CN
111461110 Jul 2020 CN
110225341 Aug 2020 CN
111307162 Aug 2020 CN
111488770 Aug 2020 CN
111539514 Aug 2020 CN
111565318 Aug 2020 CN
111582216 Aug 2020 CN
111598095 Aug 2020 CN
111693972 Sep 2020 CN
1082295268 Sep 2020 CN
106558058 Oct 2020 CN
107169560 Oct 2020 CN
107622258 Oct 2020 CN
111767801 Oct 2020 CN
111768002 Oct 2020 CN
111783545 Oct 2020 CN
111783971 Oct 2020 CN
111797657 Oct 2020 CN
111814623 Oct 2020 CN
111814902 Oct 2020 CN
111860499 Oct 2020 CN
111881856 Oct 2020 CN
111882579 Nov 2020 CN
111897639 Nov 2020 CN
111898507 Nov 2020 CN
111898523 Nov 2020 CN
111899227 Nov 2020 CN
112101175 Dec 2020 CN
112101562 Dec 2020 CN
112115953 Dec 2020 CN
111062973 Jan 2021 CN
111275080 Jan 2021 CN
112183739 Jan 2021 CN
112232497 Jan 2021 CN
112288658 Jan 2021 CN
112308095 Feb 2021 CN
112308799 Feb 2021 CN
112313663 Feb 2021 CN
112329552 Feb 2021 CN
112348783 Feb 2021 CN
111899245 Mar 2021 CN
202017102235 May 2017 DE
202017102238 May 2017 DE
102017116017 Jan 2019 DE
102018130821 Jun 2020 DE
102019008316 Aug 2020 DE
1215626 Sep 2008 EP
2228666 Sep 2012 EP
2420408 May 2013 EP
2723069 Apr 2014 EP
2741253 Jun 2014 EP
3 007 446 Apr 2016 EP
3115772 Jan 2017 EP
2618559 Aug 2017 EP
3285485 Feb 2018 EP
2863633 Feb 2019 EP
3113080 May 2019 EP
3525132 Aug 2019 EP
3531689 Aug 2019 EP
3537340 Sep 2019 EP
3543917 Sep 2019 EP
3608840 Feb 2020 EP
3657387 May 2020 EP
2396750 Jun 2020 EP
3664020 Jun 2020 EP
3690712 Aug 2020 EP
3690742 Aug 2020 EP
3722992 Oct 2020 EP
3690730 Nov 2020 EP
3739486 Nov 2020 EP
3501897 Dec 2020 EP
3751455 Dec 2020 EP
3783527 Feb 2021 EP
2402572 Aug 2005 GB
2548087 Sep 2017 GB
2577485 Apr 2020 GB
2517270 Jun 2020 GB
2578262 Aug 1998 JP
3941252 Jul 2007 JP
2007-265292 Oct 2007 JP
4282583 Jun 2009 JP
4300098 Jul 2009 JP
2011-008685 Jan 2011 JP
2015004922 Jan 2015 JP
2016-006626 Jan 2016 JP
5863536 Feb 2016 JP
6044134 Dec 2016 JP
2017-076371 Apr 2017 JP
6525707 Jun 2019 JP
2019101535 Jun 2019 JP
2020101927 Jul 2020 JP
2020173744 Oct 2020 JP
100326702 Feb 2002 KR
101082878 Nov 2011 KR
10-2014-0145090 Dec 2014 KR
101738422 May 2017 KR
101969864 Apr 2019 KR
101996167 Jul 2019 KR
102022388 Aug 2019 KR
102043143 Nov 2019 KR
102095335 Mar 2020 KR
102097120 Apr 2020 KR
1020200085490 Jul 2020 KR
102189262 Dec 2020 KR
1020200142266 Dec 2020 KR
200630819 Sep 2006 TW
I294089 Mar 2008 TW
I306207 Feb 2009 TW
WO 02052835 Jul 2002 WO
WO 09149178 Dec 2009 WO
WO 16032398 Mar 2016 WO
WO 16048108 Mar 2016 WO
WO 16207875 Dec 2016 WO
WO 17158622 Sep 2017 WO
WO 19005547 Jan 2019 WO
WO 19067695 Apr 2019 WO
WO 19089339 May 2019 WO
WO 19092456 May 2019 WO
WO 19099622 May 2019 WO
WO 19122952 Jun 2019 WO
WO 19125191 Jun 2019 WO
WO 19126755 Jun 2019 WO
WO 19144575 Aug 2019 WO
WO 19182782 Sep 2019 WO
WO 19191578 Oct 2019 WO
WO 19216938 Nov 2019 WO
WO 19220436 Nov 2019 WO
WO 20006154 Jan 2020 WO
WO 20012756 Jan 2020 WO
WO 20025696 Feb 2020 WO
WO 20034663 Feb 2020 WO
WO 20056157 Mar 2020 WO
WO 20076356 Apr 2020 WO
WO 20097221 May 2020 WO
WO 20101246 May 2020 WO
WO 20120050 Jun 2020 WO
WO 20121973 Jun 2020 WO
WO 20131140 Jun 2020 WO
WO 20139181 Jul 2020 WO
WO 20139355 Jul 2020 WO
WO 20142193 Jul 2020 WO
WO 20146445 Jul 2020 WO
WO 20151329 Jul 2020 WO
WO 201393357 Jul 2020 WO
WO 20157761 Aug 2020 WO
WO 20163455 Aug 2020 WO
WO 20167667 Aug 2020 WO
WO 20174262 Sep 2020 WO
WO 20177583 Sep 2020 WO
WO 20185233 Sep 2020 WO
WO 20185234 Sep 2020 WO
WO 20195658 Oct 2020 WO
WO 20198189 Oct 2020 WO
WO 20198779 Oct 2020 WO
WO 20205597 Oct 2020 WO
WO 20221200 Nov 2020 WO
WO 20240284 Dec 2020 WO
WO 20260020 Dec 2020 WO
WO 20264010 Dec 2020 WO
Non-Patent Literature Citations (5)
Entry
International Search Report and Written Opinion dated Jul. 5, 2019 in application No. PCT/US19/23249.
Azimi et al., Mar. 19, 2018, Aerial LaneNet: lane marking semantic segmentation in aerial imagery using wavelet-enhanced cost-sensitive symmetric fully convolutional neural networks, arxiv.org, Cornell University Library.
Horgan et al., 2015, Vision-based driver assistance systems; survey, taxonomy and advances, IEEE 18th International Conference on Intelligent Transportation Systems, pp. 2032-2039.
Hatanaka et al., Aug. 2016, Automatic retinal blood vessels extraction based on black hat transformation and high order local auto-correlation, ITE Technical Report, 40(27):27-30.
Teichmann, May 8, 2018, MultiNet: reel-time joint semantic reasoning for autonomous driving, arxiv:1612.07695v2 [cs.CV] 10 pp.
Related Publications (1)
Number Date Country
20220107652 A1 Apr 2022 US
Continuations (1)
Number Date Country
Parent 16013817 Jun 2018 US
Child 17644748 US