Data preparation user interface with configurable process flow elements

Information

  • Patent Grant
  • 11921979
  • Patent Number
    11,921,979
  • Date Filed
    Friday, September 16, 2022
    2 years ago
  • Date Issued
    Tuesday, March 5, 2024
    10 months ago
Abstract
A computer system concurrently displays a plurality of panes in a user interface. The panes include a first pane that displays a flow diagram having one or more nodes. Each node contains one or more icons. Each icon represents a respective data transformation operation. The panes include a second pane that displays a plurality of data rows and/or data columns for an intermediate dataset corresponding to a user-selected node. The computer system receives a user input, in the first pane, to perform a first data transformation operation at a selected node. In response to receiving the user input, the computer system performs the first data transformation operation. The computer system displays, in the first pane, an additional icon corresponding to the first data transformation operation at the selected node. The computer system updates the second pane in accordance with the first data transformation operation.
Description
TECHNICAL FIELD

The disclosed implementations relate generally to data visualization and more specifically to systems, methods, and user interfaces to prepare and curate data for use by a data visualization application.


BACKGROUND

Data visualization applications enable a user to understand a data set visually, including distribution, trends, outliers, and other factors that are important to making business decisions. Some data sets are very large or complex, and include many data fields. Various tools can be used to help understand and analyze the data, including dashboards that have multiple data visualizations. However, data frequently needs to manipulated or modified to be put it into a format that can be easily used by data visualization applications.


Many types of data manipulation operations are required for users to prepare their data for analysis. In typical data flow applications, each operation is displayed to users as an individual unit, and a user is only permitted to perform a restricted set of operations within each such unit. As more operations are added, flow diagrams become very large an unwieldy, making it difficult for users to understand and/or modify.


SUMMARY

Disclosed implementations have features that provide clarity to users in terms of preparing data. The disclosed data preparation applications provide data flows that permit the addition of minor operations to nodes representing major data manipulation operations. This facilitates any data cleaning and/or curating that may be required for users to take high-level action and appropriately analyze their data. The design of these “super nodes” permits users to perform all types of data manipulations at any point in data analysis, and simplifies data flow diagrams.


In accordance with some implementations, a method prepares data for subsequent analysis. The method is performed at a computer system having a display, one or more processors, and memory storing one or more programs configured for execution by the one or more processors. The method includes displaying a user interface that has a plurality of panes, including a data flow pane. The data flow pane includes a flow diagram having a plurality of nodes. Each node specifies a respective primary operation or specifies a plurality of secondary operations to clean a respective data set. Each primary operation retrieves data from a respective data source, specifies a respective primary operation to transform data, or specifies a respective primary operation to create a respective output data set. The method further includes receiving a first user input to select an existing node from the flow diagram. In response to receiving the first user input, the method displays a change list pane in the plurality of panes. The change list pane displays an ordered list of secondary operations performed at the node. The method further includes receiving a second user input to perform a first secondary operation corresponding to the selected node. In response to receiving the second user input, the method performs the first secondary operation, updates the selected node with an indicator that the node includes one or more secondary operations, determines a respective logical ordering for the first secondary operation based on the primary operation in the selected node, and adds the first secondary operation to the change list pane in accordance with its respective logical ordering


In accordance with some implementations, each node has a respective intermediate data set corresponding to each secondary operation stored in the change list pane. In response to receiving a third user input to select a second secondary operation in the ordered plurality of secondary operations in the change list pane, the method displays a sampling of data from the respective intermediate data set that corresponds to the second secondary operation.


In accordance with some implementations, in response to performing the first respective secondary operation, the method displays a sampling of data from the respective intermediate data set in a data pane of the user interface.


In accordance with some implementations, each node has a primary data set computed according to the primary operation. In response to receiving a fourth user input to select the primary operation in the change list pane, the method displays a sampling of data from the primary data set.


In accordance with some implementations, each of the nodes has an untouched input data set corresponding to the data set before the primary operation (or any secondary operation) is performed at the node. In response to receiving a fifth user input to select the untouched input data set in the change list pane, the method displays a sampling of data from the untouched input data set.


In accordance with some implementations, each primary operation is a reshaping operation that is one of aggregate, pivot, join, or union, or is an input or output operation.


In accordance with some implementations, each secondary operation is one of: calculate field, rename field, remove field, edit value, group and replace, split, or change datatype.


In accordance with some implementations, the logical ordering for each secondary operation in the ordered plurality of secondary operations is determined by a chronological order in which each secondary operation is performed.


In some implementations, a non-transitory computer-readable storage medium stores one or more programs configured for execution by a computer system having one or more processors, memory, and a display. The one or more programs include instructions for performing any of the methods described herein.


In some implementations, a computer system has one or more processors, memory, and a display. The memory stores one or more programs configured for execution by the one or more processors and include instructions for performing any of the methods described herein.


Thus, methods, systems, and graphical user interfaces are disclosed that enable users to analyze, prepare, and curate data.





BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the aforementioned systems, methods, and graphical user interfaces, as well as additional systems, methods, and graphical user interfaces that provide data visualization analytics and data preparation, reference should be made to the Description of Implementations below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.



FIG. 1 illustrates a graphical user interface for a data visualization application used in some implementations.



FIG. 2 is a block diagram of a computing device according to some implementations.



FIGS. 3A and 3B illustrate a graphical user interface for a data preparation application in accordance with some implementations.



FIGS. 4A, 4B, and 4C illustrate user interfaces where cleaning operations have been performed at a join node, in accordance with some implementations



FIG. 5 illustrates a data flow where cleaning operations have been performed at a union node, in accordance with some implementations.



FIG. 6 illustrates a data flow where cleaning operations have been performed at an aggregate node, in accordance with some implementations



FIG. 7 illustrates cleaning indicators, in accordance with some implementations.



FIG. 8 is a tabular representation of the secondary operations that may be performed at super nodes having the indicated primary operations.



FIG. 9 is a tabular representation of the logical ordering of secondary operations relative to the primary operations, in accordance with some implementations.



FIG. 10 is a flowchart for a method of enabling users to perform data manipulation operations at every node of a data flow in accordance with some implementations.





Reference will now be made to implementations, examples of which are illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one of ordinary skill in the art that the present invention may be practiced without requiring these specific details.


DESCRIPTION OF IMPLEMENTATIONS


FIG. 1 illustrates a graphical user interface 100 for interactive data analysis. The user interface 100 includes a Data tab 114 and an Analytics tab 116 in accordance with some implementations. When the Data tab 114 is selected, the user interface 100 displays a schema information region 110, which is also referred to as a data pane. The schema information region 110 provides named data elements (e.g., field names) that may be selected and used to build a data visualization. In some implementations, the list of field names is separated into a group of dimensions (e.g., categorical data) and a group of measures (e.g., numeric quantities). Some implementations also include a list of parameters. When the Analytics tab 116 is selected, the user interface displays a list of analytic functions instead of data elements (not shown).


The graphical user interface 100 also includes a data visualization region 112. The data visualization region 112 includes a plurality of shelf regions, such as a columns shelf region 120 and a rows shelf region 122. These are also referred to as the column shelf 120 and the row shelf 122. As illustrated here, the data visualization region 112 also has a large space for displaying a visual graphic. Because no data elements have been selected yet, the space initially has no visual graphic. In some implementations, the data visualization region 112 has multiple layers that are referred to as sheets.



FIG. 2 is a block diagram illustrating a computing device 200 that can display the graphical user interface 100 in accordance with some implementations. The computing device can also be used by a data preparation (“data prep”) application 230. Various examples of the computing device 200 include a desktop computer, a laptop computer, a tablet computer, and other computing devices that have a display and a processor capable of running a data visualization application 222 and/or a data prep application 230. The computing device 200 typically includes one or more processing units/cores (CPUs) 202 for executing modules, programs, and/or instructions stored in the memory 214 and thereby performing processing operations; one or more network or other communications interfaces 204; memory 214; and one or more communication buses 212 for interconnecting these components. The communication buses 212 may include circuitry that interconnects and controls communications between system components.


The computing device 200 includes a user interface 206 comprising a display device 208 and one or more input devices or mechanisms 210. In some implementations, the input device/mechanism includes a keyboard. In some implementations, the input device/mechanism includes a “soft” keyboard, which is displayed as needed on the display device 208, enabling a user to “press keys” that appear on the display 208. In some implementations, the display 208 and input device/mechanism 210 comprise a touch screen display (also called a touch sensitive display).


In some implementations, the memory 214 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory devices. In some implementations, the memory 214 includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. In some implementations, the memory 214 includes one or more storage devices remotely located from the CPU(s) 202. The memory 214, or alternatively the non-volatile memory devices within the memory 214, comprise a non-transitory computer-readable storage medium. In some implementations, the memory 214, or the computer readable storage medium of the memory 214, stores the following programs, modules, and data structures, or a subset thereof:

    • an operating system 216, which includes procedures for handling various basic system services and for performing hardware dependent tasks;
    • a communications module 218, which is used for connecting the computing device 200 to other computers and devices via the one or more communication network interfaces 204 (wired or wireless) and one or more communication networks, such as the Internet, other wide area networks, local area networks, metropolitan area networks, and so on;
    • a web browser 220 (or other application capable of displaying web pages), which enables a user to communicate over a network with remote computers or devices;
    • a data visualization application 222, which provides a graphical user interface 100 for a user to construct visual graphics. For example, a user selects one or more data sources 240 (which may be stored on the computing device 200 or stored remotely), selects data fields from the data source(s), and uses the selected fields to define a visual graphic. In some implementations, the information the user provides is stored as a visual specification 228. The data visualization application 222 includes a data visualization generation module 226, which takes the user input (e.g., the visual specification 228), and generates a corresponding visual graphic (also referred to as a “data visualization” or a “data viz”). The data visualization application 222 then displays the generated visual graphic in the user interface 100. In some implementations, the data visualization application 222 executes as a standalone application (e.g., a desktop application). In some implementations, the data visualization application 222 executes within the web browser 220 or another application using web pages provided by a web server; and
    • zero or more databases or data sources 240 (e.g., a first data source 240-1 and a second data source 240-2), which are used by the data visualization application 222 and/or a data prep application 230. In some implementations, the data sources are stored as spreadsheet files, CSV files, XML, files, or flat files, or stored in a relational database.


In some instances, the computing device 200 stores a data prep application 230, which has a user interface 300, as shown in FIGS. 3A and 3B. A user uses the data prep application to analyze and massage data for subsequent analysis (e.g., by a data visualization application 222). The data prep application 230 enables user to build flows 323, as described in more detail below.


Each of the above identified executable modules, applications, or sets of procedures may be stored in one or more of the previously mentioned memory devices, and corresponds to a set of instructions for performing a function described above. The above identified modules or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various implementations. In some implementations, the memory 214 stores a subset of the modules and data structures identified above. Furthermore, the memory 214 may store additional modules or data structures not described above.


Although FIG. 2 shows a computing device 200, FIG. 2 is intended more as a functional description of the various features that may be present rather than as a structural schematic of the implementations described herein. In practice, and as recognized by those of ordinary skill in the art, items shown separately could be combined and some items could be separated.



FIG. 3A illustrates a user interface for preparing data in accordance with some implementations. In these implementations, there are at least five regions, which have distinct functionality. FIG. 3A shows this conceptually as a menu bar region 301, a left-hand pane 302, a flow pane 303, profile pane 304, and a data pane 305. In some implementations, the profile pane 304 is also referred to as the schema pane. In some implementations, the functionality of the “left-hand pane” 302 is in an alternate location, such as below the menu pane 301 or below the data pane 305.


This interface provides a user with multiple streamlined, coordinated views that help the user to see and understand what they need to do. This novel user interface presents users with multiple views of their flow and their data to help them not only take actions, but also discover what actions they need to take. The flow diagram in the flow pane 303 combines and summarizes actions, making the flow more readable, and is coordinated with views of actual data in the profile pane 304 and the data pane 305. The data pane 305 provides representative samples of data at every point in the logical flow, and the profile pane provides histograms of the domains of the data (e.g., for each data field, the profile pane shows the distribution of data values, typically in “bins”).


In some implementations, the left-hand Pane 302 includes a list of recent data source connections as well as a button to connect to a new data source.


In some implementations, the flow pane 303 includes a visual representation (flow diagram or flow) of the flow specification. In some implementations, the flow is a node/link diagram showing the data sources, the operations that are performed, and target outputs of the flow.


Some implementations provide flexible execution of a flow by treating portions of the flow as declarative queries. That is, rather than having a user specify every computational detail, a user specifies the objective (e.g., input and output). The process that executes the flow optimizes plans to choose execution strategies that improve performance. Implementations also allow users to selectively inhibit this behavior to control execution.


In some implementations, the profile pane 304 displays the schema and relevant statistics and/or visualizations for the nodes selected in the flow pane 303. As illustrated in FIG. 3B, the schema information provides statistical information about the data, such as a histogram 324 of the data distribution for each of the fields. A user can interact directly with the profile pane to modify the flow 323 (e.g., by selecting a data field for filtering the rows of data based on values of that data field). The profile pane 304 also provides users with relevant data about the currently selected node (or nodes) and visualizations that guide a user's work. For example, histograms 324 show the distributions of the domains of each column. Some implementations support selection of multiple nodes simultaneously, but other implementations support selection of only a single node at a time.


In some implementations, the data pane 305 displays row-level data for the selected nodes in the Flow Pane 303.


In some implementations, a user creates a new flow using a “File−>New Flow” option in the Menu Bar. Users can also add data sources to a flow. In some instances, a data source is a relational database. In some instances, one or more data sources are file-based, such as CSV files or spreadsheet files. In some implementations, a user adds a file-based source to the flow using a file connection affordance in the left-hand pane 302. This opens a file dialog that prompts the user to choose a file. In some implementations, the left hand pane 302 also includes a database connection affordance, which enables a user to connect to a database (e.g., an SQL database).


When a user selects a node in the Flow Pane 303, the schema for the result set at the node is displayed in the Profile Pane 304. In some implementations, the profile pane 304 includes statistics or visualizations, such as distributions of data values for the fields (e.g., as histograms or pie charts). In implementations that enable selection of multiple nodes in the flow pane 303, schemas for each of the selected nodes are displayed in the profile pane 304.


In addition, when a node is selected in the Flow Pane 303, the data for the node is displayed in the Data Pane 305. The data pane 305 typically displays the data as rows and columns 325, where each of the columns 325 corresponds to one of the data fields.


Implementations make it easy to edit the flow using the flow pane 303, the profile pane 304, or the data pane 305. For example, some implementations enable a right click operation on a node/table in any of these three panes and add a new column based on a scalar calculation over existing columns in that table. For example, the scalar operation may be a mathematical operation to compute the sum of three numeric columns, a string operation to concatenate string data from two columns that are character strings, or a conversion operation to convert a character string column into a date column (when a date has been encoded as a character string in the data source).


In some implementations, within the flow pane 303 multiple nodes are displayed, with each node being represented by an icon (e.g. the icons 402-414 in FIG. 4A), which indicates the primary operation performed at that node. When a node is selected by the user (e.g. the selected node 408 in FIG. 4A), that node is highlighted within the data flow pane and the data associated with that node is displayed within the data grid 305.


Different nodes within the flow diagram 323 perform different tasks, and thus the node internal information is different. In addition, some implementations display different information depending on whether or not a node is selected. A flow diagram 323 provides an easy, visual way to understand how the data is getting processed, and keeps the process organized in a way that is logical to a user. Although a user can edit a flow diagram 323 directly in the flow pane 303, changes to the operations are typically done in a more immediate fashion, operating directly on the data or schema in the profile pane 304 or the data pane 305 (e.g., right clicking on the statistics for a data field in the profile pane to add or remove a column from the flow).


Three types of nodes are discussed below: input operations, transform operations, and output operations. Input operations create a logical model from some external source. Examples include an operation that imports a CSV. Transform operations transform a logical model into a new logical model, for example a project operation that adds a column to an existing logical model. Output operations take in a logical model and convert it into some other data store.


Within the flow pane 303, a user can perform various tasks, including:

    • Change node selection. This drives what data is displayed in the rest of the user interface.
    • Pin flow operations. This allows a user to specify that some portion of the flow must happen first, and cannot be reordered.
    • Splitting and Combining operations. Users can easily reorganize operation to match a logical model of what is going on. For example, a user may want to make one node called “Normalize Hospital Codes,” which contains many operations and special cases. A user can initially create the individual operations, then coalesce the nodes that represent individual operations into the super node “Normalize Hospital Codes.” Conversely, having created a node that contains many individual operations, a user may choose to split out one or more of the operations (e.g., to create a node that can be reused more generally).
    • Filter for navigation. A user can filter the data that is in the view, which does not add a filter to the flow.
    • Modify row data. A user can directly modify a row. For example, change a data value for a specific field in a specific row from 3 to 4.
    • Map one value to another. A user can modify a data value for a specific column, and propagate that change all of the rows that have that value for the specific column. For example, replace “N.Y.” with “NY” for an entire column that represents states.
    • Split columns. For example, if a user sees that dates have been formatted like “14 Nov. 2015”, the user can split this field into three separate fields for day, month, and year.
    • Merge columns. A user can merge two or more columns to create a single combined column.
    • Clean the data to fix errors, handle missing or duplicate values, reconcile variant values that should be the same, conform values to standards, and so on.
    • Change a data type. A user may begin a flow, then decide to change a type of one of the columns.


Rather than displaying a node for every tiny operation, users are able to group operations together into a smaller number of more significant nodes. For example, a join followed by removing two columns can be implemented in one node, instead of in three separate nodes. Or, one or more cleaning operations can be implemented at the node. For example, in FIG. 4A, multiple data values have been removed, calculated, and filtered. FIG. 4A illustrates a join node where a user has performed multiple cleaning (secondary) operations. As displayed in the change list pane 416, multiple secondary operations 418-422 are shown occurring before the primary join operation 424. As shown here, each of the secondary operations is listed before the join operation 424. This is in accordance with the logical ordering matrix 900 illustrated in FIG. 9 and discussed below. The join clauses pane 426 shows the results of the secondary operation before the join event has occurred.


The addition of multiple secondary operations to a node creates a “super node” 408, illustrated by the indicators 450 displayed adjacent to the primary operation icon 408 in the flow pane 303. In some implementations, the list 450 of one or more indicator operations is displayed above the primary operation icon to indicate that the user has performed specific types of cleaning operations in the join super node. The results 427 of the join are also displayed, which shows unmatched rows from both sides of the join. In some implementations, the profile and data panes update based on the selected operation. This allows the user to see the progression of how the operations clean the data in the super node.


This serves to more clearly organize and group data transformation operations within a super node, and thus enables a user to more easily determine whether more data cleaning needs to be performed. In FIG. 4B, for example, a user has performed an inner join primary operation, and some data values were not included in the final join dataset (e.g. because some values were accidently misspelled). Within the super node, a user can go directly and change the value so it does not fall out of the join. In the “All Orders” panel 429 of the join clauses pane 426, the user interface shows values that were excluded from the inner join. Within the join super node, the user can simply double click on a desired value and change it to another value so that it does not fall out of the final data set (e.g. by changing the data value 428 to ‘Fur-Bo-10000362’).


In a super node, it is possible for users to view all of the rows, even those not included in the data set after the primary action was performed. As illustrated in FIG. 4C, a user may select the ‘Excluded’ bar 430 to view more details on which data values were not included in the final dataset after the primary operation was performed, and a summary of the excluded values 432 is be displayed. If the rows are correctly excluded from the join, then no further cleaning operations are needed. On the other hand, it is easy for the user to review the unmatched rows in the excluded rows window 434 and apply cleaning operations if appropriate.



FIG. 5 shows an example of a user performing multiple cleaning operations in a union super node 406. As illustrated in the change pane 416 here, the secondary cleaning operations 504, 506, and 508 are ordered after the union primary action 502, as specified by the chart 900 in FIG. 9. The union results panel 520 enables a user to see if there are any errors in the union. There is a single indicator 522 adjacent to the union icon 406, indicating the presence of certain cleaning operations.



FIG. 6 shows an example of a user performing multiple cleaning operations at an aggregate super node 413. As illustrated above in FIGS. 4A and 5, super nodes in the flow pane have indicators arranged above the main icon to indicate that cleaning functions have been performed in addition to a primary operation. The filtering secondary operation 602, which excludes any rows where the data value in the ‘Year of Sale’ column 608 is “2016,” is ordered before the aggregate primary operation 604. The filter indicator 620 is shown adjacent to the main aggregate icon 413. The secondary operation 606, which changes the data type of the ‘Discount’ column 610, is ordered after the aggregate primary operation 604. The second indicator 622 denotes this change to the data type. The predefined logical ordering method shown in FIG. 9 has been applied because “Year of Sale” is a grouped field, whereas “Discount” is an aggregated field.



FIG. 7 shows five different secondary operation indicators, which are used to let users know what types of operations are being performed. The filter indicator 702 indicates that at least one filtering operation occurs at the node. The calculation indicator 704 indicates that one or more calculations occur at the node (e.g., to compute a new data field based on the values in other data fields). The edit indicator 706 specifies that one of more data values are being modified. The field removal indicator 708 specifies that one or more data fields are being removed from the data set at the node. The change data type indicator 710 specifies that the data type of a data field is being changed at the node (e.g., converting from a string data type to a numeric data type, or vice versa).


As shown in FIG. 8, in some implementations different sets of secondary operation 804 are allowed for each primary operation 802. In FIG. 8, each ‘x’ 806 indicates that a specific secondary operation 804 may be performed at a super node that has a specific primary operation 802. The input and output nodes only permit subsets of secondary operations to be performed.


The visual order of the operations in the change list 416 specifies the order in which the operations are performed at the node. In addition to secondary operations, the “change” list also includes the primary operation at the node, so users can easily see the relationship between the secondary operations and the primary operation.



FIG. 9 illustrates the types of primary operations 902 and the predetermined logical ordering 904 (e.g., ‘Before’ or ‘After’) of the multiple secondary operations 804 for each case. For example, secondary operations affecting Join Results' may only occur after a join operation is performed. Secondary operation affecting data values in the ‘Join Clause’ or which are excluded from the join must occur before a join operation is performed. The ordering of secondary operations is dependent on which primary operation is performed at each super node. For example, in some implementations, all secondary operations performed in union super nodes are ordered after the union primary operation. In order for users to see all data values before and after the reshaping event of the primary operation (e.g., to edit values either before or after a pivot action), the change list provides an option to navigate to the untouched dataset (i.e., before any operations at the node are performed). Similarly, the change list provides an option to navigate to any point in the sequence of operations.


In some implementations, administrative users may modify the logical ordering matrix 900 to suit their specific needs, but this is uncommon because the matrix 900 has been constructed based on substantial usage. Users can alter the sequence of secondary operations after the default ordering has been applied. When a user selects a particular secondary cleaning operation in a change list for a super node, the user interface displays an intermediate data set corresponding to the operation, and then the user can perform an additional cleaning operation. The additional cleaning operation is added to the change list after the current operation. In some implementations, when the entire node is selected, the additional operation is added at the end of the “before list” or “after list” in accordance with the lookup matrix 900.



FIG. 10 provides a flowchart 1000 of a process of using an interactive method to dynamically prepare a data set in accordance with some implementations. The method is typically performed at a computer 200 having a display 208, one or more processors 202, and memory 214 storing one or more programs configured for execution by the one or more processors.


The method 1000 displays (1002) a user interface that includes a plurality of panes, including a data flow pane 303. The data flow pane includes (1002) a flow diagram having a plurality of nodes. Each node specifies (1002) a respective primary operation (e.g., operations 402-414) or specifies a plurality of secondary operations to clean a respective data set. Each primary operation specifies (1004) retrieval of data from a respective data source, specifies (1004) a respective primary operation to transform data, or specifies (1004) a respective primary operation to create a respective output data set.


The method receives (1006) a first user input to select a node from the flow diagram (e.g., the selected node 408 in FIG. 4A). In response to receiving the first input, the method displays 1008 a change list pane 416 in the plurality of panes. The change list pane displays (1008) an ordered list of secondary operations performed at the node, in the order that the operations are performed.


The method receives (1010) a second user input to perform a first secondary operation corresponding to the selected node. In response to receiving the second user input, the method performs (1012) the first secondary operation (e.g., the editing operation 428 illustrated in FIG. 4B). The method updates (1014) the selected node with an indicator that the node includes one or more secondary operations (e.g., one of the indicators shown in FIG. 7). The method determines (1016) a respective logical ordering for the first secondary operation based on the primary operation in the selected node (e.g., by performing a lookup in the lookup matrix 900 in FIG. 9). The method then adds (1018) the first secondary operation to the change list pane in accordance with its respective logical ordering (e.g., the secondary operations as listed in the change lists 416 in FIGS. 4A, 5, and 6). The sequence matrix 900 in FIG. 9 specifies whether the operation is before the primary operation (on the “before list”) or after the primary operation (on the “after list”). Within the appropriate list, the new operation usually goes at the end unless there are dependencies between the cleaning operations. The user is able to move the new operation within the appropriate list within the constraints imposed by dependencies.


Disclosed data prep systems 230 give control to users. In many cases, the data prep application 230 makes intelligent choices for the user, but the user is always able to assert control. Control often has two different facets: control over the logical ordering of operations, which is used to ensure the results are correct and match the user's desired semantics; and physical control, which is mostly used to ensure performance.


The disclosed data prep application 230 also provides freedom. Users can assemble and reassemble their data production components however they wish in order to achieve the shape of data they need.


The disclosed data prep application 230 provides incremental interaction and immediate feedback. When a user takes actions, the system provides feedback through immediate results on samples of the user's data, as well as through visual feedback.


The terminology used in the description of the invention herein is for the purpose of describing particular implementations only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof.


The foregoing description, for purpose of explanation, has been described with reference to specific implementations. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The implementations were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various implementations with various modifications as are suited to the particular use contemplated.

Claims
  • 1. A method for preparing data for analysis, comprising: at a computer system having one or more processors and memory storing one or more programs configured for execution by the one or more processors: concurrently displaying a plurality of panes in a user interface, including: a first pane that displays a flow diagram having one or more nodes, each of the one or more nodes containing one or more icons, each icon of the one or more icons representing a respective data transformation operation; anda second pane that displays a plurality of data rows and/or data columns for an intermediate dataset corresponding to a user-selected node of the one or more nodes;receiving a user input, in the first pane, to perform a first data transformation operation at a selected node of the one or more nodes; andin response to receiving the user input, performing the first data transformation operation, including: displaying, in the first pane, an additional icon corresponding to the first data transformation operation at the selected node; andupdating the second pane in accordance with the first data transformation operation, including updating the plurality of data rows and/or data columns for the intermediate dataset corresponding to the selected node.
  • 2. The method of claim 1, further comprising: displaying, in the user interface, a third pane that includes a list of recent data source connections.
  • 3. The method of claim 1, wherein the first data transformation operation is one of: adding a data column, splitting a data column, or merging two or more columns to create a single combined column.
  • 4. The method of claim 1, wherein the first data transformation operation is one of: calculate field, rename field, remove field, edit value, group and replace, split, or change datatype.
  • 5. The method of claim 1, wherein the first data transformation operation includes a reshaping operation that is one of aggregate, pivot, join, or union.
  • 6. The method of claim 1, wherein the one or more nodes include a first node corresponding to a primary operation, the primary operation including one of: retrieving data from a respective data source; orcreating a respective output dataset.
  • 7. The method of claim 1, wherein the selected node includes a first icon representing a secondary operation; and the method further comprises: in response to receiving the user input, displaying, in a fourth pane of the user interface, an ordered list of one or more secondary operations performed at the selected node.
  • 8. The method of claim 7, further comprising: in response to receiving the user input, updating the ordered list of secondary operations in the fourth pane to include the first data transformation operation.
  • 9. The method of claim 7, further comprising: determining a respective logical ordering for each secondary operation of the one or more secondary operations based on the primary operation at the selected node.
  • 10. The method of claim 7, further comprising: determining a respective logical ordering for each secondary operation in the ordered list based on a chronological order in which the secondary operation is performed.
  • 11. A computer system for preparing data for analysis, comprising: one or more processors;memory; andone or more programs stored in the memory and configured for execution by the one or more processors, the one or more programs comprising instructions for: concurrently displaying a plurality of panes in a user interface, including: a first pane that displays a flow diagram having one or more nodes, each of the one or more nodes containing one or more icons, each icon of the one or more icons representing a respective data transformation operation; anda second pane that displays a plurality of data rows and/or data columns for an intermediate dataset corresponding to a user-selected node of the one or more nodes;receiving a user input, in the first pane, to perform a first data transformation operation at a selected node of the one or more nodes; andin response to receiving the user input, performing the first data transformation operation, including: displaying, in the first pane, an additional icon corresponding to the first data transformation operation at the selected node; andupdating the second pane in accordance with the first data transformation operation, including updating the plurality of data rows and/or data columns for the intermediate dataset corresponding to the selected node.
  • 12. The computer system of claim 11, wherein the selected node includes a first icon representing a secondary operation; and the one or more programs further comprise instructions for: in response to receiving the user input, displaying, in a fourth pane of the user interface, an ordered list of one or more secondary operations performed at the selected node.
  • 13. The computer system of claim 12, wherein the one or more programs further comprise instructions for: in response to receiving the user input, updating the ordered list of secondary operations in the fourth pane to include the first data transformation operation.
  • 14. The computer system of claim 12, wherein the one or more programs further comprise instructions for: determining a respective logical ordering for each secondary operation of the one or more secondary operations based on the primary operation at the selected node.
  • 15. The computer system of claim 12, wherein the one or more programs further comprise instructions for: determining a respective logical ordering for each secondary operation in the ordered list based on a chronological order in which the secondary operation is performed.
  • 16. A non-transitory computer readable storage medium storing one or more programs configured for execution by a computer system having one or more processors, memory, and a display, the one or more programs comprising instructions for: concurrently displaying a plurality of panes in a user interface, including: a first pane that displays a flow diagram having one or more nodes, each of the one or more nodes containing one or more icons, each icon of the one or more icons representing a respective data transformation operation; anda second pane that displays a plurality of data rows and/or data columns for an intermediate dataset corresponding to a user-selected node of the one or more nodes;receiving a user input, in the first pane, to perform a first data transformation operation at a selected node of the one or more nodes; andin response to receiving the user input, performing the first data transformation operation, including: displaying, in the first pane, an additional icon corresponding to the first data transformation operation at the selected node; andupdating the second pane in accordance with the first data transformation operation, including updating the plurality of data rows and/or data columns for the intermediate dataset corresponding to the selected node.
  • 17. The non-transitory computer readable storage medium of claim 16, wherein the first data transformation operation is one of: adding a data column, splitting a data column, or merging two or more columns to create a single combined column.
  • 18. The non-transitory computer readable storage medium of claim 16, wherein the first data transformation operation is one of: calculate field, rename field, remove field, edit value, group and replace, split, or change datatype.
  • 19. The non-transitory computer readable storage medium of claim 16, wherein the first data transformation operation includes a reshaping operation that is one of aggregate, pivot, join, or union.
  • 20. The non-transitory computer readable storage medium of claim 16, wherein the one or more nodes include a first node corresponding to a primary operation, the primary operation including one of: retrieving data from a respective data source; orcreating a respective output dataset.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 17/325,124, filed May 19, 2021, entitled “Data Preparation User Interface with Conglomerate Heterogeneous Process Flow Elements,” which is a continuation of U.S. application Ser. No. 16/908,700, filed Jun. 22, 2020, entitled “Data Preparation User Interface with Conglomerate Heterogeneous Process Flow Elements,” now U.S. Pat. No. 11,061,538, issued on Jul. 13, 2021, which is a continuation of U.S. application Ser. No. 16/167,313, filed Oct. 22, 2018, entitled “Data Preparation User Interface with Conglomerate Heterogeneous Process Flow Elements,” now U.S. Pat. No. 10,691,304, issued on Jun. 23, 2020, each of which is incorporated herein by reference in its entirety.

US Referenced Citations (162)
Number Name Date Kind
4357673 Willis et al. Nov 1982 A
4458323 Willis et al. Jul 1984 A
5339392 Risberg Aug 1994 A
5421008 Banning et al. May 1995 A
5999192 Selfridge Dec 1999 A
6278452 Huberman et al. Aug 2001 B1
6470344 Kothuri et al. Oct 2002 B1
6778873 Wang et al. Aug 2004 B1
6784902 Melder et al. Aug 2004 B1
6993553 Kaneko et al. Jan 2006 B2
7362718 Kakivaya et al. Apr 2008 B2
7720779 Perry et al. May 2010 B1
7793160 McClure et al. Sep 2010 B1
7991723 Dubrovsky et al. Aug 2011 B1
8418181 Sirota Apr 2013 B1
8479136 Hopkins et al. Jul 2013 B2
8626475 Fontes Jan 2014 B1
8700682 Tedder et al. Apr 2014 B2
8806377 Chen Aug 2014 B2
8812752 Shih et al. Aug 2014 B1
8819592 Jackson, Jr. Aug 2014 B2
8843959 McMaster et al. Sep 2014 B2
8863029 Chen Oct 2014 B2
8976672 Thubert Mar 2015 B2
9323503 Fontes Apr 2016 B1
9335911 Elliot et al. May 2016 B1
9465523 Kleser et al. Oct 2016 B2
9501585 Gautam et al. Nov 2016 B1
10127250 Dingman et al. Nov 2018 B2
10127511 Epstein Nov 2018 B1
10204173 Vaught Feb 2019 B2
10242079 Kim Mar 2019 B2
10275545 Yeager et al. Apr 2019 B2
10339681 Moore Jul 2019 B2
10380140 Sherman Aug 2019 B2
10394691 Cole Aug 2019 B1
10466978 Vidan Nov 2019 B1
10503784 Dean et al. Dec 2019 B1
10515093 Sherman Dec 2019 B2
10528587 Kim Jan 2020 B2
10733165 Broad Aug 2020 B1
10885057 Pugh Jan 2021 B2
20020055947 Schultz May 2002 A1
20020070953 Barg et al. Jun 2002 A1
20020080174 Kodosky Jun 2002 A1
20020157086 Lewis Oct 2002 A1
20030088546 Brown May 2003 A1
20030167265 Corynen Sep 2003 A1
20030182582 Park et al. Sep 2003 A1
20030220928 Durand et al. Nov 2003 A1
20040034616 Witkowski et al. Feb 2004 A1
20040078105 Moon et al. Apr 2004 A1
20050010877 Udler Jan 2005 A1
20050022129 Borenstein et al. Jan 2005 A1
20050044525 Lazarov Feb 2005 A1
20060143534 Dall Jun 2006 A1
20060168205 Barron et al. Jul 2006 A1
20060173812 Bahl et al. Aug 2006 A1
20060247912 Suzuki Nov 2006 A1
20070016615 Mohan Jan 2007 A1
20070106515 Wong May 2007 A1
20070112714 Fairweather May 2007 A1
20070150581 Banerjee et al. Jun 2007 A1
20070198312 Bagchi et al. Aug 2007 A1
20070214136 MacLennan et al. Sep 2007 A1
20070288899 Fanning et al. Dec 2007 A1
20080040704 Khodabandehioo Feb 2008 A1
20080059563 Backmann Mar 2008 A1
20080140688 Clayton et al. Jun 2008 A1
20080150317 Kilcrease Jun 2008 A1
20080155440 Trevor et al. Jun 2008 A1
20080159317 Iselborn Jul 2008 A1
20080183687 Law Jul 2008 A1
20080195626 Ukigawa et al. Aug 2008 A1
20080209392 Able Aug 2008 A1
20080254430 Woolf et al. Oct 2008 A1
20080262988 Williams et al. Oct 2008 A1
20080281801 Larson et al. Nov 2008 A1
20090018996 Hunt et al. Jan 2009 A1
20090021767 Fujimaki Jan 2009 A1
20090064053 Crawford Mar 2009 A1
20090100086 Dumant et al. Apr 2009 A1
20090248698 Rehmann Oct 2009 A1
20090276724 Rosenthal et al. Nov 2009 A1
20090319688 Mason et al. Dec 2009 A1
20100057618 Spicer Mar 2010 A1
20100156889 Martinez et al. Jun 2010 A1
20100299327 Kiefer et al. Nov 2010 A1
20110283242 Chew et al. Nov 2011 A1
20110302551 Hummel Dec 2011 A1
20110320384 Chang Dec 2011 A1
20120022707 Budhraja et al. Jan 2012 A1
20120023302 Amdt et al. Jan 2012 A1
20120102396 Arksey et al. Apr 2012 A1
20120151453 Finking et al. Jun 2012 A1
20120209886 Henderson Aug 2012 A1
20120226742 Monchilov et al. Sep 2012 A1
20120278015 Budhraja et al. Nov 2012 A1
20120290950 Rapaport et al. Nov 2012 A1
20120330869 Durham Dec 2012 A1
20130042154 Agarwa et al. Feb 2013 A1
20130080197 Kung et al. Mar 2013 A1
20130166568 Binkert et al. Jun 2013 A1
20130212234 Bartlett Aug 2013 A1
20130283106 King et al. Oct 2013 A1
20140043325 Ruble et al. Feb 2014 A1
20140058775 Siig et al. Feb 2014 A1
20140249999 Johnson et al. Sep 2014 A1
20140250153 Nixon et al. Sep 2014 A1
20140365533 Debray et al. Dec 2014 A1
20150010143 Yang Jan 2015 A1
20150081701 Lerios et al. Mar 2015 A1
20150106456 van Hoek Apr 2015 A1
20150149912 Moore May 2015 A1
20150178877 Bogomolov Jun 2015 A1
20150200867 Dutta et al. Jul 2015 A1
20150278258 Kienzle et al. Oct 2015 A1
20150317344 Birdwell Nov 2015 A1
20150324437 Jiang et al. Nov 2015 A1
20150378863 Balachandran Dec 2015 A1
20150378869 Balachandran Dec 2015 A1
20160062737 Stanfill et al. Mar 2016 A1
20160070430 Kim et al. Mar 2016 A1
20160070451 Kim et al. Mar 2016 A1
20160086260 Vermeulen et al. Mar 2016 A1
20160092476 Stojanovic et al. Mar 2016 A1
20160110369 Cervelli et al. Apr 2016 A1
20160112460 Li Apr 2016 A1
20160117371 Couris et al. Apr 2016 A1
20160179897 Zheng Jun 2016 A1
20160260063 Harris Sep 2016 A1
20160306908 Fontes Oct 2016 A1
20160364434 Spitz et al. Dec 2016 A1
20170005674 Hussain et al. Jan 2017 A1
20170032026 Parker et al. Feb 2017 A1
20170039500 Leidner et al. Feb 2017 A1
20170069118 Stewart Mar 2017 A1
20170083585 Chen et al. Mar 2017 A1
20170116396 Gu et al. Apr 2017 A1
20170212944 Hellman et al. Jul 2017 A1
20170277664 Mihalcea et al. Sep 2017 A1
20170286264 Surnarayana Oct 2017 A1
20170315516 Kozionov et al. Nov 2017 A1
20170373932 Subramanian et al. Dec 2017 A1
20170373992 Nair Dec 2017 A1
20180024701 Sanches Jan 2018 A1
20180024731 Sanches Jan 2018 A1
20180129374 Kim et al. May 2018 A1
20180129719 Kim May 2018 A1
20180129720 Kim et al. May 2018 A1
20180157579 Rozenberg et al. Jun 2018 A1
20180165297 Kuchoor et al. Jun 2018 A1
20180314764 Orad Nov 2018 A1
20180349251 Mietke et al. Dec 2018 A1
20180367371 Nagarajan et al. Dec 2018 A1
20190004929 Fastabend et al. Jan 2019 A1
20190121807 Boutros et al. Apr 2019 A1
20190138675 Fontes May 2019 A1
20190179927 Rao et al. Jun 2019 A1
20190258575 Dey Aug 2019 A1
20190294421 Pietzsch Sep 2019 A1
20200012656 Pugh Jan 2020 A1
Non-Patent Literature Citations (48)
Entry
Anonymous, “Cursor (databases) Wikipidia, the free enciclopedia,” Dec. 2, 2012, XP055222764, Retrieved from the internet: URL:https://en.wikipedia,org/w/index.ph?title-Cursor_(databases)&oldid-526008371, 7 pgs.
Anand, Preinterview First Office Action, U.S. Appl. No. 16/167,313, dated Jan. 24, 2020, 6 pgs.
Anand, Notice of Allowance, U.S. Appl. No. 16/167,313, dated Mar. 2, 2020, 9 pgs.
Anand, Notice of Allowance, U.S. Appl. No. 16/908,700, dated Mar. 11, 2021, 10 pgs.
Anand Notice of Allowance, U.S. Appl. No. 17/325,124, dated May 4, 2022, 12 pgs.
Bae, J., Understanding Indirect Casual Relationships in Node-Link Graphs, Eurographics Conference on Visualization (Euro Vis) Jun. 2017, vol. 36, No. 3, 12 pgs.
Cole, Office-Action, U.S. Appl. No. 15/726,294, dated Nov. 9, 2018, 40 pgs.
Cole, Notice of Allowance, U.S. Appl. No. 15/726,294, dated May 9, 2019, 14 pgs.
Disclosed Anonymously, ip.com Method to enter data while filter applied, Dec. 6, 2011, (YearL 2011), 7 pgs.
Ghani, S., Perception of Animated Node-Link Diagrams Graphs, Eurographics Conference on Visualization, (Euro Vis) Jun. 2012, vol. 31, No. 3, 11 pgs.
Ishio et al., “A Lightweight Visualization of Interprocedural Data-Flow Paths for Source Code Reading,” [Online], 2012, pp. 37-46, retrieved from internet on May 7, 2019, <https://ieeexplore.org/stamp.jsp?tp-&arnumber-6240506> (Year: 2012).
Kabbaj et al., “Towards an Active Help on Detecting Data Flow Errors in Business Process Models,” [Online], 2015, pp. 16-25, [retrieved from internet on Jul. 11, 2020] <https://www.researchgate.net/profile/Mohammed_Isaam_Kabbaj/publication/263966 796 Toward an active_help_on_detecting_data flow_errors> (Year:2015), 11 pgs.
Kim, Notice of Allowance, U.S. Appl. No. 15/701,381, dated Nov. 9, 2018, 6 pgs.
Kim, Office Action, U.S. Appl. No. 15/345,391, dated Jun. 28, 2019, 10 pgs.
Kim, Office Action, U.S. Appl. No. 15/345,391, dated Feb. 13, 2020, 16 pgs.
Kim, Final Office Action, U.S. Appl. No. 15/345,391, dated Sep. 17, 2020, 16 pgs.
Kim, Office Action, U.S. Appl. No. 15/345,391, dated Jun. 8, 2021, 14 pgs.
Kim, Final Office Action, U.S. Appl. No. 15/345,391, Jan. 6, 2022, 20 pgs.
Kim, Notice of Allowance U.S. Appl. No. 15/345,391, dated Aug 25, 2023, 8 pgs.
Kim, Pre-Interview First Office Action-U.S. Appl. No. 15/701,392, dated Mar. 9, 2020, 5 pgs.
Kim, Final Office Action-U.S. Appl. No. 15/701,392, dated Sep. 21, 2020, 18 pgs.
Kim, Notice of Allowance, U.S. Appl. No. 15/701,392, dated Apr. 20, 2021, 9 pgs.
Kim, Notice of Allowance, U.S. Appl. No. 15/705,174, dated Sep. 24, 2019, 10 pgs.
Kim, Notice of Allowance, U.S. Appl. No. 16/153,615, dated Jul. 14, 2020, 10 pgs.
Kim, Notice of Allowance, U.S. Appl. No. 16/285,084, dated Apr. 6, 2020, 9 pgs.
Kim, Notice of Allowance, U.S. Appl. No. 16/537,444, dated Jul. 22, 2020, 13 pgs.
Kim, Notice of Allowance, U.S. Appl. No. 16/138,705, dated dated Aug. 7, 2020, 9 pgs.
Kim, Pre-Interview First Office Action, U.S. Appl. No. 16/937,524, dated Jan. 6, 2022, 6 pgs.
Kim, First Action Interview Office Action, U.S. Appl. No. 16/937,524, dated Mar. 10, 2022, 6 pgs.
Kim, Final Office Action, U.S. Appl. No. 16/937,524, dated Aug. 23, 2022, 22 pgs.
Kim, Office Action, U.S. Appl. No. 16/937,524, dated Apr. 10, 2023, 26 pgs.
Moss, Pre-Interview First Office Action, U.S. Appl. No. 16/228,680, dated Jun. 8, 2021, 5 pgs.
Moss, First Action Interview Office Action, U.S. Appl. No. 16/228,680, dated Aug. 26, 2021, 4 pgs.
Moss, Notice of Allowance, U.S. Appl. No. 16/228,680, dated Oct. 1, 2021, 10 pgs.
Moss, Office Action, U.S. Appl. No. 17/670,407, dated Aug. 31, 2023, 24 pgs.
Pugh, Notice of Allowance, U.S. Appl. No. 16/155,818, dated Oct. 1, 2020, 9 pgs.
Pugh, Notice of Allowance, US17/142, 138, dated Aug. 5, 2021, 9 pgs.
Wildenradt, Notice of Allowance, U.S. Appl. No. 16/681,753, dated May 6, 2021, 10 pgs.
Logothetis et al., “Scalable Lineage Capture for Debugging DISC Analytics,” [Online], 2013, pp. 1-15, retrieved from internet on May 7, 2019, <http://delivery.acm.org/10.1145/250000/252369/a17-logothetis.pdf> (Year:2013).
Lovat et al., “On Quantitative Dynamic Data Flow Tracking,” [Online], 2014, pp. 211-222, [retrieved from internet on Jul. 11, 2020, <https://dl,acm/doi/pdf/10.11145/2557547.2557551> (Year: 2014), 12 pgs.
Meda et al., “On Detecting Data Flow Errors in Workflows,” [Online] 2010, p. 4:1-4:31, [retrieved from internet on Jul. 11, 2020], <https://dl.acm.org/doi/pdf/10.1145/1805286.1805290> (Year: 2020), 31 pgs.
Moser et al., “Advanced Verification of Distributed WS-BPEL Business Processes Incorporating CSSA-based Data Flow Analysis,” [Online], 2007, pp. 1-8, [retrieved from internet on Jul. 11, 2020], <https://ieeexplore.IEEE.org/stamp/stamp.jsp?tp=&arnumber=4278643> (Year: 2007), 8 pgs.
Tableau Software, Inc., International Search Report and Written Opinion, PCT/US2017/060232, dated Jan. 18, 2018, 10 pgs.
Tableau Software, Inc., International Search Report and Written Opinion, PCT/US2019/053935, dated Dec. 18, 2019, 13 pgs.
Tableau Software, Inc., Communication Pursuant Rules 161(1) and 162, EP17801216.7, dated Jun. 17, 2019, 3 pgs.
Tableau Software, Inc., Communication Pursuant to Article 94(3), EP17801216.7, dated Apr. 3, 2020, 6 pgs.
Tibco, “TIBCO ActiveMatrix BusinessWorks TM Process Design Software Release 5.13,” Aug. 31, 2015, retrieved from the Internet: URL:https://docs.tibco.com/pub/activematrix_businessworks/5.13.0/doc/pdf/tib_bw_process design guide.pdf, 107 pgs.
Yip et al., “Improving Application Security with Data Flow Assertions,” [Online], 2009, pp. 1-18, retrieved from internet on May 7, 2019, <http://www.sigops.org/conferences/sosp/2009/papers/yip-sosp09.pdf> (Year:2009).
Related Publications (1)
Number Date Country
20230014484 A1 Jan 2023 US
Continuations (3)
Number Date Country
Parent 17325124 May 2021 US
Child 17947027 US
Parent 16908700 Jun 2020 US
Child 17325124 US
Parent 16167313 Oct 2018 US
Child 16908700 US