Data privacy in driver monitoring system

Information

  • Patent Grant
  • 12197610
  • Patent Number
    12,197,610
  • Date Filed
    Wednesday, July 6, 2022
    2 years ago
  • Date Issued
    Tuesday, January 14, 2025
    3 months ago
Abstract
A driver monitoring system includes internal and external cameras attached to a vehicle. The cameras capture video of the vehicle's driver and the area surrounding the vehicle for later review by a coach or supervisor. To ensure privacy of people who appear in video, portions of the video may be processed to blur faces, license plates, and/or other features. Furthermore, access control mechanisms exist so that only users in specific roles have access to review certain types of video.
Description
BACKGROUND

Computing devices can collect user data on a large scale for a variety of applications. For example, computing devices attached to a vehicle can collect data that can be used to monitor and train driver safety. However, such devices will routinely capture personal and highly sensitive data such as photos and videos, which may be kept indefinitely by the person or organization collecting the data.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of various inventive features will now be described with reference to the following drawings. Throughout the drawings, reference numbers may be re-used to indicate correspondence between referenced elements. The drawings are provided to illustrate example embodiments described herein and are not intended to limit the scope of the disclosure. To easily identify the discussion of any particular element or act, the most significant digit or digits in a reference number refer to the figure number in which that element is first introduced.



FIG. 1A is a block diagram depicting illustrative data flows and interactions between a vehicle device, a backend server, and a driver safety administration system according to some embodiments.



FIG. 1B shows an example vehicle device comprising a driver-facing camera according to some embodiments.



FIG. 1C is the front view of the example vehicle device showing the inward-facing camera.



FIG. 1D is a rear view of the example vehicle device showing an outward-facing camera (e.g., positioned to obtain images forward of the vehicle).



FIGS. 2A-2C show an example vehicle device comprising multiple inward-facing and outward-facing cameras according to some embodiments.



FIGS. 3A and 3B are flow diagrams of an example method for blurring sensitive portions of image data acquired by a vehicle device according to some embodiments.



FIG. 4 is a flowchart illustrating one embodiment of an example method for retrieving appropriate image data based on digital user permissions.



FIG. 5 depicts an example user interface displaying a video stream with sensitive portions of the video blurred, according to some embodiments.



FIG. 6 depicts an example user interface for viewing and editing access permissions for a user role according to some embodiments.





DETAILED DESCRIPTION

Generally described, the present disclosure relates to increasing data privacy within a driver monitoring system. To mitigate privacy and confidentiality concerns, data collectors strive to prevent unauthorized access to sensitive information in private data sets. Two methods that data collectors can employ to ensure data privacy include: (1) implementing digital access restrictions to certain data; and (2) obfuscating sensitive information, such as by blurring faces or other confidential information in images. Image data acquired by a vehicle device may be processed to detect and blur (or otherwise obfuscate) sensitive portions of the image data, for example by using a trained machine learning model for object detection. Beneficially, such processing mitigates privacy concerns regarding any sensitive and/or personal data acquired by the vehicle device.


A potential problem with existing object detection and blurring methods is that they may not be able to accurately and precisely detect sensitive information. Imprecise object detection may lead to over-blurring portions of an image such that a user viewing the blurred image may not be able to properly analyze the image. For example, in a driver monitoring system, a user may not be able to properly analyze a driver's safety performance if the image data captured by the system has been over-blurred. In other cases, inaccurate object detection may lead to under-blurring of portions of an image and/or blurring the wrong portions of an image, which may cause sensitive and/or personal information in the image to be inadvertently revealed.


Some aspects of the present disclosure address the issues noted above, among others, by detecting specific objects in image data that is inherently sensitive, such as faces and vehicle license plates, and calculating a bounding box for each detected object. As used herein, the term “bounding box” refers to a quadrilateral (or other shape) that fully or partially encompasses (or “bounds”) a detected object. The bounding box may then be used to determine specific portions of an image, which contain sensitive information, to blur. For example, the bounding box of a detected face may be used to blur the portion of an image containing the detected face. As another example, the bounding box of a vehicle may be used to determine and blur the portion of an image containing a vehicle license plate.


Additional aspects of the present disclosure relate to methods of restricting access to data containing sensitive information to only those users for whom it is necessary to access such data. Such a restriction can be achieved by implementing digital access permissions controls within a driver monitoring system. In some embodiments, these access permissions can be combined with the blurring process described above, such that only certain users are authorized to access un-blurred image data, while other users may be authorized to access images with no blurring or blurring of only a limited categories of object (e.g., blurring of faces, but not license plates). Access to other subsets of data may also be controlled, such as access to video, access to driver images, access to forward or backward facing images, and access to recorded audio streams. In some embodiments, the permissions may be grouped by role, such that all users assigned to a certain role within an organization will have access to the same data.


Various aspects of the disclosure will be described with regard to certain examples and embodiments, which are intended to illustrate but not limit the disclosure. Although aspects of some embodiments described in the disclosure will focus, for the purpose of illustration, on particular examples of vehicle devices, image processing algorithms, and access configurations, the examples are illustrative only and are not intended to be limiting. In some embodiments, the techniques described herein may be applied to additional or alternative driver monitoring systems and methods. Any feature used in any embodiment described herein may be used in any combination with any other feature, without limitation.


Terms

To facilitate an understanding of the systems and methods discussed herein, several terms are described below. These terms, as well as other terms used herein, should be construed to include the provided descriptions, the ordinary and customary meanings of the terms, and/or any other implied meaning for the respective terms, wherein such construction is consistent with context of the term. Thus, the descriptions below do not limit the meaning of these terms, but only provide example descriptions.


Backend Server System (also referred to herein as a “management server”, “backend,” “cloud,” or “cloud server”): one or more network-accessible servers configured to communicated with vehicle devices (e.g., via a vehicle gateway and/or communication circuitry of a dashcam). A management server is typically configured to communicate with multiple vehicle devices, such as each of a fleet of hundreds, thousands, or more vehicles. Thus, the management server may have context and perspective that individual vehicle devices do not have. For example, the management server may include data associated with a large quantity of vehicles, such as vehicles across a fleet, multiple fleets, and/or within a geographic area. Thus, the management server may perform analysis of asset data across multiple vehicles and between groups of vehicles (e.g., comparison of fleets operated by different entities). A backend server system may also include a feedback system that periodically updates event models used by vehicle devices to provide real-time detection of events, such as safety events, that may trigger in-vehicle alerts. For example, when the backend server has optimized an event model based on analysis of asset data associated with many safety events, potentially across multiple fleets of vehicles, an updated event model may be sent to the vehicle devices.


Vehicle Device: one or more electronic components positioned in or on a vehicle and configured to communicate with a backend server system. A vehicle device includes one or more sensors, such as one or more video sensors, audio sensors, accelerometers, global positioning systems (GPS), and the like, which may be housed in a single enclosure (e.g., a dashcam) or multiple enclosures. A vehicle device may include a single enclosure (e.g., a dashcam) that houses multiple sensors as well as communication circuitry configured to transmit sensor data to a backend server system. Alternatively, a vehicle device may include multiple enclosures, such as a dashcam that may be mounted on a front window of a vehicle and a separate vehicle gateway that may be positioned at a different location in the vehicle, such as under the dashboard. In this example implementation, the dashcam may be configured to acquire various sensor data, such as from one or more cameras of the dashcam, and communicate sensor data to the vehicle gateway, which includes communication circuitry configured to communicate with the backend server system. Vehicle devices may also include memory for storing software code that is usable to execute one or more event detection models, such as neural network or other artificial intelligence programming logic, that allow the vehicle device to trigger events without communication with the backend.


Vehicle Gateway (or “VG”): a device positioned in or on a vehicle, which is configured to communicate with one or more sensors in the vehicle, e.g., in a separate dashcam mounted in the vehicle, and to a backend server system. In some embodiments, a vehicle gateway can be installed within a vehicle by coupling an interface of the vehicle gateway to an on-board diagnostic (OBD) port of the vehicle. A vehicle gateway may include short-range communication circuitry, such as near field communication (“NFC”), Bluetooth (“BT”), Bluetooth Low Energy (“BLE”), etc., for communicating with sensors in the vehicle and/or other devices that are in proximity to the vehicle (e.g., outside of the vehicle).


Sensor Data: any data obtained by the vehicle device, such as video, audio, accelerometer, global positioning systems (GPS), any information obtained via the On-Board Diagnostic (OBD) port of the vehicle, and/or any metadata associated with the vehicle device.


Image Data: any data obtained by an imaging device, such as a camera, which may include one or both of still images and video.


Features: an “interesting” part of sensor data, such as data that is extracted from and/or derived from sensor data and may provide an abstraction of the sensor data. Features may include items (and/or metadata associated with those items) such as objects within images obtained by a camera.


Feature Detection Module: a set of logic that may be applied to image data (and/or other types of sensor data) to detect certain features in the image data. A feature detection module may be, for example, an algorithm, statistical model, neural network, or machine learning model that takes as input one or more types of image data. A feature detection module may be stored in any format, such as a list of criteria, rules, thresholds, and the like, that indicate detection of a feature. Feature detection modules may be executed by a vehicle device and/or by a backend server system (e.g., in the cloud).


Data Store: any computer readable storage medium and/or device (or collection of data storage mediums and/or devices). Examples of data stores include, but are not limited to, optical disks (e.g., CD-ROM, DVD-ROM, etc.), magnetic disks (e.g., hard disks, floppy disks, etc.), memory circuits (e.g., solid state drives, random-access memory, etc.), and/or the like. Another example of a data store is a hosted storage environment that includes a collection of physical data storage devices that may be remotely accessible and may be rapidly provisioned as needed (commonly referred to as “cloud” storage).


Database: Any data structure (and/or combinations of multiple data structures) for storing and/or organizing data, including, but not limited to, relational databases (e.g., Oracle databases, PostgreSQL databases, etc.), non-relational databases (e.g., NoSQL databases, etc.), in-memory databases, spreadsheets, comma separated values (CSV) files, extendible markup language (XML) files, TeXT (TXT) files, flat files, spreadsheet files, and/or any other widely used or proprietary format for data storage. Databases are typically stored in one or more data stores. Accordingly, each database referred to herein (e.g., in the description herein and/or the figures of the present application) is to be understood as being stored in one or more data stores. Additionally, although the present disclosure may show or describe data as being stored in combined or separate databases, in various embodiments such data may be combined and/or separated in any appropriate way into one or more databases, one or more tables of one or more databases, etc. As used herein, a data source may refer to a table in a relational database, for example.


Example Feature Detection Module


As will be discussed further herein, a vehicle device and/or backend server system may implement certain machine learning techniques that are configured to identify features within image data, such as in images obtained by one or more of the outward-facing or inward-facing cameras of the vehicle device. The feature detection may be performed by one or more feature detection module (e.g., part of the vehicle device and/or the backend server system), which may include program code executable by one or more processors to analyze video data (e.g., a high, standard, or low resolution video stream), still image data, and/or any other image data obtained by a vehicle device. While some of the discussion herein is with reference to analysis of video data, such discussions should be interpreted to also cover analysis of other types of image data.


In some embodiments, the vehicle device can process video data locally to identify various features, such as detection of an object (e.g., a person or a vehicle), characteristics of the object, location of the object within the image files of the video, and the like. This feature data may include metadata, which can be indexed (e.g., to a corresponding video recording or video feed) to track the time ranges that each detection begins and ends in video data. Such metadata, and other optimized data, can then be processed and/or selectively transmitted to the backend server system.


In some embodiments, the feature detection module can include a machine learning component that can be used to assist in detection of objects. For example, the machine learning component can implement machine learning algorithms or artificial intelligence to generate and/or update neural networks that are executed by a processor (e.g., in the vehicle device and/or the backend server system). In some embodiments, the machine learning component can use one or more machine learning algorithms to generate one or more models or parameter functions for the detections. In some embodiments, the feature detection module may implement an ensemble model, a modular model, a multi-modal model, and/or a stateful model. For example, the feature detection module may comprise a plurality of layered and/or hierarchical models that each produce an output that is pooled together. Further, the feature detection module may comprise a thin layer of models that is independently defined and tunable. In some embodiments, video recording criteria (e.g., pre-configured video recording criteria) can be designated by a user, administrator, or automatically. For example, the video recording criteria can indicate which types of detected features to monitor, record, or process. By designating specific types of detections, resources (e.g., processing power, bandwidth, etc.) can be preserved for only the types of feature detections desired.


Some non-limiting examples of machine learning algorithms that can be used in a feature detection module can include supervised and non-supervised machine learning algorithms, including regression algorithms (e.g., Ordinary Least Squares Regression), instance-based algorithms (e.g., Learning Vector Quantization), decision tree algorithms (e.g., classification and regression trees), Bayesian algorithms (e.g., Naïve Bayes), clustering algorithms (e.g., Apriori algorithms), convolutional neural network algorithms (e.g., You Only Look Once), deep learning algorithms (e.g., Deep Boltzmann Machine), dimensionality reduction algorithms (e.g., Principal Component Analysis), ensemble algorithms (e.g., Stacked Generalization), and/or other machine learning algorithms.


These machine learning algorithms may include any type of machine learning algorithm including hierarchical clustering algorithms and cluster analysis algorithms, such as a k-means algorithm. In some cases, the performing of the machine learning algorithms may include the use of a neural network. By using machine-learning techniques, copious amounts (such as terabytes or petabytes) of received data may be analyzed without manual analysis or review by one or more people.


Example Backend Server System and Vehicle Device



FIG. 1A illustrates a backend server system 120 in communication with a vehicle device 114 and a safety administration system 130. In this embodiment, the vehicle 110 includes a vehicle device 114, which may physically incorporate and/or be coupled to (e.g., via wired or wireless communication channel) a plurality of sensors 112. In some embodiments, the vehicle device 114 comprises a dashcam, such as the example dash cam illustrated in FIGS. 1B-1D configured to communicate with the backend server system 120. In other embodiments, the vehicle device 114 includes a dashcam and a vehicle gateway, where the dashcam is configured to communicate sensor data to the vehicle gateway and then the vehicle gateway can selectively transmit sensor data to the backend server system 120.


The sensors 112 may include, for example, one or more inward-facing camera and one or more outward-facing camera. The vehicle device 114 may, such as the vehicle gateway of the vehicle device, may include one or more microprocessors and communication circuitry configured to transmit data to the backend server system 120, such as via one or more of the networks 150, 160. In this example, a safety dashboard 132 may be generated on a safety administration system 130 to illustrate sensor data from the backend server system 120, such as via an online portal, e.g., a website or standalone application. The safety administration system 130 may be operated, for example, by a safety manager that reviews information regarding triggered safety events associated with a fleet of drivers/vehicles.


Various example computing devices 114, 120, and 130 are shown in FIG. 1A. In general, the computing devices can be any computing device such as a desktop, laptop or tablet computer, personal computer, wearable computer, server, personal digital assistant (PDA), hybrid PDA/mobile phone, mobile phone, smartphone, set top box, voice command device, digital media player, and the like. A computing device may execute an application (e.g., a browser, a standalone application, etc.) that allows a user to access interactive user interfaces, view images, analyses, or aggregated data, and/or the like as described herein. In various embodiments, users may interact with various components of the example operating environment (e.g., the safety administration system 130, the backend server system 120, etc.) via various computing devices. Such interactions may typically be accomplished via interactive graphical user interfaces or voice commands, however alternatively such interactions may be accomplished via command line, and/or other means.


As shown in the example of FIG. 1A, communications between the vehicle device 114 and backend server system 120 primarily occurs via network 150, while communication between the backend server system 120 and safety administration system 130 typically occurs via network 160. However, networks 150, 160 may include some or all of the same communication protocols, services, hardware, etc. Thus, although the discussion herein may describe communication between the vehicle device 114 and the backend server system 120 via the network 150 (e.g., via cellular data) and communication between the backend server system 120 and the safety administration system 130 via a wired and/or a wireless high-speed data communication network (including the Internet), communications of the devices are not limited in this manner.


In some embodiments, the vehicle device transmits encrypted data via SSL (e.g., 256 bit, military grade encryption) to the backend server system 120 via high-speed wireless communication technology, such as 4G LTE or 5G communications. The network 150 may include one or more wireless networks, such as a Global System for Mobile Communications (GSM) network, a Code Division Multiple Access (CDMA) network, a Long Term Evolution (LTE) network, or any other type of wireless network. The network 150 can use protocols and components for communicating via the Internet or any of the other aforementioned types of networks. For example, the protocols used by the network 150 may include Hypertext Transfer Protocol (HTTP), HTTP Secure (HTTPS), Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), and the like. Protocols and components for communicating via the Internet or any of the other aforementioned types of communication networks are well known to those skilled in the art and, thus, are not described in more detail herein.


The network 160 may similarly include any wired network, wireless network, or combination thereof. For example, the network 160 may comprise one or more local area networks, wide area network, wireless local area network, wireless wide area network, the Internet, or any combination thereof.



FIG. 1B illustrates an example dashcam 113 of a vehicle device 114 with an inward-facing camera 115 mounted inside a vehicle. FIG. 1C is a front view of the example vehicle device 114 showing the inward-facing camera 115, and FIG. 1D is a rear view of the example vehicle device 114 showing an outward-facing camera 116 (e.g., positioned to obtain images forward or backward of the vehicle). In this example, the dashcam includes an access panel 117 configured to allow alert signals from a speaker within the enclosure 118 of the dashcam 113 to be better heard within the vehicle. In some embodiments, a microphone is positioned behind the access panel 117 also, or behind a similar additional access panel. In other embodiments, the dashcam 113 may include different quantities of video and/or still image cameras. These dual-facing cameras (e.g., the inward-facing camera 115 and one or more outward-facing cameras 116) may be configured to automatically upload and/or analyze footage using feature detection models (e.g., detecting portions of image data for blurring, safety events, and/or other features of sensor data). For example, as discussed further herein, the vehicle device 114 may advantageously apply event detection models to sensor data, including video data from one or more of the cameras, to detect safety events in real time as the events are happening. While the specifications of vehicle devices may vary greatly from one implementation to another, in one example embodiment a vehicle device may include some or all of the components below:

    • Outward-facing camera with a field of view of 121° or more, resolution of at least 1080p (Full HD) video, frame rate of at least 30 frames per second, HDR to optimize for bright and low-light conditions.
    • Inward-facing camera with a field of view of 177° or more to identify unsafe in-cab behaviors, resolution of at least 720p (HD) video, frame rate of at least 30 frames per second, infrared LED for unlit nighttime in-cab video.
    • Audio input and/or output device(s) configured to provide voice coaching, such as voice-based feedback and alerts in response to detection of safety events, as well as the ability to turn on audio capture (e.g., via one or more microphones) for extra context during disputes and incidents.
    • Recording capabilities and storage to record video footage for a rolling time period. For example, 60-100 hours or more of driving time video may be stored on the vehicle device, with an option for retrieval by the backend server system, such as to provide additional context associated with a detected safety event in a safety dashboard. Video data may be automatically uploaded to an backend server system (e.g., in the cloud) for further analysis, such as automatically uploading five seconds before to five seconds after each safety event is detected. Still images may also be captured and stored locally and/or transmitted to the backend server system. A panic button may be provided to allow the driver to manually trigger a safety event and upload video footage from one or more of the cameras. For example, the panic button may be a physical button on the vehicle device enclosure 118 and/or a virtual (or software) button that may be activated by a voice command from the driver (or a passenger in the vehicle).
    • Data transfer circuitry configured to automatically upload event data (e.g., metadata and asset data) to the backend server system, where the event data may be further analyzed. In some implementations, the data transfer circuitry is configured to detect availability of cellular connectivity and, when connectivity is below a threshold, delay transmission of until cellular connectivity improves.
    • Mounting hardware for easily mounting on the inside of a windshield, such as with heavy duty acrylic foam tape, suction cup, velcro, or the like. Tilt control to allow for proper inward-facing orientation with a wide variety of windshields.
    • One or more accelerometers, such as accelerometers that measure acceleration (and/or related G forces) in each of multiple axes, such as in an X, Y, and Z axis.
    • One or more computer processors, such as high-capacity processors that enable concurrent neural networks for real-time artificial intelligence.



FIGS. 2A-2C illustrate example configurations of a vehicle device including multiple cameras 210 and a vehicle gateway 220. FIG. 2A is a side view and FIG. 2B is a top view of a bus 205, or other vehicle, illustrating placement of multiple camera devices (e.g., cameras, such as dash cams and/or cameras configured for mounting at other internal or external vehicle locations) 210 inside and/or outside the vehicle. In this example, cameras 210 are positioned at various locations within the vehicle, with cameras 210A position on an outer surface of the vehicle (and/or positioned to capture images outside the vehicle). As shown, each of the cameras 210 are separately connected to the vehicle gateway 220, which may comprise some or all of the functionality of the vehicle device 114 of FIG. 1A. Thus, as shown in FIG. 2B, multiple cables 212 extend across various portions of the vehicle 205 to all couple directly with the vehicle gateway 220. Depending on the vehicle, placement of such cables (e.g., electrical wiring) may involve drilling, patching, painting, etc. to place the multiple cables in various locations of the vehicle. Thus, reduction of the number of cables connecting sensor devices to the controller is desired.



FIG. 2C is another top view of the vehicle 205, now with cameras 230 in place of the cameras 210, and coupled together with cables 232 in a serial configuration that reduces wiring requirements within the vehicle. Thus, in this configuration, the complexity of wiring the cameras so that communications with the vehicle gateway 220 may occur is greatly reduced, as well as the amount of cabling needed to establish communications between the vehicle gateway 220 and each of the sensor devices 230.


Example Feature Detection Modules and Blurring



FIG. 3A is a flow diagram illustrating an example process for detecting certain features (e.g., objects which likely depict sensitive information) in image data, such as by processing video data using one or more neural networks, and blurring the portions of the image data containing those detected features. Depending on the embodiment, the method of FIG. 3A may include fewer or additional blocks and/or the blocks may be performed in an order different than is illustrated.


In general, the processes are performed by a cloud server, such as the backend server system 120 of FIG. 1A. Depending on the embodiment, however, the processes may be performed by a different device (e.g., a vehicle device) or by more than one device, the method may include fewer or additional blocks, and/or the blocks may be performed in an order different that is illustrated. As described herein, the term “processing system” refers to the device or devices that perform the illustrated processes.


For ease of illustration, the methods of FIG. 3A are discussed with reference to components of FIG. 1. However, the method may be performed by other similar components in other configurations.


In some embodiments, a blurring process, such as in the examples of FIG. 3A, may be initiated upon acquisition of image data by a vehicle device 114. The vehicle device 114 may immediately process the acquired image data in real time, either locally or by transmitting the data to a backend server system 120 for processing. In other embodiments, the image data may have been previously acquired and stored (at the vehicle device and/or the backend server system), and the blurring process is initiated only when deemed necessary or upon request (e.g., in response to a user requesting a particular piece of video data, privacy rules associated with the piece of video data may be accessed and, if blurring is included in the privacy rules, a feature detection and blurring process may be performed). In some embodiments, the blurring process may be performed at designated time intervals (e.g., nightly) for all image data acquired during the time interval (e.g., during the preceding day). In some embodiments, the blurring process may automatically be performed on certain video data based on system or user criteria, such as to automatically blur faces in video associated with a detected harsh event).


Beginning at block 302, the backend server system 120 receives image data from the vehicle device 114, where image data generally refers to still images and/or video data. For example, the vehicle device 114 may transmit image data from an outward facing camera and/or an inward facing camera to the backend server system 120. In some embodiments, the image data is transmitted in response to triggering of an event of interest by the vehicle device, such as a potential safety event (e.g., distracted driver, harsh braking, harsh turning, etc.). In other embodiments, the video data may be transmitted based on a schedule, such as a 30 second clip every 30 minutes. In some embodiments, the image data may be processed before sending to the backend server system 120. For example, a high-resolution video may be downsampled to a lower resolution video to conserve bandwidth and/or decrease transmission time in certain situations. As another example, still images may be captured from a video stream and transmitted to the backend server system 120.


At block 304, the backend server system 120 stores the received image data. The image data may be stored in one or more data stores and/or databases. In some embodiments, metadata associated with the image data may also be stored along with the image data. For example, the backend server system 120 may store metadata indicating the vehicle in or from which the image data was acquired and/or the driver of the vehicle at the time that the image data was acquired.


In some embodiments, privacy rules associated with the image data may be accessed to determine if any feature detection and blurring of the image data is needed. For example, image data associated with certain cameras (e.g., attached to particular vehicles) may not need any blurring or may need blurring of only certain features (e.g., of only license plate numbers, and not of faces within the vehicle or outside of the vehicle). The privacy rules may be system level rules that apply to all image data processed by the backend server or may be specific to a particular fleet of vehicles (e.g., same privacy rules apply to all vehicles in the fleet), particular vehicles, particular users (e.g., drivers or passengers), events, times of day, geographic locations, etc.


At blocks 306 and 308, the backend server system 120 performs feature detection on the image data to identify features that may be sensitive, such as faces or vehicle license plates. This may be achieved by executing a feature detection module, as described above. In some embodiments, the image data may be analyzed by an artificial intelligence model configured to detect these features. For example, a neural network that has been trained to detect faces and/or vehicles (or specific portions thereof, such as a license plate) may analyze the image data. In some embodiments, the artificial intelligence model is trained using image data previously acquired by one or more vehicle devices, such as images obtained from a fleet of vehicles operated by a single entity or even a larger group of vehicles operated by multiple entities. For example, the model may be trained using manually and/or automatically annotated bounding boxes over faces in image data acquired by dashcams from multiple vehicle devices (e.g., images from vehicle devices from a fleet of vehicles).


At block 306, the backend server system may evaluate image data from any cameras of the vehicle device (e.g., an inward facing camera that captures a driver and front-row passenger; any inward-facing cameras inside a multi-person vehicle, such as cameras that are position along a length of a bus; and/or any outward-facing cameras that captures a pedestrian or driver of another vehicle) to detect likely faces within the image data. Similarly, at block 308, the backend server system 120 may detect a likely vehicle or a likely certain part of a vehicle (e.g., rear of a vehicle) that is likely to include sensitive information, such as a vehicle license plate.


At blocks 310 and 312, the backend server system 120 calculates a bounding box for each detected feature object, in which the bounding box is a portion of the image data encompassing the detected feature object. In some embodiments, the bounding box is a rectangle oriented orthogonally with the target image, such as the bounding boxes illustrated in blocks 326 and 328 in FIG. 3B. In other embodiments, the bounding box may be a parallelogram or some other type of quadrilateral and/or may have a different orientation from the target image.


At block 314, the backend server system 120 determines portions of the image data to blur based at least in part on the calculated bounding boxes. For example, as shown at block 332 in FIG. 3B, the processing system may determine that the entirety of a bounding box that encompasses a person's face should be blurred. However, in some embodiments, the backend server system 120 may determine that only a portion of the bounding box should be blurred. For example, the backend server system 120 may determine that only the bottom half of a bounding box that encompasses a vehicle should be blurred, since only that portion of the bounding box is likely to contain sensitive information.


At block 316, the backend server system 120 blurs the determined portions of the image data. In some embodiments, the backend server system 120 may concurrently (or sequentially) blur all determined portions of the image data, thereby generating image data with all detected sensitive objects blurred. In other embodiments, the backend server system 120 may separately blur determined portions of the image data corresponding to a particular type of object (and/or other privacy rules), thereby generating multiple categories of blurred image data. For example, the backend server system 120 may process an un-blurred video file by: blurring portions including faces to generate a first blurred video file with all faces blurred; blurring portions showing license plates to generate a second blurred video file with all license plates blurred; and generate a third blurred video file with all sensitive portions blurred.


At block 318, the backend server system 120 stores the blurred image data generated at block 316. The blurred image data may be stored in the same data store as the image data or in a separate data store. In some embodiments, the backend server system 120 may also store metadata with the blurred image data, such as by indexing blurred image data with its corresponding image data. Other metadata that may be stored along with the image data includes metadata indicating whether the stored image data is blurred or un-blurred, whether the image data was obtained by an inward-facing or outward-facing camera, the type of image data (e.g., still image, video stream data), and the like. In some embodiments, multiple video files, associated with multiple different types of blurred objects, may be stored and separately accessible. For example, a first blurred video file with blurring of only faces, a second blurred video file with blurring of only license plates, and a third video file with blurring of both faces and license plates, may be stored as video files that may be separately accessed, such as based on the access privileges of the requesting user or system.



FIG. 3B is a flow diagram further illustrating an example process for blurring faces. For example, as shown in FIG. 3B, the example process may be used to blur the faces of a driver and passenger in image data acquired by an inward-facing imaging device mounted on a vehicle dashboard. In some embodiments, the process is performed by a backend server system 120. In other embodiments, the process may be performed by a processor within a vehicle device 114 before sending the blurred image data to a backend server system 120.


At block 320, sensor data is received. The received sensor data may have been acquired by sensors 112 on a vehicle device 114. The sensor data may comprise image data. For example, in the example of FIG. 3B, sensor data 322 comprises an example still frame image of video data acquired by an inward-facing camera mounted to a vehicle dashboard, which includes a driver and a passenger inside the vehicle. The sensor data may also comprise image data acquired by inward-facing or outward-facing imaging devices positioned at various parts of a vehicle. For example, the sensor data may comprise image data acquired by an inward-facing camera mounted in the seating area of a bus and configured to capture image data of bus passengers (as illustrated in FIGS. 2A-C). As another example, the sensor data may comprise image data acquired by an outward-facing camera, in which the image data may contain faces of pedestrians or drivers of other vehicles.


At block 324, faces are detected within the image data. As described above, the detection may be performed by an artificial intelligence model trained to detect faces in image data. In some embodiments, a bounding box is calculated for each detected face in the image data, such that the portion of the image corresponding to the detected face is encompassed by the bounding box. For example, block 326 depicts an example bounding box of the driver's face in the image data. Similarly, block 328 depicts an example bounding box of the passenger's face in the image data. As explained above, in some embodiments calculated bounding boxes may have different orientation and angles than the bounding boxes illustrated in FIG. 3B.


At block 330, the faces are blurred. In some embodiments, the entire portion of the image data corresponding to a detected face bounding box will be blurred. In some embodiments, blurring may be blurred by applying an image filter, such as a Gaussian blur filter, to the portion of the image data corresponding to a detected face bounding box. Block 332 depicts the image data from block 322 after the detection and blurring processes have been completed. As illustrated, the faces of the driver and passenger have now been blurred. The blurred image data can then be stored so that a user can later review the image data without compromising the privacy of the driver and passenger.


Example Safety Administration System and Permissions



FIG. 4 is a flow diagram illustrating one embodiment of an example method for retrieving appropriate image data based on digital user permissions for the purpose of ensuring data privacy. In some embodiments, such as in the example of FIG. 4, the method may be performed by one or more computing systems that are part of the safety administration system 130 to retrieve image data from a backend server system 120. In other embodiments, the method may be performed by another type of user operating another computing system that is in communication with the backend server system 120, such as a driver of the vehicle, a supervisor of the driver and/or vehicle, and/or any other user. As used in the discussion of FIG. 4, “user device” generally refers to any computing device that attempts access to any vehicle data stored by the backend system 120, such as sensor data and/or metadata.


Beginning at block 402, a user device, e.g., the safety administration system, receives a user request for image data from associated with a driver, vehicle, and/or other criteria. For example, the request may be for a video stream from an inward-facing camera of a particular vehicle during a particular time period.


At block 404, a role of the requesting user is determined, such as by the backend server system 120 looking up an ID of the user in a user information table. In some embodiments, the user device may determine the user's role based on information received in or along with the request for image data. For example, a user device may communicate to the backend server system 120 that the image data is being requested by a driving safety coach.


At block 406, a permissions data structure indicating access permissions for a plurality of user roles is accessed. For example, the permissions data structure may be stored by the backend server system 120. In some embodiments, the permissions data structure may comprise one or more databases stored on a server. For each user role defined in the data structure, the data structure may indicate one or more access rights relating to image data, including but not limited to: enabling users to view image data acquired by inward-facing, forward-facing, and/or outward-facing cameras from vehicle devices; enabling users to access recorded audio streams accompanying acquired image data; enabling users to view overlaid image data; enabling users to view unblurred image data; enabling users to view image data containing sensitive information; and/or enabling users to mark or tag certain image data as containing sensitive information. The permissions for each user role may be defined by an organization to ensure that only users whose roles necessitate viewing sensitive image data may do so. Specific implementations of access rights for this purpose are described in greater detail below.


At block 408, the backend server system 120 determines, based on the permissions data structure, permissions associated with the determined role of the user. At block 410, the backend server system 120 determines if the permissions allow various access rights for the user, based on the user's role. For example, as illustrated in FIG. 4, the backend server system 120 may determine whether the permissions allow: (1) viewing un-blurred image data; (2) viewing image data from inward and outward facing cameras; and (3) viewing video stream data. In other embodiments, other permissions may be determined and used in determining access rights of the user to sensor data.


At block 412, the user device retrieves, based on the permissions, the appropriate image data from a server. As described above, image data may be stored in different data stores on a server based on categorization. For example, un-blurred image data may be stored in a separate data store from blurred image data. In other implementations, all image data may be stored in the same data store and indexed by metadata properties to allow retrieval of specific types of image data.


In some embodiments, the backend system provides a server endpoint (e.g., URL) pointing to a version of the requested image data that the particular user is authorized to view. In this example, the user device may request the specific image data through use of query string parameters in a uniform resource identifier (“URI”), such as a uniform resource locator (“URL”). In some embodiments, the user device retrieves the image data by sending a request to an image server specifying the requested image data and the user permissions determined at block 408, and the image server may be configured to automatically select and/or generate the image data satisfying the permissions.


Example Safety Dashboard and Permissions Configuration



FIG. 5 depicts an example user interface 502, e.g., that may be part of the safety dashboard 132 of FIG. 1A, displaying a video stream with sensitive portions of the video blurred. The user interface 502 may be provided in response to a user (e.g., a safety officer on a safety administration system 130) navigating to a video link (e.g., provided by the backend servers system in block 412 of FIG. 4). In some embodiments, as illustrated in FIG. 5, the user interface 502 includes a video stream displaying image data 504 acquired from sensors on a vehicle device 114. The video stream may include image data from one or both of inward-facing and outward-facing cameras. In some embodiments, the video stream may include image data from multiple inward-facing or outward-facing cameras. For example, when displaying image data acquired from a vehicle device 114 coupled to a bus (as illustrated in FIGS. 2A-C), the video stream may include image data 504 acquired by a forward-facing external camera, a backwards-facing external camera, and multiple inward-facing cameras directed at various locations in the interior of the bus. The video stream may include image data associated with a particular driver and/or vehicle.


As illustrated in FIG. 5, the outward facing image data 504 may include images of a vehicle 506 (generally applicable when the image data is acquired by an outward-facing camera). In the example of FIG. 5, the lower half (or other portion in other embodiments) of the vehicle 506 is blurred so as to obfuscate a license plate number. The area of the images to which blurring is applied may include some or all of a bounding box generated by the feature detection module, e.g., indicating a rear end of a vehicle or a smaller area more specifically associated with a license plate on the vehicle. In an embodiment where the feature detection module is configured to generate a bounding box specifically to the license plate area (e.g., and not the entire back end of the vehicle), the entire bounding box area may be blurred. In other embodiments, the bounding box associated with the entire vehicle 506 may be blurred.


The inward facing image data 508 may include images of one or more faces 510 (generally applicable when the image data is acquired by an inward-facing camera). In the example of FIG. 5, the faces 510 are blurred so as to protect privacy of the individuals in the images. The area of the images to which blurring is applied may include some or all of a bounding box generated by the feature detection module, e.g., indicating all portions of a person, an upper half of a person, a head of a person, a face of the person, and/or other portion of a person. In an embodiment where the feature detection module is configured to generate a bounding box specifically to the head and/or face of individuals, the entire bounding box area may be blurred. In an embodiment where the feature detection module is configured to generate a bounding box to an upper body of individuals (e.g., from the waist area upward), only an upper portion of the bounding box may be blurred (e.g., the top half, or some other percentage, of the bounding box). In other embodiments, the entire upper body may be blurred so as to more completely obfuscate personal information of the individual.



FIG. 6 depicts an example user interface for viewing and editing access permissions for a user role 604. The permission user interface may be accessible by a fleet administrator or other supervisor, for example, to set privacy constraints for all users (and/or specific groups of users) under their supervision. The user interface 602 may include various panels (606, 608, 610, 612, and 614) for editing the access rights for the role. For example, the user interface 602 may include a panel 606 for configuring whether the user role 604 can view and/or edit camera assets, such as image data acquired by a vehicle device 114.


The user interface 602 may further include a panel 608 for configuring the types of image data that the user role 604 can view. In the example implementation illustrated in FIG. 5, the user role 604 is not provided with access rights to view image data of drivers, such as image data acquired by an inward-facing camera mounted on a vehicle dashcam (as depicted in FIG. 1B). Thus, users having the particular user role (e.g., “Role 1”) may be provided with image data with blurring of driver faces. In this example, the user role 604 is provided with access to view image data acquired by a forward-facing camera or other outward-facing cameras mounted on a vehicle. In other embodiments, the access rights may be more granular, such as by separating permissions to view still images and videos.


The user interface 602 may further include a panel 610 for configuring whether the user role 604 can access recorded audio streams, which may be acquired by a vehicle device 114 along with image data. In some embodiments, a sensor on a vehicle device 114 may capture both audio and image data. The audio data may be stored and processed along with its corresponding image data, or may be stored separately from image data. In some embodiments, metadata may be stored indicating relationships between image data and audio data.


The user interface 602 may further include a panel 612 for configuring whether the user role 604 can view overlaid videos. In some embodiments, a driver monitoring system may allow for overlaying identifiers onto image data. The system may overlay identifiers, such as a bounding box, over certain features in image data detected by a feature detection module, as illustrated in FIG. 5. For example, the system may overlay bounding boxes of a cell phone being used by a driver, indicating possible distracted driving. Other indicators may also be overlaid onto image data, such as a vehicle's speed or an indication of distracted or reckless driving.


The user interface 602 may further include a panel 614 for configuring whether the user role 604 can view unblurred image data, and a panel 616 for configuring whether the user role 604 can view image data containing sensitive information and/or mark image data as containing sensitive information.


Additional Implementation Details and Embodiments

Various embodiments of the present disclosure may be a system, a method, and/or a computer program product at any possible technical detail level of integration. The computer program product may include a computer readable storage medium (or mediums) having computer readable program instructions thereon for causing a processor to carry out aspects of the present disclosure.


For example, the functionality described herein may be performed as software instructions are executed by, and/or in response to software instructions being executed by, one or more hardware processors and/or any other suitable computing devices. The software instructions and/or other executable code may be read from a computer readable storage medium (or mediums).


The computer readable storage medium can be a tangible device that can retain and store data and/or instructions for use by an instruction execution device. The computer readable storage medium may be, for example, but is not limited to, an electronic storage device (including any volatile and/or non-volatile electronic storage devices), a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a solid state drive, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.


Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.


Computer readable program instructions (as also referred to herein as, for example, “code,” “instructions,” “module,” “application,” “software application,” and/or the like) for carrying out operations of the present disclosure may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Java, C++, or the like, and procedural programming languages, such as the “C” programming language or similar programming languages. Computer readable program instructions may be callable from other instructions or from itself, and/or may be invoked in response to detected events or interrupts. Computer readable program instructions configured for execution on computing devices may be provided on a computer readable storage medium, and/or as a digital download (and may be originally stored in a compressed or installable format that requires installation, decompression or decryption prior to execution) that may then be stored on a computer readable storage medium. Such computer readable program instructions may be stored, partially or fully, on a memory device (e.g., a computer readable storage medium) of the executing computing device, for execution by the computing device. The computer readable program instructions may execute entirely on a user's computer (e.g., the executing computing device), partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present disclosure.


Aspects of the present disclosure are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the disclosure. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.


These computer readable program instructions may be provided to a processor of a general-purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart(s) and/or block diagram(s) block or blocks.


The computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks. For example, the instructions may initially be carried on a magnetic disk or solid-state drive of a remote computer. The remote computer may load the instructions and/or modules into its dynamic memory and send the instructions over a telephone, cable, or optical line using a modem. A modem local to a server computing system may receive the data on the telephone/cable/optical line and use a converter device including the appropriate circuitry to place the data on a bus. The bus may carry the data to a memory, from which a processor may retrieve and execute the instructions. The instructions received by the memory may optionally be stored on a storage device (e.g., a solid-state drive) either before or after execution by the computer processor.


The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present disclosure. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the blocks may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. In addition, certain blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate.


It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions. For example, any of the processes, methods, algorithms, elements, blocks, applications, or other functionality (or portions of functionality) described in the preceding sections may be embodied in, and/or fully or partially automated via, electronic hardware such application-specific processors (e.g., application-specific integrated circuits (ASICs)), programmable processors (e.g., field programmable gate arrays (FPGAs)), application-specific circuitry, and/or the like (any of which may also combine custom hard-wired logic, logic circuits, ASICs, FPGAs, etc. with custom programming/execution of software instructions to accomplish the techniques).


Any of the above-mentioned processors, and/or devices incorporating any of the above-mentioned processors, may be referred to herein as, for example, “computers,” “computer devices,” “computing devices,” “hardware computing devices,” “hardware processors,” “processing units,” and/or the like. Computing devices of the above-embodiments may generally (but not necessarily) be controlled and/or coordinated by operating system software, such as Mac OS, IOS, Android, Chrome OS, Windows OS (e.g., Windows XP, Windows Vista, Windows 7, Windows 8, Windows 10, Windows Server, etc.), Windows CE, Unix, Linux, SunOS, Solaris, Blackberry OS, VxWorks, or other suitable operating systems. In other embodiments, the computing devices may be controlled by a proprietary operating system. Conventional operating systems control and schedule computer processes for execution, perform memory management, provide file system, networking, I/O services, and provide a user interface functionality, such as a graphical user interface (“GUI”), among other things.


As described above, in various embodiments certain functionality may be accessible by a user through a web-based viewer (such as a web browser), or other suitable software program. In such implementations, the user interface may be generated by a server computing system and transmitted to a web browser of the user (e.g., running on the user's computing system). Alternatively, data (e.g., user interface data) necessary for generating the user interface may be provided by the server computing system to the browser, where the user interface may be generated (e.g., the user interface data may be executed by a browser accessing a web service and may be configured to render the user interfaces based on the user interface data). The user may then interact with the user interface through the web-browser. User interfaces of certain implementations may be accessible through one or more dedicated software applications. In certain embodiments, one or more of the computing devices and/or systems of the disclosure may include mobile computing devices, and user interfaces may be accessible through such mobile computing devices (for example, smartphones and/or tablets).


Many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. The foregoing description details certain embodiments. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the systems and methods can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the systems and methods should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the systems and methods with which that terminology is associated.


Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments may not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.


The term “substantially” when used in conjunction with the term “real-time” forms a phrase that will be readily understood by a person of ordinary skill in the art. For example, it is readily understood that such language will include speeds in which no or little delay or waiting is discernible, or where such delay is sufficiently short so as not to be disruptive, irritating, or otherwise vexing to a user.


Conjunctive language such as the phrase “at least one of X, Y, and Z,” or “at least one of X, Y, or Z,” unless specifically stated otherwise, is to be understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z, or a combination thereof. For example, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Thus, such conjunctive language is not generally intended to imply that certain embodiments require at least one of X, at least one of Y, and at least one of Z to each be present.


The term “a” as used herein should be given an inclusive rather than exclusive interpretation. For example, unless specifically noted, the term “a” should not be understood to mean “exactly one” or “one and only one”; instead, the term “a” means “one or more” or “at least one,” whether used in the claims or elsewhere in the specification and regardless of uses of quantifiers such as “at least one,” “one or more,” or “a plurality” elsewhere in the claims or specification.


The term “comprising” as used herein should be given an inclusive rather than exclusive interpretation. For example, a general purpose computer comprising one or more processors should not be interpreted as excluding other computer components, and may possibly include such components as memory, input/output devices, and/or network interfaces, among others.


While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it may be understood that various omissions, substitutions, and changes in the form and details of the devices or processes illustrated may be made without departing from the spirit of the disclosure. As may be recognized, certain embodiments of the inventions described herein may be embodied within a form that does not provide all of the features and benefits set forth herein, as some features may be used or practiced separately from others. The scope of certain inventions disclosed herein is indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A computing system comprising: a hardware computer processor;a non-transitory computer readable medium having software instructions stored thereon, the software instructions executable by the hardware computer processor to cause the computing system to perform operations comprising:receiving a first video stream acquired by an imaging device positioned in a vehicle;storing the first video stream;determining privacy rules associated with the first video stream, the privacy rules indicating at least a first feature to obfuscate;performing feature detection of the first video stream to identify the first feature in images of the first video stream;generating a second video stream by applying blurring to the detected first feature in images of the first video stream;storing the second video stream separate from the first video stream;receiving a request from a user for at least a portion of the first video stream;determining, based on an access rights data structure, access rights of the user to sensitive information; andif the access rights of the user allow viewing of sensitive information, providing a first video link associated with the first video stream to the user; orif the access rights of the user do not allow viewing of sensitive information, providing a second video link associated with the second video stream to the user.
  • 2. The computing system of claim 1, wherein the feature detection comprises: generating a bounding box around the detected first feature in images of the video stream, wherein the blurring is applied to a predetermined portion of the bounding box.
  • 3. The computing system of claim 2, wherein the predetermined portion is a bottom half of the bounding box.
  • 4. The computing system of claim 1, wherein the privacy rules further indicate a second feature to obfuscate and the operations further comprise: performing feature detection of the first video stream to identify the second feature in images of the first video stream.
  • 5. The computing system of claim 4, wherein the second video stream is generated by applying blurring to the detected first and second features in images of the first video stream.
  • 6. The computing system of claim 4, wherein the operations further comprise: generating a third video stream by applying blurring to the detected second feature; andstoring the third video stream separate from the first and second first video stream.
  • 7. The computing system of claim 1, wherein the first feature is a human face.
  • 8. The computing system of claim 1, wherein the first feature is a license plate.
  • 9. The computing system of claim 6, wherein the first feature is a human face and the second feature is a license plate, wherein the second video stream includes blurring of only human faces and the third video stream includes blurring of only license plates.
  • 10. The computing system of claim 1, wherein the privacy rules are based on one or more of characteristics of the user or vehicle.
  • 11. The computing system of claim 1, wherein the feature detection is performed based on one or more artificial intelligence model.
  • 12. The computing system of claim 11, wherein the one or more artificial intelligence model is trained using image data acquired by a plurality of imaging devices coupled to a corresponding plurality of vehicles.
  • 13. The computing system of claim 1, wherein the imaging device comprises at least one driver-facing imaging device and at least one outward-facing imaging device.
  • 14. The computing system of claim 1, wherein the access rights of the user are based at least in part on a role of the user.
  • 15. The computing system of claim 1, wherein the first and second video links are uniform resource locators (“URL”).
  • 16. The computing system of claim 15, wherein the first video link comprises a first query string indicating at least that the first video link is associated with an unblurred video stream, and the second video link comprises a second query string indicating at least that the second video link is associated with a blurred video stream.
  • 17. The computing system of claim 16, wherein the second query string further indicates whether the second video stream includes image data acquired by one or more inward-facing cameras, one or more outward-facing cameras, or both inward-facing and outward-facing cameras; and the first query string further indicates whether the first video stream includes image data acquired by one or more inward-facing cameras, one or more outward-facing cameras, or both inward-facing and outward-facing cameras.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 63/366,515, filed on Jun. 16, 2022 and titled “DATA PRIVACY IN DRIVER MONITORING SYSTEM”. Any and all applications, if any, for which a foreign or domestic priority claim is identified in the Application Data Sheet of the present application are hereby incorporated by reference in their entireties under 37 CFR 1.57.

US Referenced Citations (432)
Number Name Date Kind
4671111 Lemelson Jun 1987 A
5825283 Camhi Oct 1998 A
5917433 Keillor et al. Jun 1999 A
6064299 Lesesky et al. May 2000 A
6098048 Dashefsky et al. Aug 2000 A
6157864 Schwenke et al. Dec 2000 A
6253129 Jenkins et al. Jun 2001 B1
6317668 Thibault et al. Nov 2001 B1
6411203 Lesesky et al. Jun 2002 B1
6421590 Thibault Jul 2002 B2
6452487 Krupinski Sep 2002 B1
6505106 Lawrence et al. Jan 2003 B1
6651063 Vorobiev Nov 2003 B1
6714894 Tobey et al. Mar 2004 B1
6718239 Rayner Apr 2004 B2
6741165 Langfahl et al. May 2004 B1
6801920 Wischinski Oct 2004 B1
7117075 Larschan et al. Oct 2006 B1
7139780 Lee et al. Nov 2006 B2
7209959 Campbell et al. Apr 2007 B1
7233684 Fedorovskaya et al. Jun 2007 B2
7386376 Basir et al. Jun 2008 B2
7389178 Raz et al. Jun 2008 B2
7398298 Koch Jul 2008 B2
7492938 Brinson, Jr. et al. Feb 2009 B2
7526103 Schofield et al. Apr 2009 B2
7555378 Larschan et al. Jun 2009 B2
7596417 Fister et al. Sep 2009 B2
7606779 Brinson, Jr. et al. Oct 2009 B2
7715961 Kargupta May 2010 B1
7769499 McQuade et al. Aug 2010 B2
7844088 Brinson, Jr. et al. Nov 2010 B2
7859392 McClellan et al. Dec 2010 B2
7877198 Tenzer et al. Jan 2011 B2
7881838 Larschan et al. Feb 2011 B2
7957936 Eryurek et al. Jun 2011 B2
8019581 Sheha et al. Sep 2011 B2
8024311 Wood et al. Sep 2011 B2
8032277 Larschan et al. Oct 2011 B2
8140358 Ling et al. Mar 2012 B1
8156108 Middleton et al. Apr 2012 B2
8156499 Foulger et al. Apr 2012 B2
8169343 Sheha et al. May 2012 B2
8175992 Bass, II et al. May 2012 B2
8230272 Middleton et al. Jul 2012 B2
8260489 Nielsen et al. Sep 2012 B2
8417402 Basir Apr 2013 B2
8442508 Harter et al. May 2013 B2
8457395 Boncyk et al. Jun 2013 B2
8509412 Sheha et al. Aug 2013 B2
8543625 Middleton et al. Sep 2013 B2
8560164 Nielsen et al. Oct 2013 B2
8615555 Koch Dec 2013 B2
8625885 Brinson, Jr. et al. Jan 2014 B2
8626568 Warkentin et al. Jan 2014 B2
8633672 Jung et al. Jan 2014 B2
8669857 Sun et al. Mar 2014 B2
8682572 Raz et al. Mar 2014 B2
8706409 Mason et al. Apr 2014 B2
8831825 Shah et al. Sep 2014 B2
8836784 Erhardt et al. Sep 2014 B2
8918229 Hunt et al. Dec 2014 B2
8953228 Mehers Feb 2015 B1
8989914 Nemat-Nasser et al. Mar 2015 B1
8989959 Plante et al. Mar 2015 B2
8996240 Plante Mar 2015 B2
9024744 Klose et al. May 2015 B2
9053590 Kator et al. Jun 2015 B1
9137498 L'Heureux et al. Sep 2015 B1
9147335 Raghunathan et al. Sep 2015 B2
9152609 Schwartz et al. Oct 2015 B2
9165196 Kesavan et al. Oct 2015 B2
9170913 Hunt et al. Oct 2015 B2
9189895 Phelan et al. Nov 2015 B2
9230250 Parker et al. Jan 2016 B1
9230437 Brinton et al. Jan 2016 B2
9280435 Hunt et al. Mar 2016 B2
9311271 Wright Apr 2016 B2
9344683 Nemat-Nasser et al. May 2016 B1
9349228 Ochsendorf et al. May 2016 B2
9384111 Hunt et al. Jul 2016 B2
9389147 Lambert et al. Jul 2016 B1
9402060 Plante Jul 2016 B2
9412282 Hunt et al. Aug 2016 B2
9439280 Chang et al. Sep 2016 B2
9445270 Bicket et al. Sep 2016 B1
9477639 Fischer et al. Oct 2016 B2
9477989 Grimm et al. Oct 2016 B2
9527515 Hunt et al. Dec 2016 B2
9594725 Cook et al. Mar 2017 B1
9672667 Mason et al. Jun 2017 B2
9688282 Cook et al. Jun 2017 B2
9728015 Kwak Aug 2017 B2
9761063 Lambert et al. Sep 2017 B2
9761067 Plante et al. Sep 2017 B2
9811536 Morris et al. Nov 2017 B2
9818088 Penilla et al. Nov 2017 B2
9846979 Sainaney et al. Dec 2017 B1
9849834 Reed et al. Dec 2017 B2
9852625 Victor et al. Dec 2017 B2
9892376 Pfeiffer et al. Feb 2018 B2
9922567 Molin et al. Mar 2018 B2
9934628 Kreiner et al. Apr 2018 B2
9996980 Gonzalez et al. Jun 2018 B1
10015452 Schofield et al. Jul 2018 B1
10033706 Bicket et al. Jul 2018 B2
10040459 Kukreja Aug 2018 B1
10065652 Shenoy et al. Sep 2018 B2
10068392 Cook et al. Sep 2018 B2
10075669 Vanman et al. Sep 2018 B2
10083547 Tomatsu Sep 2018 B1
10085149 Bicket et al. Sep 2018 B2
10094308 Kolhouse et al. Oct 2018 B2
10102495 Zhang et al. Oct 2018 B1
10127810 Durie, Jr. et al. Nov 2018 B2
10157321 Becker et al. Dec 2018 B2
10173486 Lee et al. Jan 2019 B1
10173544 Hendrix et al. Jan 2019 B2
10196071 Rowson et al. Feb 2019 B1
10206107 Bicket et al. Feb 2019 B2
10223935 Sweany et al. Mar 2019 B2
10275959 Ricci Apr 2019 B2
10286875 Penilla et al. May 2019 B2
10290036 Gella et al. May 2019 B1
10311749 Kypri et al. Jun 2019 B1
10336190 Yokochi et al. Jul 2019 B2
10388075 Schmirler et al. Aug 2019 B2
10389739 Solotorevsky Aug 2019 B2
10390227 Bicket et al. Aug 2019 B2
10444949 Scott et al. Oct 2019 B2
10445559 Joseph et al. Oct 2019 B2
10459444 Kentley-Klay Oct 2019 B1
10460183 Welland et al. Oct 2019 B2
10460600 Julian et al. Oct 2019 B2
10471955 Kouri et al. Nov 2019 B2
10486709 Mezaael Nov 2019 B1
10489222 Sathyanarayana et al. Nov 2019 B2
10523904 Mahmoud et al. Dec 2019 B2
10573183 Li et al. Feb 2020 B1
10579123 Tuan et al. Mar 2020 B2
10609114 Bicket et al. Mar 2020 B1
10621873 Spiel et al. Apr 2020 B1
10623899 Watkins et al. Apr 2020 B2
10632941 Chauncey et al. Apr 2020 B2
10652335 Botticelli May 2020 B2
10715976 Hoffner et al. Jul 2020 B2
10762363 Watanabe Sep 2020 B2
10782691 Suresh et al. Sep 2020 B2
10788990 Kim et al. Sep 2020 B2
10789840 Boykin et al. Sep 2020 B2
10803496 Hopkins Oct 2020 B1
10818109 Palmer et al. Oct 2020 B2
10827324 Hajimiri et al. Nov 2020 B1
10843659 Innocenzi et al. Nov 2020 B1
10848670 Gatti et al. Nov 2020 B2
10878030 Lambert et al. Dec 2020 B1
10969852 Tuan et al. Apr 2021 B2
10979871 Hajimiri et al. Apr 2021 B2
10999269 Bicket et al. May 2021 B2
10999374 ElHattab et al. May 2021 B2
11046205 Govan et al. Jun 2021 B1
11069257 Palmer et al. Jul 2021 B2
11080568 ElHattab et al. Aug 2021 B2
11122488 Lloyd et al. Sep 2021 B1
11126910 Akhtar et al. Sep 2021 B1
11127130 Jain et al. Sep 2021 B1
11128130 Jain et al. Sep 2021 B2
11131986 Gal et al. Sep 2021 B1
11132853 Akhtar et al. Sep 2021 B1
11137744 Heddleston et al. Oct 2021 B1
11142175 Chow et al. Oct 2021 B2
11158177 ElHattab et al. Oct 2021 B1
11184422 Bicket et al. Nov 2021 B1
11188046 ElHattab et al. Nov 2021 B1
11190373 Stevenson et al. Nov 2021 B1
11204637 Tuan et al. Dec 2021 B2
11260878 Palmer et al. Mar 2022 B2
11341786 Calmer et al. May 2022 B1
11349901 Duffield et al. May 2022 B1
11352013 Srinivasan et al. Jun 2022 B1
11352014 Srinivasan et al. Jun 2022 B1
11356605 Shemet et al. Jun 2022 B1
11356909 Lloyd Jun 2022 B1
11365980 Akhtar et al. Jun 2022 B1
11386325 Srinivasan et al. Jul 2022 B1
11436844 Carruthers et al. Sep 2022 B2
11451610 Saunders et al. Sep 2022 B1
11451611 Saunders et al. Sep 2022 B1
11460507 Lloyd et al. Oct 2022 B2
11464079 Aschenbener et al. Oct 2022 B1
11475766 Carson Oct 2022 B1
11479142 Govan et al. Oct 2022 B1
11494921 ElHattab et al. Nov 2022 B2
11522857 Symons et al. Dec 2022 B1
11532169 Hassan et al. Dec 2022 B1
11558449 Bicket et al. Jan 2023 B1
11595632 Tsai et al. Feb 2023 B2
11599097 Gal et al. Mar 2023 B1
11606736 Lloyd et al. Mar 2023 B1
11611621 ElHattab et al. Mar 2023 B2
11615141 Hoye et al. Mar 2023 B1
11620909 Tsai et al. Apr 2023 B2
11627252 Delegard et al. Apr 2023 B2
11641388 Saunders et al. May 2023 B1
11641604 Lloyd May 2023 B1
11643102 Calmer et al. May 2023 B1
11659060 Davis et al. May 2023 B2
11665223 Duffield et al. May 2023 B1
11669714 Akhtar et al. Jun 2023 B1
11671478 Saunders et al. Jun 2023 B1
11674813 Chung et al. Jun 2023 B1
11675042 Lloyd et al. Jun 2023 B1
11683579 Symons et al. Jun 2023 B1
11688211 Calmer et al. Jun 2023 B1
11694317 Jain et al. Jul 2023 B1
11704984 ElHattab et al. Jul 2023 B1
11709500 Lloyd et al. Jul 2023 B2
11710409 Nanda et al. Jul 2023 B2
11720087 Heddleston et al. Aug 2023 B1
11727054 Grandhi et al. Aug 2023 B2
11731469 McGillan Aug 2023 B1
11736312 Xiao et al. Aug 2023 B1
11741760 Dubin et al. Aug 2023 B1
11748377 Zhang et al. Sep 2023 B1
11752895 Govan et al. Sep 2023 B1
11756346 Wu et al. Sep 2023 B1
11756351 Akhtar et al. Sep 2023 B1
11758096 Shah et al. Sep 2023 B2
11776328 Yang et al. Oct 2023 B2
11780446 Srinivasan et al. Oct 2023 B1
11782930 McGee et al. Oct 2023 B2
11787413 Tsai et al. Oct 2023 B2
11798187 Zaheer et al. Oct 2023 B2
11798298 Hassan et al. Oct 2023 B2
11800317 Dugar et al. Oct 2023 B1
11838884 Dergosits et al. Dec 2023 B1
11842577 Harrison et al. Dec 2023 B1
11847911 ElHattab et al. Dec 2023 B2
11855801 Stevenson et al. Dec 2023 B1
11861955 Dubin et al. Jan 2024 B1
11863712 Young et al. Jan 2024 B1
11866055 Srinivasan et al. Jan 2024 B1
11868919 Zhang et al. Jan 2024 B1
11875580 Hassan et al. Jan 2024 B2
11875683 Tsai et al. Jan 2024 B1
11890962 Govan et al. Feb 2024 B1
11937152 Hajimiri et al. Mar 2024 B2
11938948 Davis et al. Mar 2024 B1
11959772 Robbins et al. Apr 2024 B2
11974410 Lin et al. Apr 2024 B1
11975685 Innocenzi et al. May 2024 B1
11989001 ElHattab et al. May 2024 B1
11995546 Srinivasan et al. May 2024 B1
11997181 Davis et al. May 2024 B1
12000940 Lloyd et al. Jun 2024 B1
20020061758 Zarlengo et al. May 2002 A1
20020128751 Engstrom et al. Sep 2002 A1
20020169850 Batke et al. Nov 2002 A1
20030081935 Kirmuss May 2003 A1
20030154009 Basir et al. Aug 2003 A1
20040093264 Shimizu May 2004 A1
20040236476 Chowdhary Nov 2004 A1
20040236596 Chowdhary et al. Nov 2004 A1
20050131585 Luskin et al. Jun 2005 A1
20050131646 Camus Jun 2005 A1
20050286774 Porikli Dec 2005 A1
20060167591 McNally Jul 2006 A1
20070050108 Larschan et al. Mar 2007 A1
20070173991 Tenzer et al. Jul 2007 A1
20080252487 McClellan et al. Oct 2008 A1
20080319602 Mcclellan et al. Dec 2008 A1
20090099724 Kranz et al. Apr 2009 A1
20090141939 Chambers et al. Jun 2009 A1
20090240427 Siereveld et al. Sep 2009 A1
20100030586 Taylor et al. Feb 2010 A1
20100049639 Ferro et al. Feb 2010 A1
20100281161 Cohn et al. Nov 2010 A1
20110060496 Nielsen et al. Mar 2011 A1
20110093306 Nielsen et al. Apr 2011 A1
20110234749 Alon Sep 2011 A1
20110276265 Husain Nov 2011 A1
20120109418 Lorber May 2012 A1
20120194357 Ciolli Aug 2012 A1
20120201277 Tanner et al. Aug 2012 A1
20120218416 Leny et al. Aug 2012 A1
20120235625 Takehara Sep 2012 A1
20120262104 Kirsch Oct 2012 A1
20120303397 Prosser Nov 2012 A1
20130073112 Phelan et al. Mar 2013 A1
20130108105 Yoo et al. May 2013 A1
20130162421 Inaguma et al. Jun 2013 A1
20130162425 Raghunathan et al. Jun 2013 A1
20130164713 Hunt et al. Jun 2013 A1
20130211559 Lawson et al. Aug 2013 A1
20130244210 Nath et al. Sep 2013 A1
20130250040 Vitsnudel et al. Sep 2013 A1
20130332004 Gompert et al. Dec 2013 A1
20140012492 Bowers et al. Jan 2014 A1
20140095061 Hyde Apr 2014 A1
20140098060 McQuade et al. Apr 2014 A1
20140113619 Tibbitts et al. Apr 2014 A1
20140159660 Klose et al. Jun 2014 A1
20140195106 McQuade et al. Jul 2014 A1
20140223090 Malone Aug 2014 A1
20140278108 Kerrigan et al. Sep 2014 A1
20140293069 Lazar et al. Oct 2014 A1
20140328517 Gluncic Nov 2014 A1
20140337429 Asenjo et al. Nov 2014 A1
20140354227 Tyagi et al. Dec 2014 A1
20140354228 Williams et al. Dec 2014 A1
20150025734 Cook et al. Jan 2015 A1
20150044641 Chauncey et al. Feb 2015 A1
20150074091 Walkin et al. Mar 2015 A1
20150116114 Boyles Apr 2015 A1
20150226563 Cox et al. Aug 2015 A1
20150283912 Shimizu et al. Oct 2015 A1
20150347121 Harumoto Dec 2015 A1
20160046298 DeRuyck et al. Feb 2016 A1
20160110066 McCormick et al. Apr 2016 A1
20160176401 Pilkington Jun 2016 A1
20160275376 Kant Sep 2016 A1
20160288744 Rutherford et al. Oct 2016 A1
20160293049 Monahan et al. Oct 2016 A1
20160343091 Han et al. Nov 2016 A1
20160375780 Penilla et al. Dec 2016 A1
20170039784 Gelbart et al. Feb 2017 A1
20170060726 Glistvain Mar 2017 A1
20170102463 Hwang Apr 2017 A1
20170123397 Billi et al. May 2017 A1
20170124476 Levinson et al. May 2017 A1
20170140603 Ricci May 2017 A1
20170186293 Rabb Jun 2017 A1
20170195265 Billi et al. Jul 2017 A1
20170200061 Julian et al. Jul 2017 A1
20170263049 MacDonald et al. Sep 2017 A1
20170263120 Durie, Jr. et al. Sep 2017 A1
20170278004 McElhinney et al. Sep 2017 A1
20170286838 Cipriani et al. Oct 2017 A1
20170291611 Innes et al. Oct 2017 A1
20170291800 Scoville et al. Oct 2017 A1
20170323641 Shimizu et al. Nov 2017 A1
20170332199 Elliott et al. Nov 2017 A1
20170345283 Kwon et al. Nov 2017 A1
20170366935 Ahmadzadeh et al. Dec 2017 A1
20180001771 Park et al. Jan 2018 A1
20180001899 Shenoy et al. Jan 2018 A1
20180012196 Ricci et al. Jan 2018 A1
20180025636 Boykin et al. Jan 2018 A1
20180063576 Tillman et al. Mar 2018 A1
20180068206 Pollach et al. Mar 2018 A1
20180072313 Stenneth Mar 2018 A1
20180075309 Sathyanarayana et al. Mar 2018 A1
20180093672 Terwilliger et al. Apr 2018 A1
20180174485 Stankoulov Jun 2018 A1
20180234514 Rajiv et al. Aug 2018 A1
20180247109 Joseph et al. Aug 2018 A1
20180253109 Fontaine et al. Sep 2018 A1
20180262724 Ross Sep 2018 A1
20180295141 Solotorevsky Oct 2018 A1
20180329381 Doh et al. Nov 2018 A1
20180356800 Chao et al. Dec 2018 A1
20180357484 Omata Dec 2018 A1
20180364686 Naidoo et al. Dec 2018 A1
20190003848 Hoten et al. Jan 2019 A1
20190007690 Varadarajan et al. Jan 2019 A1
20190052819 Pogorelik Feb 2019 A1
20190054876 Ferguson et al. Feb 2019 A1
20190065951 Luo et al. Feb 2019 A1
20190077308 Kashchenko Mar 2019 A1
20190118655 Grimes et al. Apr 2019 A1
20190120947 Wheeler et al. Apr 2019 A1
20190174158 Herrick et al. Jun 2019 A1
20190188847 Gonzalez et al. Jun 2019 A1
20190244301 Seth et al. Aug 2019 A1
20190257661 Stentz et al. Aug 2019 A1
20190265712 Satzoda et al. Aug 2019 A1
20190266346 O'Brien Aug 2019 A1
20190272725 Viklund et al. Sep 2019 A1
20190286948 Sathyanarayana et al. Sep 2019 A1
20190303718 Tanigawa et al. Oct 2019 A1
20190304082 Tokashiki et al. Oct 2019 A1
20190318419 VanderZanden Oct 2019 A1
20190318549 Zeira et al. Oct 2019 A1
20190327590 Kubo et al. Oct 2019 A1
20190327613 Bicket et al. Oct 2019 A1
20190370581 Cordell et al. Dec 2019 A1
20200018612 Wolcott Jan 2020 A1
20200026282 Choe et al. Jan 2020 A1
20200050182 Cheng et al. Feb 2020 A1
20200074326 Balakrishnan et al. Mar 2020 A1
20200074397 Burda et al. Mar 2020 A1
20200098096 Moloney Mar 2020 A1
20200139847 Baumer et al. May 2020 A1
20200150739 Tuan et al. May 2020 A1
20200162489 Bar-Nahum et al. May 2020 A1
20200164509 Shults et al. May 2020 A1
20200168094 Shimodaira et al. May 2020 A1
20200283003 Raichelgauz Sep 2020 A1
20200311602 Hawley et al. Oct 2020 A1
20200312155 Kelkar et al. Oct 2020 A1
20200327009 Callison et al. Oct 2020 A1
20200327369 Cruz et al. Oct 2020 A1
20200342230 Tsai et al. Oct 2020 A1
20200342235 Tsai et al. Oct 2020 A1
20200342274 ElHattab et al. Oct 2020 A1
20200342506 Levy et al. Oct 2020 A1
20200342611 ElHattab et al. Oct 2020 A1
20200344301 ElHattab et al. Oct 2020 A1
20200371773 Kato et al. Nov 2020 A1
20200380806 Tabata Dec 2020 A1
20200389415 Zhao et al. Dec 2020 A1
20210006950 Hajimiri et al. Jan 2021 A1
20210070359 Lee Mar 2021 A1
20210097315 Carruthers et al. Apr 2021 A1
20210233371 Brake et al. Jul 2021 A1
20210397908 ElHattab et al. Dec 2021 A1
20210409825 Meyer Dec 2021 A1
20220050473 Parnpuu et al. Feb 2022 A1
20220165073 Shikii et al. May 2022 A1
20220289203 Makilya et al. Sep 2022 A1
20220374737 Dhara et al. Nov 2022 A1
20230077207 Hassan et al. Mar 2023 A1
20230153735 Dhara et al. May 2023 A1
20230169420 Dhara et al. Jun 2023 A1
20230219592 Calmer et al. Jul 2023 A1
20230281553 Singh et al. Sep 2023 A1
20230298410 Calmer et al. Sep 2023 A1
20240003749 Lin et al. Jan 2024 A1
20240005678 Hassan et al. Jan 2024 A1
20240013423 Zaheer et al. Jan 2024 A1
20240063596 Pandian et al. Feb 2024 A1
20240146629 Lloyd May 2024 A1
Foreign Referenced Citations (11)
Number Date Country
111047179 Apr 2020 CN
10 2004 015 221 Oct 2005 DE
1615178 Jan 2006 EP
3110161 Dec 2016 EP
2288892 Nov 1995 GB
WO 2017123665 Jul 2017 WO
WO 2018131322 Jul 2018 WO
WO 2019099409 May 2019 WO
WO 2019125545 Jun 2019 WO
WO 2019133533 Jul 2019 WO
WO 2023244513 Dec 2023 WO
Non-Patent Literature Citations (278)
Entry
US 11,450,210 B2, 09/2022, Tsai et al. (withdrawn)
“Cargo Monitor”, Samsara Inc., accessed Feb. 21, 2024 [publication date unknown], in 2 pages. URL: https://www.samsara.com/products/models/cargo-monitor.
“Connect your operations on the Samsara Platform.”, Samsara Inc., [publication date unknown]. URL: https://www.samsara.com/products/platform/?gad_source=1&gclid=EAlalQobChMI14DWlofYgwMVaymtBh36cwx9EAAYASAAEgKjUfD_BwE#impact1 (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 4 pages.
“Driver Scorecards & Fleet Safety” [archived webpage], KeepTruckin, Inc., accessed on Oct. 24, 2023 [archived on Apr. 23, 2019; publication date unknown], in 9 pages. URL: https://web.archive.org/web/20190423104921/https://keeptruckin.com/fleet-safety-and-coaching.
“Dual-Facing AI Dash Cam—CM32”, Samsara Inc., accessed Feb. 7, 2024 [publication date unknown]. URL: https://www.samsara.com/ca/products/models/cm32/ (filed with 2024-02-08 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 5 pages.
“ELD Fact Sheet—English Version”, Federal Motor Carrier Safety Administration, U.S. Department of Transportation, last updated Oct. 31, 2017 [publication date unknown], in 3 pages. URL: https://www.fmcsa.dot.gov/hours-service/elds/eld-fact-sheet-english-version.
“EM21—Environmental Monitor”, Samsara Inc., accessed Feb. 21, 2024 [publication date unknown], in 5 pages. URL: https://www.samsara.com/uk/products/models/em21/.
“Fast Facts: Electronic Logging Device (ELD) Rule”, Federal Motor Carrier Safety Administration, U.S. Department of Transportation, Jun. 2017, Document No. FMCSA-ADO-17-003 (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 2 pages.
“Front-Facing AI Dash Cam—CM31”, Samsara Inc., accessed Feb. 7, 2024 [publication date unknown]. URL: https://www.samsara.com/products/models/cm31/ (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 5 pages.
“Guide: Drive risk score 101”, Motive Technologies, Inc., [publication date unknown], Document No. 2022Q2_849898994 (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 22 pages.
“KeepTruckin Expands Hardware Portfolio to Support Fleet Safety and Efficiency—New dual-facing dash camera and asset tracker deliver fleet safety and asset visibility”, Business Wire, Sep. 9, 2019, in 4 pages. URL: https://www.businesswire.com/news/home/20190909005517/en/KeepTruckin-Expands-Hardware-Portfolio-to-Support-Fleet-Safety-and-Efficiency.
“KeepTruckin Launches New AI Dashcam Featuring Industry-Leading Accuracy to Proactively Prevent Accidents, Increase Safety and Efficiency”, Business Wire, Aug. 12, 2021. URL: https://www.businesswire.com/news/home/20210812005612/en/KeepTruckin-Launches-New-AI-Dashcam-Featuring-Industry-Leading-Accuracy-to-Proactively-Prevent-Accidents-Increase-Safety-and-Efficiency (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 4 pages.
“Map and Tile Coordinates”, Google for Developers, last updated Oct. 23, 2023 [retrieved on Oct. 24, 2023], in 5 pages. URL: https://developers.google.com/maps/documentation/javascript/coordinates.
“Mobile Logbook for Drivers” [archived webpage], KeepTruckin, Inc., accessed on Feb. 5, 2024 [archived on Dec. 13, 2013; publication date unknown]. URL: https://web.archive.org/web/20131213071205/https:/keeptruckin.com/ (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 3 pages.
“Product Brief: System Overview”, Motive Technologies, Inc., [publication date unknown], Document No. 2022Q4_1203118185166511 (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 3 pages.
“Product Brief: System Overview”, Motive Technologies, Inc., [publication date unknown], Document No. 2022Q4_1203118185166511 (referenced in Jan. 24, 2024 Complaint, Case No. 1:24-cv-00084-UNA), in 3 pages. URL: https://gomotive.com/content-library/guides/system-overview/.
“Real-Time GPS Fleet Tracking” [archived webpage], KeepTruckin, Inc., accessed on Oct. 24, 2023 [archived on Apr. 8, 2019; publication date unknown], in 4 pages. URL: https://web.archive.org/web/20190408022059/https:/keeptruckin.com/gps-tracking.
“Samsara Vehicle Telematics—Fleet Technology That Goes Beyond GPS Tracking”, Fleet Europe, Nexus Communication S.A., Oct. 11, 2022, in 7 pages. URL: https://www.fleeteurope.com/en/connected/europe/features/samsara-vehicle-telematics-fleet-technology-goes-beyond-gps-tracking?t%5B0%5D=Samsara&t%5B1%5D=Telematics&t%5B2%5D=Connectivity&curl=1.
“Smart Dashcam” [archived webpage], KeepTruckin, Inc., accessed on Oct. 24, 2023 [archived on Apr. 8, 2019; publication date unknown], in 8 pages. URL: https://web.archive.org/web/20190408015958/https://keeptruckin.com/dashcam.
“Spec Sheet: AI Dashcam”, Motive Technologies, Inc., [publication date unknown], Document No. 2023Q2_1204527643716537 (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 5 pages.
“Spec Sheet: AI Dashcam”, Motive Technologies, Inc., [publication date unknown], Document No. 2023Q2_1205736073289732 (referenced in Jan. 24, 2024 Complaint, Case No. 1:24-cv-00084-UNA), in 5 pages. URL: https://gomotive.com/content-library/spec-sheet/ai-dashcam/.
“Spec Sheet: AI Omnicam”, Motive Technologies, Inc., [publication date unknown], Document No. 2023Q2_1204519709838862 (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 5 pages.
“Spec Sheet: Smart Dashcam”, Motive Technologies, Inc., [publication date unknown], Document No. 2022Q2_911703417 (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 4 pages.
“Spec Sheet: Vehicle Gateway”, Motive Technologies, Inc., [publication date unknown], Document No. 2022Q1_858791278 (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 6 pages.
“Spec Sheet: Vehicle Gateway”, Motive Technologies, Inc., [publication date unknown], Document No. 2022Q1_858791278 (referenced in Jan. 24, 2024 Complaint, Case No. 1:24-cv-00084-UNA), in 6 pages. URL: https://gomotive.com/content-library/spec-sheet/vehicle-gateway/.
“Vehicle Gateway”, Samsara Inc., [publication date unknown]. URL: https://www.samsara.com/products/models/vehicle-gateway (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 5 pages.
“Transform your business with the Connected Operations™ Cloud”, Samsara Inc., accessed Feb. 21, 2024 [publication date unknown], in 8 pages. URL: https://www.samsara.com/products/platform/#impact0.
24/7 Staff, “KeepTruckin Raises $18 Million as Silicon Valley Eyes Trucking Industry”, Supply Chain 24/7, May 23, 2017. URL: https://www.supplychain247.com/article/keeptruckin_raises_18_million_as_silicon_valley_eyes_trucking_industry/CSA (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 1 page.
Brown, P. et al., “AI Dash Cam Benchmarking” [report], Strategy Analytics, Inc., Apr. 15, 2022, in 27 pages.
Camden, M. et al., “AI Dash Cam Performance Benchmark Testing Final Report”, Virginia Tech Transportation Institute, revised Aug. 17, 2023 [submitted Jun. 30, 2023] (filed with Jan. 24, 2024 Complaint, Case No. 1:24-cv-00084-UNA), in 110 pages.
Camden, M. et al., “AI Dash Cam Performance Benchmark Testing Final Report”, Virginia Tech Transportation Institute, submitted Jun. 30, 2023 (filed with Jan. 24, 2024 Complaint, Case No. 1:24-cv-00084-UNA), in 109 pages.
Geraci, B., “It's been one year since we launched the Motive AI Dashcam. See how it's only gotten better.”, Motive Technologies, Inc., Oct. 13, 2022, in 5 pages. URL: https://gomotive.com/blog/motive-ai-dashcam-year-one/.
Green, A., “Logistics Disruptors: Motive's Shoaib Makani on AI and automation”, Mckinsey & Company, Sep. 6, 2022, in 7 pages. URL: https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/logistics-disruptors-motives-shoaib-makani-on-ai-and-automation.
Hanson, Kelly, “Introducing Motive's Safety Hub for accident prevention and exoneration.”, Motive Technologies, Inc., Aug. 18, 2020, in 6 pages. URL: https://gomotive.com/blog/motive-safety-hub/.
Haridas, S., “KeepTruckin Asset Gateway Review”, Truck Trailer Tracker, Nov. 16, 2020, in 7 pages. URL: https://trucktrailertracker.com/keeptruckin-asset-gateway-review/.
Horowitz, E. “Improve Fleet Safety with Samsara”, Samsara Inc., Aug. 25, 2017, in 4 pages. URL: https://www.samsara.com/ca/blog/improve-fleet-safety-with-samsara/.
Khan, M., “Why and How We Measure Driver Performance”, Medium, Jan. 14, 2020. URL: https://medium.com/motive-eng/why-and-how-we-measure-driver-performance-768d5316fb2c#:˜:text=By%20studying%20data%20gathered%20from,the%20driver%20a%20safety%20score (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 8 pages.
Kinney, J., “Timeline of the ELD Mandate: History & Important Dates”, GPS Trackit, May 3, 2017. URL: https://gpstrackit.com/blog/a-timeline-of-the-eld-mandate-history-and-important-dates/ (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video- Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 5 pages.
Motive Help Center, “*New Fleet Managers Start Here*—Getting Started with Motive for Fleet Managers”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 2 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6162442580893--New-Fleet-Managers-Start-Here-Getting-Started-with-Motive-for-Fleet-Managers.
Motive Help Center, “How to add a vehicle on the Fleet Dashboard”, Motive Technologies, Inc., accessed on Oct. 25, 2023 [publication date unknown], in 6 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6208623928349.
Motive Help Center, “How to assign an Environmental Sensor to Asset Gateway”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 11 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6908982681629.
Motive Help Center, “How to create a Geofence”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 5 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6162211436061-How-to-create-a-Geofence.
Motive Help Center, “How to create Alert for Geofence”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 10 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6190688664733-How-to-create-Alert-for-Geofence.
Motive Help Center, “How to enable Dashcam In-cab Alerts for a Vehicle?”, Motive Technologies, Inc., accessed on Feb. 7, 2024 [publication date unknown]. URL: https://helpcenter.gomotive.com/hc/en-us/articles/11761978874141-How-to-enable-Dashcam-In-cab-Alerts-for-a-Vehicle (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 3 pages.
Motive Help Center, “How to enable Event Severity”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 3 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/7123375017757-How-to-enable-Event-Severity.
Motive Help Center, “How to enable In-Cab audio alerts on the Motive Fleet Dashboard”, Motive Technologies, Inc., accessed on Oct. 25, 2023 [publication date unknown], in 4 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6176882285469.
Motive Help Center, “How to install Environmental Sensors”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 4 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6907777171613.
Motive Help Center, “How to Manage a Group and Sub-groups”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 4 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6189047187997-How-to-Manage-A-Group-and-Sub-groups.
Motive Help Center, “How to manage Fuel Hub Vehicle Details”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 5 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6190039573789-How-to-manage-Fuel-Hub-Vehicle-Details.
Motive Help Center, “How to modify/ set up custom safety events thresholds”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 4 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6162556676381-How-to-set-up-Custom-Safety-Event-Thresholds-for-vehicles.
Motive Help Center, “How to monitor Fleet's Speeding behavior”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 4 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6189068876701-How-to-monitor-fleet-s-Speeding-behavior.
Motive Help Center, “How to recall/request video from the Motive Fleet Dashboard?”, Motive Technologies, Inc., accessed on Oct. 25, 2023 [publication date unknown], in 7 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6162075219229-How-to-recall-request-video-from-the-Motive-Dashcam.
Motive Help Center, “How to record Hours of Service (HOS) with Vehicle Gateway”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 3 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6162505072157-How-to-record-Hours-of-Service-HOS-with-Vehicle-Gateway.
Motive Help Center, “How to set a custom Speed Limit”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 5 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/8866852210205-How-to-set-a-custom-Speed-Limit.
Motive Help Center, “How to Set Real-Time Speeding Alerts on the Fleet Dashboard”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 7 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6175738246557-How-to-Set-Real-Time-Speeding-Alerts-on-the-Fleet-Dashboard.
Motive Help Center, “How to set up Custom Safety Event Thresholds for vehicles”, Motive Technologies, Inc., accessed on Mar. 13, 2023 [publication date unknown], in 6 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6162556676381-How-to-set-up-Custom-Safety-Event-Thresholds-for-vehicles.
Motive Help Center, “How to track vehicle speed from the Motive Fleet Dashboard”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 4 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6189043119261-How-to-track-vehicle-speed-from-the-Motive-Fleet-Dashboard.
Motive Help Center, “How to unpair and repair Environmental Sensors”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 3 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6905963506205-How-to-unpair-and-repair-Environmental-Sensors.
Motive Help Center, “How to view a Safety Event”, Motive Technologies, Inc., accessed on Oct. 25, 2023 [publication date unknown], in 4 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6189410468509-How-to-view-a-Safety-Event.
Motive Help Center, “How to view Fleet DRIVE Score Report on Fleet Dashboard”, Motive Technologies, Inc., accessed on Feb. 7, 2024 [publication date unknown]. URL: https://helpcenter.gomotive.com/hc/en-us/articles/13200798670493-How-to-view-Fleet-DRIVE-Score-Report-on-Fleet-Dashboard (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 2 pages.
Motive Help Center, “How to view Fuel Hub Driver Details”, Motive Technologies, Inc., [publication date unknown]. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6173246145053-How-to-view-Fuel-Hub-Driver-Details (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 5 pages.
Motive Help Center, “How to view Fuel Hub Driver Details”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 7 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6173246145053-How-to-view-Fuel-Hub-Driver-Details.
Motive Help Center, “How to view Group DRIVE Score Report on Fleet Dashboard”, Motive Technologies, Inc., accessed on Feb. 7, 2024 [publication date unknown]. URL: https://helpcenter.gomotive.com/hc/en-us/articles/12743858622365-How-to-view-Group-DRIVE-Score-Report-on-Fleet-Dashboard (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 2 pages.
Motive Help Center, “How to view safety events report”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 2 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6190647741853-How-to-view-safety-events-report.
Motive Help Center, “How to view Stop Sign Violation events on Fleet Dashboard”, Motive Technologies, Inc., accessed on Feb. 7, 2024 [publication date unknown]. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6163732277917-How-to-view-Stop-Sign-Violation-events-on-Fleet-Dashboard (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 2 pages.
Motive Help Center, “How to view Stop Sign Violation events on Fleet Dashboard”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 2 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6163732277917-How-to-view-Stop-Sign-Violation-events-on-Fleet-Dashboard.
Motive Help Center, “How to view the Driver DRIVE Score Report”, Motive Technologies, Inc., accessed on Feb. 7, 2024 [publication date unknown]. URL: https://helpcenter.gomotive.com/hc/en-us/articles/13200710733853-How-to-view-the-Driver-DRIVE-Score-Report (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 2 pages.
Motive Help Center, “How to view the Safety Hub and DRIVE Score details in the DriverApp”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 5 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6162215453853-How-to-view-safety-events-and-Dashcam-videos-on-Motive-App.
Motive Help Center, “How to view your vehicle's Utilization details”, Motive Technologies, Inc., accessed on Feb. 7, 2024 [publication date unknown]. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6176914537373-How-to-view-your-vehicle-s-Utilization-details (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 3 pages.
Motive Help Center, “Viewing Close Following Events on the Motive Fleet Dashboard”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 7 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6189574616989-Viewing-Close-Following-Events-on-the-Motive-Fleet-Dashboard.
Motive Help Center, “What are Alert Types?”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 3 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/8239240188957-What-are-Alert-Types-.
Motive Help Center, “What are Environmental Sensors?”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 4 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6907551525661-What-are-Environmental-Sensors-.
Motive Help Center, “What are safety risk tags?”, Motive Technologies, Inc., accessed on Feb. 21, 2024 [publication date unknown], in 4 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6163713841053.
Motive Help Center, “What are the definitions of safety behaviors triggered by Motive's AI & Smart Dashcams”, Motive Technologies, Inc., accessed on Mar. 13, 2023 [publication date unknown], in 3 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/8218103926941-What-are-the-definitions-of-safety-behaviors-triggered-by-Motive-s-AI-Smart-Dashcams.
Motive Help Center, “What are the definitions of safety behaviors triggered by Motive's AI & Smart Dashcams”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 3 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/8218103926941-What-are-the-definitions-of-safety-behaviors-triggered-by-Motive-s-AI-Smart-Dashcams.
Motive Help Center, “What are unsafe behaviors?”, Motive Technologies, Inc., accessed on Mar. 13, 2023 [publication date unknown], in 4 pages. URL (archived version): https://web.archive.org/web/20230203093145/https://helpcenter.gomotive.com/hc/en-us/articles/6858636962333-What-are-unsafe-behaviors-.
Motive Help Center, “What are Vehicle Gateway Malfunctions and Data Diagnostics”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 4 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6160848958109-What-are-Vehicle-Gateway-Malfunctions-and-Data-Diagnostics.
Motive Help Center, “What is DRIVE Risk Score?”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 5 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6162164321693-What-is-DRIVE-risk-score-.
Motive Help Center, “What is DRIVE Risk Score?”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown]. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6162164321693-What-is-DRIVE-risk-score- (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 5 pages.
Motive Help Center, “What is Event Severity?”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 3 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6176003080861-What-is-Event-Severity-.
Motive Help Center, “What is Fuel Hub?”, Motive Technologies, Inc., accessed on Feb. 5, 2024 [publication date unknown]. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6161577899165-What-is-Fuel-Hub (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 9 pages.
Motive Help Center, “What is Fuel Hub?”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 9 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6161577899165-What-is-Fuel-Hub-.
Motive Help Center, “What is Motive Fleet App?”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 12 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6113996661917-What-is-Motive-Fleet-App-.
Motive Help Center, “What is Safety Hub?”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 10 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6162472353053-What-is-Safety-Hub-.
Motive Help Center, “What Motive fuel features are available?”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], in 2 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6189158796445-What-Motive-fuel-features-are-available-.
Motive Help Center, “What unsafe behaviors does Motive monitor through Dashcam and Vehicle Gateway?”, Motive Technologies, Inc., accessed on Feb. 21, 2024 [publication date unknown], in 5 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6858636962333-What-unsafe-behaviors-does-Motive-monitor-through-Dashcam-and-Vehicle-Gateway-#01HCB72T2EXXW3FFVJ1XSDEG77.
Motive Help Center, “What unsafe behaviors does Motive monitor through Dashcam and Vehicle Gateway?”, Motive Technologies, Inc., accessed on Oct. 25, 2023 [publication date unknown], in 4 pages. URL: https://helpcenter.gomotive.com/hc/en-us/articles/6858636962333-What-are-unsafe-behaviors-.
Motive, “AI dash cam comparison: Motive, Samsara, Lytx”, Motive Technologies, Inc., [publication date unknown]. URL: https://gomotive.com/products/dashcam/fleet-dash-cam-comparison/#seat-belt-use (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 9 pages.
Motive, “AI dash cam comparison: Motive, Samsara, Lytx”, Motive Technologies, Inc., accessed on Feb. 18, 2024 [publication date unknown], in 20 pages. URL: https://gomotive.com/products/dashcam/fleet-dash-cam-comparison/.
Motive, “Asset Gateway Installation Guide | Cable/Vehicle Powered” [video], YouTube, Jun. 25, 2020, screenshot in 1 page. URL: https://www.youtube.com/watch?v=pME-VMauQgY.
Motive, “Asset Gateway Installation Guide | Solar Powered” [video], YouTube, Jun. 25, 2020, screenshot in 1 page. URL: https://www.youtube.com/watch?v=jifKM3GT6Bs.
Motive, “Benchmarking AI Accuracy for Driver Safety” [video], YouTube, Apr. 21, 2022, screenshot in 1 page. URL: https://www.youtube.com/watch?v=brRt2h0J80E.
Motive, “CEO Shoaib Makani's email to Motive employees.”, Motive Technologies, Inc., Dec. 7, 2022, in 5 pages. URL: https://gomotive.com/blog/shoaib-makanis-message-to-employees/.
Motive, “Coach your drivers using the Motive Safety Hub.” [video], YouTube, Mar. 27, 2023, screenshot in 1 page. URL: https://www.youtube.com/watch?v=VeErPXF30js.
Motive, “Equipment and trailer monitoring”, Motive Technologies, Inc., accessed on Feb. 18, 2024 [publication date unknown], in 11 pages. URL: https://gomotive.com/products/tracking-telematics/trailer-tracking/.
Motive, “Experts agree, Motive is the most accurate, fastest AI dash cam.”, Motive Technologies, Inc., accessed Feb. 21, 2024 [publication date unknown] in 16 pages. URL: https://gomotive.com/products/dashcam/best-dash-cam/.
Motive, “Guide: DRIVE risk score”, Motive Technologies, Inc., accessed on Apr. 8, 2023 [publication date unknown], Document No. 2022Q2_849898994, in 22 pages.
Motive, “Guide: Smart Event Thresholds”, Motive Technologies, Inc., accessed on Apr. 8, 2023 [publication date unknown], Document No. 2022Q1_902914404, in 11 pages.
Motive, “How to install a Motive Vehicle Gateway in light-duty vehicles.” [video], YouTube, Aug. 5, 2022, screenshot in 1 page. URL: https://www.youtube.com/watch?v=WnclRs_cFw0.
Motive, “How to install your Motive AI Dashcam.” [video], YouTube, Aug. 5, 2022, screenshot in 1 page. URL: https://www.youtube.com/watch?v=3JNG2h3KnU4.
Motive, “IFTA fuel tax reporting”, Motive Technologies, Inc., accessed on Feb. 18, 2024 [publication date unknown], in 4 pages. URL: https://gomotive.com/products/fleet-compliance/ifta-fuel-tax-reporting/.
Motive, “Improve road and fleet safety with driver scores.”, Motive Technologies, Inc., Feb. 7, 2019, in 5 pages. URL: https://gomotive.com/blog/improve-fleet-safety-driver-scores/.
Motive, “Industry-leading fleet management solutions”, Motive Technologies, Inc., accessed on Feb. 18, 2024 [publication date unknown], in 13 pages. URL: https://gomotive.com/products/.
Motive, “Introducing an easier way to manage unidentified trips.”, Motive Technologies, Inc., Apr. 30, 2020, in 5 pages. URL: https://gomotive.com/blog/introducing-easier-ude-management/.
Motive, “Introducing Motive Driver Workflow.”, Motive Technologies, Inc., Oct. 16, 2017, in 5 pages. URL: https://gomotive.com/blog/motive-driver-workflow/.
Motive, “Introducing the Motive Asset Gateway and dual-facing Smart Dashcam.”, Motive Technologies, Inc., Sep. 9, 2019, in 5 pages. URL: https://gomotive.com/blog/trailer-tracking-and-dual-facing-dash-cam-introducing/.
Motive, “Introducing the Motive Smart Dashcam”, Motive Technologies, Inc., Jun. 6, 2018. URL: https://gomotive.com/blog/announcing-smart-dashcam (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 9 pages.
Motive, “KeepTruckin ELD Training for Drivers” [video], YouTube, Feb. 2, 2018, screenshot in 1 page. URL: https://www.youtube.com/watch?v=LkJLIT2bGS0.
Motive, “KeepTruckin Smart Dashcam” [video], Facebook, Jun. 6, 2018. URL: https://www.facebook.com/keeptrucking/videos/keeptrucking-smart-dashcam/10212841352048331/ (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 3 pages.
Motive, “Motive Fleet View | Advanced GPS system for live and historical fleet tracking.” [video], YouTube, Jan. 23, 2023, screenshot in 1 page. URL: https://www.youtube.com/watch?v=CSDiDZhjVOQ.
Motive, “Motive introduces Reefer Monitoring for cold chain logistics.”, Motive Technologies, Inc., Oct. 4, 2022, in 5 pages. URL: https://gomotive.com/blog/motive-introduces-reefer-monitoring-for-cold-chain-logistics/.
Motive, “Motive Reefer Monitoring for cold chain logistics.” [video], YouTube, Oct. 5, 2022, screenshot in 1 page. URL: https://www.youtube.com/watch?v=rDwS5AmQp-M.
Motive, “Motive Smart Load Board—designed to help you find the right loads faster.” [video], YouTube, Nov. 28, 2022, screenshot in 1 page. URL: https://www.youtube.com/watch?v=UF2EQBzLYYk.
Motive, “Motive vs. Samsara: What's the difference?”, Motive Technologies, Inc., accessed Feb. 21, 2024 [publication date unknown], in 16 pages. URL: https://gomotive.com/motive-vs-samsara/#compare-chart.
Motive, “No time for downtime—automate fleet maintenance schedules” [video], YouTube, Dec. 20, 2022, screenshot in 1 page. URL: https://www.youtube.com/watch?v=flUccP-ifaU.
Motive, “Product Brief: Driver Safety”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], Document No. 2023Q2_1204527735206670, in 4 pages.
Motive, “Product Brief: System Overview”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], Document No. 2022Q4_1203331000367178, in 4 pages.
Motive, “Product Brief: Tracking & Telematics”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], Document No. 2022Q3_ 1202933457877590, in 4 pages.
Motive, “Products | AI Dashcam—Smart, accurate, and responsive AI dash cams.”, Motive Technologies, Inc., [publication date unknown]. URL: https://gomotive.com/products/dashcam/ (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 7 pages.
Motive, “Products | AI Dashcam—Smart, accurate, and responsive AI dash cams.”, Motive Technologies, Inc., accessed on Feb. 18, 2024 [publication date unknown], in 9 pages. URL: https://gomotive.com/products/dashcam/.
Motive, “Products | Dispatch—Manage your dispatches with ease.”, Motive Technologies, Inc., accessed on Feb. 18, 2024 [publication date unknown], in 9 pages. URL: https://gomotive.com/products/dispatch-workflow/.
Motive, “Products | Driver Safety—Protect your fleet and profits with an all-in-one safety solution.”, Motive Technologies, Inc., accessed on Feb. 18, 2024 [publication date unknown], in 13 pages. URL: https://gomotive.com/products/driver-safety/.
Motive, “Products | Driver Safety—Protect your fleet and profits with an all-in-one safety solution.”, Motive Technologies, Inc., accessed on Feb. 5, 2024 [publication date unknown]. URL: https://gomotive.com/products/driver-safety/ (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 16 pages.
Motive, “Products | Platform—Everything you need to manage your fleet. In one place.”, Motive Technologies, Inc., accessed on Feb. 7, 2024 [publication date unknown]. URL: https://gomotive.com/products/platform/ (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 12 pages.
Motive, “Products | Reefer Monitoring—The strongest link in cold chain transportation.”, Motive Technologies, Inc., accessed on Feb. 18, 2024 [publication date unknown], in 8 pages. URL: https://gomotive.com/products/reefer-monitoring-system/.
Motive, “Products | Tracking & Telematics—Track and monitor your fleet.”, Motive Technologies, Inc., accessed on Feb. 18, 2024 [publication date unknown], in 11 pages. URL: https://gomotive.com/products/tracking-telematics/.
Motive, “Spec Sheet: AI Dashcam”, Motive Technologies, Inc., accessed on Oct. 24, 2023 [publication date unknown], Document No. 2022Q3_1202788858717595, in 5 pages.
Motive, “Spec Sheet: Asset Gateway”, Motive Technologies, Inc., accessed on Mar. 15, 2023 [publication date unknown], Document No. 2022Q1_849551229, in 6 pages.
Motive, “Take control of your fleet with Groups and Features Access.”, Motive Technologies, Inc., Apr. 4, 2017, in 3 pages. URL: https://gomotive.com/blog/take-control-fleet-groups-features-access/.
Motive, “Take the time and hassle out of IFTA fuel tax reporting with Motive's fleet card.” [video], YouTube, Jan. 26, 2023, screenshot in 1 page. URL: https://www.youtube.com/watch?v=OEN9Q8X3j6l.
Motive, “The most accurate AI just got better.”, Motive Technologies, Inc., Mar. 8, 2023, in 8 pages. URL: https://gomotive.com/blog/fewer-fleet-accidents-with-the-new-ai/.
Motive, “The Motive Driver App: Change current duty status in your driving log.” [video], YouTube, Aug. 10, 2022, screenshot in 1 page. URL: https://www.youtube.com/watch?v=m4HPnM8BLBU.
Motive, “The Motive Driver App: Claim and correct unidentified trips.” [video], YouTube, Sep. 13, 2022, screenshot in 1 page. URL: https://www.youtube.com/watch?v=z2_kxd3dRac.
Motive, “The Motive Driver App: Connect to the Vehicle Gateway.” [video], YouTube, Sep. 13, 2022, screenshot in 1 page. URL: https://www.youtube.com/watch?v=egZmLYDa3kE.
Motive, “The Motive Driver App: Creating fleet vehicle inspection reports.” [video], YouTube, Aug. 10, 2022, screenshot in 1 page. URL: https://www.youtube.com/watch?v=u1JI-rZhbdQ.
Motive, “The Motive Driver App: Digitally record hours of service (HOS).” [video], YouTube, Aug. 10, 2022, screenshot in 1 page. URL: https://www.youtube.com/watch?v=gdexlb_zqtE.
Motive, “The Motive Driver App: Insert past duty driving log status.” [video], YouTube, Aug. 10, 2022, screenshot in 1 page. URL: https://www.youtube.com/watch?v=TmOipFKPBeY.
Motive, “The Motive Driver App: Switch to DOT inspection mode to share driving logs.” [video], YouTube, Aug. 10, 2022, screenshot in 1 page. URL: https://www.youtube.com/watch?v=S2LR1ZUlmBU.
Motive, “The Motive Driver App: View hours of service (HOS) violations.” [video], YouTube, Aug. 10, 2022, screenshot in 1 page. URL: https://www.youtube.com/watch?v=qJX2ZiBGtV8.
Motive, “U.S. speed limits. What drivers and fleets need to know.”, Motive Technologies, Inc., Jan. 13, 2022, in 8 pages. URL: https://gomotive.com/blog/us-speed-limits-for-drivers/.
Motive, “What is an AI dashcam?”, Motive Technologies, Inc., Jan. 21, 2022, in 6 pages. URL: https://gomotive.com/blog/what-is-ai-dashcam/.
Motive, “WiFi Hotspot sets you free from restrictive cell phone data plans.”, Motive Technologies, Inc., Jun. 27, 2019, in 5 pages. URL: https://gomotive.com/blog/wifi-hotspot/.
Motive, “WiFi Hotspot”, Motive Technologies, Inc., accessed on Feb. 18, 2024 [publication date unknown], in 5 pages. URL: https://gomotive.com/products/wifi-hotspot/.
Samsara Support, “AI Event Detection”, Samsara Inc., accessed on Feb. 7, 2024 [publication date unknown]. URL: https://kb.samsara.com/hc/en-us/articles/360043619011-AI-Event-Detection#UUID-4790b62c-6987-9c06-28fe-c2e2a4fbbb0d (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 3 pages.
Samsara Support, “Alert Configuration”, Samsara Inc., accessed Feb. 7, 2024 [publication date unknown]. URL: https://kb.samsara.com/hc/en-us/articles/217296157-Alert-Configuration (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 5 pages.
Samsara Support, “Alert Triggers”, Samsara Inc., accessed Feb. 7, 2024 [publication date unknown]. URL: https://kb.samsara.com/hc/en-us/articles/360043113772-Alert-Triggers (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 6 pages.
Samsara Support, “Automatic Driver Detection (Camera ID)”, Samsara Inc., accessed on Feb. 7, 2024 [publication date unknown]. URL: https://kb.samsara.com/hc/en-us/articles/360042878172#UUID-294cf192-f2f6-2c5a-3221-9432288c9b25 (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 3 pages.
Samsara Support, “Dash Cam Recording Logic”, Samsara Inc., accessed on Feb. 7, 2024 [publication date unknown]. URL: https://kb.samsara.com/hc/en-us/articles/360011372211-Dash-Cam-Recording-Logic (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 2 pages.
Samsara Support, “Dash Cam Settings Overview”, Samsara Inc., accessed on Feb. 7, 2024 [publication date unknown]. URL: https://kb.samsara.com/hc/en-us/articles/360042037572-Dash-Cam-Settings-Overview (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 3 pages.
Samsara Support, “Rolling Stop Detection”, Samsara Inc., accessed on Feb. 7, 2024 [publication date unknown]. URL: https://kb.samsara.com/hc/en-us/articles/360029629972-Rolling-Stop-Detection (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 2 pages.
Samsara Support, “Safety Score Categories and Calculation”, Samsara Inc., [publication date unknown]. URL: https://kb.samsara.com/hc/en-us/articles/360045237852-Safety-Score-Categoriesand-Calculation (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 3 pages.
Samsara Support, “Safety Score Weights and Configuration”, Samsara Inc., accessed Feb. 7, 2024 [publication date unknown]. URL: https://kb.samsara.com/hc/en-us/articles/360043160532-Safety-Score-Weights-and-Configuration#UUID-fcb096dd-79d6-69fc-6aa8-5192c665be0a_sectionidm4585641455801633238429578704 (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 4 pages.
Samsara, “AI Dash Cams”, Samsara, Inc., [publication date unknown] (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 9 pages.
Samsara, “CM31 Dash Camera Datasheet—Internet-Connected Front-Facing HD Camera Module”, [publication date unknown] (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 4 pages.
Samsara, “CM32 Dash Camera—Internet-Connected Dual-Facing HD Camera Module”, [publication date unknown] (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Components thereof, Investigation No. 337-TA-3722), in 2 pages.
Samsara, “Unpowered Asset Tracker AG45 Datasheet”, accessed Feb. 21, 2024 [publication date unknown], in 4 pages. URL: https://www.samsara.com/pdf/docs/AG45_Datasheet.pdf.
Samsara, “Vehicle Gateways—V634, V654, VGS4H Datasheet”, [publication date unknown] (filed with Feb. 8, 2024 ITC Complaint, In the Matter of Certain Vehicle Telematics, Fleet Management, and Video-Based Safety Systems, Devices, and Comlgonents thereof, Investigation No. 337-TA-3722), in 8 pages.
“Meet Return on Traffic Data—The new potential for contextualized transportation analytics”, Geotab ITS, accessed on Apr. 1, 2024 [publication date unknown], in 13 pages. URL: https://its.geotab.com/return-on-traffic-data/.
“Motive Announces AI Omnicam, the Industry's First AI-Enabled Camera Built for Side, Rear, Passenger, and Cargo Monitoring”, Business Wire, Jun. 15, 2023, in 2 pages. URL: https://www.businesswire.com/news/home/20230615577887/en/Motive-Announces-AI-Omnicam-the-Industry%E2%80%99s-First-AI-Enabled-Camera-Built-for-Side-Rear-Passenger-and-Cargo-Monitoring.
“The Home of Actionable Transportation Insights—Meet Altitude”, Geotab ITS, accessed on Apr. 1, 2024 [publication date unknown], in 5 pages. URL: https://its.geotab.com/altitude/.
Batchelor, B. et al., “Vision Systems on the Internet”, Proc. SPIE 6000, Two- and Three-Dimensional Methods for Inspection and Metrology III, Nov. 2005, vol. 600003, in 15 pages.
Bergasa, L. M. et al., “DriveSafe: an App for Alerting Inattentive Drivers and Scoring Driving Behaviors”, IEEE Intelligent Vehicles Symposium (IV), Jun. 2014, in 7 pages.
Boodlal, L. et al., “Study of the Impact of a Telematics System on Safe and Fuel-efficient Driving in Trucks”, U.S. Department of Transportation, Federal Motor Carrier Safety Administration, Apr. 2014, Report No. FMCSA-13-020, in 54 pages.
Camillo, J., “Machine Vision for Medical Device Assembly”, Assembly, Mar. 3, 2015, in 5 pages. URL: https://www.assemblymag.com/articles/92730- machine-vision-for-medical-device-assembly.
Camillo, J., “Machine Vision for Medical Device Assembly”, Assembly, Mar. 3, 2015, in 5 pages.
Chauhan, V. et al., “A Comparative Study of Machine Vision Based Methods for Fault Detection in an Automated Assembly Machine”, Procedia Manufacturing, 2015, vol. 1, pp. 416-428.
Chiou, R. et al., “Manufacturing E-Quality Through Integrated Web-enabled Computer Vision and Robotics”, The International Journal of Advanced Manufacturing Technology, Aug. 2009, vol. 43, in 19 pages.
Chiou, R. et al., “Manufacturing E-Quality Through Integrated Web-enabled Computer Vision and Robotics”, The International Journal of Advanced Manufacturing Technology, 2009 (published online Oct. 1, 2008), vol. 43, in 11 pages.
Cordes, C., “Ask an Expert: Capturing Fleet Impact from Telematics”, McKinsey & Co., Jun. 13, 2017, in 3 pages. URL: https://www.mckinsey.com/capabilities/operations/our-insights/ask-an-expert-capturing-fleet-impact-from-telematics.
D'Agostino, C. et al., “Learning-Based Driving Events Recognition and Its Application to Digital Roads”, IEEE Transactions on Intelligent Transportation Systems, Aug. 2015, vol. 16(4), pp. 2155-2166.
Dillon, A., “User Interface Design”, MacMillan Encyclopedia of Cognitive Science, 2003, vol. 4, London: MacMillan, in 18 pages (pp. 453-458). Downloaded from http://hdl.handle.net/10150/105299.
Dillon, A., “User Interface Design”, MacMillan Encyclopedia of Cognitive Science, 2006, vol. 4, London: MacMillan, in 6 pages (pp. 453-458). Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/0470018860.s00054.
Ekström, L., “Estimating fuel consumption using regression and machine learning”, KTH Royal Institute of Technology, Degree Project in Mathematics, 2018, in 126 pages.
Engelbrecht, J. et al., “A Survey of Smartphone-based Sensing in Vehicles for ITS Applications”, IET Intelligent Transport Systems, Jul. 2015, vol. 9(10), in 23 pages.
Gilman, E. et al., “Personalised assistance for fuel-efficient driving”, Transportation Research Part C, Mar. 2015, pp. 681-705.
Goncalves, J. et al., “Smartphone Sensor Platform to Study Traffic Conditions and Assess Driving Performance”, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Oct. 2014, in 6 pages.
Groover, M. P., “Chapter 22 Inspection Technologies”, in Automation, Production Systems, and Computer-Integrated Manufacturing, 2015, 4th Edition, Pearson, pp. 647-684.
Groover, M. P., Automation, Production Systems, and Computer-Integrated Manufacturing, 2016, 4th Edition (Indian Subcontinent Adaptation), Pearson, in 11 pages.
Han, Z. et al., “Design of Intelligent Road Recognition and Warning System for Vehicles Based on Binocular Vision”, IEEE Access, Oct. 2018, vol. 6, pp. 62880-62889.
Haworth, N. et al., “The Relationship between Fuel Economy and Safety Outcomes”, Monash University, Accident Research Centre, Dec. 2001, Report No. 188, in 67 pages.
Huang, K.-Y. et al., “A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle”, Sensors, Jun. 2015, vol. 15(7), pp. 15326-15338.
Junior, J. F. et al., “Driver behavior profiling: An investigation with different smartphone sensors and machine learning”, PLoS One, Apr. 2017, vol. 12(4): e0174959, in 16 pages.
Kwon, Y. J. et al., “Automated Vision Inspection in Network-Based Production Environment”, International Journal of Advanced Manufacturing Technology, Feb. 2009, vol. 45, pp. 81-90.
Lan, M. et al., “SmartLDWS: A Robust and Scalable Lane Departure Warning System for the Smartphones”, Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems, Oct. 3-7, 2009, pp. 108-113.
Lotan, T. et al., “In-Vehicle Data Recorder for Evaluation of Driving Behavior and Safety”, Transportation Research Record Journal of the Transportation Research Board, Jan. 2006, in 15 pages.
Malamas, Elias N. et al. “A survey on industrial vision systems, applications and tools”, Image and Vision Computing, Dec. 28, 2002, vol. 21, pp. 171-188.
Meiring, G. et al., “A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms”, Sensors, Dec. 2015, vol. 15, pp. 30653-30682.
Mitrovic, D. et al., “Reliable Method for Driving Events Recognition”, IEEE Transactions on Intelligent Transportation Systems, Jun. 2005, vol. 6(2), pp. 198-205.
Motive, “Guide: AI Model Development”, Motive Technologies, Inc., accessed on Mar. 29, 2024 [publication date unknown], Document No. 2022Q1_849898994, in 14 pages.
Perez, L. et al., “Robot Guidance Using Machine Vision Techniques in Industrial Environments: A Comparative Review”, Sensors, Mar. 2016, vol. 16(3), in 27 pages.
Ramkumar, S. M. et al., “Chapter 14 Web Based Automated Inspection and Quality Management”, in Web-Based Control and Robotics Education, 2009, ed., Spyros G. Tzafestas, Springer, in 42 pages.
Tzafestas, S. G. (ed.), Web-Based Control and Robotics Education, 2009, Springer, ISBN 978-90-481-2504-3, in 362 pages (uploaded in 3 parts).
Song, T. et al., “Enhancing GPS with Lane-level Navigation to Facilitate Highway Driving”, IEEE Transactions on Vehicular Technology, Jun. 2017 (published on Jan. 30, 2017), vol. 66, No. 6, in 12 pages.
Song, T. et al., “Enhancing GPS with Lane-level Navigation to Facilitate Highway Driving”, IEEE Transactions on Vehicular Technology, Jun. 2017 (published on Jan. 30, 2017), vol. 66, No. 6, pp. 4579-4591, in 13 pages.
Steger, C. et al., “Chapter 2 Image Acquisition” and “Chapter 3 Machine Vision Algorithms”, in Machine Vision Algorithms and Applications, 2018, 2nd ed., Wiley, in 604 pages.
Steger, C. et al., Machine Vision Algorithms and Applications, 2018, 2nd ed., Wiley, in 60 pages.
Su, C.-C. et al., “Bayesian depth estimation from monocular natural images”, Journal of Vision, 2017, vol. 17(5):22, pp. 1-29.
Sung, T.-W. et al., “A Speed Control Scheme of Eco-Driving at Road Intersections”, 2015 Third International Conference on Robot, Vision and Signal Processing, 2015, pp. 51-54.
Vlahogianni, E. et al., “Driving analytics using smartphones: Algorithms, comparisons and challenges”, Transportation Research Part C, Jun. 2017, vol. 79, pp. 196-206.
Wahlstrom, J. et al., “Smartphone-based Vehicle Telematics—A Ten-Year Anniversary”, IEEE Transactions on Intelligent Transportation Systems, Nov. 2016, vol. 18(10), in 23 pages.
Yufeng, Z. et al., “3G-Based Specialty Vehicles Real-Time Monitoring System”, Applied Mechanics and Materials, Feb. 2014, vols. 513-517, pp. 871-875.
Yufeng, Z. et al., “3G-Based Specialty Vehicles Real-Time Monitoring System”, Applied Mechanics and Materials, Feb. 2014, vols. 513-517, pp. 871-875, in 7 pages.
Zanini, M. et al., “Mobile Assets Monitoring for Fleet Maintenance”, SAE International, Apr. 11-14, 2005, in 9 pages.
Zanini, M. et al., “Mobile Assets Monitoring for Fleet Maintenance”, SAE International, 2005, pp. 369-375, in 8 pages.
Zhong, R. Y. et al., “Intelligent Manufacturing in the Context of Industry 4.0: A Review”, Engineering, Oct. 2017, vol. 3, Issue 5, pp. 616-630.
Driver I, The Power of Vision, Netradyne, [publication date unknown], in 2 pages.
“Driver Speed Management for Fleets—Monitoring Speeding in your fleet to increase safety and lower costs”, Lytx, 2018, in 9 pages. URL: https://web.archive.org/web/20181217230050/https:/www.lytx.com/en-us/fleet-services/program-enhancements/speed-management-for-fleets.
“Eco:Drive™ Social, the community of responsible drivers”, Stellantis, Apr. 15, 2014, in 2 pages. URL: https://www.media.stellantis.com/em-en/fiat/press/eco-drive-social-the-community-of-responsible-drivers.
“EcoDrive”, Wikipedia, 2022, in 1 page. URL: https://en.wikipedia.org/wiki/EcoDrive.
“Fiat 500—2015 Owner's Manual”, FCA US LLC, 2016, 5th ed., in 440 pages.
“Fiat 500 Eco system”, Fiat 500 Eco System Forum, Apr. 21, 2020, in 5 pages. URL: https://www.fiat500usaforum.com/forum/fiat-500-forums/fiat-500-general-discussion/32268-fiat-500-eco-system?36406-Fiat-500-Eco-system=.
“Fiat launches EcoDrive for 500 and Grande Punto”, Indian Autos Blog, Jul. 10, 2008, in 4 p. URL: https://indianautosblog.com/fiat-launches-ecodrive-for-500-and-grande-punto-p3049.
“Fiat launches fleet-specific eco: Drive system”, Fleet World, 2010, in 3 pages. URL: https://fleetworld.co.uk/fiat-launches-fleet-specific-ecodrive-system/.
Goodwin, A., “Fiats ecoDrive teaches efficient driving”, CNET, Oct. 22, 2008, in 5 pages. URL: https://www.cnet.com/roadshow/news/fiats-ecodrive-teaches-efficient-driving/.
“Introduction Pack”, Drivecam, Inc., 2012, in 32 pages. URL: https://www.iae-services.com.au/downloads/DriveCam-Introduction-Pack.pdf.
“Lytx DriveCam Program Adds New Client-Centric Enhancements”, Mass Transit, Oct. 4, 2016, in 6 pages. URL: https://www.masstransitmag.com/safety-security/press-release/12265105/lytx-lytx-drivecamtm-program-adds-newclient-centric-enhancements-evolving-the-gold-standard-video-telematics-program.
“Lytx Video Services Workspace—Screenshot Key”, Lytx, 2017, in 1 page. URL: https://www.multivu.com/players/English/7899252-lytx-video-services-program/docs/KeytoLytx_1505780254680-149005849.pdf.
“Making roads safer for everyone, everywhere”, Light Metrics, 2023, in 8 pages. URL: https://www.lightmetrics.co/about-us.
“Nauto—Getting Started”, Manualslib, Nauto, Inc., Apr. 20, 2017, in 18 pages. URL: https://www.manualslib.com/manual/1547723/Nauto-Nauto.html.
“Netradyne Adds New Detection Features to Driveri Platform”, Automotive Fleet Magazine, Oct. 27, 2016, in 13 pages. URL: https://www.automotive-fleet.com/137445/netradyne-adds-new-detection-features-to-driveri-platform.
“NetraDyne Discuss their AI Platform 5G and their vision of the IoT (Internet of Things)”, GSMA, Oct. 3, 2018, in 2 pages. URL: https://www.gsma.com/solutions-and-impact/technologies/internet-of-things/news/netradyne-interview/.
“Netradyne Vision based driver safety solution—Model Name: Driver I, Model No. DRI-128-TMO” [device specification], [publication date unknown], in 4 pages. URL: https://device.report/m/4dd89450078fa688b333692844d3bde954ddfbaf5c105c9d1d42dfd6965cbf1b.pdf.
“NetraDyne, an Artificial Intelligence Leader, Launches Driver-i™, a Vision-Based Platform, Focusing on Commercial Vehicle Driver Safety”, Netradyne, [publication date unknown], in 2 pages.
“NetraDyne's Artificial Intelligence Platform Improves Road Safety”, Sierra Wireless, Oct. 31, 2016, in 4 pages. URL: https://device.report/m/7d898f1b967fc646a1242d092207719be5da8c6cc9c7daabc63d4a307cfd3dcb.pdf.
“Sensor Fusion: Building the Bigger Picture of Risk”, Lytx, Apr. 12, 2019, in 1 page. URL: https://www.lytx.com/newsletter/sensor-fusion-building-the-bigger-picture-of-risk.
“The 2012 Fiat 500: eco:Drive”, Fiat500USA.com, Feb. 14, 2011, in 24 pages. URL: http://www.fiat500usa.com/2011/02/2012-fiat-500-ecodrive.html.
“The World's Smartest 360° Dashcam: Vezo 360—Fast Facts”, Arvizon, [publication date unknown], in 7 pages. URL: https://cdn.newswire.com/files/x/5e/13/b92cd7c6259a708e1dfdaa0123c4.pdf.
“What is a ter-a-flop?”, netradyne.com, [publication date unknown], in 2 pages.
“Vezo 360 Dash Cam—Capture Every Single Angle in Crisp Detail”, ArVizon, 2019, in 13 pages. URL: https://www.arvizon.com/vezo-360-dash-cam/.
“Vezo 360, the World's Smartest Dashcam, Keeps You Awake at the Wheel”, PR Newswire, Apr. 2, 2019, in 4 pages. URL: https://www.prnewswire.com/news-releases/vezo-360-the-worlds-smartest-dashcam-keeps-you-awake-at-the-wheel-300823457.html.
Alpert, B., “Deep Learning for Distracted Driving Detection”, Nauto, Jan. 15, 2019, in 10 pages. URL: https://www.nauto.com/blog/nauto-engineering-deep-learning-for-distracted-driver-monitoring.
Amazon Web Services, “How Nauto Is Using AI & MI to Build a Data Platform That Makes Driving Safer and Fleets Smarter” [video], YouTube, Apr. 16, 2018, screenshot in 1 page. URL: https://www.youtube.com/watch?v=UtMirYTmCMU.
Armstrong, C. et al. “Transport Canada Commercial Bus HVEDR Feasibility Study (File No. T8080-160062) Deliverable No. 4”, Mecanica Scientific Services Corp, 2018, in 62 pages. URL: https://transcanadahvedr.ca/wp-content/uploads/2022/01/T8080_Deliverable4-DevSmryRpt-FINAL-20180804_English.pdf.
AutomotoTV, “Fiat ecoDrive System” [video], YouTube, Oct. 6, 2008, screenshot in 1 page URL: https://www.youtube.com/watch?v=AUSb2dBBI8E.
Bendix Commercial Vehicle Systems LLC, “Bendix launches new Wingman Fusion safety system at Mid-America Trucking Show”, OEM Off-Highway, Mar. 25, 2015, in 10 pages. URL: https://www.oemoffhighway.com/electronics/sensors/proximity-detection-safety-systems/press-release/12058015/bendix-launches-new-wingman-fusion-safety-system-at-midamerica-trucking-show.
Bendix, “Bendix® Wingman® Fusion: The Integration of camera, radar, and brakes delivers a new level of performance in North America”, Waterstruck.com, 2015, in 10 pages. URL: https://www.waterstruck.com/assets/Bendix-Wingman-Fusion-brochure_Truck-1.pdf.
Bendix, “Quick Reference Catalog”, Bendix Commercial Vehicle Systems LLC, 2018, in 165 pages. URL: https://www.bendix.com/media/home/bw1114_us_010.pdf (uploaded in 2 parts).
Cetecom, “FCC/IC Test Setup Photos, Intelligent Driving Monitoring System Smart Connected Dash Cam”, Cetecom, Inc., Feb. 7, 2018, in 9 pages. URL: https://device.report/m/a68e1abef29f58b699489f50a4d27b81f1726ab4f55b3ac98b573a286594dc54.pdf.
Cook, B., “Drivecam: Taking Risk out of Driving, Findings related to In-Cab driver Distraction”, Drivecam, 2010, in 50 pages. URL: https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/MCSAC_201006_DriveCam.pdf.
Dunn, B., “What is the Lytx DriveCam?”, Autobytel, Jul. 12, 2014, in 1 page. URL: https://www.autobytel.com/what-is-lytx-drivecam.
Fiat, “Interview to Giorgio Neri: videotutorial eco:Drive” [video], YouTube, Dec. 1, 2010, screenshot in 1 page. URL: https://www.youtube.com/watch?v=XRDeHbUimOs&t=27s.
FiatFranco, ““Ciao!”—Fiat ecoDrive” [video], YouTube, Sep. 10, 2007, screenshot in 1 page URL: https://www.youtube.com/watch?v=SluE9Zco55c.
Firstnet™ Built with AT&T, “Reliable telematics solution for utility fleets”, Fleet Complete, Apr. 25, 2019, in 2 pages. URL: https://www.firstnet.com/content/dam/firstnet/white-papers/firstnet-fleet-complete-utilities.pdf.
Fleet Complete, “Tony Lourakis tests out Fleet Complete Vision—our new video telematics and driver coaching tool” [video], YouTube, Jan. 9, 2019, screenshot in 1 page. URL: https://www.youtube.com/watch?v=3zEY5x5DOY8.
Fleet Equipment Staff, “Lytx announces enhancements to DriveCam system”, Fleetequipmentmag.com, Oct. 7, 2016, in 9 pages. URL: https://www.fleetequipmentmag.com/lytx-drivecam-system-truck-telematics/.
Ginevra2008, “Fiat EcoDrive” [video], YouTube, Mar. 7, 2008, screenshot in 1 page. URL: https://www.youtube.com/watch?v=D95p9Bljr90.
Hampstead, J. P. “Lightmetrics:an exciting video telematics software startup”, FrieghtWaves, Aug. 5, 2018, in 4 pages. URL: https://www.freightwaves.com/news/lightmetrics-exciting-video-telematics-startup.
Horsey, J., “VEZO 360 4K 360 dash cam from $149”, Geeky Gadgets, Apr. 3, 2019, in 12 pages. URL: https://www.geeky-gadgets.com/vezo-360-4k-360-dash-cam-03-04-2019/.
Huff, A., “Lytx DriveCam”, CCJDigital, Apr. 4, 2014, in 12 pages. URL: https://www.ccjdigital.com/business/article/14929274/lytx-drivecam.
Huff, A., “NetraDyne Uses Artificial Intelligence in New Driver Safety Platform”, CCJ, Sep. 15, 2016, in 10 pages. URL: https://www.ccjdigital.com/business/article/14933761/netradyne-uses-artificial-intelligence-in-new-driver-safety-platform.
Lekach, S., “Driver safety is ‘all talk’ with this Al real-time road coach”, Mashable, Aug. 3, 2018, in 11 pages. URL: https://mashable.com/article/netradyne-driveri-ai-driver-safety.
Lytx, “TeenSafe Driver Program”, American Family Insurance®, 2014, in 10 pages. URL: https://online-sd02.drivecam.com/Downloads/TSD_WebsiteGuide.pdf.
Multivu.com, “Powerful Technology ER-SV2 Event Recorder”, Lytx Inc., 2015, in 2 pages. URL: https://www.multivu.com/players/English/7277351-lytx-activevision-distracted-driving/document/52a97b52-6f94-4b11-b83b-8c7d9cef9026.pdf.
Nauto, “How Fleet Managers and Safety Leaders Use Nauto” [video], YouTube, Jan. 25, 2018, screenshot in 1 page. URL: https://www.youtube.com/watch?v=k_iX7a6j2-E.
Nauto, “The New World of Fleet Safety—Event Keynote” [video], YouTube, Jul. 9, 2020, screenshot in 1 page. URL: https://www.youtube.com/watch?v=iMOab9Ow_CY.
Netradyne Inc., “Netradyne Introduces New DriverStar Feature to Recognize and Reward Safe Driving”, PR Newswire, Netradyne, Inc., Oct. 19, 2017, in 2 pages. URL: https://www.prnewswire.com/news-releases/netradyne-introduces-new-driverstar-feature-to-recognize-and-reward-safe-driving-300540267.html.
Netradyne India, “Netradyne Driveri Covered in BBC Click” [video], YouTube, Jan. 25, 2018, screenshot in 1 page. URL: https://www.youtube.com/watch?v=jhULDLj9iek.
Netradyne presentation, Netradyne, Oct. 2016, in 23 pages.
Netradyne, “Driver⋅i™ Catches No Stop ad Stop Sign | Fleet Management Technology” [video], YouTube, Oct. 3, 2017, screenshot in 1 page. URL: https://www.youtube.com/watch?v=l8sX3X02aJo.
Netradyne, “Driver⋅i™ Flags Commercial Driver Running Red Light—360-degree vi” [video], YouTube, Oct. 3, 2017, screenshot in 1 page. URL: https://www.youtube.com/watch?v=au9_ZNGYCmY.
Netradyne, Driver Card 1, 2018, in 2 pages.
Netradyne, Driver Card 2, 2018, in 2 pages.
Ohidan, A., “Fiat And AKQA Launch Eco:Drive™”, Science 2.0, Oct. 7, 2008, in 4 pages. URL: https://www.science20.com/newswire/fiat_and_akqa_launch_eco_drive_tm.
Puckett, T. et al. “Safety Track 4B-Driver Risk Management Program”, Airports Council International, Jan. 18, 2019, in 29 pages. URL: https://airportscouncil.org/wp-content/uploads/2019/01/4b-DRIVER-RISK-MANAGEMENT-PROGRAM-Tamika-Puckett-Rob-Donahue.pdf.
Sindhu MV, “How this three-year-old Bengaluru startup is helping make US roads safer with its video analytics solutions”, Yourstory.com, Mar. 26, 2018, in 7 pages. URL: https://yourstory.com/2018/03/lightmetrics-road-safety-analytics.
Smart Dash Cam Vezo360!, “Vivek Soni Co-Founder at Arvizon” [video], YouTube, Feb. 21, 2019, screenshot in 1 page. URL: https://www.youtube.com/watch?v=leclwRCb5ZA.
Soumik Ukil, “LightMetrics ADAS demo” [video], YouTube, Jul. 20, 2017, screenshot in 1 page. URL: https://www.youtube.com/watch?app=desktop&v=9LGz1oo7dTw.
Straight, B. “Over 20 years later, Lytx continues to evolve alongside the industry it serves”, FreightWaves, Apr. 16, 2019, in 4 pages. URL: https://www.freightwaves.com/news/technololgy/the-evolution-of-lytx.
Straight, B., “Netradyne using Al to provide intelligent insight into distracted driving”, Netradyne, Inc., Nov. 8, 2017, in 4 pages. URL: https://www.freightwaves.com/news/2017/11/7/netradyne-using-ai-to-provide-intelligent-insight-into-distracted-driving.
Suppose U Drive, “New Trucking Tech: Forward Facing Cameras” supposeudrive.com, Mar. 15, 2019, in pp. 7. URL: https://supposeudrive.com/new-trucking-tech-forward-facing-cameras/.
The Wayback Machine, “AT&T Fleet Complete—Give your Business a competitive advantage ”, AT&T, 2019, in 12 pages. URL: https://web.archive.org/web/20190406125249/http:/att.fleetcomplete.com/.
The Wayback Machine, “Introducing Driver-I™”, NetraDyne, Sep. 22, 2016, in 4 pages URL: https://web.archive.org/web/20160922034006/http://www.netradyne.com/solutions.html.
The Wayback Machine, “NetraDyne's Driver-I™ platform delivers results beyond legacy safety video systems Counting safe driving as safe driving—taking second-guessing out of commercial fleet driver safety”, NetraDyne, Feb. 9, 2018, in 7 pages. URL: https://web.archive.org/web/20180209192736/http:/netradyne.com/solutions/.
Top Fives, “15 Biggest Data Centers on Earth” [video], YouTube, Jun. 9, 2024, screenshot in 1 page. URL: https://www.youtube.com/watch?v=1LmFmCVTppo.
Uliyar, M., “LightMetrics' RideView video safety system provides the best ROI”, Linkedin, Sep. 8, 2016, in 4 pages URL: https://www.linkedin.com/pulse/lightmetrics-rideview-video-safety-system-provides-best-mithun-uliyar/.
Vezo 360, “World's Smartest Dash Cam Powered by AI” [video], YouTube, Mar. 31, 2019, screenshot in 1 page. URL: https://www.youtube.com/watch?v=M5r5wZozS0E.
Wu, S., “Motivating High-Performing Fleets with Driver Gamification”, Samsara, Feb. 2, 2018, in 4 pages. URL: https://www.samsara.com/blog/motivating-high-performing-fleets-with-driver-gamification/.
International Search Report and Written Opinion for PCT Application No. PCT/US2023/024992, dated Sep. 25, 2023, in 10 pages.
Related Publications (1)
Number Date Country
20240394389 A1 Nov 2024 US
Provisional Applications (1)
Number Date Country
63366515 Jun 2022 US