Data processing consent sharing systems and related methods

Information

  • Patent Grant
  • 12158975
  • Patent Number
    12,158,975
  • Date Filed
    Thursday, February 16, 2023
    a year ago
  • Date Issued
    Tuesday, December 3, 2024
    a month ago
Abstract
In various embodiments, an entity may provide a WebView where a transaction between an entity and a data subject may be performed. As described herein, the transaction may involve the collection or processing of personal data associated with the data subject by the entity as part of a processing activity undertaken by the entity that the data subject is consenting to as part of the transaction. Additionally, the entity may provide a native application where the transactions between the entity and a data subject may be performed. In some embodiments, the system may be configured to share consent data between the WebView and the native application so data subjects experience a seamless transition while using either the WebView or the native application, and the data subjects are not required to go through a consent workflow for each of the WebView and the native application.
Description
BACKGROUND

Over the past years, privacy and security policies, and related operations have become increasingly important. Breaches in security, leading to the unauthorized access of personal data (which may include sensitive personal data) have become more frequent among companies and other organizations of all sizes. Such personal data may include, but is not limited to, personally identifiable information (PII), which may be information that directly (or indirectly) identifies an individual or entity. Examples of PII include names, addresses, dates of birth, social security numbers, and biometric identifiers such as a person's fingerprints or picture. Other personal data may include, for example, customers' Internet browsing habits, purchase history, or even their preferences (e.g., likes and dislikes, as provided or obtained through social media).


Many organizations that obtain, use, and transfer personal data, including sensitive personal data, have begun to address these privacy and security issues. To manage personal data, many companies have attempted to implement operational policies and processes that comply with legal and industry requirements. However, there is an increasing need for improved systems and methods to manage personal data in a manner that complies with such policies.


SUMMARY

According to various aspects, a method is provided that comprises: receiving, by computing hardware via a native application, data subject consent data for a data subject; storing, by the computing hardware, the data subject consent data in a storage location; receiving, by the computing hardware via the native application, a request to provide web content, wherein the web content requires consent from the data subject; executing, by the computing hardware via a software development kit associated with the native application, a script to pass the data subject consent data from the storage location to a WebView, wherein the WebView is configured to display the web content within the native application; determining, by the computing hardware and based on the data subject consent data, that the data subject has provided the consent for the web content; and responsive to determining that the data subject has provided the consent, displaying, by the computing hardware via the WebView, the web content.


In some aspects, the web content is displayed without prompting the data subject to provide additional consent via the WebView. In some aspects, receiving the data subject consent data comprises receiving the data subject consent data from the data subject during an on-boarding process within the native application. In some aspects, the web content involves use of at least one of a functionality cookie, a performance cookie, a targeting cookie, or a persistent cookie and the consent is required for the use. In some aspects, the web content involves at least one of collecting or processing of personal data of the data subject. In some aspects, the storage location is located on at least one of the computing hardware executing the native application or remote hardware from the computing hardware. In some aspects, the computing hardware comprises a mobile device and the native application comprises a mobile application.


According to various aspects, a system comprising a non-transitory computer-readable medium storing instructions and a processing device communicatively coupled to the non-transitory computer-readable medium is provided. The processing device is configured to execute the instructions and thereby perform operations comprising: receiving, via a native application, data subject consent data for a data subject; storing the data subject consent data in a storage location; receiving, via a WebView, a request to perform an action, wherein the WebView is provided through the native application and the action requires consent from the data subject; executing, via a software development kit associated with the native application, a script to pass the data subject consent data from the storage location to the WebView; determining, based on the data subject consent data, that the data subject has provided the consent for the action; and responsive to determining that the data subject has provided the consent, performing the action within the WebView.


In some aspects, the action is performed without prompting the data subject to provide additional consent via the WebView. In some aspects, receiving the data subject consent data comprises receiving the data subject consent data from the data subject during an on-boarding process within the native application. In some aspects, the action comprises loading at least one of a functionality cookie, a performance cookie, a targeting cookie, or a persistent cookie and the consent is required for the use. In some aspects, the action comprises a transaction that involves at least one of collecting or processing of personal data of the data subject via the WebView. In some aspects, the storage location is located at least one of on the system or remote from the system. In some aspects, the processing device resides on a mobile device and the native application comprises a mobile application.


According to various aspects, a non-transitory computer-readable medium having program code that is stored thereon is provided. The program code is executable by one or more processing devices for performing operations comprising: receiving data subject consent data for a data subject; storing the data subject consent data in a storage location; receiving a request to provide web content, wherein the web content requires consent from the data subject; executing, via a software development kit, a script to pass the data subject consent data from the storage location to a WebView; determining, based on the data subject consent data, that the data subject has provided the consent for the web content; and responsive to determining that the data subject has provided the consent, displaying, via the WebView, the web content.


In some aspects, the web content is displayed without prompting the data subject to provide additional consent via the WebView. In some aspects, the web content involves use of at least one of a functionality cookie, a performance cookie, a targeting cookie, or a persistent cookie and the consent is required for the use. In some aspects, the web content involves at least one of collecting or processing of personal data of the data subject. In some aspects, the storage location is located at least one of on computing hardware on which the one or more processing devices are located or remote from the computing hardware. In some aspects, the one or more processing devices reside on a mobile device and the program code comprises a mobile application.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of a data subject access request fulfillment system are described below. In the course of this description, reference will be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:



FIG. 1 depicts a data model generation and population system according to particular embodiments.



FIG. 2 is a schematic diagram of a computer (such as the data model generation server 110, or data model population server 120) that is suitable for use in various embodiments of the data model generation and population system shown in FIG. 1 (e.g., or the consent interface management server 6110, or one or more remote computing devices 6150) that is suitable for use in various embodiments of the consent conversion optimization system shown in FIG. 60).



FIG. 3 is a flowchart showing an example of steps performed by a Data Model Generation Module according to particular embodiments.



FIGS. 4-10 depict various exemplary visual representations of data models according to particular embodiments.



FIG. 11 is a flowchart showing an example of steps performed by a Data Model Population Module.



FIG. 12 is a flowchart showing an example of steps performed by a Data Population Questionnaire Generation Module.



FIG. 13 is a process flow for populating a data inventory according to a particular embodiment using one or more data mapping techniques.



FIGS. 14-25 depict exemplary screen displays and graphical user interfaces (GUIs) according to various embodiments of the system, which may display information associated with the system or enable access to, or interaction with, the system by one or more users (e.g., to configure a questionnaire for populating one or more inventory attributes for one or more data models, complete one or more assessments, etc.).



FIG. 26 is a flowchart showing an example of steps performed by an Intelligent Identity Scanning Module.



FIG. 27 is schematic diagram of network architecture for an intelligent identity scanning system 2700 according to a particular embodiment.



FIG. 28 is a schematic diagram of an asset access methodology utilized by an intelligent identity scanning system 2700 in various embodiments of the system.



FIG. 29 is a flowchart showing an example of a processes performed by a Data Subject Access Request Fulfillment Module 2900 according to various embodiments.



FIGS. 30-31 depict exemplary screen displays and graphical user interfaces (GUIs) according to various embodiments of the system, which may display information associated with the system or enable access to, or interaction with, the system by one or more users (e.g., for the purpose of submitting a data subject access request or other suitable request).



FIGS. 32-35 depict exemplary screen displays and graphical user interfaces (GUIs) according to various embodiments of the system, which may display information associated with the system or enable access to, or interaction with, the system by one or more users (e.g., for the purpose of flagging one or more risks associated with one or more particular questionnaire questions).



FIG. 36 depicts a schematic diagram of a centralized data repository system according to particular embodiments of the present system.



FIG. 37 is a flowchart showing an example of a processes performed by a data repository module according to various embodiments, which may, for example, be executed by the centralized data repository system of FIG. 36.



FIG. 38 depicts a schematic diagram of a consent receipt management system according to particular embodiments.



FIGS. 39-54 are computer screen shots that demonstrate the operation of various embodiments.



FIG. 55 depicts an exemplary consent receipt management system according to particular embodiments.



FIG. 56 is a flow chart showing an example of a process performed by a Consent Receipt Management Module 5600 according to particular embodiments.



FIG. 57 is a flow chart showing an example of a process performed by a Consent Expiration and Re-Triggering Module 5700 according to particular embodiments.



FIG. 58 depicts an exemplary screen display and graphical user interface (GUI) according to various embodiments of the system, which may display information associated with the system or enable access to, or interaction with, the system by one or more users (e.g., for the purpose of analyzing one or more consent conversion analytics).



FIG. 59 is a flow chart showing an example of a process performed by a Consent Validity Scoring Module 5900 according to particular embodiments.



FIG. 60 depicts an exemplary consent conversion optimization system according to particular embodiments.



FIG. 61 is a flow chart showing an example of a process performed by a Consent Conversion Optimization Module according to particular embodiments.



FIGS. 62-70 depict exemplary screen displays and graphical user interfaces (GUIs) for enabling a user (e.g., of a particular website) to input consent preferences. These exemplary user interfaces may include, for example, one or more user interfaces that the consent conversion optimization system is configured to test against one another to determine which particular user interface results in a higher rate of consent provided by users.



FIGS. 71-75 depict exemplary screen displays and graphical user interfaces (GUIs) for enabling a user (e.g., an administrator of a particular webpage or website) to generate and implement one or more new consent interface tests, review existing consent interface tests, etc. These exemplary user interfaces may include, for example, one or more user interfaces that enable a user to initiate one or more sets of new test interfaces within the context of a consent conversion optimization system as described herein.



FIG. 76 depicts an exemplary consent conversion optimization system according to particular embodiments.



FIG. 77 is a flow chart showing an example of a process performed by a Consent Refresh Module according to particular embodiments.



FIG. 78 is a flow chart showing an example of a process performed by a Consent Re-Prompt Module according to particular embodiments.



FIG. 79 is user interface according to a particular embodiment depicting transaction data for a particular data subject.



FIG. 80 depicts an exemplary user interface monitoring system according to particular embodiments.



FIG. 81 is a flow chart showing an example of a process performed by a User Interface Monitoring Module according to particular embodiments.



FIGS. 82-85 depict exemplary user interfaces according to various embodiments of the system, which may, for example, enable a user to access various system features related to consent capture points and interfaces.



FIG. 86 is a flow chart showing an example of a process performed by a Consent Confirmation and Process Blocking Module according to particular embodiments.



FIG. 87 depicts exemplary native application data processing consent sharing modules according to various embodiments.



FIG. 88 depicts an exemplary data processing consent sharing system according to various embodiments.



FIG. 89 depicts an exemplary data processing consent sharing system according to particular embodiments.



FIG. 90 is a flow chart showing an example of a process performed by a Personal Data Receipt Module according to particular embodiments.



FIG. 91 is a flow chart showing an example of a process performed by a Personal Data Consent Verification Module according to particular embodiments.



FIG. 92 is a flow chart showing an example of a process performed by a Cookie Compliance Testing Module according to particular embodiments.



FIG. 93 is a flow chart showing an example of a process performed by a Consent User Interface Validity Module according to particular embodiments.





DETAILED DESCRIPTION

Various embodiments now will be described more fully hereinafter with reference to the accompanying drawings. It should be understood that the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.


Overview


A data model generation and population system, according to particular embodiments, is configured to generate a data model (e.g., one or more data models) that maps one or more relationships between and/or among a plurality of data assets utilized by a corporation or other entity (e.g., individual, organization, etc.) in the context, for example, of one or more business processes. In particular embodiments, each of the plurality of data assets (e.g., data systems) may include, for example, any entity that collects, processes, contains, and/or transfers data (e.g., such as a software application, “internet of things” computerized device, database, website, data-center, server, etc.). For example, a first data asset may include any software or device (e.g., server or servers) utilized by a particular entity for such data collection, processing, transfer, storage, etc.


As shown in FIGS. 4 and 5, in various embodiments, the data model may store the following information: (1) the organization that owns and/or uses a particular data asset (a primary data asset, which is shown in the center of the data model in FIG. 4); (2) one or more departments within the organization that are responsible for the data asset; (3) one or more software applications that collect data (e.g., personal data) for storage in and/or use by the data asset (e.g., or one or more other suitable collection assets from which the personal data that is collected, processed, stored, etc. by the primary data asset is sourced); (4) one or more particular data subjects (or categories of data subjects) that information is collected from for use by the data asset; (5) one or more particular types of data that are collected by each of the particular applications for storage in and/or use by the data asset; (6) one or more individuals (e.g., particular individuals or types of individuals) that are permitted to access and/or use the data stored in, or used by, the data asset; (7) which particular types of data each of those individuals are allowed to access and use; and (8) one or more data assets (destination assets) that the data is transferred to for other use, and which particular data is transferred to each of those data assets. As shown in FIGS. 6 and 7, the system may also optionally store information regarding, for example, which business processes and processing activities utilize the data asset.


In particular embodiments, the data model stores this information for each of a plurality of different data assets and may include links between, for example, a portion of the model that provides information for a first particular data asset and a second portion of the model that provides information for a second particular data asset.


In various embodiments, the data model generation and population system may be implemented in the context of any suitable privacy management system that is configured to ensure compliance with one or more legal or industry standards related to the collection and/or storage of private information. In various embodiments, a particular organization, sub-group, or other entity may initiate a privacy campaign or other activity (e.g., processing activity) as part of its business activities. In such embodiments, the privacy campaign may include any undertaking by a particular organization (e.g., such as a project or other activity) that includes the collection, entry, and/or storage (e.g., in memory) of any personal data associated with one or more individuals. In particular embodiments, a privacy campaign may include any project undertaken by an organization that includes the use of personal data, or any other activity that could have an impact on the privacy of one or more individuals.


In any embodiment described herein, personal data may include, for example: (1) the name of a particular data subject (which may be a particular individual); (2) the data subject's address; (3) the data subject's telephone number; (4) the data subject's e-mail address; (5) the data subject's social security number; (6) information associated with one or more of the data subject's credit accounts (e.g., credit card numbers); (7) banking information for the data subject; (8) location data for the data subject (e.g., their present or past location); (9) internet search history for the data subject; and/or (10) any other suitable personal information, such as other personal information discussed herein. In particular embodiments, such personal data may include one or more cookies (e.g., where the individual is directly identifiable or may be identifiable based at least in part on information stored in the one or more cookies).


In particular embodiments, when generating a data model, the system may, for example: (1) identify one or more data assets associated with a particular organization; (2) generate a data inventory for each of the one or more data assets, where the data inventory comprises information such as: (a) one or more processing activities associated with each of the one or more data assets, (b) transfer data associated with each of the one or more data assets (data regarding which data is transferred to/from each of the data assets, and which data assets, or individuals, the data is received from and/or transferred to, (c) personal data associated with each of the one or more data assets (e.g., particular types of data collected, stored, processed, etc. by the one or more data assets), and/or (d) any other suitable information; and (3) populate the data model using one or more suitable techniques.


In particular embodiments, the one or more techniques for populating the data model may include, for example: (1) obtaining information for the data model by using one or more questionnaires associated with a particular privacy campaign, processing activity, etc.; (2) using one or more intelligent identity scanning techniques discussed herein to identify personal data stored by the system and map such data to a suitable data model, data asset within a data model, etc.; (3) obtaining information for the data model from a third-party application (or other application) using one or more application programming interfaces (API); and/or (4) using any other suitable technique.


In particular embodiments, the system is configured to generate and populate a data model substantially on the fly (e.g., as the system receives new data associated with particular processing activities). In still any embodiment described herein, the system is configured to generate and populate a data model based at least in part on existing information stored by the system (e.g., in one or more data assets), for example, using one or more suitable scanning techniques described herein.


As may be understood in light of this disclosure, a particular organization may undertake a plurality of different privacy campaigns, processing activities, etc. that involve the collection and storage of personal data. In some embodiments, each of the plurality of different processing activities may collect redundant data (e.g., may collect the same personal data for a particular individual more than once), and may store data and/or redundant data in one or more particular locations (e.g., on one or more different servers, in one or more different databases, etc.). In this way, a particular organization may store personal data in a plurality of different locations which may include one or more known and/or unknown locations. By generating and populating a data model of one or more data assets that are involved in the collection, storage and processing of such personal data, the system may be configured to create a data model that facilitates a straightforward retrieval of information stored by the organization as desired. For example, in various embodiments, the system may be configured to use a data model in substantially automatically responding to one or more data access requests by an individual (e.g., or other organization). Various embodiments of a system for generating and populating a data model are described more fully below.


In particular embodiments, any entity (e.g., organization, company, etc.) that collects, stores, processes, etc. personal data may require one or more of: (1) consent from a data subject from whom the personal data is collected and/or processed; and/or (2) a lawful basis for the collection and/or processing of the personal data. In various embodiments, the entity may be required to, for example: (1) demonstrate that a data subject has freely given specific, informed, and unambiguous indication of the data subject's agreement to the processing of his or her personal data (e.g., in the form of a statement or clear affirmative action); (2) demonstrate that the entity received consent from a data subject in a manner clearly distinguishable from other matters (e.g., in an intelligible and easily accessible form, using clear and plain language, etc.; (3) enable a data subject to withdraw consent as easily as the data subject can give consent; (4) separate a data subject's consent from performance under any contract unless such processing is necessary for performance under the contract; etc.


In various embodiments, a consent receipt management system may be implemented in the context of any suitable privacy management system that is configured to ensure compliance with one or more legal or industry standards related to the collection and/or storage of private information (e.g., such as personal data). Various privacy and security policies (e.g., such as the European Union's General Data Protection Regulation, California's California Consumer Privacy Act, and other such policies) may provide data subjects (e.g., individuals, organizations, or other entities) with certain rights related to the data subject's personal data that is collected, stored, or otherwise processed by an organization. These rights may include, for example: (1) a right to erasure of the data subject's personal data (e.g., in cases where no legal basis applies to the processing and/or collection of the personal data; (2) a right to withdraw consent to the processing and/or collection of their personal data; (3) a right to receive the personal data concerning the data subject, which he or she has provided to an entity (e.g., organization), in a structured, commonly used and machine-readable format; and/or (4) any other right which may be afforded to the data subject under any applicable legal and/or industry policy.


In particular embodiments, the consent receipt management system is configured to: (1) enable an entity to demonstrate that valid consent has been obtained for each particular data subject for whom the entity collects and/or processes personal data; and (2) enable one or more data subjects to exercise one or more rights described herein.


The system may, for example, be configured to track data on behalf of an entity that collects and/or processes personal data related to: (1) who consented to the processing or collection of personal data (e.g., the data subject themselves or a person legally entitled to consent on their behalf such as a parent, guardian, etc.); (2) when the consent was given (e.g., a date and time); (3) what information was provided to the consenter at the time of consent (e.g., a privacy policy, what personal data would be collected following the provision of the consent, for what purpose that personal data would be collected, etc.); (4) how consent was received (e.g., one or more copies of a data capture form, web form, etc. via which consent was provided by the consenter); (5) when consent was withdrawn (e.g., a date and time of consent withdrawal if the consenter withdraws consent); and/or (6) any other suitable data related to receipt or withdrawal of consent. In particular embodiments, the system is configured to store metadata in association with processed personal data that indicates one or more pieces of consent data that authorized the processing of the personal data.


In further embodiments, the system may be configured to provide data subjects with a centralized interface that is configured to: (1) provide information regarding each of one or more valid consents that the data subject has provided to one or more entities related to the collection and/or processing of their personal data; (2) provide one or more periodic reminders regarding the data subject's right to withdraw previously given consent (e.g., every 6 months in the case of communications data and metadata, etc.); (3) provide a withdrawal mechanism for the withdrawal of one or more previously provided valid consents (e.g., in a format that is substantially similar to a format in which the valid consent was given by the data subject); (4) refresh consent when appropriate (e.g., the system may be configured to elicit updated consent in cases where particular previously validly consented to processing is used for a new purpose, a particular amount of time has elapsed since consent was given, etc.).


In particular embodiments, the system is configured to manage one or more consent receipts between a data subject and an entity. In various embodiments, a consent receipt may include a record (e.g., a data record stored in memory and associated with the data subject) of consent, for example, as a transactional agreement where the data subject is already identified or identifiable as part of the data processing that results from the provided consent. In any embodiment described herein, the system may be configured to generate a consent receipt in response to a data subject providing valid consent. In some embodiments, the system is configured to determine whether one or more conditions for valid consent have been met prior to generating the consent receipt. Various embodiments of a consent receipt management system are described more fully below.


In particular embodiments, any entity (e.g., organization, company, etc.) that collects, stores, processes, etc. personal data may require one or more of: (1) consent from a data subject from whom the personal data is collected and/or processed; and/or (2) a lawful basis for the collection and/or processing of the personal data. In various embodiments, the entity may be required to, for example: (1) demonstrate that a data subject has freely given specific, informed, and unambiguous indication of the data subject's agreement to the processing of his or her personal data (e.g., in the form of a statement or clear affirmative action); (2) demonstrate that the entity received consent from a data subject in a manner clearly distinguishable from other matters (e.g., in an intelligible and easily accessible form, using clear and plain language, etc.); (3) enable a data subject to withdraw consent as easily as the data subject can give consent; (4) separate a data subject's consent from performance under any contract unless such processing is necessary for performance under the contract; etc.


In particular, when storing or retrieving information from an end user's device, an entity may be required to receive consent from the end user for such storage and retrieval. Web cookies are a common technology that may be directly impacted by the consent requirements discussed herein. Accordingly, an entity that use cookies (e.g., on one or more webpages) may be required to use one or more banners, pop-ups or other user interfaces on the website in order to capture consent from end-users to store and retrieve cookie data.


The consent required to store and retrieve cookie data may, for example, require a clear affirmative act establishing a freely given, specific, informed and unambiguous indication of a data subject's agreement to the processing of personal data. This may include, ticking a box when visiting an internet website, choosing technical settings for information society services, or any other suitable statement or conduct which clearly indicates in this context the data subject's acceptance of the proposed processing of their personal data.


In various embodiments, pre-ticked boxes (or other preselected options) or inactivity may not be sufficient to demonstrate freely given consent. For example, an entity may be unable to rely on implied consent (e.g., “by visiting this website, you accept cookies”). Without a genuine and free choice by data subjects and/or other end users, an entity may be unable to demonstrate valid consent (e.g., and therefore unable to utilize cookies in association with such data subjects and/or end users).


A particular entity may use cookies for any number of suitable reasons. For example, an entity may utilize: (1) one or more functionality cookies (which may, for example, enhance the functionality of a website by storing user preferences such as location for a weather or news website); (2) one or more performance cookies (which may, for example, help to improve performance of the website on the user's device to provide a better user experience); (3) one or more targeting cookies (which may, for example, be used by advertising partners to build a profile of interests for a user in order to show relevant advertisements through the website; (4) etc. Cookies may also be used for any other suitable reason such as, for example: (1) to measure and improve site quality through analysis of visitor behavior (e.g., through ‘analytics’); (2) to personalize pages and remember visitor preferences; (3) to manage shopping carts in online stores; (4) to track people across websites and deliver targeted advertising; (5) etc.


Under various regulations, an entity may not be required to obtain consent to use every type of cookie utilized by a particular website. For example, strictly necessary cookies, which may include cookies that are necessary for a website to function, may not require consent. An example of strictly necessary cookies may include, for example, session cookies. Session cookies may include cookies that are strictly required for website functionality and don't track user activity once the browser window is closed. Examples of session cookies include: (1) faceted search filter cookies; (2) user authentication cookies; (3) cookies that enable shopping cart functionality; (4) cookies used to enable playback of multimedia content; (5) etc.


Cookies which may trigger a requirement for obtaining consent may include cookies such as persistent cookies. Persistent cookies may include, for example, cookies used to track user behavior even after the use has moved on from a website or closed a browser window.


In order to comply with particular regulations, an entity may be required to: (1) present visitors with information about the cookies a website uses and the purpose of the cookies (e.g., any suitable purpose described herein or other suitable purpose); (2) obtain consent to use those cookies (e.g., obtain separate consent to use each particular type of cookies used by the web site); and (3) provide a mechanism for visitors to withdraw consent (e.g., that is as straightforward as the mechanism through which the visitors initially provided consent). In any embodiment described herein, an entity may only need to receive valid consent from any particular visitor a single time (e.g., returning visitors may not be required to provide consent on subsequent visits to the site). In particular embodiments, although they may not require explicit consent to use, an entity may be required to notify a visitor of any strictly necessary cookies used by a website.


Because entities may desire to maximize a number of end users and other data subjects that provide this valid consent, it may be beneficial to provide a user interface through which the users are more likely to provide such consent. By receiving consent from a high number of users, the entity may, for example: (1) receive higher revenue from advertising partners; (2) receive more traffic to the website because users of the website may enjoy a better experience while visiting the website; etc.


In particular embodiments, a consent conversion optimization system is configured to test two or more test consent interfaces against one another to determine which of the two or more consent interfaces results in a higher conversion percentage (e.g., to determine which of the two or more interfaces lead to a higher number of end users and/or data subjects providing a requested level of consent for the creation, storage and use or cookies by a particular website). The system may, for example, analyze end user interaction with each particular test consent interface to determine which of the two or more user interfaces: (1) result in a higher incidence of a desired level of provided consent; (2) are easier to use by the end users and/or data subjects (e.g., take less time to complete, require a fewer number of clicks, etc.); (3) etc.


The system may then be configured to automatically select from between/among the two or more test interfaces and use the selected interface for future visitors of the website.


In particular embodiments, the system is configured to test the two or more test consent interfaces against one another by: (1) presenting a first test interface of the two or more test consent interfaces to a first portion of visitors to a website; (2) collecting first consent data from the first portion of visitors based on the first test interface; (3) presenting a second test interface of the two or more test consent interfaces to a second portion of visitors to the website; (4) collecting second consent data from the second portion of visitors based on the second test interface; (5) analyzing and comparing the first consent data and second consent data to determine which of the first and second test interface results in a higher incidence of desired consent; and (6) selecting between the first and second test interface based on the analysis.


In particular embodiments, the system is configured to enable a user to select a different template for each particular test interface. In any embodiment described herein, the system is configured to automatically select from a plurality of available templates when performing testing. In still any embodiment described herein, the system is configured to select one or more interfaces for testing based on similar analysis performed for one or more other websites.


In still any embodiment described herein, the system is configured to use one or more additional performance metrics when testing particular cookie consent interfaces (e.g., against one another). The one or more additional performance metrics may include, for example: (1) opt-in percentage (e.g., a percentage of users that click the ‘accept all’ button on a cookie consent test banner; (2) average time-to-interaction (e.g., an average time that users wait before interacting with a particular test banner); (3) average time-to-site (e.g., an average time that it takes a user to proceed to normal navigation across an entity site after interacting with the cookie consent test banner; (4) dismiss percentage (e.g., a percentage of users that dismiss the cookie consent banner using the close button, by scrolling, or by clicking on grayed-out website); (5) functional cookies only percentage (e.g., a percentage of users that opt out of any cookies other than strictly necessary cookies); (6) performance opt-out percentage; (7) targeting opt-out percentage; (8) social opt-out percentage; (9) etc.


Various embodiments of a consent conversion optimization system are described more fully below.


In particular embodiments, an automated process blocking system is configured to substantially automatically block one or more processes (e.g., one or more data processing processes) based on received user consent data. For example, as may be understood in light of this disclosure, a particular data subject may provide consent for an entity to process particular data associated with the data subject for one or more particular purposes. In any embodiment of the system described herein, the system may be configured to: (1) receive an indication that one or more entity systems are processing one or more pieces of personal data associated with a particular data subject; (2) in response to receiving the indication, identifying at least one process for which the one or more pieces of personal data are being processed; (3) determine, using a consent receipt management system, whether the data subject has provided valid consent for the processing of the one or more pieces of personal data for the at least one process; (4) at least partially in response to determining that the data subject has not provided valid consent for the processing of the one or more pieces of personal data for the at least one process, automatically blocking the processing.


In particular embodiments, a consent receipt management system is configured to provide a centralized repository of consent receipt preferences for a plurality of data subjects. In various embodiments, the system is configured to provide an interface to the plurality of data subjects for modifying consent preferences and capture consent preference changes. The system may provide the ability to track the consent status of pending and confirmed consents. In other embodiments, the system may provide a centralized repository of consent receipts that a third-party system may reference when taking one or more actions related to a processing activity. For example, a particular entity may provide a newsletter that one or more data subjects have consented to receiving. Each of the one or more data subjects may have different preferences related to how frequently they would like to receive the newsletter, etc. In particular embodiments, the consent receipt management system may receive a request form a third-party system to transmit the newsletter to the plurality of data subjects. The system may then cross-reference an updated consent database to determine which of the data subjects have a current consent to receive the newsletter, and whether transmitting the newsletter would conflict with any of those data subjects' particular frequency preferences. The system may then be configured to transmit the newsletter to the appropriate identified data subjects.


In various embodiments, the system may be configured to: (1) determine whether there is a legal basis for processing of particular data prior to processing the data; (2) in response to determining that there is a legal basis, allowing the processing and generating a record for the processing that includes one or more pieces of evidence demonstrating the legal basis (e.g., the user has consented, the processing is strictly necessary, etc.); and (3) in response to determining that there is no legal basis, blocking the processing from occurring. In particular embodiments, the system may be embodied as a processing permission engine, which may, for example, interface with a consent receipt management system. The system may, for example, be configured to access the consent receipt management system to determine whether an entity is able to process particular data for particular data subjects (e.g., for one or more particular purposes). In particular embodiments, one or more entity computer system may be configured to interface with one or more third party central consent data repositories prior to processing data (e.g., to determine whether the entity has consent or some other legal basis for processing the data).


In particular other embodiments, the system is configured to perform one or more risk analyses related to the processing in addition to identifying whether the entity has consent or some other legal basis. The system may analyze the risk of the processing based on, for example: (1) a purpose of the processing; (2) a type of data being processed; and/or (3) any other suitable factor. In particular embodiments, the system is configured to determine whether to continue with the processing based on a combination of identifying a legal basis for the processing and the risk analysis. For example, the system may determine that there is a legal basis to process the data, but that the processing is particularly risky. In this example, the system may determine to block the processing of the data despite the legal basis because of the determined risk level. The risk analysis may be further based on, for example, a risk tolerance of the entity/organization, or any other suitable factor.


Various embodiments of an automated process blocking system are described more fully below.


Exemplary Technical Platforms


As will be appreciated by one skilled in the relevant field, the present invention may be, for example, embodied as a computer system, a method, or a computer program product. Accordingly, various embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, particular embodiments may take the form of a computer program product stored on a computer-readable storage medium having computer-readable instructions (e.g., software) embodied in the storage medium. Various embodiments may take the form of web-implemented computer software. Any suitable computer-readable storage medium may be utilized including, for example, hard disks, compact disks, DVDs, optical storage devices, and/or magnetic storage devices.


Various embodiments are described below with reference to block diagrams and flowchart illustrations of methods, apparatuses (e.g., systems), and computer program products. It should be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, respectively, can be implemented by a computer executing computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus to create means for implementing the functions specified in the flowchart block or blocks.


These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner such that the instructions stored in the computer-readable memory produce an article of manufacture that is configured for implementing the function specified in the flowchart block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions that execute on the computer or other programmable apparatus provide steps for implementing the functions specified in the flowchart block or blocks.


Accordingly, blocks of the block diagrams and flowchart illustrations support combinations of mechanisms for performing the specified functions, combinations of steps for performing the specified functions, and program instructions for performing the specified functions. It should also be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, can be implemented by special purpose hardware-based computer systems that perform the specified functions or steps, or combinations of special purpose hardware and other hardware executing appropriate computer instructions.


Example System Architecture


FIG. 1 is a block diagram of a Data Model Generation and Population System 100 according to a particular embodiment. In various embodiments, the Data Model Generation and Population System 100 is part of a privacy compliance system (also referred to as a privacy management system), or other system, which may, for example, be associated with a particular organization and be configured to aid in compliance with one or more legal or industry regulations related to the collection and storage of personal data. In some embodiments, the Data Model Generation and Population System 100 is configured to: (1) generate a data model based on one or more identified data assets, where the data model includes a data inventory associated with each of the one or more identified data assets; (2) identify populated and unpopulated aspects of each data inventory; and (3) populate the unpopulated aspects of each data inventory using one or more techniques such as intelligent identity scanning, questionnaire response mapping, APIs, etc.


As may be understood from FIG. 1, the Data Model Generation and Population System 100 includes one or more computer networks 115, a Data Model Generation Server 110, a Data Model Population Server 120, an Intelligent Identity Scanning Server 130, One or More Databases 140 or other data structures, one or more remote computing devices 150 (e.g., a desktop computer, laptop computer, tablet computer, smartphone, etc.), and One or More Third Party Servers 160. In particular embodiments, the one or more computer networks 115 facilitate communication between the Data Model Generation Server 110, Data Model Population Server 120, Intelligent Identity Scanning Server 130, One or More Databases 140, one or more remote computing devices 150 (e.g., a desktop computer, laptop computer, tablet computer, smartphone, etc.), and One or More Third Party Servers 160. Although in the embodiment shown in FIG. 1, the Data Model Generation Server 110, Data Model Population Server 120, Intelligent Identity Scanning Server 130, One or More Databases 140, one or more remote computing devices 150 (e.g., a desktop computer, laptop computer, tablet computer, smartphone, etc.), and One or More Third Party Servers 160 are shown as separate servers, it should be understood that in any embodiment described herein, one or more of these servers and/or computing devices may comprise a single server, a plurality of servers, one or more cloud-based servers, or any other suitable configuration.


The one or more computer networks 115 may include any of a variety of types of wired or wireless computer networks such as the Internet, a private intranet, a public switch telephone network (PSTN), or any other type of network. The communication link between The Intelligent Identity Scanning Server 130 and the One or More Third Party Servers 160 may be, for example, implemented via a Local Area Network (LAN) or via the Internet. In any embodiment described herein, the One or More Databases 140 may be stored either fully or partially on any suitable server or combination of servers described herein.



FIG. 2 illustrates a diagrammatic representation of a computer 200 that can be used within the Data Model Generation and Population System 100, for example, as a client computer (e.g., one or more remote computing devices 150 shown in FIG. 1), or as a server computer (e.g., Data Model Generation Server 110 shown in FIG. 1). In particular embodiments, the computer 200 may be suitable for use as a computer within the context of the Data Model Generation and Population System 100 that is configured to generate a data model and map one or more relationships between one or more pieces of data that make up the model.


In particular embodiments, the computer 200 may be connected (e.g., networked) to other computers in a LAN, an intranet, an extranet, and/or the Internet. As noted above, the computer 200 may operate in the capacity of a server or a client computer in a client-server network environment, or as a peer computer in a peer-to-peer (or distributed) network environment. The Computer 200 may be a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a server, a network router, a switch or bridge, or any other computer capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that computer. Further, while only a single computer is illustrated, the term “computer” shall also be taken to include any collection of computers that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.


An exemplary computer 200 includes a processing device 202, a main memory 204 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.), static memory 206 (e.g., flash memory, static random access memory (SRAM), etc.), and a data storage device 218, which communicate with each other via a bus 232.


The processing device 202 represents one or more general-purpose processing devices such as a microprocessor, a central processing unit, or the like. More particularly, the processing device 202 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or processor implementing other instruction sets, or processors implementing a combination of instruction sets. The processing device 202 may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. The processing device 202 may be configured to execute processing logic 226 for performing various operations and steps discussed herein.


The computer 200 may further include a network interface device 208. The computer 200 also may include a video display unit 210 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device 212 (e.g., a keyboard), a cursor control device 214 (e.g., a mouse), and a signal generation device 216 (e.g., a speaker).


The data storage device 218 may include a non-transitory computer-accessible storage medium 230 (also known as a non-transitory computer-readable storage medium or a non-transitory computer-readable medium) on which is stored one or more sets of instructions (e.g., software instructions 222) embodying any one or more of the methodologies or functions described herein. The software instructions 222 may also reside, completely or at least partially, within main memory 204 and/or within processing device 202 during execution thereof by computer 200—main memory 204 and processing device 202 also constituting computer-accessible storage media. The software instructions 222 may further be transmitted or received over a network 115 via network interface device 208.


While the computer-accessible storage medium 230 is shown in an exemplary embodiment to be a single medium, the term “computer-accessible storage medium” should be understood to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-accessible storage medium” should also be understood to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the computer and that cause the computer to perform any one or more of the methodologies of the present invention. The term “computer-accessible storage medium” should accordingly be understood to include, but not be limited to, solid-state memories, optical and magnetic media, etc.


Exemplary System Platform


Various embodiments of a Data Model Generation and Population System 100 may be implemented in the context of any suitable system (e.g., a privacy compliance system). For example, the Data Model Generation and Population System 100 may be implemented to analyze a particular company or other organization's data assets to generate a data model for one or more processing activities, privacy campaigns, etc. undertaken by the organization. In particular embodiments, the system may implement one or more modules in order to at least partially ensure compliance with one or more regulations (e.g., legal requirements) related to the collection and/or storage of personal data. Various aspects of the system's functionality may be executed by certain system modules, including a Data Model Generation Module 300, Data Model Population Module 1100, Data Population Questionnaire Generation Module 1200, Intelligent Identity Scanning Module 2600, and Data Subject Access Request Fulfillment Module 2900. These modules are discussed in greater detail below.


Although these modules are presented as a series of steps, it should be understood in light of this disclosure that various embodiments of the Data Model Generation Module 300, Data Model Population Module 1100, Data Population Questionnaire Generation Module 1200, Intelligent Identity Scanning Module 2600, and Data Subject Access Request Fulfillment Module 2900 described herein may perform the steps described below in an order other than in which they are presented. In still any embodiment described herein, the Data Model Generation Module 300, Data Model Population Module 1100, Data Population Questionnaire Generation Module 1200, Intelligent Identity Scanning Module 2600, and Data Subject Access Request Fulfillment Module 2900 may omit certain steps described below. In any embodiment described herein, the Data Model Generation Module 300, Data Model Population Module 1100, Data Population Questionnaire Generation Module 1200, Intelligent Identity Scanning Module 2600, and Data Subject Access Request Fulfillment Module 2900 may perform steps in addition to those described (e.g., such as one or more steps described with respect to one or more other modules, etc.).


Data Model Generation Module


In particular embodiments, a Data Model Generation Module 300 is configured to: (1) generate a data model (e.g., a data inventory) for one or more data assets utilized by a particular organization; (2) generate a respective data inventory for each of the one or more data assets; and (3) map one or more relationships between one or more aspects of the data inventory, the one or more data assets, etc. within the data model. In particular embodiments, a data asset (e.g., data system, software application, etc.) may include, for example, any entity that collects, processes, contains, and/or transfers data (e.g., such as a software application, “internet of things” computerized device, database, website, data-center, server, etc.). For example, a first data asset may include any software or device (e.g., server or servers) utilized by a particular entity for such data collection, processing, transfer, storage, etc.


In particular embodiments, a particular data asset, or collection of data assets, may be utilized as part of a particular data processing activity (e.g., direct deposit generation for payroll purposes). In various embodiments, a data model generation system may, on behalf of a particular organization (e.g., entity), generate a data model that encompasses a plurality of processing activities. In any embodiment described herein, the system may be configured to generate a discrete data model for each of a plurality of processing activities undertaken by an organization.


Turning to FIG. 3, in particular embodiments, when executing the Data Model Generation Module 300, the system begins, at Step 310, by generating a data model for one or more data assets and digitally storing the data model in computer memory. The system may, for example, store the data model in the One or More Databases 140 described above (or any other suitable data structure). In various embodiments, generating the data model comprises generating a data structure that comprises information regarding one or more data assets, attributes and other elements that make up the data model. As may be understood in light of this disclosure, the one or more data assets may include any data assets that may be related to one another. In particular embodiments, the one or more data assets may be related by virtue of being associated with a particular entity (e.g., organization). For example, the one or more data assets may include one or more computer servers owned, operated, or utilized by the entity that at least temporarily store data sent, received, or otherwise processed by the particular entity.


In still any embodiment described herein, the one or more data assets may comprise one or more third party assets which may, for example, send, receive and/or process personal data on behalf of the particular entity. These one or more data assets may include, for example, one or more software applications (e.g., such as Expensify to collect expense information, QuickBooks to maintain and store salary information, etc.).


Continuing to step 320, the system is configured to identify a first data asset of the one or more data assets. In particular embodiments, the first data asset may include, for example, any entity (e.g., system) that collects, processes, contains, and/or transfers data (e.g., such as a software application, “internet of things” computerized device, database, website, data-center, server, etc.). For example, the first data asset may include any software or device utilized by a particular organization for such data collection, processing, transfer, etc. In various embodiments, the first data asset may be associated with a particular processing activity (e.g., the first data asset may make up at least a part of a data flow that relates to the collection, storage, transfer, access, use, etc. of a particular piece of data (e.g., personal data)). Information regarding the first data asset may clarify, for example, one or more relationships between and/or among one or more other data assets within a particular organization. In a particular example, the first data asset may include a software application provided by a third party (e.g., a third party vendor) with which the particular entity interfaces for the purpose of collecting, storing, or otherwise processing personal data (e.g., personal data regarding customers, employees, potential customers, etc.).


In particular embodiments, the first data asset is a storage asset that may, for example: (1) receive one or more pieces of personal data form one or more collection assets; (2) transfer one or more pieces of personal data to one or more transfer assets; and/or (3) provide access to one or more pieces of personal data to one or more authorized individuals (e.g., one or more employees, managers, or other authorized individuals within a particular entity or organization). In a particular embodiment, the first data asset is a primary data asset associated with a particular processing activity around which the system is configured to build a data model associated with the particular processing activity.


In particular embodiments, the system is configured to identify the first data asset by scanning a plurality of computer systems associated with a particular entity (e.g., owned, operated, utilized, etc. by the particular entity). In various embodiments, the system is configured to identify the first data asset from a plurality of data assets identified in response to completion, by one or more users, of one or more questionnaires.


Advancing to Step 330, the system generates a first data inventory of the first data asset. The data inventory may comprise, for example, one or more inventory attributes associated with the first data asset such as, for example: (1) one or more processing activities associated with the first data asset; (2) transfer data associated with the first data asset (e.g., how and where the data is being transferred to and/or from); (3) personal data associated with the first data asset (e.g., what type of personal data is collected and/or stored by the first data asset; how, and from where, the data is collected, etc.); (4) storage data associated with the personal data (e.g., whether the data is being stored, protected and deleted); and (5) any other suitable attribute related to the collection, use, and transfer of personal data. In any embodiment described herein, the one or more inventory attributes may comprise one or more other pieces of information such as, for example: (1) the type of data being stored by the first data asset; (2) an amount of data stored by the first data asset; (3) whether the data is encrypted; (4) a location of the stored data (e.g., a physical location of one or more computer servers on which the data is stored); etc. In particular any embodiment described herein, the one or more inventory attributes may comprise one or more pieces of information technology data related to the first data asset (e.g., such as one or more pieces of network and/or infrastructure information, IP address, MAC address, etc.).


In various embodiments, the system may generate the data inventory based at least in part on the type of first data asset. For example, particular types of data assets may have particular default inventory attributes. In such embodiments, the system is configured to generate the data inventory for the first data asset, which may, for example, include one or more placeholder fields to be populated by the system at a later time. In this way, the system may, for example, identify particular inventory attributes for a particular data asset for which information and/or population of data is required as the system builds the data model.


As may be understood in light of this disclosure, the system may, when generating the data inventory for the first data asset, generate one or more placeholder fields that may include, for example: (1) the organization (e.g., entity) that owns and/or uses the first data asset (a primary data asset, which is shown in the center of the data model in FIG. 4); (2) one or more departments within the organization that are responsible for the first data asset; (3) one or more software applications that collect data (e.g., personal data) for storage in and/or use by the first data asset (e.g., or one or more other suitable collection assets from which the personal data that is collected, processed, stored, etc. by the first data asset is sourced); (4) one or more particular data subjects (or categories of data subjects) that information is collected from for use by the first data asset; (5) one or more particular types of data that are collected by each of the particular applications for storage in and/or use by the first data asset; (6) one or more individuals (e.g., particular individuals or types of individuals) that are permitted to access and/or use the data stored in, or used by, the first data asset; (7) which particular types of data each of those individuals are allowed to access and use; and (8) one or more data assets (destination assets) that the data is transferred to from the first data asset, and which particular data is transferred to each of those data assets.


As may be understood in light of this disclosure, the system may be configured to generate the one or more placeholder fields based at least in part on, for example: (1) the type of the first data asset; (2) one or more third party vendors utilized by the particular organization; (3) a number of collection or storage assets typically associated with the type of the first data asset; and/or (4) any other suitable factor related to the first data asset, its one or more inventory attributes, etc. In any embodiment described herein, the system may substantially automatically generate the one or more placeholders based at least in part on a hierarchy and/or organization of the entity for which the data model is being built. For example, a particular entity may have a marketing division, legal department, human resources department, engineering division, or other suitable combination of departments that make up an overall organization. Other particular entities may have further subdivisions within the organization. When generating the data inventory for the first data asset, the system may identify that the first data asset will have both an associated organization and subdivision within the organization to which it is assigned. In this example, the system may be configured to store an indication in computer memory that the first data asset is associated with an organization and a department within the organization.


Next, at Step 340, the system modifies the data model to include the first data inventory and electronically links the first data inventory to the first data asset within the data model. In various embodiments, modifying the data model may include configuring the data model to store the data inventory in computer memory, and to digitally associate the data inventory with the first data asset in memory.



FIGS. 4 and 5 show a data model according to a particular embodiment. As shown in these figures, the data model may store the following information for the first data asset: (1) the organization that owns and/or uses the first data asset; (2) one or more departments within the organization that are responsible for the first data asset; (3) one or more applications that collect data (e.g., personal data) for storage in and/or use by the first data asset; (4) one or more particular data subjects that information is collected from for use by the first data asset; (5) one or more collection assets from which the first asset receives data (e.g., personal data); (6) one or more particular types of data that are collected by each of the particular applications (e.g., collection assets) for storage in and/or use by the first data asset; (7) one or more individuals (e.g., particular individuals, types of individuals, or other parties) that are permitted to access and/or use the data stored in or used by the first data asset; (8) which particular types of data each of those individuals are allowed to access and use; and (9) one or more data assets (destination assets) the data is transferred to for other use, and which particular data is transferred to each of those data assets. As shown in FIGS. 6 and 7, the system may also optionally store information regarding, for example, which business processes and processing activities utilize the first data asset.


As noted above, in particular embodiments, the data model stores this information for each of a plurality of different data assets and may include one or more links between, for example, a portion of the model that provides information for a first particular data asset and a second portion of the model that provides information for a second particular data asset.


Advancing to Step 350, the system next identifies a second data asset from the one or more data assets. In various embodiments, the second data asset may include one of the one or more inventory attributes associated with the first data asset (e.g., the second data asset may include a collection asset associated with the first data asset, a destination asset or transfer asset associated with the first data asset, etc.). In various embodiments, as may be understood in light of the exemplary data models described below, a second data asset may be a primary data asset for a second processing activity, while the first data asset is the primary data asset for a first processing activity. In such embodiments, the second data asset may be a destination asset for the first data asset as part of the first processing activity. The second data asset may then be associated with one or more second destination assets to which the second data asset transfers data. In this way, particular data assets that make up the data model may define one or more connections that the data model is configured to map and store in memory.


Returning to Step 360, the system is configured to identify one or more attributes associated with the second data asset, modify the data model to include the one or more attributes, and map the one or more attributes of the second data asset within the data model. The system may, for example, generate a second data inventory for the second data asset that comprises any suitable attribute described with respect to the first data asset above. The system may then modify the data model to include the one or more attributes and store the modified data model in memory. The system may further, in various embodiments, associate the first and second data assets in memory as part of the data model. In such embodiments, the system may be configured to electronically link the first data asset with the second data asset. In various embodiments, such association may indicate a relationship between the first and second data assets in the context of the overall data model (e.g., because the first data asset may serve as a collection asset for the second data asset, etc.).


Next, at Step 370, the system may be further configured to generate a visual representation of the data model. In particular embodiments, the visual representation of the data model comprises a data map. The visual representation may, for example, include the one or more data assets, one or more connections between the one or more data assets, the one or more inventory attributes, etc.


In particular embodiments, generating the visual representation (e.g., visual data map) of a particular data model (e.g., data inventory) may include, for example, generating a visual representation that includes: (1) a visual indication of a first data asset (e.g., a storage asset), a second data asset (e.g., a collection asset), and a third data asset (e.g., a transfer asset); (2) a visual indication of a flow of data (e.g., personal data) from the second data asset to the first data asset (e.g., from the collection asset to the storage asset); (3) a visual indication of a flow of data (e.g., personal data) from the first data asset to the third data asset (e.g., from the storage asset to the transfer asset); (4) one or more visual indications of a risk level associated with the transfer of personal data; and/or (5) any other suitable information related to the one or more data assets, the transfer of data between/among the one or more data assets, access to data stored or collected by the one or more data assets, etc.


In particular embodiments, the visual indication of a particular asset may comprise a box, symbol, shape, or other suitable visual indicator. In particular embodiments, the visual indication may comprise one or more labels (e.g., a name of each particular data asset, a type of the asset, etc.). In still any embodiment described herein, the visual indication of a flow of data may comprise one or more arrows. In particular embodiments, the visual representation of the data model may comprise a data flow, flowchart, or other suitable visual representation.


In various embodiments, the system is configured to display (e.g., to a user) the generated visual representation of the data model on a suitable display device.


Exemplary Data Models and Visual Representations of Data Models (e.g., Data Maps)



FIGS. 4-10 depict exemplary data models according to various embodiments of the system described herein. FIG. 4, for example, depicts an exemplary data model that does not include a particular processing activity (e.g., that is not associated with a particular processing activity). As may be understood from the data model shown in this figure, a particular data asset (e.g., a primary data asset) may be associated with a particular company (e.g., organization), or organization within a particular company, sub-organization of a particular organization, etc. In still any embodiment described herein, the particular asset may be associated with one or more collection assets (e.g., one or more data subjects from whom personal data is collected for storage by the particular asset), one or more parties that have access to data stored by the particular asset, one or more transfer assets (e.g., one or more assets to which data stored by the particular asset may be transferred), etc.


As may be understood from FIG. 4, a particular data model for a particular asset may include a plurality of data elements. When generating the data model for the particular asset, a system may be configured to substantially automatically identify one or more types of data elements for inclusion in the data model, and automatically generate a data model that includes those identified data elements (e.g., even if one or more of those data elements must remain unpopulated because the system may not initially have access to a value for the particular data element). In such cases, the system may be configured to store a placeholder for a particular data element until the system is able to populate the particular data element with accurate data.


As may be further understood from FIG. 4, the data model shown in FIG. 4 may represent a portion of an overall data model. For example, in the embodiment shown in this figure, the transfer asset depicted may serve as a storage asset for another portion of the data model. In such embodiments, the transfer asset may be associated with a respective one or more of the types of data elements described above. In this way, the system may generate a data model that may build upon itself to comprise a plurality of layers as the system adds one or more new data assets, attributes, etc.


As may be further understood from FIG. 4, a particular data model may indicate one or more parties that have access to and/or use of the primary asset (e.g., storage asset). In such embodiments, the system may be configured to enable the one or more parties to access one or more pieces of data (e.g., personal data) stored by the storage asset.


As shown in FIG. 4, the data model may further comprise one or more collection assets (e.g., one or more data assets or individuals from which the storage asset receives data such as personal data). In the exemplary data model (e.g., visual data map) shown in this figure, the collection assets comprise a data subject (e.g., an individual that may provide data to the system for storage in the storage asset) and a collection asset (e.g., which may transfer one or more pieces of data that the collection asset has collected to the storage asset).



FIG. 5 depicts a portion of an exemplary data model that is populated for the primary data asset Gusto. Gusto is a software application that, in the example shown in FIG. 5, may serve as a human resources service that contains financial, expense, review, time and attendance, background, and salary information for one or more employees of a particular organization (e.g., GeneriTech). In the example of FIG. 5, the primary asset (e.g., Gusto) may be utilized by the HR (e.g., Human Resources) department of the particular organization (e.g., GeneriTech). Furthermore, the primary asset, Gusto, may collect financial information from one or more data subjects (e.g., employees of the particular organization), receive expense information transferred from Expensify (e.g., expensing software), and receive time and attendance data transferred from Kronos (e.g., timekeeping software). In the example shown in FIG. 5, access to the information collected and/or stored by Gusto may include, for example: (1) an ability to view and administer salary and background information by HR employees, and (2) an ability to view and administer employee review information by one or more service managers. In the example shown in this figure, personal and other data collected and stored by Gusto (e.g., salary information, etc.) may be transferred to a company banking system, to QuickBooks, and/or to an HR file cabinet.


As may be understood from the example shown in FIG. 5, the system may be configured to generate a data model based around Gusto that illustrates a flow of personal data utilized by Gusto. The data model in this example illustrates, for example, a source of personal data collected, stored and/or processed by Gusto, a destination of such data, an indication of who has access to such data within Gusto, and an organization and department responsible for the information collected by Gusto. In particular embodiments, the data model and accompanying visual representation (e.g., data map) generated by the system as described in any embodiment herein may be utilized in the context of compliance with one or more record keeping requirements related to the collection, storage, and processing of personal data.



FIGS. 6 and 7 depict an exemplary data model and related example that is similar, in some respects, to the data model and example of FIGS. 4 and 5. In the example shown in FIGS. 6 and 7, the exemplary data model and related example include a specific business process and processing activity that is associated with the primary asset (Gusto). In this example, the business process is compensation and the specific processing activity is direct deposit generation in Gusto. As may be understood from this figure, the collection and transfer of data related to the storage asset of Gusto is based on a need to generate direct deposits through Gusto in order to compensate employees. Gusto generates the information needed to conduct a direct deposit (e.g., financial and salary information) and then transmits this information to: (1) a company bank system for execution of the direct deposit; (2) Quickbooks for use in documenting the direct deposit payment; and (3) HR File cabinet for use in documenting the salary info and other financial information.


As may be understood in light of this disclosure, when generating such a data model, particular pieces of data (e.g., data attributes, data elements) may not be readily available to the system. In such embodiment, the system is configured to identify a particular type of data, create a placeholder for such data in memory, and seek out (e.g., scan for and populate) an appropriate piece of data to further populate the data model. For example, in particular embodiments, the system may identify Gusto as a primary asset and recognize that Gusto stores expense information. The system may then be configured to identify a source of the expense information (e.g., Expensify).



FIG. 8 depicts an exemplary screen display 800 that illustrates a visual representation (e.g., visual data map) of a data model (e.g., a data inventory). In the example shown in FIG. 8, the data map provides a visual indication of a flow of data collected from particular data subjects (e.g., employees 801). As may be understood from this figure, the data map illustrates that three separate data assets receive data (e.g., which may include personal data) directly from the employees 801. In this example, these three data assets include Kronos 803 (e.g., a human resources software application), Workday 805 (e.g., a human resources software application), and ADP 807 (e.g., a human resources software application and payment processor). As shown in FIG. 8, the transfer of data from the employees 801 to these assets is indicated by respective arrows.


As further illustrated in FIG. 8, the data map indicates a transfer of data from Workday 805 to ADP 807 as well as to a Recovery Datacenter 809 and a London HR File Center 811. As may be understood in light of this disclosure, the Recovery Datacenter 809 and London HR File Center 811 may comprise additional data assets in the context of the data model illustrated by the data map shown in FIG. 8. The Recover Datacenter 809 may include, for example, one or more computer servers (e.g., backup servers). The London HR File Center 811 may include, for example, one or more databases (e.g., such as the One or More Databases 140 shown in FIG. 1). As shown in FIG. 8, each particular data asset depicted in the data map may be shown along with a visual indication of the type of data asset. For example, Kronos 803, Workday 805, and ADP 807 are depicted adjacent a first icon type (e.g., a computer monitor), while Recover Datacenter 809 and London HR File Center 811 are depicted adjacent a second and third icon type respectively (e.g., a server cluster and a file folder). In this way, the system may be configured to visually indicate, via the data model, particular information related to the data model in a relatively minimal manner.



FIG. 9 depicts an exemplary screen display 900 that illustrates a data map of a plurality of assets 905 in tabular form (e.g., table form). As may be understood from this figure, a table that includes one or more inventory attributes of each particular asset 905 in the table may indicate, for example: (1) a managing organization 910 of each respective asset 905; (2) a hosting location 915 of each respective asset 905 (e.g., a physical storage location of each asset 905); (3) a type 920 of each respective asset 905, if known (e.g., a database, software application, server, etc.); (4) a processing activity 925 associated with each respective asset 905; and/or (5) a status 930 of each particular data asset 905. In various embodiments, the status 930 of each particular asset 905 may indicate a status of the asset 905 in the discovery process. This may include, for example: (1) a “new” status for a particular asset that has recently been discovered as an asset that processes, stores, or collects personal data on behalf of an organization (e.g., discovered via one or more suitable techniques described herein); (2) an “in discovery” status for a particular asset for which the system is populating or seeking to populate one or more inventory attributes, etc.



FIG. 10 depicts an exemplary data map 1000 that includes an asset map of a plurality of data assets 1005A-F, which may, for example, be utilized by a particular entity in the collection, storage, and/or processing of personal data. As may be understood in light of this disclosure, the plurality of data assets 1005A-F may have been discovered using any suitable technique described herein (e.g., one or more intelligent identity scanning techniques, one or more questionnaires, one or more application programming interfaces, etc.). In various embodiments, a data inventory for each of the plurality of data assets 1005A-F may define, for each of the plurality of data assets 1005A-F a respective inventory attribute related to a storage location of the data asset.


As may be understood from this figure, the system may be configured to generate a map that indicates a location of the plurality of data assets 1005A-F for a particular entity. In the embodiment shown in this figure, locations that contain a data asset are indicated by circular indicia that contain the number of assets present at that location. In the embodiment shown in this figure, the locations are broken down by country. In particular embodiments, the asset map may distinguish between internal assets (e.g., first party servers, etc.) and external/third party assets (e.g., third party owned servers or software applications that the entity utilizes for data storage, transfer, etc.).


In some embodiments, the system is configured to indicate, via the visual representation, whether one or more assets have an unknown location (e.g., because the data model described above may be incomplete with regard to the location). In such embodiments, the system may be configured to: (1) identify the asset with the unknown location; (2) use one or more data modeling techniques described herein to determine the location (e.g., such as pinging the asset, generating one or more questionnaires for completion by a suitable individual, etc.); and (3) update a data model associated with the asset to include the location.


Data Model Population Module


In particular embodiments, a Data Model Population Module 1100 is configured to: (1) determine one or more unpopulated inventory attributes in a data model; (2) determine one or more attribute values for the one or more unpopulated inventory attributes; and (3) modify the data model to include the one or more attribute values.


Turning to FIG. 11, in particular embodiments, when executing the Data Model Population Module 1100, the system begins, at Step 1110, by analyzing one or more data inventories for each of the one or more data assets in the data model. The system may, for example, identify one or more particular data elements (e.g., inventory attributes) that make up the one or more data inventories. The system may, in various embodiments, scan one or more data structures associated with the data model to identify the one or more data inventories. In various embodiments, the system is configured to build an inventory of existing (e.g., known) data assets and identify inventory attributes for each of the known data assets.


Continuing to Step 1120, the system is configured to determine, for each of the one or more data inventories, one or more populated inventory attributes and one or more unpopulated inventory attributes (e.g., and/or one or more unpopulated data assets within the data model). As a particular example related to an unpopulated data asset, when generating and populating a data model, the system may determine that, for a particular asset, there is a destination asset. In various embodiments, the destination asset may be known (e.g., and already stored by the system as part of the data model). In any embodiment described herein, the destination asset may be unknown (e.g., a data element that comprises the destination asset may comprise a placeholder or other indication in memory for the system to populate the unpopulated inventory attribute (e.g., data element).


As another particular example, a particular storage asset may be associated with a plurality of inventory assets (e.g., stored in a data inventory associated with the storage asset). In this example, the plurality of inventory assets may include an unpopulated inventory attribute related to a type of personal data stored in the storage asset. The system may, for example, determine that the type of personal data is an unpopulated inventory asset for the particular storage asset.


Returning to Step 1130, the system is configured to determine, for each of the one or more unpopulated inventory attributes, one or more attribute values. In particular embodiments, the system may determine the one or more attribute values using any suitable technique (e.g., any suitable technique for populating the data model). In particular embodiments, the one or more techniques for populating the data model may include, for example: (1) obtaining data for the data model by using one or more questionnaires associated with a particular privacy campaign, processing activity, etc.; (2) using one or more intelligent identity scanning techniques discussed herein to identify personal data stored by the system and then map such data to a suitable data model; (3) using one or more application programming interfaces (API) to obtain data for the data model from another software application; and/or (4) using any other suitable technique. Exemplary techniques for determining the one or more attribute values are described more fully below. In any embodiment described herein, the system may be configured to use such techniques or other suitable techniques to populate one or more unpopulated data assets within the data model.


Next, at Step 1140, the system modifies the data model to include the one or more attribute values for each of the one or more unpopulated inventory attributes. The system may, for example, store the one or more attributes values in computer memory, associate the one or more attribute values with the one or more unpopulated inventory attributes, etc. In still any embodiment described herein, the system may modify the data model to include the one or more data assets identified as filling one or more vacancies left within the data model by the unpopulated one or more data assets.


Continuing to Step 1150, the system is configured to store the modified data model in memory. In various embodiments, the system is configured to store the modified data model in the One or More Databases 140, or in any other suitable location. In particular embodiments, the system is configured to store the data model for later use by the system in the processing of one or more data subject access requests. In any embodiment described herein, the system is configured to store the data model for use in one or more privacy impact assessments performed by the system.


Data Model Population Questionnaire Generation Module


In particular embodiments, a Data Population Questionnaire Generation Module 1200 is configured to generate a questionnaire (e.g., one or more questionnaires) comprising one or more questions associated with one or more particular unpopulated data attributes, and populate the unpopulated data attributes based at least in part on one or more responses to the questionnaire. In any embodiment described herein, the system may be configured to populate the unpopulated data attributes based on one or more responses to existing questionnaires.


In various embodiments, the one or more questionnaires may comprise one or more processing activity questionnaires (e.g., privacy impact assessments, data privacy impact assessments, etc.) configured to elicit one or more pieces of data related to one or more undertakings by an organization related to the collection, storage, and/or processing of personal data (e.g., processing activities). In particular embodiments, the system is configured to generate the questionnaire (e.g., a questionnaire template) based at least in part on one or more processing activity attributes, data asset attributes (e.g., inventory attributes), or other suitable attributes discussed herein.


Turning to FIG. 12, in particular embodiments, when executing the Data Population Questionnaire Generation Module 1200, the system begins, at Step 1210, by identifying one or more unpopulated data attributes from a data model. The system may, for example, identify the one or more unpopulated data attributes using any suitable technique described above. In particular embodiments, the one or more unpopulated data attributes may relate to, for example, one or more processing activity or asset attributes such as: (1) one or more processing activities associated with a particular data asset; (2) transfer data associated with the particular data asset (e.g., how and where the data stored and/or collected by the particular data asset is being transferred to and/or from); (3) personal data associated with the particular data assets asset (e.g., what type of personal data is collected and/or stored by the particular data asset; how, and from where, the data is collected, etc.); (4) storage data associated with the personal data (e.g., whether the data is being stored, protected and deleted); and (5) any other suitable attribute related to the collection, use, and transfer of personal data by one or more data assets or via one or more processing activities. In any embodiment described herein, the one or more unpopulated inventory attributes may comprise one or more other pieces of information such as, for example: (1) the type of data being stored by the particular data asset; (2) an amount of data stored by the particular data asset; (3) whether the data is encrypted by the particular data asset; (4) a location of the stored data (e.g., a physical location of one or more computer servers on which the data is stored by the particular data asset); etc.


Continuing to Step 1220, the system generates a questionnaire (e.g., a questionnaire template) comprising one or more questions associated with one or more particular unpopulated data attributes. As may be understood in light of the above, the one or more particulate unpopulated data attributes may relate to, for example, a particular processing activity or a particular data asset (e.g., a particular data asset utilized as part of a particular processing activity). In various embodiments, the one or more questionnaires comprise one or more questions associated with the unpopulated data attribute. For example, if the data model includes an unpopulated data attribute related to a location of a server on which a particular asset stores personal data, the system may generate a questionnaire associated with a processing activity that utilizes the asset (e.g., or a questionnaire associated with the asset). The system may generate the questionnaire to include one or more questions regarding the location of the server.


Returning to Step 1230, the system maps one or more responses to the one or more questions to the associated one or more particular unpopulated data attributes. The system may, for example, when generating the questionnaire, associate a particular question with a particular unpopulated data attribute in computer memory. In various embodiments, the questionnaire may comprise a plurality of question/answer pairings, where the answer in the question/answer pairings maps to a particular inventory attribute for a particular data asset or processing activity.


In this way, the system may, upon receiving a response to the particular question, substantially automatically populate the particular unpopulated data attribute. Accordingly, at Step 1240, the system modifies the data model to populate the one or more responses as one or more data elements for the one or more particular unpopulated data attributes. In particular embodiments, the system is configured to modify the data model such that the one or more responses are stored in association with the particular data element (e.g., unpopulated data attribute) to which the system mapped it at Step 1230. In various embodiments, the system is configured to store the modified data model in the One or More Databases 140, or in any other suitable location. In particular embodiments, the system is configured to store the data model for later use by the system in the processing of one or more data subject access requests. In any embodiment described herein, the system is configured to store the data model for use in one or more privacy impact assessments performed by the system.


Continuing to optional Step 1250, the system may be configured to modify the questionnaire based at least in part on the one or more responses. The system may, for example, substantially dynamically add and/or remove one or more questions to/from the questionnaire based at least in part on the one or more responses (e.g., one or more response received by a user completing the questionnaire). For example, the system may, in response to the user providing a particular inventory attribute or new asset, generates additional questions that relate to that particular inventory attribute or asset. The system may, as the system adds additional questions, substantially automatically map one or more responses to one or more other inventory attributes or assets. For example, in response to the user indicating that personal data for a particular asset is stored in a particular location, the system may substantially automatically generate one or more additional questions related to, for example, an encryption level of the storage, who has access to the storage location, etc.


In still any embodiment described herein, the system may modify the data model to include one or more additional assets, data attributes, inventory attributes, etc. in response to one or more questionnaire responses. For example, the system may modify a data inventory for a particular asset to include a storage encryption data element (which specifies whether the particular asset stores particular data in an encrypted format) in response to receiving such data from a questionnaire. Modification of a questionnaire is discussed more fully below with respect to FIG. 13.


Data Model Population via Questionnaire Process Flow



FIG. 13 depicts an exemplary process flow 1300 for populating a data model (e.g., modifying a data model to include a newly discovered data asset, populating one or more inventory attributes for a particular processing activity or data asset, etc.). In particular, FIG. 13 depicts one or more exemplary data relationships between one or more particular data attributes (e.g., processing activity attributes and/or asset attributes), a questionnaire template (e.g., a processing activity template and/or a data asset template), a completed questionnaire (e.g., a processing activity assessment and/or a data asset assessment), and a data inventory (e.g., a processing activity inventory and/or an asset inventory). As may be understood from this figure the system is configured to: (1) identify new data assets; (2) generate an asset inventory for identified new data assets; and (3) populate the generated asset inventories. Systems and methods for populating the generated inventories are described more fully below.


As may be understood from FIG. 13, a system may be configured to map particular processing activity attributes 1320A to each of: (1) a processing activity template 1330A; and (2) a processing activity inventory 1310A. As may be understood in light of this disclosure, the processing activity template 1330A may comprise a plurality of questions (e.g., as part of a questionnaire), which may, for example, be configured to elicit discovery of one or more new data assets. The plurality of questions may each correspond to one or more fields in the processing activity inventory 1310A, which may, for example, define one or more inventory attributes of the processing activity.


In particular embodiments, the system is configured to provide a processing activity assessment 1340A to one or more individuals for completion. As may be understood from FIG. 13, the system is configured to launch the processing activity assessment 1340A from the processing activity inventory 1310A and further configured to create the processing activity assessment 1340A from the processing activity template 1330A. The processing activity assessment 1340A may comprise, for example, one or more questions related to the processing activity. The system may, in various embodiments, be configured to map one or more responses provided in the processing activity assessment 1340A to one or more corresponding fields in the processing activity inventory 1310A. The system may then be configured to modify the processing activity inventory 1310A to include the one or more responses and store the modified inventory in computer memory. In various embodiments, the system may be configured to approve a processing activity assessment 1340A (e.g., receive approval of the assessment) prior to feeding the processing activity inventory attribute values into one or more fields and/or cells of the inventory.


As may be further understood from FIG. 13, in response to creating a new asset record (e.g., which the system may create, for example, in response to a new asset discovery via the processing activity assessment 1340A described immediately above, or in any other suitable manner), the system may generate an asset inventory 1310B (e.g., a data asset inventory) that defines a plurality of inventory attributes for the new asset (e.g., new data asset).


As may be understood from FIG. 13, a system may be configured to map particular asset attributes 1320B to each of: (1) an asset template 1330B; and (2) an asset inventory 1310B. As may be understood in light of this disclosure, the asset template 1330B may comprise a plurality of questions (e.g., as part of a questionnaire), which may, for example, be configured to elicit discovery of one or more processing activities associated with the asset and/or one or more inventory attributes of the asset. The plurality of questions may each correspond to one or more fields in the asset inventory 1310B, which may, for example, define one or more inventory attributes of the asset.


In particular embodiments, the system is configured to provide an asset assessment 1340B to one or more individuals for completion. As may be understood from FIG. 13, the system is configured to launch the asset assessment 1340B from the asset inventory 1310B and further configured to create the asset assessment 1340B from the asset template 1330B. The asset assessment 1340B may comprise, for example, one or more questions related to the data asset. The system may, in various embodiments, be configured to map one or more responses provided in the asset assessment 1340B to one or more corresponding fields in the asset inventory 1310B. The system may then be configured to modify the asset inventory 1310B (e.g., and/or a related processing activity inventory 1310A) to include the one or more responses and store the modified inventory in computer memory. In various embodiments, the system may be configured to approve an asset assessment 1340B (e.g., receive approval of the assessment) prior to feeding the asset inventory attribute values into one or more fields and/or cells of the inventory.



FIG. 13 further includes a detail view 1350 of a relationship between particular data attributes 1320C with an exemplary data inventory 1310C and a questionnaire template 1330C. As may be understood from this detail view 1350, a particular attribute name may map to a particular question title in a template 1330C as well as to a field name in an exemplary data inventory 1310C. In this way, the system may be configured to populate (e.g., automatically populate) a field name for a particular inventory 1310C in response to a user providing a question title as part of a questionnaire template 1330C. Similarly, a particular attribute description may map to a particular question description in a template 1330C as well as to a tooltip on a fieldname in an exemplary data inventory 1310C. In this way, the system may be configured to provide the tooltip for a particular inventory 1310C that includes the question description provided by a user as part of a questionnaire template 1330C.


As may be further understood from the detail view 1350 of FIG. 13, a particular response type may map to a particular question type in a template 1330C as well as to a field type in an exemplary data inventory 1310C. A particular question type may include, for example, a multiple-choice question (e.g., A, B, C, etc.), a freeform response, an integer value, a drop-down selection, etc. A particular field type may include, for example, a memo field type, a numeric field type, an integer field type, a logical field type, or any other suitable field type. A particular data attribute may require a response type of, for example: (1) a name of an organization responsible for a data asset (e.g., a free form response); (2) a number of days that data is stored by the data asset (e.g., an integer value); and/or (3) any other suitable response type.


In still any embodiment described herein, the system may be configured to map a one or more attribute values to one or more answer choices in a template 1330C as well as to one or more lists and/or responses in a data inventory 1310C. The system may then be configured to populate a field in the data inventory 1310C with the one or more answer choices provided in a response to a question template 1330C with one or more attribute values.


Exemplary Questionnaire Generation and Completion User Experience



FIGS. 14-25 depict exemplary screen displays that a user may encounter when generating a questionnaire (e.g., one or more questionnaires and/or templates) for populating one or more data elements (e.g., inventory attributes) of a data model for a data asset and/or processing activity. FIG. 14, for example, depicts an exemplary asset-based questionnaire template builder 1400. As may be understood from FIG. 14, the template builder may enable a user to generate an asset-based questionnaire template that includes one or more sections 1420 related to the asset (e.g., asset information, security, disposal, processing activities, etc.). As may be understood in light of this disclosure, the system may be configured to substantially automatically generate an asset-based questionnaire template based at least in part on the one or more unpopulated inventory attributes discussed above. The system may, for example, be configured to generate a template that is configured to populate the one or more unpopulated attributes (e.g., by eliciting responses, via a questionnaire to one or more questions that are mapped to the attributes within the data inventory).


In various embodiments, the system is configured to enable a user to modify a default template (e.g., or a system-created template) by, for example, adding additional sections, adding one or more additional questions to a particular section, etc. In various embodiments, the system may provide one or more tools for modifying the template. For example, in the embodiment shown in FIG. 14, the system may provide a user with a draft and drop question template 1410, from which the user may select a question type (e.g., textbox, multiple choice, etc.).


A template for an asset may include, for example: (1) one or more questions requesting general information about the asset; (2) one or more security-related questions about the asset; (3) one or more questions regarding how the data asset disposes of data that it uses; and/or (4) one or more questions regarding processing activities that involve the data asset. In various embodiments, each of these one or more sections may comprise one or more specific questions that may map to particular portions of a data model (e.g., a data map).



FIG. 15 depicts an exemplary screen display of a processing activity questionnaire template builder 1500. The screen display shown in FIG. 15 is similar to the template builder shown in FIG. 14 with respect to the data asset-based template builder. As may be understood from FIG. 15, the template builder may enable a user to generate a processing activity-based questionnaire template that includes one or more sections 1520 related to the processing activity (e.g., business process information, personal data, source, storage, destinations, access and use, etc.). As may be understood in light of this disclosure, the system may be configured to substantially automatically generate a processing activity-based questionnaire template based at least in part on the one or more unpopulated inventory attributes related to the processing activity (e.g., as discussed above). The system may, for example, be configured to generate a template that is configured to populate the one or more unpopulated attributes (e.g., by eliciting responses, via a questionnaire to one or more questions that are mapped to the attributes within the data inventory).


In various embodiments, the system is configured to enable a user to modify a default template (e.g., or a system-created template) by, for example, adding additional sections, adding one or more additional questions to a particular section, etc. In various embodiments, the system may provide one or more tools for modifying the template. For example, in the embodiment shown in FIG. 15, the system may provide a user with a draft and drop question template 1510, from which the user may select a question type (e.g., textbox, multiple choice, asset attributes, data subjects, etc.). The system may be further configured to enable a user to publish a completed template (e.g., for use in a particular assessment). In any embodiment described herein, the system may be configured to substantially automatically publish the template.


In various embodiments, a template for a processing activity may include, for example: (1) one or more questions related to the type of business process that involves a particular data asset; (2) one or more questions regarding what type of personal data is acquired from data subjects for use by a particular data asset; (3) one or more questions related to a source of the acquired personal data; (4) one or more questions related to how and/or where the personal data will be stored and/or for how long; (5) one or more questions related to one or more other data assets that the personal data will be transferred to; and/or (6) one or more questions related to who will have the ability to access and/or use the personal data.


Continuing to FIG. 16, an exemplary screen display 1600 depicts a listing of assets 1610 for a particular entity. These may, for example, have been identified as part of the data model generation system described above. As may be understood from this figure, a user may select a drop-down indicator 1615 to view more information about a particular asset. In the exemplary embodiment shown in FIG. 16, the system stores the managing organization group for the “New Asset”, but is missing some additional information (e.g., such as a description 1625 of the asset). In order to fill out the missing inventory attributes for the “New Asset”, the system, in particular embodiments, is configured to enable a user to select a Send Assessment indicia 1620 in order to transmit an assessment related to the selected asset to an individual tasked with providing one or more pieces of information related to the asset (e.g., a manager, or other individual with knowledge of the one or more inventory attributes).


In response to the user selecting the Send Assessment indicia 1620, the system may create the assessment based at least in part on a template associated with the asset and transmit the assessment to a suitable individual for completion (e.g., and/or transmit a request to the individual to complete the assessment).



FIG. 17 depicts an exemplary assessment transmission interface 1700 via which a user can transmit one or more assessments for completion. As shown in this figure, the user may assign a respondent, provide a deadline, indicate a reminder time, and provide one or more comments using an assessment request interface 1710. The user may then select a Send Assessment(s) indicia 1720 in order to transmit the assessment.



FIG. 18 depicts an exemplary assessment 1800 which a user may encounter in response to receiving a request to complete the assessment as described above with respect to FIGS. 16 and 17. As shown in FIG. 18, the assessment 1800 may include one or more questions that map to the one or more unpopulated attributes for the asset shown in FIG. 16. For example, the one or more questions may include a question related to a description of the asset, which may include a free form text box 1820 for providing a description of the asset. FIG. 19 depicts an exemplary screen display 1900 with the text box 1920 completed, where the description includes a value of “Value_1”. As shown in FIGS. 18 and 19, the user may have renamed “New Asset” (e.g., which may have included a default or placeholder name) shown in FIGS. 16 and 17 to “7th Asset.”


Continuing to FIG. 20, the exemplary screen display 2000 depicts the listing of assets 2010 from FIG. 16 with some additional attributes populated. For example, the Description 2025 (e.g., “Value_1”) provided in FIG. 19 has been added to the inventory. As may be understood in light of this disclosure, in response to a user providing the description via the assessment shown in FIGS. 18 and 19, the system may be configured to map the provided description to the attribute value associated with the description of the asset in the data inventory. The system may have then modified the data inventory for the asset to include the description attribute. In various embodiments, the system is configured to store the modified data inventory as part of a data model (e.g., in computer memory).



FIGS. 21-24 depict exemplary screen displays showing exemplary questions that make up part of a processing activity questionnaire (e.g., assessment). FIG. 21 depicts an exemplary interface 2100 for responding to a first question 2110 and a second question 2120. As shown in FIG. 21, the first question 2110 relates to whether the processing activity is a new or existing processing activity. The first question 2110 shown in FIG. 21 is a multiple-choice question. The second question 2120 relates to whether the organization is conducting the activity on behalf of another organization. As shown in this figure, the second question 2120 includes both a multiple-choice portion and a free-form response portion.


As discussed above, in various embodiments, the system may be configured to modify a questionnaire in response to (e.g., based on) one or more responses provided by a user completing the questionnaire. In particular embodiments, the system is configured to modify the questionnaire substantially on-the-fly (e.g., as the user provides each particular answer). FIG. 22 depicts an interface 2200 that includes a second question 2220 that differs from the second question 2120 shown in FIG. 21. As may be understood in light of this disclosure, in response to the user providing a response to the first question 2110 in FIG. 21 that indicates that the processing activity is a new processing activity, the system may substantially automatically modify the second question 2120 from FIG. 21 to the second question 2220 from FIG. 22 (e.g., such that the second question 2220 includes one or more follow up questions or requests for additional information based on the response to the first question 2110 in FIG. 21).


As shown in FIG. 22, the second question 2220 requests a description of the activity that is being pursued. In various embodiments (e.g., such as if the user had selected that the processing activity was an existing one), the system may not modify the questionnaire to include the second question 2220 from FIG. 22, because the system may already store information related to a description of the processing activity at issue. In various embodiments, any suitable question described herein may include a tooltip 2225 on a field name (e.g., which may provide one or more additional pieces of information to guide a user's response to the questionnaire and/or assessment).



FIGS. 23 and 24 depict additional exemplary assessment questions 2300, 2400. The questions 2300, 2400 shown in these figures relate to, for example, particular data elements processed by various aspects of a processing activity.



FIG. 25 depicts a dashboard 2500 that includes an accounting of one or more assessments that have been completed, are in progress, or require completion by a particular organization. The dashboard 2500 shown in this figure is configured to provide information relate to the status of one or more outstanding assessments. As may be understood in light of this disclosure, because of the volume of assessment requests, it may be necessary to utilize one or more third party organizations to facilitate a timely completion of one or more assessment requests. In various embodiments, the dashboard may indicate that, based on a fact that a number of assessments are still in progress or incomplete, that a particular data model for an entity, data asset, processing activity, etc. remains incomplete. In such embodiments, an incomplete nature of a data model may raise one or more flags or indicate a risk that an entity may not be in compliance with one or more legal or industry requirements related to the collection, storage, and/or processing of personal data.


Intelligent Identity Scanning Module


Turning to FIG. 26, in particular embodiments, the Intelligent Identity Scanning Module 2600 is configured to scan one or more data sources to identify personal data stored on one or more network devices for a particular organization, analyze the identified personal data, and classify the personal data (e.g., in a data model) based at least in part on a confidence score derived using one or more machine learning techniques. The confidence score may be and/or comprise, for example, an indication of the probability that the personal data is actually associated with a particular data subject (e.g., that there is at least an 80% confidence level that a particular phone number is associated with a particular individual.)


When executing the Intelligent Identity Scanning Module 2600, the system begins, at Step 2610, by connecting to one or more databases or other data structures, and scanning the one or more databases to generate a catalog of one or more individuals and one or more pieces of personal information associated with the one or more individuals. The system may, for example, be configured to connect to one or more databases associated with a particular organization (e.g., one or more databases that may serve as a storage location for any personal or other data collected, processed, etc. by the particular organization, for example, as part of a suitable processing activity. As may be understood in light of this disclosure, a particular organization may use a plurality of one or more databases (e.g., the One or More Databases 140 shown in FIG. 1), a plurality of servers (e.g., the One or More Third Party Servers 160 shown in FIG. 1), or any other suitable data storage location in order to store personal data and other data collected as part of any suitable privacy campaign, privacy impact assessment, processing activity, etc.


In particular embodiments, the system is configured to scan the one or more databases by searching for particular data fields comprising one or more pieces of information that may include personal data. The system may, for example, be configured to scan and identify one of more pieces of personal data such as: (1) name; (2) address; (3) telephone number; (4) e-mail address; (5) social security number; (6) information associated with one or more credit accounts (e.g., credit card numbers); (7) banking information; (8) location data; (9) internet search history; (10) non-credit account data; and/or (11) any other suitable personal information discussed herein. In particular embodiments, the system is configured to scan for a particular type of personal data (e.g., or one or more particular types of personal data).


The system may, in various embodiments, be further configured to generate a catalog of one or more individuals that also includes one or more pieces of personal information (e.g., personal data) identified for the individuals during the scan. The system may, for example, in response to discovering one or more pieces of personal data in a particular storage location, identify one or more associations between the discovered pieces of personal data. For example, a particular database may store a plurality of individuals' names in association with their respective telephone numbers. One or more other databases may include any other suitable information.


The system may, for example, generate the catalog to include any information associated with the one or more individuals identified in the scan. The system may, for example, maintain the catalog in any suitable format (e.g., a data table, etc.).


Continuing to Step 2620, the system is configured to scan one or more structured and/or unstructured data repositories based at least in part on the generated catalog to identify one or more attributes of data associated with the one or more individuals. The system may, for example, be configured to utilize information discovered during the initial scan at Step 2610 to identify the one or more attributes of data associated with the one or more individuals.


For example, the catalog generated at Step 2610 may include a name, address, and phone number for a particular individual. The system may be configured, at Step 2620, to scan the one or more structured and/or unstructured data repositories to identify one or more attributes that are associated with one or more of the particular individual's name, address and/or phone number. For example, a particular data repository may store banking information (e.g., a bank account number and routing number for the bank) in association with the particular individual's address. In various embodiments, the system may be configured to identify the banking information as an attribute of data associated with the particular individual. In this way, the system may be configured to identify particular data attributes (e.g., one or more pieces of personal data) stored for a particular individual by identifying the particular data attributes using information other than the individual's name.


Returning to Step 2630, the system is configured to analyze and correlate the one or more attributes and metadata for the scanned one or more structured and/or unstructured data repositories. In particular embodiments, the system is configured to correlate the one or more attributes with metadata for the associated data repositories from which the system identified the one or more attributes. In this way, the system may be configured to store data regarding particular data repositories that store particular data attributes.


In particular embodiments, the system may be configured to cross-reference the data repositories that are discovered to store one or more attributes of personal data associated with the one or more individuals with a database of known data assets. In particular embodiments, the system is configured to analyze the data repositories to determine whether each data repository is part of an existing data model of data assets that collect, store, and/or process personal data. In response to determining that a particular data repository is not associated with an existing data model, the system may be configured to identify the data repository as a new data asset (e.g., via asset discovery), and take one or more actions (e.g., such as any suitable actions described herein) to generate and populate a data model of the newly discovered data asset. This may include, for example: (1) generating a data inventory for the new data asset; (2) populating the data inventory with any known attributes associated with the new data asset; (3) identifying one or more unpopulated (e.g., unknown) attributes of the data asset; and (4) taking any suitable action described herein to populate the unpopulated data attributes.


In particular embodiments, the system my, for example: (1) identify a source of the personal data stored in the data repository that led to the new asset discovery; (2) identify one or more relationships between the newly discovered asset and one or more known assets; and/or (3) etc.


Continuing to Step 2640, the system is configured to use one or more machine learning techniques to categorize one or more data elements from the generated catalog, analyze a flow of the data among the one or more data repositories, and/or classify the one or more data elements based on a confidence score as discussed below.


Continuing to Step 2650, the system, in various embodiments, is configured to receive input from a user confirming or denying a categorization of the one or more data elements, and, in response, modify the confidence score. In various embodiments, the system is configured to iteratively repeat Steps 2640 and 2650. In this way, the system is configured to modify the confidence score in response to a user confirming or denying the accuracy of a categorization of the one or more data elements. For example, in particular embodiments, the system is configured to prompt a user (e.g., a system administrator, privacy officer, etc.) to confirm that a particular data element is, in fact, associated with a particular individual from the catalog. The system may, in various embodiments, be configured to prompt a user to confirm that a data element or attribute discovered during one or more of the scans above were properly categorized at Step 2640.


In particular embodiments, the system is configured to modify the confidence score based at least in part on receiving one or more confirmations that one or more particular data elements or attributes discovered in a particular location during a scan are associated with particular individuals from the catalog. As may be understood in light of this disclosure, the system may be configured to increase the confidence score in response to receiving confirmation that particular types of data elements or attributes discovered in a particular storage location are typically confirmed as being associated with particular individuals based on one or more attributes for which the system was scanning.


Exemplary Intelligent Identity Scanning Technical Platforms



FIG. 27 depicts an exemplary technical platform via which the system may perform one or more of the steps described above with respect to the Intelligent Identity Scanning Module 2600. As shown in the embodiment in this figure, an Intelligent Identity Scanning System 2700 comprises an Intelligent Identity Scanning Server 130, such as the Intelligent Identity Scanning Server 130 described above with respect to FIG. 1. The Intelligent Identity Scanning Server 130 may, for example, comprise a processing engine (e.g., one or more computer processors). In some embodiments, the Intelligent Identity Scanning Server 130 may include any suitable cloud hosted processing engine (e.g., one or more cloud-based computer servers). In particular embodiments, the Intelligent Identity Scanning Server 130 is hosted in a Microsoft Azure cloud.


In particular embodiments, the Intelligent Identity Scanning Server 130 is configured to sit outside one or more firewalls (e.g., such as the firewall 195 shown in FIG. 26). In such embodiments, the Intelligent Identity Scanning Server 130 is configured to access One or More Remote Computing Devices 150 through the Firewall 195 (e.g., one or more firewalls) via One or More Networks 115 (e.g., such as any of the One or More Networks 115 described above with respect to FIG. 1).


In particular embodiments, the One or More Remote Computing Devices 150 include one or more computing devices that make up at least a portion of one or more computer networks associated with a particular organization. In particular embodiments, the one or more computer networks associated with the particular organization comprise one or more suitable servers, one or more suitable databases, one or more privileged networks, and/or any other suitable device and/or network segment that may store and/or provide for the storage of personal data. In the embodiment shown in FIG. 27, the one or more computer networks associated with the particular organization may comprise One or More Third Party Servers 160, One or More Databases 140, etc. In particular embodiments, the One or More Remote Computing Devices 150 are configured to access one or more segments of the one or more computer networks associated with the particular organization. In some embodiments, the one or more computer networks associated with the particular organization comprise One or More Privileged Networks 165. In still any embodiment described herein, the one or more computer networks comprise one or more network segments connected via one or more suitable routers, one or more suitable network hubs, one or more suitable network switches, etc.


As shown in FIG. 27, various components that make up one or more parts of the one or more computer networks associated with the particular organization may store personal data (e.g., such as personal data stored on the One or More Third Party Servers 160, the One or More Databases 140, etc.). In various embodiments, the system is configured to perform one or more steps related to the Intelligent Identity Scanning Module 2600 in order to identify the personal data for the purpose of generating the catalog of individuals described above (e.g., and/or identify one or more data assets within the organization's network that store personal data)


As further shown in FIG. 27, in various embodiments, the One or More Remote Computing Devices 150 may store a software application (e.g., the Intelligent Identity Scanning Module). In such embodiments, the system may be configured to provide the software application for installation on the One or More Remote Computing Devices 150. In particular embodiments, the software application may comprise one or more virtual machines. In particular embodiments, the one or more virtual machines may be configured to perform one or more of the steps described above with respect to the Intelligent Identity Scanning Module 2600 (e.g., perform the one or more steps locally on the One or More Remote Computing Devices 150).


In various embodiments, the one or more virtual machines may have the following specifications: (1) any suitable number of cores (e.g., 4, 6, 8, etc.); (2) any suitable amount of memory (e.g., 4 GB, 8 GB, 16 GB etc.); (3) any suitable operating system (e.g., CentOS 7.2); and/or (4) any other suitable specification. In particular embodiments, the one or more virtual machines may, for example, be used for one or more suitable purposes related to the Intelligent Identity Scanning System 2700. These one or more suitable purposes may include, for example, running any of the one or more modules described herein, storing hashed and/or non-hashed information (e.g., personal data, personally identifiable data, catalog of individuals, etc.), storing and running one or more searching and/or scanning engines (e.g., Elasticsearch), etc.


In various embodiments, the Intelligent Identity Scanning System 2700 may be configured to distribute one or more processes that make up part of the Intelligent Identity Scanning Process (e.g., described above with respect to the Intelligent Identity Scanning Module 2600). The one or more software applications installed on the One or more Remote Computing Devices 150 may, for example, be configured to provide access to the one or more computer networks associated with the particular organization to the Intelligent Identity Scanning Server 130. The system may then be configured to receive, from the One or more Remote Computing Devices 150 at the Intelligent Identity Scanning Server 130, via the Firewall 195 and One or More Networks 115, scanned data for analysis.


In particular embodiments, the Intelligent Identity Scanning System 2700 is configured to reduce an impact on a performance of the One or More Remote Computing Devices 150, One or More Third Party Servers 160 and other components that make up one or more segments of the one or more computer networks associated with the particular organization. For example, in particular embodiments, the Intelligent Identity Scanning System 2700 may be configured to utilize one or more suitable bandwidth throttling techniques. In any embodiment described herein, the Intelligent Identity Scanning System 2700 is configured to limit scanning (e.g., any of the one or more scanning steps described above with respect to the Intelligent Identity Scanning Module 2600) and other processing steps (e.g., one or more steps that utilize one or more processing resources) to non-peak times (e.g., during the evening, overnight, on weekends and/or holidays, etc.). In any embodiment described herein, the system is configured to limit performance of such processing steps to backup applications and data storage locations. The system may, for example, use one or more sampling techniques to decrease a number of records required to scan during the personal data discovery process.



FIG. 28 depicts an exemplary asset access methodology that the system may utilize in order to access one or more network devices that may store personal data (e.g., or other personally identifiable information). As may be understood from this figure, the system may be configured to access the one or more network devices using a locally deployed software application (e.g., such as the software application described immediately above). In various embodiments, the software application is configured to route identity scanning traffic through one or more gateways, configure one or more ports to accept one or more identity scanning connections, etc.


As may be understood from this figure, the system may be configured to utilize one or more credential management techniques to access one or more privileged network portions. The system may, in response to identifying particular assets or personally identifiable information via a scan, be configured to retrieve schema details such as, for example, an asset ID, Schema ID, connection string, credential reference URL, etc. In this way, the system may be configured to identify and store a location of any discovered assets or personal data during a scan.


Data Subject Access Request Fulfillment Module


Turning to FIG. 29, in particular embodiments, a Data Subject Access Request Fulfillment Module 2900 is configured to receive a data subject access request, process the request, and fulfill the request based at least in part on one or more request parameters. In various embodiments, an organization, corporation, etc. may be required to provide information requested by an individual for whom the organization stores personal data within a certain time period (e.g., 30 days). As a particular example, an organization may be required to provide an individual with a listing of, for example: (1) any personal data that the organization is processing for an individual, (2) an explanation of the categories of data being processed and the purpose of such processing; and/or (3) categories of third parties to whom the data may be disclosed.


Various privacy and security policies (e.g., such as the European Union's General Data Protection Regulation, and other such policies) may provide data subjects (e.g., individuals, organizations, or other entities) with certain rights related to the data subject's personal data that is collected, stored, or otherwise processed by an organization. These rights may include, for example: (1) a right to obtain confirmation of whether a particular organization is processing their personal data; (2) a right to obtain information about the purpose of the processing (e.g., one or more reasons for which the personal data was collected); (3) a right to obtain information about one or more categories of data being processed (e.g., what type of personal data is being collected, stored, etc.); (4) a right to obtain information about one or more categories of recipients with whom their personal data may be shared (e.g., both internally within the organization or externally); (5) a right to obtain information about a time period for which their personal data will be stored (e.g., or one or more criteria used to determine that time period); (6) a right to obtain a copy of any personal data being processed (e.g., a right to receive a copy of their personal data in a commonly used, machine-readable format); (7) a right to request erasure (e.g., the right to be forgotten), rectification (e.g., correction or deletion of inaccurate data), or restriction of processing of their personal data; and (8) any other suitable rights related to the collection, storage, and/or processing of their personal data (e.g., which may be provided by law, policy, industry or organizational practice, etc.).


As may be understood in light of this disclosure, a particular organization may undertake a plurality of different privacy campaigns, processing activities, etc. that involve the collection and storage of personal data. In some embodiments, each of the plurality of different processing activities may collect redundant data (e.g., may collect the same personal data for a particular individual more than once), and may store data and/or redundant data in one or more particular locations (e.g., on one or more different servers, in one or more different databases, etc.). In this way, a particular organization may store personal data in a plurality of different locations which may include one or more known and/or unknown locations. As such, complying with particular privacy and security policies related to personal data (e.g., such as responding to one or more requests by data subjects related to their personal data) may be particularly difficult (e.g., in terms of cost, time, etc.). In particular embodiments, a data subject access request fulfillment system may utilize one or more data model generation and population techniques (e.g., such as any suitable technique described herein) to create a centralized data map with which the system can identify personal data stored, collected, or processed for a particular data subject, a reason for the processing, and any other information related to the processing.


Turning to FIG. 29, when executing the Data Subject Access Request Fulfillment Module 2900, the system begins, at Step 2910, by receiving a data subject access request. In various embodiments, the system receives the request via a suitable web form. In certain embodiments, the request comprises a particular request to perform one or more actions with any personal data stored by a particular organization regarding the requestor. For example, in some embodiments, the request may include a request to view one or more pieces of personal data stored by the system regarding the requestor. In any embodiment described herein, the request may include a request to delete one or more pieces of personal data stored by the system regarding the requestor. In still any embodiment described herein, the request may include a request to update one or more pieces of personal data stored by the system regarding the requestor. In still any embodiment described herein, the request may include a request based on any suitable right afforded to a data subject, such as those discussed above.


Continuing to Step 2920, the system is configured to process the request by identifying and retrieving one or more pieces of personal data associated with the requestor that are being processed by the system. For example, in various embodiments, the system is configured to identify any personal data stored in any database, server, or other data repository associated with a particular organization. In various embodiments, the system is configured to use one or more data models, such as those described above, to identify this personal data and suitable related information (e.g., where the personal data is stored, who has access to the personal data, etc.). In various embodiments, the system is configured to use intelligent identity scanning (e.g., as described above) to identify the requestor's personal data and related information that is to be used to fulfill the request.


In still any embodiment described herein, the system is configured to use one or more machine learning techniques to identify such personal data. For example, the system may identify particular stored personal data based on, for example, a country in which a website that the data subject request was submitted is based, or any other suitable information.


In particular embodiments, the system is configured to scan and/or search one or more existing data models (e.g., one or more current data models) in response to receiving the request in order to identify the one or more pieces of personal data associated with the requestor. The system may, for example, identify, based on one or more data inventories (e.g., one or more inventory attributes) a plurality of storage locations that store personal data associated with the requestor. In any embodiment described herein, the system may be configured to generate a data model or perform one or more scanning techniques in response to receiving the request (e.g., in order to automatically fulfill the request).


Returning to Step 2930, the system is configured to take one or more actions based at least in part on the request. In some embodiments, the system is configured to take one or more actions for which the request was submitted (e.g., display the personal data, delete the personal data, correct the personal data, etc.). In particular embodiments, the system is configured to take the one or more actions substantially automatically. In particular embodiments, in response a data subject submitting a request to delete their personal data from an organization's systems, the system may: (1) automatically determine where the data subject's personal data is stored; and (2) in response to determining the location of the data (which may be on multiple computing systems), automatically facilitate the deletion of the data subject's personal data from the various systems (e.g., by automatically assigning a plurality of tasks to delete data across multiple business systems to effectively delete the data subject's personal data from the systems). In particular embodiments, the step of facilitating the deletion may comprise, for example: (1) overwriting the data in memory; (2) marking the data for overwrite; (2) marking the data as free (e.g., and deleting a directory entry associated with the data); and/or (3) any other suitable technique for deleting the personal data. In particular embodiments, as part of this process, the system uses an appropriate data model (see discussion above) to efficiently determine where all of the data subject's personal data is stored.


Data Subject Access Request User Experience



FIGS. 30-31 depict exemplary screen displays that a user may view when submitting a data subject access request. As shown in FIG. 30, a website 3000 associated with a particular organization may include a user-selectable indicium 3005 for submitting a privacy-related request. A user desiring to make such a request may select the indicia 3005 in order to initiate the data subject access request process.



FIG. 31 depicts an exemplary data subject access request form in both an unfilled and filled out state. As shown in this figure, the system may prompt a user to provide information such as, for example: (1) what type of requestor the user is (e.g., employee, customer, etc.); (2) what the request involves (e.g., requesting info, opting out, deleting data, updating data, etc.); (3) first name; (4) last name; (5) email address; (6) telephone number; (7) home address; and/or (8) one or more details associated with the request.


As discussed in more detail above, a data subject may submit a subject access request, for example, to request a listing of any personal information that a particular organization is currently storing regarding the data subject, to request that the personal data be deleted, to opt out of allowing the organization to process the personal data, etc.


Alternative Embodiment

In particular embodiments, a data modeling or other system described herein may include one or more features in addition to those described. Various such alternative embodiments are described below.


Processing Activity and Data Asset Assessment Risk Flagging


In particular embodiments, the questionnaire template generation system and assessment system described herein may incorporate one or more risk flagging systems. FIGS. 32-35 depict exemplary user interfaces that include risk flagging of particular questions within a processing activity assessment. As may be understood from these figures, a user may select a flag risk indicium to provide input related to a description of risks and mitigation of a risk posed by one or more inventory attributes associated with the question. As shown in these figures, the system may be configured to substantially automatically assign a risk to a particular response to a question in a questionnaire. In various embodiments, the assigned risk is determined based at least in part on the template from which the assessment was generated.


In particular embodiments, the system may utilize the risk level assigned to particular questionnaire responses as part of a risk analysis of a particular processing activity or data asset. Various techniques for assessing the risk of various privacy campaigns are described in U.S. patent application Ser. No. 15/256,419, filed Sep. 2, 2016, entitled “Data processing systems and methods for operationalizing privacy compliance and assessing the risk of various respective privacy campaigns,” which is hereby incorporated herein in its entirety.


Centralized Repository of Personally Identifiable Information (PII) Overview


A centralized data repository system, in various embodiments, is configured to provide a central data-storage repository (e.g., one or more servers, databases, etc.) for the centralized storage of personally identifiable information (PII) and/or personal data for one or more particular data subjects. In particular embodiments, the centralized data repository may enable the system to populate one or more data models (e.g., using one or more suitable techniques described above) substantially on-the-fly (e.g., as the system collects, processes, stores, etc. personal data regarding a particular data subject). In this way, in particular embodiments, the system is configured to maintain a substantially up-to-date data model for a plurality of data subjects (e.g., each particular data subject for whom the system collects, processes, stores, etc. personal data). The system may then be configured to substantially automatically respond to one or more data access requests by a data subject (e.g., individual, entity, organization, etc.), for example, using the substantially up-to-date data model. In particular embodiments, the system may be configured to respond to the one or more data access requests using any suitable technique described herein.


As may be understood in light of this disclosure, a particular organization may undertake a plurality of different privacy campaigns, processing activities, etc. that involve the collection and storage of personal data. In some embodiments, each of the plurality of different processing activities may collect redundant data (e.g., may collect the same personal data for a particular individual more than once), and may store data and/or redundant data in a plurality of different locations (e.g., on one or more different servers, in one or more different databases, etc.). In this way, a particular organization may store personal data in a plurality of different locations which may include one or more known and/or unknown locations. As such, complying with particular privacy and security policies related to personal data (e.g., such as responding to one or more requests by data subjects related to their personal data) may be particularly difficult (e.g., in terms of cost, time, etc.). Accordingly, utilizing and maintaining a centralized data repository for PII may enable the system to more quickly and accurately respond to data subject access requests and other requests related to collected, stored, and processed personal data. In particular embodiments, the centralized data repository may include one or more third party data repositories (e.g., one or more third party data repositories maintained on behalf of a particular entity that collects, stores, and/or processes personal data).


In various embodiments, a third-party data repository system is configured to facilitate the receipt and centralized storage of personal data for each of a plurality of respective data subjects. In particular embodiments, the system may be configured to: (1) receive personal data associated with a particular data subject (e.g., a copy of the data, a link to a location of where the data is stored, etc.); and (2) store the personal data in a suitable data format (e.g., a data model, a reference table, etc.) for later retrieval. In any embodiment described herein, the system may be configured to receive an indication that personal data has been collected regarding a particular data subject (e.g., collected by a first party system, a software application utilized by a particular entity, etc.).


In particular embodiments, the third party data repository system is configured to: (1) receive an indication that a first party system (e.g., entity) has collected and/or processed a piece of personal data for a data subject; (2) determine a location in which the first party system has stored the piece of personal data; (3) optionally digitally store (e.g., in computer memory) a copy of the piece of personal data and associate, in memory, the piece of personal data with the data subject; and (4) optionally digitally store an indication of the storage location utilized by the first party system for the piece of personal data. In particular embodiments, the system is configured to provide a centralized database, for each particular data subject (e.g., each particular data subject about whom a first party system collects or has collected personally identifiable information), of any personal data processed and/or collected by a particular entity.


In particular embodiments, a third-party data repository system is configured to interface with a consent receipt management system (e.g., such as the consent receipt management system described below). In particular embodiments, the system may, for example: (1) receive an indication of a consent receipt having an associated unique subject identifier and one or more receipt definitions (e.g., such as any suitable definition described herein); (2) identify, based at least in part on the one or more receipt definitions, one or more pieces of repository data associated with the consent receipt (e.g., one or more data elements or pieces of personal data for which the consent receipt provides consent to process; a storage location of the one or more data elements for which the consent receipt provides consent to process; etc.); (3) digitally store the unique subject identifier in one or more suitable data stores; and (4) digitally associate the unique subject identifier with the one or more pieces of repository data. In particular embodiments, the system is configured to store the personal data provided as part of the consent receipt in association with the unique subject identifier.


In particular embodiments, the system is configured to, for each stored unique subject identifier: (1) receive an indication that new personal data has been provided by or collected from a data subject associated with the unique subject identifier (e.g., provided to an entity or organization that collects and/or processes personal data); and (2) in response to receiving the indication, storing the new personal data (e.g., or storing an indication of a storage location of the new personal data by the entity) in association with the unique subject identifier. In this way, as an entity collects additional data for a particular unique data subject (e.g., having a unique subject identifier, hash, etc.), the third party data repository system is configured to maintain a centralized database of data collected, stored, and or processed for each unique data subject (e.g., indexed by unique subject identifier). The system may then, in response to receiving a data subject access request from a particular data subject, fulfill the request substantially automatically (e.g., by providing a copy of the personal data, deleting the personal data, indicating to the entity what personal data needs to be deleted from their system and where it is located, etc.). The system may, for example, automatically fulfill the request by: (1) identifying the unique subject identifier associated with the unique data subject making the request; and (2) retrieving any information associated with the unique data subject based on the unique subject identifier.


Exemplary Centralized Data Repository System Architecture



FIG. 36 is a block diagram of a centralized data repository system 3600 according to a particular embodiment. In various embodiments, the centralized data repository system 3600 is part of a privacy compliance system (also referred to as a privacy management system), or other system, which may, for example, be associated with a particular organization and be configured to aid in compliance with one or more legal or industry regulations related to the collection and storage of personal data. In any embodiment described herein, the centralized data repository system 3600 is a stand-alone system that is configured to interface with one or more first party data management or other systems for the purpose of maintaining a centralized data repository of personal data collected, stored, and/or processed by each of the one or more first party data systems.


As may be understood from FIG. 36, the centralized data repository system 3600 includes one or more computer networks 115, One or More Centralized Data Repository Servers 3610, a Consent Receipt Management Server 3620, One or More First Party System Servers 3630, One or More Databases 140 or other data structures, and one or more remote data subject computing devices 3650 (e.g., a desktop computer, laptop computer, tablet computer, smartphone, etc.). In particular embodiments, the One or More Centralized Data Repository Servers 3610, Consent Receipt Management Server 3620, One or More First Party System Servers 3630, One or More Databases 140 or other data structures, and one or more remote data subject computing devices 3650. Although in the embodiment shown in FIG. 36, the One or More Centralized Data Repository Servers 3610, Consent Receipt Management Server 3620, One or More First Party System Servers 3630, One or More Databases 140 or other data structures, and one or more remote data subject computing devices 3650 are shown as separate servers, it should be understood that in any embodiment described herein, one or more of these servers and/or computing devices may comprise a single server, a plurality of servers, one or more cloud-based servers, or any other suitable configuration.


In particular embodiments, the One or More Centralized Data Repository Servers 3610 may be configured to interface with the One or More First Party System Servers 3630 to receive any of the indications or personal data (e.g., for storage) described herein. The One or More Centralized Data Repository Servers 3610 and One or More First Party System Servers 3630 may, for example, interface via a suitable application programming interface, direct connection, etc. In a particular embodiment, the One or More Centralized Data Repository Servers 3610 comprise the Consent Receipt Management Server 3620.


In a particular example, a data subject may provide one or more pieces of personal data via the One or More Remote Data Subject Computing Devices 3650 to the One or More First Party System Servers 3630. The data subject may, for example, complete a webform on a website hosted on the One or More First Party System Servers 3630. The system may then, in response to receiving the one or more pieces of personal data at the One or More First Party System Servers 3630, transmit an indication to the One or More Centralized Data Repository Servers 3610 that the One or More First Party System Servers 3630 have collected, stored, and/or processed the one or more pieces of personal data. In response to receiving the indication, the One or More Centralized Data Repository Servers 3610 may then store the one or more pieces of personal data (e.g., a copy of the data, an indication of the storage location of the personal data in the One or More First Party System Servers 3630, etc.) in a centralized data storage location (e.g., in One or More Databases 140, on the One or More Centralized Data Repository Servers 3610, etc.).


Centralized Data Repository Module


Various functionality of the centralized data repository system 3600 may be implemented via a Centralized Data Repository Module 3700. The system, when executing certain steps of the Centralized Data Repository Module, may be configured to generate, a central repository of personal data on behalf of an entity, and populate the central repository with personal data as the entity collects, stores and/or processes the personal data. In particular embodiments, the system is configured to index the personal data within the central repository by data subject.



FIG. 37 depicts a Centralized Data Repository Module 3700 according to a particular embodiment. The system, when executing the Centralized Data Repository Module 3700, begins, at Step 3710, by receiving a request to generate a central repository of personal data on behalf of an entity. In particular embodiments, the system is a third-party system that receives a request from the entity to generate and maintain a central repository (e.g., third party repository) of personal data that the entity collects, stores, and or processes.


In particular embodiments, the system, in response to receiving the request, is configured to generate the central repository by: (1) designating at least a portion of one or more data stores for the storage of the personal data, information about the data subjects about whom the personal data is collected, etc.; (2) initiating a connection between the central repository and one or more data systems operated by the entity (e.g., one or more first party systems); (3) etc.


Continuing to Step 3720, the system is configured to generate, for each data subject about whom the entity collects, receives, and/or processes personal data, a unique identifier. The system may, for example: (1) receive an indication that a first party system has collected, stored, and/or processed a piece of personal data; (2) identify a data subject associated with the piece of personal data; (3) determine whether the central repository system is currently storing data associated with the data subject; and (4) in response to determining that the central repository system is not currently storing data associated with the data subject (e.g., because the data subject is a new data subject), generating the unique identifier. In various embodiments, the system is configured to assign a unique identifier for each data subject about whom the first party system has previously collected, stored, and/or processed personal data.


In particular embodiments, the unique identifier may include any unique identifier such as, for example: (1) any of the one or more pieces of personal data collected, stored, and/or processed by the system (e.g., name, first name, last name, full name, address, phone number, e-mail address, etc.); (2) a unique string or hash comprising any suitable number of numerals, letters, or combination thereof; and/or (3) any other identifier that is sufficiently unique to distinguish between a first and second data subject for the purpose of subsequent data retrieval.


In particular embodiments, the system is configured to assign a permanent identifier to each particular data subject. In any embodiment described herein, the system is configured to assign one or more temporary unique identifiers to the same data subject.


In particular embodiments, the unique identifier may be based at least in part on the unique receipt key and/or unique subject identifier discussed below with respect to the consent receipt management system. As may be understood in light of this disclosure, when receiving consent form a data subject to process, collect, and at least store one or more particular types of personal data associated with the data subject, the system is configured to generate a unique ID to memorialize the consent and provide authorization for the system to collect the subject's data. In any embodiment described herein, the system may be configured to utilize any unique ID generated for the purposes of tracking data subject consent as a unique identifier in the context of the central repository system described herein.


In particular embodiments, the system is configured to continue to Step 3730, and store the unique identifier in computer memory. In particular embodiments, the system is configured to store the unique identifier in an encrypted manner. In various embodiments, the system is configured to store the unique identifier in any suitable location (e.g., the one or more databases 140 described above).


In particular embodiments, the system is configured to store the unique identifier as a particular file structure such as, for example, a particular folder structure in which the system is configured to store one or more pieces of personal data (e.g., or pointers to one or more pieces of personal data) associated with the unique identifier (e.g., the data subject associated with the unique identifier). In any embodiment described herein, the system is configured to store the unique identifier in any other suitable manner (e.g., in a suitable data table, etc.).


Returning to Step 3740, the system is configured to receive an indication that one or more computer systems have received, collected or processed one or more pieces of personal data associated with a data subject. In particular embodiments, the one or more computer systems include any suitable computer system associated with a particular entity. In any embodiment described herein, the one or more computer systems comprise one or more software applications, data stores, databases, etc. that collect, process, and/or store data (e.g., personally identifiable data) on behalf of the entity (e.g., organization). In particular embodiments, the system is configured to receive the indication through integration with the one or more computer systems. In a particular example, the system may provide a software application for installation on a system device that is configured to transmit the indication in response to the system receiving, collecting, and/or processing one or more pieces of personal data.


In particular embodiments, the system may receive the indication in response to: (1) a first party system, data store, software application, etc. receiving, collecting, storing, and or processing a piece of data that includes personally identifying information; (2) a user registering for an account with a particular entity (e.g., an online account, employee account, social media account, e-mail account, etc.); (3) a company storing information about one or more data subjects (e.g., employee information, customer information, potential customer information, etc.; and/or (4) any other suitable indication that a first entity or any computer system or software on the first entity's behalf has collected, stored, and/or processed a piece of data that includes or may include personally identifiable information.


As a particular example, the system may receive the indication in response to a user submitting a webform via a website operated by the first entity. The webform may include, for example, one or more fields that include the user's e-mail address, billing address, shipping address, and payment information for the purposes of collected payment data to complete a checkout process on an e-commerce website. In this example, because the information submitted via the webform contains personal data (e.g., personally identifiable data) the system, in response to receiving an indication that the user has submitted the at least partially completed webform, may be configured to receive the indication described above with respect to Step 3740.


In various embodiments, a first party privacy management system or other system (e.g., privacy management system, marketing system, employee records database management system, etc.) may be configured to transmit an indication to the central repository system in response to collecting, receiving, or processing one or more pieces of personal data personal data.


In some embodiments, the indication may include, for example: (1) an indication of the type of personal data collected; (2) a purpose for which the personal data was collected; (3) a storage location of the personal data by the first party system; and/or (4) any other suitable information related to the one or more pieces of personal data or the handling of the personal data by the first party system. In particular embodiments, the system is configured to receive the indication via an application programming interface, a software application stored locally on a computing device within a network that makes up the first party system, or in any other suitable manner.


Continuing to Step 3750, the central repository system is configured to store, in computer memory, an indication of the personal data in association with the respective unique identifier. In various embodiments, the central repository system comprises a component of a first party system for the centralized storage of personal data collected by one or more various distributed computing systems (e.g., and software applications) operated by a particular entity for the purpose of collecting, storing, and/or processing personal data. In any embodiment described herein, the central repository system is a third-party data repository system that is separate from the one or more first party systems described above. In particular embodiments, for example, a third-party data repository system may be configured to maintain a central repository of personal data for a plurality of different entities.


In particular embodiments, the central repository system is configured to store a copy of the personal data (e.g., store a digital copy of the personal data in computer memory associated with the central repository system). In still any embodiment described herein, the central repository system is configured to store an indication of a storage location of the personal data within the first party system. For example, the system may be configured to store an indication of a physical location of a particular storage location (e.g., a physical location of a particular computer server or other data store) and an indication of a location of the personal data in memory on that particular storage location (e.g., a particular path or filename of the personal data, a particular location in a spreadsheet, CSV file, or other suitable document, etc.).


In various embodiments, the system may be configured to confirm receipt of valid consent to collect, store, and/or process personal data from the data subject prior to storing the indication of the personal data in association with the respective unique identifier. In such embodiments, the system may be configured to integrate with (e.g., interface with) a consent receipt management system (e.g., such as the consent receipt management system described more fully below). In such embodiments, the system may be configured to: (1) receive the indication that the first party system has collected, stored, and/or processed a piece of personal data; (2) identify, based at least in part on the piece of personal data, a data subject associated with the piece of personal data; (3) determine, based at least in part on one or more consent receipts received from the data subject (e.g., one or more valid receipt keys associated with the data subject), and one or more pieces of information associated with the piece of personal data, whether the data subject has provided valid consent to collect, store, and/or process the piece of personal data; (4) in response to determining that the data subject has provided valid consent, storing the piece of personal data in any manner described herein; and (5) in response to determining that the data subject has not provided valid consent, deleting the piece of personal data (e.g., not store the piece of personal data).


In particular embodiments, in response to determining that the data subject has not provided valid consent, the system may be further configured to: (1) automatically determine where the data subject's personal data is stored (e.g., by the first party system); and (2) in response to determining the location of the data (which may be on multiple computing systems), automatically facilitate the deletion of the data subject's personal data from the various systems (e.g., by automatically assigning a plurality of tasks to delete data across multiple business systems to effectively delete the data subject's personal data from the systems). In particular embodiments, the step of facilitating the deletion may comprise, for example: (1) overwriting the data in memory; (2) marking the data for overwrite; (2) marking the data as free (e.g., and deleting a directory entry associated with the data); and/or (3) any other suitable technique for deleting the personal data.


Next, at optional step 3760, the system is configured to take one or more actions based at least in part on the data stored in association with the unique identifier. In particular embodiments, the one or more actions may include, for example, responding to a data subject access request initiated by a data subject (e.g., or other individual on the data subject's behalf) associated with the unique identifier. In various embodiments, the system is configured to identify the unique identifier associated with the data subject making the data subject access request based on information submitted as part of the request.


Consent Receipt Management Systems


In particular embodiments, any entity (e.g., organization, company, etc.) that collects, stores, processes, etc. personal data may require one or more of: (1) consent from a data subject from whom the personal data is collected and/or processed; and/or (2) a lawful basis for the collection and/or processing of the personal data. In various embodiments, the entity may be required to, for example: (1) demonstrate that a data subject has freely given specific, informed, and unambiguous indication of the data subject's agreement to the processing of his or her personal data (e.g., in the form of a statement or clear affirmative action); (2) demonstrate that the entity received consent from a data subject in a manner clearly distinguishable from other matters (e.g., in an intelligible and easily accessible form, using clear and plain language, etc.); (3) enable a data subject to withdraw consent as easily as the data subject can give consent; (4) separate a data subject's consent from performance under any contract unless such processing is necessary for performance under the contract; etc.


In various embodiments, a consent receipt management system may be implemented in the context of any suitable privacy management system that is configured to ensure compliance with one or more legal or industry standards related to the collection and/or storage of private information (e.g., such as personal data). Various privacy and security policies (e.g., such as the European Union's General Data Protection Regulation, and other such policies) may provide data subjects (e.g., individuals, organizations, or other entities) with certain rights related to the data subject's personal data that is collected, stored, or otherwise processed by an organization. These rights may include, for example: (1) a right to erasure of the data subject's personal data (e.g., in cases where no legal basis applies to the processing and/or collection of the personal data; (2) a right to withdraw consent to the processing and/or collection of their personal data; (3) a right to receive the personal data concerning the data subject, which he or she has provided to an entity (e.g., organization), in a structured, commonly used and machine-readable format; and/or (4) any other right which may be afforded to the data subject under any applicable legal and/or industry policy.


In particular embodiments, the consent receipt management system is configured to: (1) enable an entity to demonstrate that valid consent has been obtained for each particular data subject for whom the entity collects and/or processes personal data; and (2) enable one or more data subjects to exercise one or more rights described herein.


The system may, for example, be configured to track data on behalf of an entity that collects and/or processes persona data related to: (1) who consented to the processing or collection of personal data (e.g., the data subject themselves or a person legally entitled to consent on their behalf such as a parent, guardian, etc.); (2) when the consent was given (e.g., a date and time); (3) what information was provided to the consenter at the time of consent (e.g., a privacy policy, what personal data would be collected following the provision of the consent, for what purpose that personal data would be collected, etc.); (4) how consent was received (e.g., one or more copies of a data capture form, webform, etc. via which consent was provided by the consenter); (5) when consent was withdrawn (e.g., a date and time of consent withdrawal if the consenter withdraws consent); and/or (6) any other suitable data related to receipt or withdrawal of consent.


In further embodiments, the system may be configured to provide data subjects with a centralized interface that is configured to: (1) provide information regarding each of one or more valid consents that the data subject has provided to one or more entities related to the collection and/or processing of their personal data; (2) provide one or more periodic reminders regarding the data subject's right to withdraw previously given consent (e.g., every 6 months in the case of communications data and metadata, etc.); (3) provide a withdrawal mechanism for the withdrawal of one or more previously provided valid consents (e.g., in a format that is substantially similar to a format in which the valid consent was given by the data subject); (4) refresh consent when appropriate (e.g., the system may be configured to elicit updated consent in cases where particular previously validly consented to processing is used for a new purpose, a particular amount of time has elapsed since consent was given, etc.).


In particular embodiments, the system is configured to manage one or more consent receipts between a data subject and an entity. In various embodiments, a consent receipt may include a record (e.g., a data record stored in memory and associated with the data subject) of consent, for example, as a transactional agreement where the data subject is already identified or identifiable as part of the data processing that results from the provided consent. In any embodiment described herein, the system may be configured to generate a consent receipt in response to a data subject providing valid consent. In some embodiments, the system is configured to determine whether one or more conditions for valid consent have been met prior to generating the consent receipt.


Exemplary Consent Receipt Data Flow



FIG. 38 depicts an exemplary data flow that a consent receipt management system may utilize in the recordation and management of one or more consent receipts. In particular embodiments, a third-party consent receipt management system may be configured to manage one or more consent receipts for a particular entity. As may be understood from this figure, a data subject may access an interaction interface (e.g., via the web) for interacting with a particular entity (e.g., one or more entity systems). The interaction interface (e.g., user interface) may include, for example, a suitable website, web form, user interface etc. The interaction interface may be provided by the entity. Using the interaction interface, a data subject may initiate a transaction with the entity that requires the data subject to provide valid consent (e.g., because the transaction includes the processing of personal data by the entity). The transaction may include, for example: (1) accessing the entity's website; (2) signing up for a user account with the entity; (3) signing up for a mailing list with the entity; (4) a free trial sign up; (5) product registration; and/or (6) any other suitable transaction that may result in collection and/or processing personal data, by the entity, about the data subject.


As may be understood from this disclosure, any particular transaction may record and/or require one or more valid consents from the data subject. For example, the system may require a particular data subject to provide consent for each particular type of personal data that will be collected as part of the transaction. The system may, in various embodiments, be configured to prompt the data subject to provide valid consent, for example, by: (1) displaying, via the interaction interface, one or more pieces of information regarding the consent (e.g., what personal data will be collected, how it will be used, etc.); and (2) prompt the data subject to provide the consent.


In response to the data subject (e.g., or the entity) initiating the transaction, the system may be configured to: (1) generate a unique receipt key (e.g., unique receipt ID); (2) associate the unique receipt key with the data subject (e.g., a unique subject identifier), the entity, and the transaction; and (3) electronically store (e.g., in computer memory) the unique receipt key. The system may further store a unique user ID (e.g., unique subject identifier) associated with the data subject (e.g., a hashed user ID, a unique user ID provided by the data subject, unique ID based on a piece of personal data such as an e-mail address, etc.).


In a particular embodiment, the unique consent receipt key is generated by a third-party consent receipt management system. The system may then be configured to associate the unique consent receipt key with the interaction interface, and further configured to associate the unique consent receipt key with a unique transaction ID generated as a result of a data subject transaction initiated via the interaction interface.


In particular embodiments, the unique consent receipt key may be associated with one or more receipt definitions, which may include, for example: (1) the unique transaction ID; (2) an identity of one or more controllers and/or representatives of the entity that is engaging in the transaction with the data subject (e.g., and contact information for the one or more controllers); (3) one or more links to a privacy policy associated with the transaction at the time that consent was given; (4) a listing of one or more data types for which consent to process was provided (e.g., email, MAC address, name, phone number, browsing history, etc.); (5) one or more methods used to collect data for which consent to process was provided (e.g., using one or more cookies, receiving the personal data from the data subject directly, etc.); (6) a description of a service (e.g., a service provided as part of the transaction such as a free trial, user account, etc.); (7) one or more purposes of the processing (e.g., for marketing purposes, to facilitate contact with the data subject, etc.); (8) a jurisdiction (e.g., the European Union, United States, etc.); (9) a legal basis for the collection of personal data (e.g., consent); (10) a type of consent provided by the data subject (e.g. unambiguous, explicit, etc.); (11) one or more categories or identities of other entities to whom the personal data may be transferred; (12) one or more bases of a transfer to a third party entity (e.g., adequacy, binding corporate rules, etc.); (13) a retention period for the personal data (e.g., how long the personal data will be stored); (14) a withdrawal mechanism (e.g., a link to a withdrawal mechanism); (15) a timestamp (e.g., date and time); (16) a unique identifier for the receipt; and/or (17) any other suitable information. FIG. 39 depicts an exemplary consent definition summary for a particular transaction (e.g., free trial signup).


In response to receiving valid consent from the data subject, the system is configured to transmit the unique transaction ID and the unique consent receipt key back to the third-party consent receipt management system for processing and/or storage. In any embodiment described herein, the system is configured to transmit the transaction ID to a data store associated with one or more entity systems (e.g., for a particular entity on behalf of whom the third-party consent receipt management system is obtaining and managing validly received consent). In further embodiments, the system is configured to transmit the unique transaction ID, the unique consent receipt key, and any other suitable information related to the validly given consent to the centralized data repository system described above for use in determining whether to store particular data and/or for assigning a unique identifier to a particular data subject for centralized data repository management purposes.


The system may be further configured to transmit a consent receipt to the data subject which may include, for example: (1) the unique transaction ID; (2) the unique consent receipt key; and/or (3) any other suitable data related to the validly provided consent. In some embodiments, the system is configured to transmit a consent receipt in any suitable format (e.g., JSON, HTML, e-mail, text, cookie, etc.). In particular embodiments, the receipt transmitted to the data subject may include a link to a subject rights portal via which the data subject may, for example: (1) view one or more provided valid consents; (2) withdraw consent; (3) etc.


Exemplary Data Subject Consent Receipt User Experience



FIGS. 40 and 41 depict exemplary screen displays that a data subject may encounter when providing consent to the processing of personal data. As shown in FIG. 40, a data subject (e.g., John Doe) may provide particular personal data (e.g., first and last name, email, company, job title, phone number, etc.) when signing up for a free trial with a particular entity via a trial signup interface 4000. As may be understood in light of this disclosure, the free trial may constitute a transaction between the data subject (e.g., user) and a particular entity providing the free trial. In various embodiments, the data subject (e.g., user) may encounter the interface shown in FIG. 40 in response to accessing a website associated with the particular entity for the free trial (e.g., a sign-up page).


In particular embodiments, the interface 4000 is configured to enable the user (e.g., data subject) to provide the information required to sign up for the free trial. As shown in FIG. 40, the interface further includes a listing of particular things that the data subject is consenting to (e.g., the processing of first name, last name, work email, company, job title, and phone number) as well as one or more purposes for the processing of such data (e.g., marketing information). The interface further includes a link to a Privacy Policy that governs the use of the information.


In various embodiments, in response to the user (e.g., data subject) submitting the webform shown in FIG. 40, the system is configured to generate a consent receipt that memorializes the user's provision of the consent (e.g., by virtue of the user submitting the form). FIG. 41 depicts an exemplary consent receipt 4100 in the form of a message transmitted to the data subject (e.g., via e-mail). As shown in this figure, the consent receipt includes, for example: (1) a receipt number (e.g., a hash, key, or other unique identifier); (2) what information was processed as a result of the user's consent (e.g., first and last name, email, company, job title, phone number, etc.); (3) one or more purposes of the processing (e.g., marketing information); (4) information regarding withdrawal of consent; (5) a link to withdraw consent; and (6) a timestamp at which the system received the consent (e.g., a time at which the user submitted the form in FIG. 40). In any embodiment described herein, the consent receipt transmitted to the user may include any other suitable information.



FIG. 42 depicts an exemplary log of consent receipts 4200 for a particular transaction (e.g., the free trial signup described above). As shown in this figure, the system is configured to maintain a database of consent receipts that includes, for example, a timestamp of each receipt, a unique key associated with each receipt, a customer ID associated with each receipt (e.g., the customer's e-mail address), etc. In particular embodiments, the centralized data repository system described above may be configured to cross-reference the database of consent receipts (e.g., or maintain the database) in response to receiving the indication that a first party system has received, stored, and/or processed personal data (e.g., via the free trial signup interface) in order to confirm that the data subject has provided valid consent prior to storing the indication of the personal data.


Exemplary Transaction Creation User Experience



FIGS. 43-54 depict exemplary user interfaces via which a user (e.g., a controller or other individual associated with a particular entity) may create a new transaction for which the system is configured to generate a new interaction interface (e.g., interface via which the system is configured to elicit and receive consent for the collection and/or processing of personal data from a data subject under the new transaction.


As shown in FIG. 43, the system is configured to display a dashboard of existing transactions 4300 that are associated with a particular entity. In the example shown in this figure, the dashboard includes, for example: (1) a name of each transaction; (2) a status of each transaction; (2) one or more data categories collected as part of each transaction; (3) a unique subject ID used as part of the transaction (e.g., email, device ID, etc.); (4) a creation date of each transaction; (5) a date of first consent receipt under each transaction; and (6) a total number of receipts received for each transaction. The dashboard further includes a Create New Transaction button, which a user may select in order to create a new transaction.


As may be understood in light of this disclosure, in various embodiments, the centralized data repository system described above may limit storage of personal data on behalf of a particular entity to specific personal data for which the particular entity has received consent from particular data subjects. Based on the exemplary dashboard of existing transactions shown in FIG. 43, for example, the system may be configured to not store any personal data collected, and/or processed other than in response to an indication that the data was collected through the free trial signup or product registration transaction.



FIG. 44 depicts an interface 4400 for creating a new transaction, which a user may access, for example, by selecting the Create New Transaction button shown in FIG. 43. As may be understood from this figure, when creating a new transaction, the user may enter, via one or more text entry forms, a name of the transaction, a description of the transaction, a group associated with the transaction, and/or any other suitable information related to the new transaction.


Continuing to FIG. 45, the system may be configured to prompt the user to select whether the new transaction is based on an existing processing activity. An existing processing activity may include, for example, any other suitable transaction or any other activity that involves the collection and/or processing of personal data. In response to the user selecting that the new transaction is not related to an existing processing activity (e.g., as shown in FIG. 45), the system may be configured to prompt the user, via one or more additional interfaces, to provide information regarding the new transaction.



FIGS. 47-54 depict exemplary user interfaces via which the user may provide additional information regarding the new transaction. In various embodiments, the system may be configured to prompt the user to provide the information via free-form text entry, via one or more drop down menus, by selecting one or more predefined selections, or in any suitable manner. In some embodiments, the system is configured to prompt the user to provide one or more standardized pieces of information regarding the new transaction. In any embodiment described herein, the system is configured to enable a particular entity (e.g., organization, company, etc.) to customize one or more questions or prompts that the system displays to a user creating a new transaction.


As shown in FIG. 46, the system may, for example, prompt the user, via the user interface, to: (1) describe a process or service that the consent under the transaction relates to; (2) provide a public URL where consent is or will be collected; (3) provide information regarding how consent is being collected (e.g., via a website, application, device, paper form, etc.); (4) provide information regarding one or more data elements that will be processed based on the consent provided by the data subject (e.g., what particular personal data will be collected); and (5) provide information regarding what data elements are processed by one or more background checks (e.g., credit check and/or criminal history).


Continuing to FIG. 47, the system may be configured to prompt the user to provide data related to, for example: (1) one or more elements that will be used to uniquely identify a data subject; (2) a purpose for seeking consent; (3) what type of consent is sought (e.g., unambiguous, explicit, not sure, etc.); (4) who is the data controller in charge of the processing of the personal data (e.g., the legal entity responsible); (5) a contact address (e.g., for the data controller; (6) etc.


As shown in FIG. 48, the system may be further configured to prompt the user to provide data regarding, for example: (1) who the contact person is for the transaction (e.g., a job title, name, etc. of the contact person); (2) a contact email (e.g., an email address that a data subject can contact to get more information about the transaction, consent, etc.); (3) a contact telephone number (e.g., a telephone number that a data subject can contact to get more information about the transaction, consent, etc.); (4) an applicable jurisdiction for the processing (e.g., European Union, United States, Other, etc.), which may include one or more jurisdictions; (5) a URL of a privacy policy associated with the transaction; (6) etc.


Next, as shown in FIG. 49, the system may be further configured to prompt the user to provide data regarding: (1) whether the personal data will be shared with one or more third parties; (2) a name of the one or more third parties; (3) whether the processing of the personal data will involve a transfer of the personal data outside of the original jurisdiction; (4) a listing of one or more destination countries, regions, or other jurisdictions that will be involved in any international transfer; (5) a process for a data subject to withdraw consent; (6) a URL for the withdrawal mechanism; (7) etc. FIG. 50 depicts a user interface that includes additional data prompts for the user to respond to regarding the new transaction. As shown in FIG. 50, the system may be further configured to prompt the user to provide data regarding, for example: (1) what the retention period is for the personal data (e.g., how long the personal data will be stored in identifiable form, a period before anonymization of the personal data, etc.); and/or (2) a life span of the consent (e.g., a period of time during which the consent is assumed to be valid).



FIG. 51 shows an exemplary user interface for selecting a processing activity in response to the user indicating that the new transaction is based on an existing processing activity. The user may, for example, use a drop-down menu to select a suitable existing processing activity. In particular embodiments, the system is configured to populate the drop-down menu with one or more processing activities from a data model associated with the processing activity. The system may then be configured to substantially automatically populate one or more responses to the questions described above based at least in part on the data model (e.g., automatically include particular data elements collected as part of the processing activity, etc.).


In particular embodiments, the system is further configured to enable a controller (e.g., or other user on behalf of the entity) to search for one or more consent receipts received for a particular data subject (e.g., via a unique subject identifier). FIG. 52 depicts a search for a unique subject identifier that includes an e-mail address. As shown in this figure, the unique subject identifier (e.g., john.doe@gmail.com) has one associated consent receipt having a receipt number, a receipt date and time, and a withdrawal date. FIG. 53 depicts an additional exemplary search results page indicating one or more results for consent receipts associated with the unique subject identifier of john.doe@gmail.com. As shown in this figure, the system may be configured to display a process name (e.g., transaction name), receipt number, consent date, status, withdrawal date, and other suitable information for one or more consent receipts associated with the searched for unique subject identifier.


As may be understood in light of this disclosure, in response to a user creating a new transaction, the system may be configured to generate a web form, web page, piece of computer code, etc. for the collection of consent by a data subject as part of the new transaction. FIG. 54 depicts an exemplary dashboard of consent receipt management implementation code which the system may automatically generate for the implementation of a consent receipt management system for a particular transaction. As shown in this figure, the system displays particular computer code (e.g., in one or more different programming language) that the system has generated. A user may place the generated code on a webpage or other location that the user desires to collect consent.


Exemplary Consent Receipt Management System Architecture



FIG. 55 is a block diagram of a Consent Receipt Management System 5500 according to a particular embodiment. In some embodiments, the Consent Receipt Management System 5500 is configured to interface with at least a portion of each respective organization's Privacy Compliance System in order generate, capture, and maintain a record of one or more consents to process, collect, and or store personal data from one or more data subjects.


As may be understood from FIG. 55, the Consent Receipt Management System 5500 includes one or more computer networks 115, a Consent Receipt Management Server 5510, a Consent Receipt Capture Server 5520 (e.g., which may be configured to run one or more virtual browsers 5525 as described herein), One or More Consent Web Form Hosting Servers 5530, one or more databases 140, and one or more remote computing devices 5550 (e.g., a desktop computer, laptop computer, tablet computer, etc.). In particular embodiments, the one or more computer networks 115 facilitate communication between the Consent Receipt Management Server 5510, a Consent Receipt Capture Server 5520, One or More Consent Web Form Hosting Servers 5530, one or more databases 140, and one or more remote computing devices 5550.


The one or more computer networks 115 may include any of a variety of types of wired or wireless computer networks such as the Internet, a private intranet, a public switch telephone network (PSTN), or any other type of network. The communication link between Consent Receipt Capture Server 5520 and Database 140 may be, for example, implemented via a Local Area Network (LAN) or via the Internet.


Exemplary Consent Receipt Management System Platform


Various embodiments of a Consent Receipt Management System 5500 may be implemented in the context of any suitable system (e.g., a privacy compliance system). For example, the Consent Receipt Management System 5500 may be implemented to facilitate receipt and maintenance of one or more valid consents provided by one or more data subjects for the processing and/or at least temporary storage of personal data associated with the data subjects. In particular embodiments, the system may implement one or more modules in order to at least partially ensure compliance with one or more regulations (e.g., legal requirements) related to the collection and/or storage of personal data. Various aspects of the system's functionality may be executed by certain system modules, including a Consent Receipt Management Module 5600, a Consent Expiration and Re-Triggering Module 5700, and a Consent Validity Scoring Module 5900. These modules are discussed in greater detail below.


Although the system may be configured to execute the functions described in the modules as a series of steps, it should be understood in light of this disclosure that various embodiments of the Consent Receipt Management Module 5600, Consent Expiration and Re-Triggering Module 5700, and Consent Validity Scoring Module 5900 described herein may perform the steps described below in an order other than in which they are presented. In still any embodiment described herein, the Consent Receipt Management Module 5600, Consent Expiration and Re-Triggering Module 5700, and Consent Validity Scoring Module 5900 may omit certain steps described below. In any embodiment described herein, the Consent Receipt Management Module 5600, Consent Expiration and Re-Triggering Module 5700, and Consent Validity Scoring Module 5900 may perform steps in addition to those described (e.g., such as one or more steps described with respect to one or more other modules, etc.).


Consent Receipt Generation


In various embodiments, a consent receipt management system is configured to generate a consent receipt for a data subject that links to (e.g., in computer memory) metadata identifying a particular purpose of the collection and/or processing of personal data that the data subject consented to, a capture point of the consent (e.g., a copy of the web form or other mechanism through which the data subject provided consent, and other data associated with one or more ways in which the data subject granted consent.


The system may, for example, be configured to track data on behalf of an entity that collects and/or processes persona data related to: (1) who consented to the processing or collection of personal data (e.g., the data subject themselves or a person legally entitled to consent on their behalf such as a parent, guardian, etc.); (2) when the consent was given (e.g., a date and time); (3) what information was provided to the consenter at the time of consent (e.g., a privacy policy, what personal data would be collected following the provision of the consent, for what purpose that personal data would be collected, etc.); (4) how consent was received (e.g., one or more copies of a data capture form, web form, etc. via which consent was provided by the consenter); (5) when consent was withdrawn (e.g., a date and time of consent withdrawal if the consenter withdraws consent); and/or (6) any other suitable data related to receipt or withdrawal of consent.


Using an interaction interface, a data subject may initiate a transaction with the entity that requires the data subject to provide valid consent (e.g., because the transaction includes the processing of personal data by the entity). The transaction may include, for example: (1) accessing the entity's website (e.g., which may utilize one or more cookies and/or other tracking technologies to monitor the data subject's activity while accessing the website or other websites; enable certain functionality on one or more pages of the entity's website, such as location services; etc.); (2) signing up for a user account with the entity; (3) signing up for a mailing list with the entity; (4) a free trial sign up; (5) product registration; and/or (6) any other suitable transaction that may result in collection and/or processing of personal data, by the entity, about the data subject.


As may be understood from this disclosure, any particular transaction may record and/or require one or more valid consents from the data subject. For example, the system may require a particular data subject to provide consent for each particular type of personal data that will be collected as part of the transaction. The system may, in various embodiments, be configured to prompt the data subject to provide valid consent, for example, by: (1) displaying, via the interaction interface, one or more pieces of information regarding the consent (e.g., what personal data will be collected, how it will be used, etc.); and (2) prompt the data subject to provide the consent.


In response to the data subject (e.g., or the entity) initiating the transaction, the system may be configured to: (1) generate a unique receipt key (e.g., unique receipt ID); (2) associate the unique receipt key with the data subject (e.g., via a unique subject identifier), the entity, and the transaction; and (3) electronically store (e.g., in computer memory) the unique receipt key. The system may further store a unique user ID (e.g., unique subject identifier) associated with the data subject (e.g., a hashed user ID, a unique user ID provided by the data subject, unique ID based on a piece of personal data such as an e-mail address, etc.). In any embodiment described herein, the system may be configured to store computer code associated with the capture of the consent by the system. The system may, for example, store computer code associated with a web form or other consent capture mechanism. In any embodiment described herein, the system is configured to capture one or more images of one or more webpages via which a data subject provides (e.g., provided) consent (e.g., substantially at the time at which the data subject provided consent). This may, for example, enable an entity or other organization to demonstrate one or more conditions under which consent was received for a particular data subject in order to comply with one or more regulations related to the securing of consent.


In a particular embodiment, the system is configured to: (1) use a virtual web browser to access a URL via which a data subject provided consent for a particular processing activity or other transaction; (2) capture one or more images of one or more web sites at the URL, the one or more images containing one or more web forms or other portions of the one or more web pages via which the data subject provided one or more inputs that demonstrated the data subject's consent; and store the one or more images in association with metadata associated with one or more consent receipts related to the received consent. In some embodiments, the system may be configured to: (1) scan, via the virtual web browser, a particular website and/or URL; (2) identify a web form at the particular website and/or URL; and (3) capture one or more images (e.g., screenshots) of the web form (e.g., in an unfilled-out state). In some embodiments, the system is configured to use a virtual web browser that corresponds to a web browser via which the user completed the web form. For example, the system may be configured to identify a particular web browser utilized by the data subject and initiate the virtual browsing session using the identified web browser.



FIG. 56 depicts an exemplary Consent Receipt Management Module 5600 that includes steps that the system may execute in order to generate a consent receipt. As may be understood from FIG. 56, the system may be configured to: (1) provide a user interface for initiating a transaction between an entity and a data subject at Step S610 (e.g., such as a web form via which the data subject may authorize or consent to the processing, collection, or storage of personal data associated with the transaction); (2) receive a request to initiate a transaction between the entity and the data subject at Step S620 (e.g., from a computing device associated with the data subject via a web form located at a particular URL, on a particular webpage, etc.); (3) in response to receiving the request, generate, by a third party consent receipt management system, a unique consent receipt key at Step S630; (4) in response to receiving the request, initiate a virtual browsing session on a second computing device also at Step S630 (e.g., a second computing device associated with the third party consent receipt management system); (5) use the virtual browser to access the particular URL or particular webpage that hosts the web form at Step S640; (6) capture, via the virtual browser, one or more images of the web form, the URL, and/or the particular webpage at Step S650; (7) store a unique subject identifier associated with the data subject, the unique consent receipt key, a unique transaction identifier associated with the transaction, and the one or more images in computer memory at Step S660; and (8) electronically associate the unique subject identifier, the unique consent receipt key, the unique transaction identifier, and the one or more images.



FIG. 40 depicts an exemplary screen display that a data subject may encounter when providing consent to the processing of personal data. As shown in FIG. 40, a data subject (e.g., John Doe) may provide particular personal data (e.g., first and last name, email, company, job title, phone number, etc.) when signing up for a free trial with a particular entity. As may be understood in light of this disclosure, the free trial may constitute a transaction between the data subject (e.g., user) and a particular entity providing the free trial. In various embodiments, the data subject (e.g., user) may encounter the interface shown in FIG. 40 in response to accessing a web site associated with the particular entity for the free trial (e.g., a sign-up page).


In particular embodiments, the interface is configured to enable the user (e.g., data subject) to provide the information required to sign up for the free trial. As shown in FIG. 40, the interface further includes a listing of particular things that the data subject is consenting to (e.g., the processing of first name, last name, work email, company, job title, and phone number) as well as one or more purposes for the processing of such data (e.g., marketing information). The interface further includes a link to a Privacy Policy that governs the use of the information.


In various embodiments, in response to the user (e.g., data subject) submitting the webform shown in FIG. 40, the system is configured to generate a consent receipt that memorializes the user's provision of the consent (e.g., by virtue of the user submitting the form). FIG. 40 depicts an uncompleted version of the web form from FIG. 40 that the system may capture via a virtual browsing session described herein and store in association with the consent receipt. FIG. 41 depicts an exemplary consent receipt in the form of a message transmitted to the data subject (e.g., via e-mail). As shown in this figure, the consent receipt includes, for example: (1) a receipt number (e.g., a hash, key, or other unique identifier); (2) what information was processed as a result of the user's consent (e.g., first and last name, email, company, job title, phone number, etc.); (3) one or more purposes of the processing (e.g., marketing information); (4) information regarding withdrawal of consent; (5) a link to withdraw consent; and (6) a timestamp at which the system received the consent (e.g., a time at which the user submitted the form in FIG. 2). In any embodiment described herein, the consent receipt transmitted to the user may include any other suitable information (e.g., such as a link to an unfilled out version of the web form via which the user provided consent, etc.)


In particular embodiments, the system is configured to generate a code associated with a particular web form. The system may then associate the code with a particular website, mobile application, or other location that hosts the web form.


In any embodiment described herein, the system is configured to capture one or more images (e.g., and/or one or more copies) of one or more privacy policies and/or privacy notices associated with the transaction or processing activity. This may include, for example, one or more privacy policies and/or privacy notices that dictate one or more terms under which the data subject provided consent (e.g., consent to have personal data associated with the data subject processed, collected, and/or stored). The system may be further configured to store and associate the captured one or more privacy policies and/or privacy notices with one or more of the unique subject identifiers, the unique consent receipt key, the unique transaction identifier, etc.


In various embodiments, the system is configured to generate a web form for use by an entity to capture consent from one or more data subjects. In any embodiment described herein, the system is configured to integrate with an existing web form. The system may, for example, be configured to record each particular selection and/or text entry by the data subject via the web form and capture (e.g., via the virtual browsing session described above) one or more images (e.g., screenshots) which may demonstrate what the web form looked like at the time the consent was provided (e.g., in an unfilled out state).


As may be understood in light of this disclosure, in response to a user creating a new transaction on behalf of an entity, the system may be configured to generate a web form, web page, piece of computer code, etc. for the collection of consent by a data subject as part of the new transaction. FIG. 54 depicts an exemplary dashboard of consent receipt management implementation code which the system may automatically generate for the implementation of a consent receipt management system for a particular transaction. As shown in this figure, the system displays particular computer code (e.g., in one or more different programming language) that the system has generated. A user may place the generated code on a webpage, within a mobile application, or other location that the user desires to collect consent.


In some embodiments, the system is configured to capture and store the underlying code for a particular web form (e.g., HTML, or other suitable computer code), which may, for example, be used to demonstrate how the consent from the data subject was captured at the time of the capture. In some embodiments, the system may be configured to capture the underlying code via the virtual browsing session described above.


In particular embodiments, the system is configured to enable an entity to track one or more consent provisions or revocations received via one or more venues other than via a computing device. For example, a data subject may provide or revoke consent via: (1) a phone call; (2) via paper (e.g., paper mailing); and/or (3) any other suitable avenue. The system may, for example, provide an interface via which a customer support representation can log a phone call from a data subject (e.g., a recording of the phone call) and generate a receipt indicating that the call occurred, what was requested on the call, whether the request was fulfilled, and a recording of the call. Similarly, the system may be configured to provide an interface to scan or capture one or more images of one or more consents provided or revoked via mail (e.g., snail mail).


Consent Receipts—Automatic Expiration and Triggering of Consent Recapture


In particular embodiments, the consent receipt management system is configured to: (1) automatically cause a prior, validly received consent to expire (e.g., in response to a triggering event); and (2) in response to causing the previously received consent to expire, automatically trigger a recapture of consent. In particular embodiments, the system may, for example, be configured to cause a prior, validly received consent to expire in response to one or more triggering events such as: (1) a passage of a particular amount of time since the system received the valid consent (e.g., a particular number of days, weeks, months, etc.); (2) one or more changes to a purpose of the data collection for which consent was received (e.g., or one or more other changes to one or more conditions under which the consent was received; (3) one or more changes to a privacy policy associated with the consent; (3) one or more changes to one or more rules (e.g., laws, regulations, etc.) that govern the collection or demonstration of validly received consent; and/or (4) any other suitable triggering event or combination of events. In particular embodiments, such as any embodiment described herein, the system may be configured to link a particular consent received from a data subject to a particular version of a privacy policy, to a particular version of a web form through which the data subject provided the consent, etc. The system may then be configured to detect one or more changes to the underlying privacy policy, consent receipt methodology, etc., and, in response, automatically expire one or more consents provided by one or more data subjects under a previous version of the privacy policy or consent capture form.


In various embodiments, the system may be configured to substantially automatically expire a particular data subject's prior provided consent in response to a change in location of the data subject. The system may, for example, determine that a data subject is currently located in a jurisdiction, country, or other geographic location other than the location in which the data subject provided consent for the collection and/or processing of their personal data. The system may be configured to determine that the data subject is in a new location based at least in part on, for example, a geolocation (e.g., GPS location) of a mobile computing device associated with the data subject, an IP address of one or more computing devices associated with the data subject, etc.). As may be understood in light of this disclosure, one or more different countries, jurisdictions, etc. may impose different rules, regulations, etc. related to the collection, storage, and processing of personal data. As such, in response to a user moving to a new location (e.g., or in response to a user temporarily being present in a new location), the system may be configured to trigger a recapture of consent based on one or more differences between one or more rules or regulations in the new location and the original location from which the data subject provided consent. In some embodiments, the system may substantially automatically compare the one or more rules and/or regulations of the new and original locations to determine whether a recapture of consent is necessary.


In particular embodiments, in response to the automatic expiration of consent, the system may be configured to automatically trigger a recapture of consent (e.g., based on the triggering event). The system may, for example, prompt the data subject to re-provide consent using, for example: (1) an updated version of the relevant privacy policy; (2) an updated web form that provides one or more new purposes for the collection of particular personal data; (3) one or more web forms or other consent capture methodologies that comply with one or more changes to one or more legal, industry, or other regulations; and/or (4) etc.



FIG. 57 depicts an exemplary Consent Expiration and Re-Triggering Module 5700 according to a particular embodiment. In various embodiments, when executing the Consent Expiration and Re-Triggering Module 5700, the system is configured to, beginning at Step S710, by determining that a triggering event has occurred. In various embodiments, the triggering event may include nay suitable triggering event such as, for example: (1) passage of a particular amount of time since a valid consent was received; (2) determination that a data subject for which the system has previously received consent is now located in a new jurisdiction, country, geographic location, etc.; (3) a change to one or more uses of data for which the data subject provided consent for the collection and/or processing; (4) a change to one or more privacy policies; and/or (5) any other suitable triggering event related to one or more consents received by the system.


Continuing to Step S720, the system is configured to cause an expiration of at least one validly received consent in response to determining that the triggering event has occurred. In response to causing the expiration of the at least one consent, the system may be configured to cease processing, collecting, and/or storing personal data associated with the prior provided consent (e.g., that has now expired). The system may then, at Step S730, in response to causing the expiration of the at least one validly received consent, automatically trigger a recapture of the at least one expired consent.


Consent Preference Modification Capture Systems


In particular embodiments, the consent receipt management system is configured to provide a centralized repository of consent receipt preferences for a plurality of data subjects. In various embodiments, the system is configured to provide an interface to the plurality of data subjects for modifying consent preferences and capture consent preference changes. The system may provide the ability to track the consent status of pending and confirmed consents. In any embodiment described herein, the system may provide a centralized repository of consent receipts that a third-party system may reference when taking one or more actions related to a processing activity. For example, a particular entity may provide a newsletter that one or more data subjects have consented to receiving. Each of the one or more data subjects may have different preferences related to how frequently they would like to receive the newsletter, etc. In particular embodiments, the consent receipt management system may receive a request from a third-party system to transmit the newsletter to the plurality of data subjects. The system may then cross-reference an updated consent database to determine which of the data subjects have a current consent to receive the newsletter, and whether transmitting the newsletter would conflict with any of those data subjects' particular frequency preferences. The system may then be configured to transmit the newsletter to the appropriate identified data subjects.


In particular embodiments, the system may be configured to identify particular consents requiring a double opt-in (e.g., an initial consent followed by a confirmatory consent in respond to generation of an initial consent receipt in order for consent to be valid). In particular embodiments, the system may track consents with a “half opt-in” consent status and take one or more steps to complete the consent (e.g., one or more steps described below with respect to consent conversion analytics).


The system may also, in particular embodiments, proactively modify subscriptions or other preferences for users in similar demographics based on machine learning of other users in that demographic opting to make such modifications. For example, the system may be configured to modify a user's preferences related to a subscription frequency for a newsletter or make other modifications in response to determining that one or more similarly situated data subjects (e.g., subjects of similar age, gender, occupation, etc.) have mad such modifications. In various embodiments, the system may be configured to increase a number of data subjects that maintain consent to particular processing activities while ensuring that the entity undertaking the processing activities complies with one or more regulations that apply to the processing activities.


Consent Conversion Analytics


In particular embodiments, a consent receipt management system is configured to track and analyze one or more attributes of a user interface via which data subjects are requested to provide consent (e.g., consent to process, collect, and/or store personal data) in order to determine which of the one or more attributes are more likely to result in a successful receipt of consent from a data subject. For example, the system may be configured to analyze one or more instances in which one or more data subjects provided or did not provide consent in order to identify particular attributes and/or factors that may increase a likelihood of a data subject providing consent. The one or more attributes may include, for example: (1) a time of day at which particular data subjects provided/did not provide consent; (2) a length of an e-mail requesting consent in response to which particular data subjects provided/did not provide consent; (3) a number of e-mails requesting consent in a particular time period sent to particular data subjects in response to at least one of which particular data subjects provided/did not provide consent; (4) how purpose-specific a particular email requesting consent was; (5) whether an e-mail requesting consent provided one or more opt-down options (e.g., one or more options to consent to receive a newsletter less frequently); (5) whether the e-mail requesting consent included an offer; (6) how compelling the offer was; (7) etc. The system may then aggregate these analyzed attributes and whether specific attributes increased or decreased a likelihood that a particular data subject may provide consent and use the aggregated analysis to automatically design a user interface, e-mail message, etc. that is configured to maximize consent receipt conversion based on the analytics.


In particular embodiments, the system may further be configured to generate a customized interface or message requesting consent for a particular data subject based at least in part on an analysis of similarly situated data subjects that provided consent based on particular attributes of an e-mail message or interface via which the consent was provided. For example, the system may identify one or more similarly situated data subjects based at least in part on: (1) age; (2) gender; (3) occupation; (4) income level; (5) interests, etc. In particular embodiments, a male between the ages of 18-25 may, for example, respond to a request for consent with a first set of attributes more favorably than a woman between the ages of 45 and 50 (e.g., who may respond more favorably to a second set of attributes).


The system may be configured to analyze a complete consent journey (e.g., from initial consent, to consent confirmation in cases where a double opt-in is required to validly receive consent). In particular embodiments, the system is configured to design interfaces particularly to capture the second step of a double opt-in consent or to recapture consent in response to a change in conditions under which consent was initially provided.


In particular embodiments, the system may be configured to use the analytics described herein to determine a particular layout, interaction, time of day, number of e-mails, etc. cause the highest conversion rate across a plurality of data subjects (e.g., across a plurality of similarly situated data subjects of a similar demographic).



FIG. 58 depicts an exemplary consent conversion analysis interface. As may be understood from this figure, the system may be configured to track, for example: (1) total unique visitors to a particular website (e.g., to which the system may attempt to obtain consent for particular data processing); (2) overall opt-in percentage of consent; (3) opt-in percent by actions; (4) opt-out percentage by actions, etc.


Consent Validity Scoring Systems


In particular embodiments, a consent receipt management system may include one or more consent validity scoring systems. In various embodiments, a consent validity scoring system may be configured to detect a likelihood that a user is correctly consenting via a web form. The system may be configured to determine such a likelihood based at least in part on one or more data subject behaviors while the data subject is completing the web form in order to provide consent. In various embodiments, the system is configured to monitor the data subject behavior based on, for example: (1) mouse speed; (2) mouse hovering; (3) mouse position; (4) keyboard inputs; (5) an amount of time spent completing the web form; and/or (5) any other suitable behavior or attribute. The system may be further configured to calculate a consent validity score for each generated consent receipt based at least in part on an analysis of the data subject's behavior (e.g., inputs, lack of inputs, time spent completing the consent form, etc.).


In particular embodiments, the system is configured to monitor the data subject's (e.g., the user's) system inputs while the data subject is competing a particular web form. In particular embodiments actively monitoring the user's system inputs may include, for example, monitoring, recording, tracking, and/or otherwise taking account of the user's system inputs. These system inputs may include, for example: (1) one or more mouse inputs; (2) one or more keyboard (e.g., text) inputs; (3) one or more touch inputs; and/or (4) any other suitable inputs (e.g., such as one or more vocal inputs, etc.). In any embodiment described herein, the system is configured to monitor one or more biometric indicators associated with the user such as, for example, heart rate, pupil dilation, perspiration rate, etc.


In particular embodiments, the system is configured to monitor a user's inputs, for example, by substantially automatically tracking a location of the user's mouse pointer with respect to one or more selectable objects on a display screen of a computing device. In particular embodiments, the one or more selectable objects are one or more selectable objects (e.g., indicia) that make up part of the web form. In still any embodiment described herein, the system is configured to monitor a user's selection of any of the one or more selectable objects, which may include, for example, an initial selection of one or more selectable objects that the user subsequently changes to selection of a different one of the one or more selectable objects.


In any embodiment described herein, the system may be configured to monitor one or more keyboard inputs (e.g., text inputs) by the user that may include, for example, one or more keyboard inputs that the user enters or one or more keyboard inputs that the user enters but deletes without submitting. The user may, for example, initially begin typing a first response, but delete the first response and enter a second response that the user ultimately submits. In various embodiments of the system described herein, the system is configured to monitor the un-submitted first response in addition to the submitted second response.


In still any embodiment described herein, the system is configured to monitor a user's lack of input. For example, a user may mouse over a particular input indicium (e.g., a selection from a drop-down menu, a radio button or other selectable indicia) without selecting the selection or indicia. In particular embodiments, the system is configured to monitor such inputs. As may be understood in light of this disclosure, a user that mouses over a particular selection and lingers over the selection without actually selecting it may, for example, be demonstrating an uncertainty regarding the consent the user is providing.


In any embodiment described herein, the system is configured to monitor any other suitable input by the user. In various embodiments, this may include, for example: (1) monitoring one or more changes to an input by a user; (2) monitoring one or more inputs that the user later removes or deletes; (3) monitoring an amount of time that the user spends providing a particular input; and/or (4) monitoring or otherwise tracking any other suitable information.


In various embodiments, the system is further configured to determine whether a user has accessed and/or actually scrolled through a privacy policy associated with a particular transaction. The system may further determine whether a user has opened an e-mail that includes a summary of the consent provided by the user after submission of the web form. The system may then be configured to use any suitable information related to the completion of the web form or other user activity to calculate a consent validity score. In various embodiments, the consent validity score may indicate, for example: (1) an ease at which the user was able to complete a particular consent form; (2) an indication that a particular consent may or may not have been freely given; (3) etc. In particular embodiments, the system may be configured to trigger a recapture of consent in response to calculating a consent validity score for a particular consent that is below a particular amount. In other embodiment, the system may be configured to confirm a particular user's consent depending on a calculated validity score for the consent.



FIG. 59 depicts an exemplary Consent Validity Scoring Module 5900. As may be understood from FIG. 59, in various embodiments, when executing the Consent Validity Scoring Module 5900, the system begins at Step S910, by identifying and analyzing one or more data subject behaviors while the data subject is providing consent for particular data processing. IN various embodiments, the one or more data subject behaviors may include any suitable data subject behavior described herein. Continuing to Step S920, the system is configured to determine a validity score for the provided consent based at least in part on the analysis at Step S910. The system may then be configured to optionally trigger a recapture of consent based on the determined validity score at Step S930. The system may, for example, be configured to capture a recapture of consent in response to determining that that the validity score is below a predetermined level.


Consent Conversion Optimization Systems


In particular embodiments, any entity (e.g., organization, company, etc.) that collects, stores, processes, etc. personal data may require one or more of: (1) consent from a data subject from whom the personal data is collected and/or processed; and/or (2) a lawful basis for the collection and/or processing of the personal data. In various embodiments, the entity may be required to, for example: (1) demonstrate that a data subject has freely given specific, informed, and unambiguous indication of the data subject's agreement to the processing of his or her personal data (e.g., in the form of a statement or clear affirmative action); (2) demonstrate that the entity received consent from a data subject in a manner clearly distinguishable from other matters (e.g., in an intelligible and easily accessible form, using clear and plain language, etc.); (3) enable a data subject to withdraw consent as easily as the data subject can give consent; (4) separate a data subject's consent from performance under any contract unless such processing is necessary for performance under the contract; etc.


In particular, when storing or retrieving information from an end user's device, an entity may be required to receive consent from the end user for such storage and retrieval. Web cookies are a common technology that may be directly impacted by the consent requirements discussed herein. Accordingly, an entity that use cookies (e.g., on one or more webpages, such as on one or more webpages that make up a website or series of websites) may be required to use one or more banners, pop-ups or other user interfaces on the website (e.g., or a particular webpage of the website) in order to capture consent from end-users to store and retrieve cookie data. In particular, an entity may require consent before storing one or more cookies on a user's device and/or tracking the user via the one or more cookies. In various embodiments, an individual's consent to an entity's use of cookies may require, for example, an explicit affirmative action by the individual (e.g., continued browsing on a webpage and/or series of webpages following display of a cookie notice, clicking an affirmative consent to the use of cookies via a suitable interface, scrolling a webpage beyond a particular point, or undertaking any other suitable activities that requires the individual (e.g., user) to actively proceed with use of the page in order to demonstrate consent (e.g., explicit and/or implied consent) to the use of cookies. In various embodiments, the system may be further configured to optimize a consent interface for, for example, one or more software applications (e.g., one or more mobile applications) or any other suitable application that may require a user to provide consent via any suitable computing device.


The consent required to store and retrieve cookie data may, for example, require a clear affirmative act establishing a freely given, specific, informed and unambiguous indication of a data subject's agreement to the processing of personal data. This may include, for example: (1) ticking a box when visiting an internet website; (2) choosing technical settings for information security services (e.g., via a suitable user interface); (3) performing a scrolling action; (4) clicking on one or more internal links of a webpage; and/or (5) or any other suitable statement or conduct which clearly indicates in this context the data subject's acceptance of the proposed processing of their personal data.


In various embodiments, pre-ticked boxes (or other preselected options) or inactivity may not be sufficient to demonstrate freely given consent. For example, an entity may be unable to rely on implied consent (e.g., “by visiting this website, you accept cookies”). Without a genuine and free choice by data subjects and/or other end users, an entity may be unable to demonstrate valid consent (e.g., and therefore unable to utilize cookies in association with such data subjects and/or end users).


A particular entity may use cookies for any number of suitable reasons. For example, an entity may utilize: (1) one or more functionality cookies (which may, for example, enhance the functionality of one or more webpages or a website by storing user preferences such as the user's location for a weather or news website); (2) one or more performance cookies (which may, for example, help to improve performance of the website on the user's device to provide a better user experience); (3) one or more targeting cookies (which may, for example, be used by advertising partners to build a profile of interests for a user in order to show relevant advertisements through the website; (4) etc. Cookies may also be used for any other suitable reason such as, for example: (1) to measure and improve site quality through analysis of visitor behavior (e.g., through ‘analytics’); (2) to personalize pages and remember visitor preferences; (3) to manage shopping carts in online stores; (4) to track people across websites and deliver targeted advertising; (5) etc.


Under various regulations, an entity may not be required to obtain consent to use every type of cookie utilized by a particular website. For example, strictly necessary cookies, which may include cookies that are necessary for a website to function, may not require consent. An example of strictly necessary cookies may include, for example, session cookies. Session cookies may include cookies that are strictly required for website functionality and don't track user activity once the browser window is closed. Examples of session cookies include: (1) faceted search filter cookies; (2) user authentication cookies; (3) cookies that enable shopping cart functionality; (4) cookies used to enable playback of multimedia content; (5) etc.


Cookies which may trigger a requirement for obtaining consent may include cookies such as persistent cookies. Persistent cookies may include, for example, cookies used to track user behavior even after the use has moved on from a website or closed a browser window.


In order to comply with particular regulations, an entity may be required to: (1) present visitors with information about the cookies a website uses and the purpose of the cookies (e.g., any suitable purpose described herein or other suitable purpose); (2) obtain consent to use those cookies (e.g., obtain separate consent to use each particular type of cookies used by the web site); and (3) provide a mechanism for visitors to withdraw consent (e.g., that is as straightforward as the mechanism through which the visitors initially provided consent). In any embodiment described herein, an entity may only need to receive valid consent from any particular visitor a single time (e.g., returning visitors may not be required to provide consent on subsequent visits to the site). In particular embodiments, although they may not require explicit consent to use, an entity may be required to notify a visitor of any strictly necessary cookies used by a website.


Because entities may desire to maximize a number of end users and other data subjects that provide this valid consent (e.g., for each type of cookie for which consent may be required), it may be beneficial to provide a user interface through which the users are more likely to provide such consent. By receiving consent from a high number of users, the entity may, for example: (1) receive higher revenue from advertising partners; (2) receive more traffic to the website because users of the website may enjoy a better experience while visiting the website; etc. In particular, certain webpage functionality may require the use of cookies in order for a webpage to fully implement the functionality. For example, a national restaurant chain may rely on cookies to identify a user's location in order to direct an order placed via the chain's webpage to the appropriate local restaurant (e.g., the restaurant that is located most proximate to the webpage user). A user that is accessing the restaurant's webpage that has not provided the proper consent to the webpage to utilize the user's location data may become frustrated by the experience because some of the webpage features may appear broken. Such a user may, for example, ultimately exit the webpage, visit a webpage of a competing restaurant, etc. As such, entities may particularly desire to increase a number of webpage visitors that ultimately provide the desired consent level so that the visitors to the webpage/website can enjoy all of the intended features of the webpage/website as designed.


In particular embodiments, a consent conversion optimization system is configured to test two or more test consent interfaces against one another to determine which of the two or more consent interfaces results in a higher conversion percentage (e.g., to determine which of the two or more interfaces lead to a higher number of end users and/or data subjects providing a requested level of consent for the creation, storage and use or cookies by a particular website). The system may, for example, analyze end user interaction with each particular test consent interface to determine which of the two or more user interfaces: (1) result in a higher incidence of a desired level of provided consent; (2) are easier to use by the end users and/or data subjects (e.g., take less time to complete, require a fewer number of clicks, etc.); (3) etc.


The system may then be configured to automatically select from between/among the two or more test interfaces and use the selected interface for future visitors of the website.


In particular embodiments, the system is configured to test the two or more test consent interfaces against one another by: (1) presenting a first test interface of the two or more test consent interfaces to a first portion of visitors to a web site/webpage; (2) collecting first consent data from the first portion of visitors based on the first test interface; (3) presenting a second test interface of the two or more test consent interfaces to a second portion of visitors to the website/webpage; (4) collecting second consent data from the second portion of visitors based on the second test interface; (5) analyzing and comparing the first consent data and second consent data to determine which of the first and second test interface results in a higher incidence of desired consent; and (6) selecting between the first and second test interface based on the analysis.


In particular embodiments, the system is configured to enable a user to select a different template for each particular test interface. In any embodiment described herein, the system is configured to automatically select from a plurality of available templates when performing testing. In still any embodiment described herein, the system is configured to select one or more interfaces for testing based on similar analysis performed for one or more other websites.


In still any embodiment described herein, the system is configured to use one or more additional performance metrics when testing particular cookie consent interfaces (e.g., against one another). The one or more additional performance metrics may include, for example: (1) opt-in percentage (e.g., a percentage of users that click the ‘accept all’ button on a cookie consent test banner; (2) average time-to-interaction (e.g., an average time that users wait before interacting with a particular test banner); (3) average time-to-site (e.g., an average time that it takes a user to proceed to normal navigation across an entity site after interacting with the cookie consent test banner; (4) dismiss percentage (e.g., a percentage of users that dismiss the cookie consent banner using the close button, by scrolling, or by clicking on grayed-out website); (5) functional cookies only percentage (e.g., a percentage of users that opt out of any cookies other than strictly necessary cookies); (6) performance opt-out percentage; (7) targeting opt-out percentage; (8) social opt-out percentage; (9) etc. In still other embodiments, the system may be configured to store other consent data related to each of interfaces under testing such as, for example: (1) opt-in percentage by region; (2) opt-in percentage based on known characteristics of the individual data subjects and/or users (e.g., age, gender, profession, etc.); and/or any other suitable data related to consent provision. In such embodiments, the system may be configured to optimize consent conversion by presenting a particular visitor to a webpage that is tailored to the particular visitor based at least in part on both analyzed consent data for one or more test interfaces and on or more known characteristics of the particular visitor (e.g., age range, gender, etc.).


In particular embodiments, the system is configured to utilize one or more performance metrics (e.g., success criteria) for a particular interface based at least in part on one or more regulatory enforcement controls. For example, the system may be configured to optimize consent provision via one or more interfaces that result in a higher level of compliance with one or more particular legal frameworks (e.g., for a particular country). For example, the system may be configured to determine that a first interface has a more optimal consent conversion for a first jurisdiction, even if the first interface results in a lower overall level of consent (e.g., than a second interface) in response to determining that the first interface results in a higher provision of a particular type of consent (e.g., a particular type of consent required to comply with one or more regulations in the first jurisdiction). In particular embodiments, the one or more interfaces (e.g., under testing) may, for example, vary based on: (1) color; (2) text content; (3) text positioning; (4) interface positioning; (5) selector type; (6) time at which the user is presented the consent interface (e.g., after being on a site for at least a particular amount of time such as 5 seconds, 10 seconds, 30 seconds, etc.).


Exemplary Consent Conversion Optimization System Architecture



FIG. 60 is a block diagram of a Consent Conversion Optimization System 6000 according to a particular embodiment. In some embodiments, the Consent Conversion Optimization System 6000 is configured to interface with at least a portion of each respective organization's Privacy Compliance System in order generate, capture, and maintain a record of one or more consents to process, collect, and or store personal data from one or more data subjects.


As may be understood from FIG. 60, the Consent Conversion Optimization System 6000 includes one or more computer networks 6015, a Consent Receipt Management Server 6010, a Consent Interface Management Server 6020 (e.g., which may be configured to enable a user to setup one or more different cookie consent user interfaces using one or more templates), One or More Third Party Servers 6030, one or more databases 6040 (e.g., which may be used to store one or more interfaces for testing), and one or more remote computing devices 6050 (e.g., a desktop computer, laptop computer, tablet computer, etc.). In particular embodiments, the one or more computer networks 6015 facilitate communication between the Consent Receipt Management Server 6010, a Consent Interface Management Server 6020, One or More Third Party Servers 6030, one or more databases 6040, and one or more remote computing devices 6050.


The one or more computer networks 6015 may include any of a variety of types of wired or wireless computer networks such as the Internet, a private intranet, a public switch telephone network (PSTN), or any other type of network. The communication link between Consent Interface Management Server 6020 and Database 6040 may be, for example, implemented via a Local Area Network (LAN) or via the Internet.


Consent Conversion Optimization System


Various embodiments of a Consent Conversion Optimization System 6000 may be implemented in the context of any suitable system (e.g., a privacy compliance system). For example, the Consent Conversion Optimization System 6000 may be implemented to analyze and/or compare one or more test interfaces for obtaining consent from one or more users for the use of cookies in the context of one or more particular websites. In particular embodiments, the system may implement one or more modules in order to at least partially ensure compliance with one or more regulations (e.g., legal requirements) related to the use of cookies (e.g., as discussed herein). Various aspects of the system's functionality may be executed by certain system modules, including a Consent Conversion Optimization Module 6100.


Although this module is presented as a series of steps, it should be understood in light of this disclosure that various embodiments of the Consent Conversion Optimization Module 6100 described herein may perform the steps described below in an order other than in which they are presented. In still other embodiments, the Consent Conversion Optimization Module 6100 may omit certain steps described below. In various other embodiments, the Consent Conversion Optimization Module 300 may perform steps in addition to those described (e.g., such as one or more steps described with respect to one or more other modules, etc.).



FIG. 61 depicts exemplary steps that the system may perform when executing the Consent Conversion Optimization Module 6100. In particular embodiments, a Consent Conversion Optimization Module 6100 is configured to: (1) receive and/or retrieve at least two test interfaces for enabling users to provide cookie consent (e.g., as described herein); (2) perform a/b testing using each of the at least two test interfaces on at least a respective proportion of a population of users that visits a particular website; (3) analyze results of the a/b testing to determine which of the at least two test interfaces leads to a higher incidence of users providing desired consent; and (4) automatically implement the more successful test interface based on the analyzed results. In other embodiments, the system is further configured to: (1) set a threshold and/or minimum sample size of testing for each of the at least two test interfaces (e.g., automatically or based on user input); (2) generate a dashboard configured to display data associated with the analysis; (3) etc.


As may be understood from FIG. 61, when executing the Consent Conversion Optimization Module 6100, the system begins, at Step 6110, by receiving, from a first user via a first computing device (e.g., a remote computing device 6050 such as any of the one or more remote computing devices 6050 shown in FIG. 60), a request to access a website, and, in response to the request, determining whether the first user has previously consented to the use of one or more cookies by the website. In various embodiments, as discussed above, the system may be configured to only present a cookie consent interface to a user that has not: (1) already visited the website and provided consent; (2) already visited the website and elected not to provide consent; (3) already visited the website/webpage and provided less than a level of consent desired by the web site administrator; etc.


Continuing to Step 6120, the system is configured to, in response to determining that the first user has not previously consented to the use of one or more cookies by the web site, cause the first computing device to display a first cookie consent interface from a group of at least two test consent interfaces. As may be understood in light of this disclosure, the first cookie consent interface may include a suitable interface (e.g., Interface A stored in the One or More Databases 6040 of FIG. 60) from a group of interfaces under testing. In various embodiments, the system is configured to select the first interface to display to the user randomly from the group of interfaces under testing. In other embodiments, the system is configured to alternate between and/or among test interfaces to display to each new user of (e.g., individual accessing) the website (e.g., via a particular webpage, domain, etc.). In still other embodiments, the system is configured to adhere to a particular proportion of the various interfaces under testing (e.g., ensuring that 50% of website visitors are presented with a first interface and the other 50% are presented with a second interface, etc.). In some embodiments, the system is configured to perform these testing steps until at least a particular number of data points regarding each interface have been collected (e.g., a sufficiently large sample size, a predefined number of tests, etc.). In particular embodiments, the system is configured to present visitors to a particular web domain with a test interface based on a user-provided weight for each particular interface under testing.


In some embodiments, the system may be configured to generate the consent interfaces for testing. In other embodiments, the system is configured to receive one or more test templates created by a user (e.g., using one or more templates, or using any suitable technique described herein).


Next, at Step 6130, the system is configured to collect consent data for the first user based on selections made by the first user via the first cookie consent interface. When collecting consent data, the system may, for example collect data such as: (1) what particular types of cookies the user consented to the use of; (2) location data related to those cookies consented to within the interface (e.g., a location of the interface, a location of a user-selectable button or other indicia for each particular type of cookie, etc.); (3) information associated with how consent is collected (e.g., a check box, slider, radio button, etc.); (4) information associated with a page or screen within the interface on which the various consented to cookie types appear (e.g., as may be understood from FIGS. 62-70); (5) a number of users that provided at least some consent to particular types of cookies through the interface; (6) a number of types of cookies each user consented to, if at all; (7) a geographic location of each user as the system receives (e.g., or doesn't receive) consent from each user; (8) one or more characteristics of each use to which each particular interface is presented (e.g., age, gender, interests, employment information, and any other suitable known information); and (9) any other suitable information.


Continuing to Step 6140, the system is configured to repeat Steps 6110-6130 for a plurality of other users of the website, such that each of the at least two consent interfaces are displayed to at least a portion of the plurality of other users. In various embodiments each of the users of the website include any user that accesses a particular webpage of the website. In particular embodiments, each user of the website includes any user that accesses a particular web domain. As may be understood from this disclosure, the system may, for example, repeat the testing steps described herein until the system has collected at least enough data to determine which of the at least two interfaces results in a higher rate of consent provision by users (e.g., or results in a higher success rate based on a user-provided criteria, such as a criteria provided by a site administrator or other suitable individual).


Returning to Step 6150, the system is configured to analyze the consent data to identify a particular interface of the at least two consent interfaces under testing that results in a more desired level of consent (e.g., that meets the success criteria). The system may, for example, determine which interface resulted in a greater percentage of obtained consent. The system may also determine which interface resulted in a higher provision of a particular type of consent. For example, the system may determine which interface led to provision, by end users, of a higher rate of consent for particular types of cookies (e.g., performance cookies, targeting cookies, etc.). The system may be further configured to analyze, based on other consent data, whether provision of consent may be related to particular aspects of the user interface (e.g., a location of a radio button or other input for providing the consent, etc.). The system may further be configured to cross reference the analyzed consent data against previously recorded consent data (e.g., for other interfaces).


In response to identifying the particular interface at Step 6150, the system is configured, at Step 6160, to store the particular interface in memory for use as a site-wide consent interface for all users of the website. The system may, for example, utilize the more ‘successful’ interface for all future visitors of the website (e.g., because the use of such an interface may lead to an overall higher rate of consent than another interface or combination of different interfaces).


Finally, at Step 6170, the system may be configured to optionally repeat Steps 6110-6160 using one or more additional test consent interfaces. The system may, for example, implement a particular interface for capturing consent after performing the initial analysis described above, and then introduce a potential new test interface that is developed later on. The system may then test this new test interface against the original choice to determine whether to switch to the new interface or continue using the existing one.


Exemplary End-User Experience of Consent Interfaces under Testing



FIGS. 62-70 depict exemplary screen displays and interfaces that a user may encounter when accessing a web site (e.g., a particular webpage of a web site) that requires the user to provide consent for the use of cookies. As may be understood from these figures, particular interfaces may utilize different arrangements and input types in order to attempt to obtain consent from end-users. FIG. 62, for example, depicts an exemplary cookie banner 6200, which may, for example, appear on any suitable portion of webpage (e.g., on the top of the webpage, on the bottom of the webpage, in the center or center portion of the webpage, as a pop up, integrated within the webpage itself, etc.). The banner 6200 may, for example, appear on a user's initial visit to a particular webpage. As may be understood from FIG. 62, a cookie banner 6200 such as the one depicted may enable a user (e.g., a visitor to a webpage) to accept all cookies with the click of a single button 6205. The banner 6200 may include a link 6210 to the entity that maintains the webpage's Cookie Policy.


In FIGS. 63 and 64, for example, the interface displays information about all types of cookies on a single screen along with an ability for the user to provide consent for each specific cookie type through the single interface screen. FIGS. 63 and 64 differ, however, in the manner in which the user provides consent. In FIG. 63, the interface 6300 uses sliders, while in FIG. 64, the interface 6400 utilizes radio buttons. As may be understood from FIG. 63, a user is unable to opt out of strictly necessary cookies, but may select an appropriate slider 6305, 6310 to enable/disable functional cookies and/or performance cookies. As may be understood from FIG. 62, a user is also unable to opt out of strictly necessary cookies, but may select an appropriate radio button 6405, 6410 to enable/disable functional cookies and/or performance cookies. In a particular implementation, the system may be configured to test the interfaces of FIGS. 63 and 64 against one another to determine whether users are more likely to provide the desired consent using one type of selector or another.



FIGS. 65-68 depict an exemplary interface with which a user can provide consent for the use of cookies according to another example. In the example shown in these Figures, specific types of cookies are separated in the interface between different pages that the user must individually select, providing consent for each cookie type on the respective screen (e.g., page). As may be understood from these Figures, the interfaces contain information about the types of cookies and the purpose of their use, while enabling the user to provide consent for each type of cookie. The user may, for example, need to cycle within a privacy preference center among the following interfaces shown in FIGS. 65-68, and 70: (1) an initial privacy interface 6500 that describes an overall privacy policy (e.g., in FIG. 65); (2) a strictly necessary cookie interface 6600 that provides information about strictly necessary cookies used by the webpage, but does not enable the user to opt out of strictly necessary cookies (e.g., because strictly necessary cookies may not require consent from users (e.g., in FIG. 66); (3) a performance cookie interface 6700 that provides information about performance cookies used by the webpage, and enables the user to activate a slider 6705 to enable/disable performance cookies (e.g., in FIG. 6700); (4) a targeting cookie interface 6800 that provides information about targeting cookies used by the webpage, and enables the user to activate a slider 6805 to enable/disable targeting cookies (e.g., in FIG. 68); (5) an advertising cookie interface 7000 that provides information about advertising cookies used by the webpage, and enables the user to activate a slider 7005 to enable/disable all advertising cookies or activate individual sliders 7010 to enable/disable particular advertising cookies (e.g., in FIG. 70); (6) etc. FIG. 69 depicts an interface 6900 such as the targeting cookie interface 6800 of FIG. 68, with the slider 6905 set to disable targeting cookies.


The system, in various embodiments, may be configured to test an interface in which all cookie information is shown on a single page (e.g., such as the interfaces shown in FIG. 63 or 64) against the type of interface shown in FIGS. 65-68 to determine whether one or the other is more likely to result in a higher rate of consent by end-users. In particular embodiments, the system may further analyze whether particular types of cookies (e.g., presented on earlier pages/screens of the interface or occurring earlier on the listing of cookies on the left-hand side of the interface) are more likely to be consented to by users.



FIG. 70 depicts a user interface 7000 where a user can provide consent for a particular type of cookies, and then separately consent to each particular cookie of that type used by the web site.


These various types of interfaces and others may be utilized by the system in testing one or more ways in which to optimize consent receipt from end users in the context of the system described herein.


Exemplary Consent Conversion Optimization Testing Initialization User Experience



FIGS. 71-75 depict exemplary screen displays and graphical user interfaces (GUIs) for enabling a user (e.g., an administrator of a particular webpage or website) to generate and implement one or more new consent interface tests, review existing consent interface tests, etc.



FIG. 71 depicts an exemplary interface 7100 that a user may encounter when accessing a listing of current, active consent conversion tests that a particular entity, individual, or other has implemented. For example, the interface 7100 depicts a listing 7110 of active tests and includes information such as, for example: (1) a name of each test; (2) a status of each test; (3) a creator of each test; (4) a start date of each test; and (5) information about when each test was last modified. From the listing of tests 7110, a user may select an individual test to view more data about the specific teste such as, for example: (1) a number of interfaces being tested (e.g., tested against one another to determine which of the interfaces results in a higher consent provision by individuals accessing a particular domain; (2) a distribution proportion of each interface being tested as part of a particular test (e.g., a breakdown, percentage, etc.); (3) a description of the test; (4) a domain at which the test is being undertaken (e.g., www.example.com); and/or (5) any other suitable information about each particular test. In particular embodiments, the interface 7100 shown in FIG. 71 further includes a selectable “New Test” Button 7105, that a user may select in order to initiate a new interface test between/among one or more test interfaces.



FIG. 72 depicts a test creation interface 7200 according to a particular embodiment that includes one or more user-fillable fields 7205 for providing information regarding a new test (e.g., new consent interface test) that a user would like to initiate. As may be understood from FIG. 72, the test creation interface may include, for example, one or more user-fillable fields via which a user may provide: (1) a number of interfaces being tested (e.g., tested against one another to determine which of the interfaces results in a higher consent provision by individuals accessing a particular domain; (2) a distribution proportion of each interface being tested as part of a particular test (e.g., a breakdown, percentage, etc.); (3) a description of the test; (4) a domain at which the test is being undertaken (e.g., www.example.com); and/or (5) any other suitable information about each particular test. In still other embodiments, the test creation interface 7200 may enable a user to provide a name for the test. In some embodiments, the test creation interface is configured to enable a user to select from one or more template variants for use in the test. In any embodiment described herein, the template variants may include one or more pre-created test variants. In other embodiments, the system is configured to enable a user to create one or more test variants for use in a particular test (e.g., using any suitable technique, such as any technique described herein). In particular embodiments, the user may then select a particular proportion to apply to each interface being tested (e.g., as a percentage, as an equal distribution, etc.). In various embodiments, the system may be configured to present a particular interface of the test interfaces to present to each visitor to the domain based on the user-provided weight during test creation.



FIG. 73 depicts a test summary interface 7300 according to a particular embodiment. In the test summary interface 7300 depicted in FIG. 73, the interface includes a summary of the interface variants under testing and the user-selected proportion for each variant. As may be understood from this figure, particular test interface variants may include similar interfaces positioned at different location within a webpage (e.g., top/bottom, etc.). In still other embodiments, the test interface variants may be substantially similar looking with a different color scheme (e.g., dark theme vs. light theme). In particular embodiments, after reviewing the test summary, the user may initiate the new test by selecting a “Start Test” Button 7305.



FIGS. 74 and 75 depict a details page 7400 of the test summary that the user may review prior to initiating the new test. As may be understood from these figures, the details page includes a dropdown 7405 via which the user may select a success criterion for the test. In particular embodiments, the success criteria may determine a criterion for determining which of the particular test interfaces results in the more desired type and/or level of consent provided by users of the webpage. For example, the success criteria 7410 may be selected from one or more options such as: (1) opt-in percentage; (2) total number of opt-ins; (3) number of visitors; and/or (4) any other suitable criterion.


Data-Processing Consent Refresh, Re-Prompt, and Recapture Systems


In particular embodiments, the consent receipt management system is configured to: (1) automatically cause a prior, validly received consent to expire (e.g., in response to a triggering event); and (2) in response to causing the previously received consent to expire, automatically trigger a recapture of consent. In particular embodiments, the system may, for example, be configured to cause a prior, validly received consent to expire in response to one or more triggering events such as: (1) a passage of a particular amount of time since the system received the valid consent (e.g., a particular number of days, weeks, months, etc.); (2) one or more changes to a purpose of the data collection for which consent was received (e.g., or one or more other changes to one or more conditions under which the consent was received; (3) one or more changes to a privacy policy associated with the consent; (3) one or more changes to one or more rules (e.g., laws, regulations, etc.) that govern the collection or demonstration of validly received consent; and/or (4) any other suitable triggering event or combination of events. In particular embodiments, such as any embodiment described herein, the system may be configured to link a particular consent received from a data subject to a particular version of a privacy policy, to a particular version of a web form through which the data subject provided the consent, etc. The system may then be configured to detect one or more changes to the underlying privacy policy, consent receipt methodology, etc., and, in response, automatically expire one or more consents provided by one or more data subjects under a previous version of the privacy policy or consent capture form.


In various embodiments, the system may be configured to substantially automatically expire a particular data subject's prior provided consent in response to a change in location of the data subject. The system may, for example, determine that a data subject is currently located in a jurisdiction, country, or other geographic location other than the location in which the data subject provided consent for the collection and/or processing of their personal data. The system may be configured to determine that the data subject is in a new location based at least in part on, for example, a geolocation (e.g., GPS location) of a mobile computing device associated with the data subject, an IP address of one or more computing devices associated with the data subject, etc.). As may be understood in light of this disclosure, one or more different countries, jurisdictions, etc. may impose different rules, regulations, etc. related to the collection, storage, and processing of personal data. As such, in response to a user moving to a new location (e.g., or in response to a user temporarily being present in a new location), the system may be configured to trigger a recapture of consent based on one or more differences between one or more rules or regulations in the new location and the original location from which the data subject provided consent. In some embodiments, the system may substantially automatically compare the one or more rules and/or regulations of the new and original locations to determine whether a recapture of consent is necessary.


In particular embodiments, in response to the automatic expiration of consent, the system may be configured to automatically trigger a recapture of consent (e.g., based on the triggering event). The system may, for example, prompt the data subject to re-provide consent using, for example: (1) an updated version of the relevant privacy policy; (2) an updated web form that provides one or more new purposes for the collection of particular personal data; (3) one or more web forms or other consent capture methodologies that comply with one or more changes to one or more legal, industry, or other regulations; and/or (4) etc.


In still other embodiments, the system is configured to re-prompt an individual (e.g., data subject) to provide consent (e.g., re-consent) to one or more transactions to which the data subject did not initially provide consent. In such embodiments, the system may be configured to seek consent for one or more types of data processing in one or more situations in which the data subject's consent has not expired (e.g., in one or more situations in which the data subject has never provided consent). For example, when storing or retrieving information from an end user's device, an entity may be required to receive consent from the end user for such storage and retrieval. Web cookies are a common technology that may be directly impacted by the consent requirements discussed herein. Accordingly, an entity that use cookies (e.g., on one or more webpages) may be required to use one or more banners, pop-ups or other user interfaces on the website in order to capture consent from end-users to store and retrieve cookie data.


In various embodiment, the use of such cookies may be necessary for a website to fully function. In response to a user not providing full consent to the use of cookies, a particular website may not function properly (e.g., because without the consent, the site cannot use particular cookies).


In various embodiments, in response to identifying particular cookies (e.g., or other transactions) that a data subject has not consented to, the system may be configured to prompt the data subject to reconsent. The system may, for example, substantially automatically prompt the data subject to reconsent in response to determining that the user (e.g., data subject) has requested that the website perform one or more functions that are not possible without a particular type of consent from the data subject (e.g., a particular type of consent that the user initially refused to provide. The system may, for example, prompt the user to reconsent in time for a certain interaction with the website.


In still other embodiments, the system is configured to prompt the user to reconsent (e.g., provide consent for one or more items that the data subject previously did not consent to) in response to one or more other conditions such as, for example: (1) a passage of a particular amount of time since the last time that the system prompted the user to provide consent; (2) a change in the user's location (e.g., based on one or more system-determined locations of the user); (3) in response to determining that the user has accessed at least a particular number of additional webpages on a particular website (e.g., page views): (4) in response to determining that the user's use of the particular website has changed (e.g., the user has begun attempting to use additional features, the user visits the website more often, etc.).


In various embodiments, a Consent Refresh, Re-Prompt, and Recapture System may be configured to refresh a prior, validly provided consent prior to an expiration of the consent. For example, in particular embodiments, one or more legal or industry regulations may require an entity to expire a particular consent if the entity does not undertake a particular activity (e.g., processing activity) for which that consent was given for a particular amount of time. For example, a visitor to a webpage may provide the visitor's e-mail address and consent to e-mail marketing from a controlling entity of the webpage. In various embodiments, the visitor's consent to e-mail marketing may automatically expire in response to a passage of a particular amount of time without the controlling entity sending any marketing e-mails. In such embodiments, the Consent Refresh, Re-Prompt, and Recapture System may be configured to: (1) identify particular consents (e.g., by analyzing consent receipt or other consent data) that the entity has received that are set to expire due to inaction by the entity; and (2) in response to identifying the particular consents that are set to expire due to inaction by the entity, automatically taking an action to refresh those particular consents (e.g., by automatically sending a new marking e-mail prior to a time when a user's consent to such e-mail marketing would automatically expire as a result of a passage of time since a marketing e-mail had been sent). In this way, the system may be configured to automatically refresh or renew a user's consent that may otherwise expire as a result of inaction.


Example Consent Refresh, Re-Prompt, and Recapture System Architecture



FIG. 76 is a block diagram of a Consent Refresh, Re-Prompt, and Recapture System 7600 according to a particular embodiment. In various embodiments, the Consent Refresh, Re-Prompt, and Recapture System 7600 is configured to interface with a Consent Receipt Management System in order to, for example: (1) monitor previously provided consent by one or more data subjects that may be subject to future expiration; (2) monitor a data subject's activity to anticipate the data subject attempting an activity that may require a level of consent (e.g., for the processing of particular data subject data) that is higher than the system has received; and/or (3) identify other changes in circumstances or triggering events for a data subject that may warrant a refresh or recapture (e.g., or attempted capture) of a particular required consent (e.g., required to enable an entity to properly or legally execute a transaction with a data subject). The system may then be configured to automatically trigger a refresh of a previously provided consent, or trigger a recapture (e.g., and/or recapture attempt) of an expired or previously unprovided consent.


As may be understood from FIG. 76, the Consent Refresh, Re-Prompt, and Recapture System 7600 includes one or more computer networks 7615, a Consent Receipt Management Server 7610, a Consent Refresh, Re-Prompt, and Recapture Server 7620 (e.g., which may be configured to identify expired consent, consents that are about to expire, etc.; and trigger an automated action to refresh the expiring consent or recapture an expired one, etc.), One or More Third Party Servers 7630, one or more databases 7640 (e.g., which may be used to store any suitable data described herein), and one or more remote computing devices 7650 (e.g., a desktop computer, laptop computer, tablet computer, etc.). In particular embodiments, the one or more computer networks 7615 facilitate communication between the Consent Receipt Management Server 7610, the Consent Refresh, Re-Prompt, and Recapture Server 7620, the One or More Third Party Servers 7630, one or more databases 7640, and one or more remote computing devices 7650.


The one or more computer networks 7615 may include any of a variety of types of wired or wireless computer networks such as the Internet, a private intranet, a public switch telephone network (PSTN), or any other type of network. The communication link between Consent Refresh, Re-Prompt, and Recapture Server 7620 and Database 7640 may be, for example, implemented via a Local Area Network (LAN) or via the Internet.


The diagrammatic representation of the computer 200 shown in FIG. 2 may, for example, be used within the context of the Consent Refresh, Re-Prompt, and Recapture System 7600, for example, as a client computer (e.g., one or more remote computing devices 7650 shown in FIG. 76), or as a server computer (e.g., Consent Refresh, Re-Prompt, and Recapture Server 7620 shown in FIG. 76). In particular embodiments, the computer 200 may be suitable for use as a computer within the context of the Consent Refresh, Re-Prompt, and Recapture System 7600 that is configured to: (1) analyze one or more consent receipts to identify one or more valid consents for the processing of personal data that will expire at a future time in response to the occurrence of at least one particular condition; and (2) in response to identifying the one or more valid consents for the processing of personal data that will expire at a future time in response to the occurrence of at least one particular condition, automatically initiating an action to refresh the one or more valid consents; and/or (1) receive an indication that a user has at least initially withheld consent; (2) identify an occurrence of one or more conditions; and (3) in response to identifying the occurrence of the one or more conditions, re-prompting the user to provide the consent.


Data Processing Consent Refresh, Re-Prompt, and Recapture Systems and Related Methods


Various embodiments of a Consent Refresh, Re-Prompt, and Recapture System 7600 may be implemented in the context of any suitable system (e.g., a privacy compliance system). For example, the Consent Refresh, Re-Prompt, and Recapture System 7600 may be implemented to maintain or secure one or more valid consents for the processing of personal data of one or more data subjects under a particular transaction (e.g., which may, for example, involve the processing, storage, etc. of personal data). Various aspects of the system's functionality may be executed by certain system modules, including a Consent Refresh Module 7700 and/or a Consent Re-prompting Module 7800.


Although these modules are presented as a series of steps, it should be understood in light of this disclosure that various embodiments of the Consent Refresh Module 7700 and the Consent Re-prompting Module 7800 described herein may perform the steps described below in an order other than in which they are presented. In still other embodiments, the Consent Refresh Module 7700 and the Consent Re-prompting Module 7800 may omit certain steps described below. In various embodiments, the Consent Refresh Module 7700 and the Consent Re-prompting Module 7800 may perform steps in addition to those described (e.g., such as one or more steps described with respect to one or more other modules, etc.).



FIG. 77 depicts exemplary steps that the system may perform when executing the Consent Refresh Module 7700. In particular embodiments, a Consent Refresh, Re-Prompt, and Recapture System 7600, when executing one or more steps of a Consent Refresh Module 7700 according to particular embodiments, is configured to refresh a prior, validly provided consent prior to an expiration of the consent. For example, in particular embodiments, one or more legal or industry regulations may require an entity to expire a particular consent if the entity does not undertake a particular activity (e.g., processing activity) for which that consent was given for a particular amount of time. For example, a visitor to a webpage may provide the visitor's e-mail address and consent to e-mail marketing from a controlling entity of the webpage. In various embodiments, the visitor's consent to e-mail marketing may automatically expire in response to a passage of a particular amount of time without the controlling entity sending any marketing e-mails. In such embodiments, the Consent Refresh, Re-Prompt, and Recapture System may be configured to: (1) identify particular consents (e.g., by analyzing consent receipt or other consent data) that the entity has received that are set to expire due to inaction by the entity; and (2) in response to identifying the particular consents that are set to expire due to inaction by the entity, automatically taking an action to refresh those particular consents (e.g., by automatically sending a new marking e-mail prior to a time when a user's consent to such e-mail marketing would automatically expire as a result of a passage of time since a marketing e-mail had been sent). In this way, the system may be configured to automatically refresh or renew a user's consent that may otherwise expire as a result of inaction.


As may be understood from FIG. 77, when executing the Consent Refresh Module 7700, the system begins, at Step 7710, by analyzing one or more consent receipts (e.g., and or consent records) to identify one or more valid consents for the processing of personal data that will expire at a future time. In various embodiments, the system is configured to identify one or more valid consents that will expire in response to an occurrence of at least one particular condition.


In various embodiments, a Consent Refresh, Re-Prompt, and Recapture System may be configured to refresh a prior, validly provided consent prior to an expiration of the consent. For example, in particular embodiments, one or more legal or industry regulations may require an entity to expire a particular consent if the entity does not undertake a particular activity (e.g., processing activity) for which that consent was given for a particular amount of time. For example, a visitor to a webpage may provide the visitor's e-mail address and consent to e-mail marketing from a controlling entity of the webpage. In various embodiments, the visitor's consent to e-mail marketing may automatically expire in response to a passage of a particular amount of time without the controlling entity sending any marketing e-mails. In such embodiments, the Consent Refresh, Re-Prompt, and Recapture System may be configured to: (1) identify particular consents (e.g., by analyzing consent receipt or other consent data) that the entity has received that are set to expire due to inaction by the entity; and (2) in response to identifying the particular consents that are set to expire due to inaction by the entity, automatically taking an action to refresh those particular consents (e.g., by automatically sending a new marking e-mail prior to a time when a user's consent to such e-mail marketing would automatically expire as a result of a passage of time since a marketing e-mail had been sent). In this way, the system may be configured to automatically refresh or renew a user's consent that may otherwise expire as a result of inaction.


Continuing to Step 7720, the system, in various embodiments, is configured to, in response to identifying the one or more valid consents for the processing of personal data that will expire at a future time (e.g., in response to an occurrence of at least one particular condition), automatically initiate an action to refresh the one or more valid consents. This may involve, for example, automatically processing a particular type of data associated with the data subject, automatically taking one or more actions under a transaction to which the data subject has consented, etc.



FIG. 78 depicts exemplary steps that the system may perform when executing the Consent Re-Prompting Module 7800. In particular embodiments, a Consent Refresh, Re-Prompt, and Recapture System 7600, when executing one or more steps of a Consent Refresh Module 7700 according to particular embodiments, is configured re-prompt an individual (e.g., data subject) to provide consent (e.g., re-consent) to one or more transactions to which the data subject did not initially provide consent (e.g., and/or did not initially provide sufficient consent for a particular transaction, to ensure a particular level of functionality of a webpage or software application, etc.).


As may be understood from FIG. 78, when executing the Consent Re-Prompting Module 7800, the system begins, at Step 7810, by prompting a user to provide initial consent for a first particular type of data processing. As may be understood in light of this disclosure, a data subject may access an interaction interface (e.g., via the web) for interacting with a particular entity (e.g., one or more entity systems). The interaction interface (e.g., user interface) may include, for example, a suitable website, web form, user interface etc. The interaction interface may be provided by the entity. Using the interaction interface, a data subject may initiate a transaction with the entity that requires the data subject to provide valid consent (e.g., because the transaction includes the processing of personal data by the entity). The transaction may include, for example: (1) accessing the entity's website; (2) signing up for a user account with the entity; (3) signing up for a mailing list with the entity; (4) a free trial sign up; (5) product registration; and/or (6) any other suitable transaction that may result in collection and/or processing personal data, by the entity, about the data subject.


As may be understood from this disclosure, any particular transaction may record and/or require one or more valid consents from the data subject. For example, the system may prompt a particular data subject to provide consent for each particular type of personal data that will be collected as part of the transaction. The system may, in various embodiments, be configured to prompt the data subject to provide valid consent, for example, by: (1) displaying, via the interaction interface, one or more pieces of information regarding the consent (e.g., what personal data will be collected, how it will be used, etc.); and (2) prompt the data subject to provide the consent.


Continuing to Step 7820, the system is configured to receive an indication that the user has at least initially withheld the initial consent.


Next, at Step 7830, the system is configured to identify an occurrence of one or more conditions. In various embodiments, the system is configured, at Step 7840, to re-prompt the user to provide the initial consent (e.g., or any other suitable level of consent) in response to identifying the occurrence of the one or more conditions.


In still other embodiments, the system is configured to re-prompt an individual (e.g., data subject) to provide consent (e.g., re-consent) to one or more transactions to which the data subject did not initially provide consent. In such embodiments, the system may be configured to seek consent for one or more types of data processing in one or more situations in which the data subject's consent has not expired (e.g., in one or more situations in which the data subject has never provided consent). For example, when storing or retrieving information from an end user's device, an entity may be required to receive consent from the end user for such storage and retrieval. Web cookies are a common technology that may be directly impacted by the consent requirements discussed herein. Accordingly, an entity that use cookies (e.g., on one or more webpages) may be required to use one or more banners, pop-ups or other user interfaces on the website in order to capture consent from end-users to store and retrieve cookie data.


In various embodiment, the use of such cookies may be necessary for a website to fully function. In response to a user not providing full consent to the use of cookies, a particular website may not function properly (e.g., because without the consent, the site cannot use particular cookies).


In various embodiments, in response to identifying particular cookies (e.g., or other transactions) that a data subject has not consented to, the system may be configured to prompt the data subject to reconsent. The system may, for example, substantially automatically prompt the data subject to reconsent in response to determining that the user (e.g., data subject) has requested that the website perform one or more functions that are not possible without a particular type of consent from the data subject (e.g., a particular type of consent that the user initially refused to provide. The system may, for example, prompt the user to reconsent in time for a certain interaction with the website.


In still other embodiments, the system is configured to prompt the user to reconsent (e.g., provide consent for one or more items that the data subject previously did not consent to) in response to one or more other conditions such as, for example: (1) a passage of a particular amount of time since the last time that the system prompted the user to provide consent; (2) a change in the user's location (e.g., based on one or more system-determined locations of the user); (3) in response to determining that the user has accessed at least a particular number of additional webpages on a particular website (e.g., page views): (4) in response to determining that the user's use of the particular website has changed (e.g., the user has begun attempting to use additional features, the user visits the website more often, etc.).


In various embodiments, the system is configured to re-prompt the user via a suitable user interface. In various embodiments, the system is configured to use one or more optimized consent interfaces generated and/or determined using any suitable technique described herein.


Data-Processing User Interface Monitoring System Overview


In various embodiments, a consent receipt management system is configured to generate a consent receipt for a data subject that links to (e.g., in computer memory) metadata identifying a particular purpose of the collection and/or processing of personal data that the data subject consented to, a capture point of the consent (e.g., a copy of the web form or other mechanism through which the data subject provided consent, and other data associated with one or more ways in which the data subject granted consent). In particular embodiments, the system may be configured to analyze data related to consent data received from one or more particular capture points. The one or more capture points may include, for example, a webform, an e-mail inbox, website, mobile application, or any other suitable capture point.


In particular embodiments, the system is configured to automatically collect a change in capture rate for a particular capture point. In various embodiments, the system is configured to store time and frequency data for consents received via a particular capture pint (e.g., consent collection point). The system may, for example, monitor a rate of consent received via a particular webform on a company web site.


In various embodiments, the system is configured to analyze data for a particular capture point to identify a change in consent capture rate from the capture point. The system may, for example, be configured to automatically detect that the system has stopped receiving consent records from a particular capture point. In such embodiments, the system may be configured to generate an alert, and transmit the alert to any suitable individual (e.g., privacy team member, IT department member, etc.) regarding the capture point. The system may, for example, enable an entity to identify one or more capture points that may have become non-functional (e.g., as a result of one or more changes to the capture point). For example, in response to determining that a capture point that typically generates few thousand consent records per day suddenly stops generating any, the system may be configured to: (1) determine that there is an issue with the capture point; and (2) generate and/or transmit an alert identifying the problematic capture point. The alert may include an alert that the system may be capturing data that does not have an associated consent. In various embodiments, the system may be configured to perform an updated risk analysis for one or more processing activities that are associated with the capture point in response to determining that the capture point is not properly capturing required consent.


Example User Interface Monitoring System Architecture


FIG. 80 is a block diagram of a User Interface Monitoring System 8000 according to a particular embodiment. In various embodiments, the User Interface Monitoring System 8000 is configured to interface with a Consent Receipt Management System in order to, for example: (1) monitor previously provided consent by one or more data subjects that may be subject to future expiration; (2) monitor a data subject's activity to anticipate the data subject attempting an activity that may require a level of consent (e.g., for the processing of particular data subject data) that is higher than the system has received; and/or (3) identify other changes in circumstances or triggering events for a data subject that may warrant a refresh or recapture (e.g., or attempted capture) of a particular required consent (e.g., required to enable an entity to properly or legally execute a transaction with a data subject). The system may then be configured to automatically trigger a refresh of a previously provided consent, or trigger a recapture (e.g., and/or recapture attempt) of an expired or previously unprovided consent.


As may be understood from FIG. 80, the User Interface Monitoring System 8000 includes one or more computer networks 8015, a Consent Receipt Management Server 8010, a User Interface Monitoring Server 8020 (e.g., which may be configured to analyze data related to consent data received from one or more particular capture points), One or More Third Party Servers 8060, one or more databases 8040 (e.g., which may be used to store any suitable data described herein), and one or more remote computing devices 8050 (e.g., a desktop computer, laptop computer, tablet computer, etc.). In particular embodiments, the one or more computer networks 8015 facilitate communication between the Consent Receipt Management Server 8010, the User Interface Monitoring Server 8020, the One or More Third Party Servers 8030, one or more databases 8040, and one or more remote computing devices 8050.


The one or more computer networks 8015 may include any of a variety of types of wired or wireless computer networks such as the Internet, a private intranet, a public switch telephone network (PSTN), or any other type of network. The communication link between User Interface Monitoring Server 8020 and Database 8040 may be, for example, implemented via a Local Area Network (LAN) or via the Internet.


The diagrammatic representation of the computer 200 shown in FIG. 2 may, for example, be used within the context of the User Interface Monitoring System 8000, for example, as a client computer (e.g., one or more remote computing devices 8050 shown in FIG. 80), or as a server computer (e.g., User Interface Monitoring Server 8020 shown in FIG. 80). In particular embodiments, the computer 200 may be suitable for use as a computer within the context of the User Interface Monitoring System 8000 that is configured to: (1) automatically collect a change in capture rate for a particular capture point; (2) store time and frequency data for consents received via a particular capture pint (e.g., consent collection point); (3) monitor a rate of consent received via a particular webform on a company website; (4) analyze data for a particular capture point to identify a change in consent capture rate from the capture point; and/or (5) take any suitable action related to the data collected and/or analyzed.


Data Processing User Interface Monitoring Systems and Related Methods


Various embodiments of a User Interface Monitoring System 8000 may be implemented in the context of any suitable system (e.g., a privacy compliance system). For example, the User Interface Monitoring System may be implemented to: (1) automatically collect a change in capture rate for a particular capture point; (2) store time and frequency data for consents received via a particular capture pint (e.g., consent collection point); (3) monitor a rate of consent received via a particular webform on a company website; (4) analyze data for a particular capture point to identify a change in consent capture rate from the capture point; and/or (5) take any suitable action related to the data collected and/or analyzed. Various aspects of the system's functionality may be executed by certain system modules, including a User Interface Monitoring Module 8100.


Although these modules are presented as a series of steps, it should be understood in light of this disclosure that various embodiments of the User Interface Monitoring Module 8100 described herein may perform the steps described below in an order other than in which they are presented. In still other embodiments, the User Interface Monitoring Module 8100 may omit certain steps described below. In various embodiments, the User Interface Monitoring Module 8100 may perform steps in addition to those described (e.g., such as one or more steps described with respect to one or more other modules, etc.).



FIG. 81 depicts exemplary steps that the system may perform when executing the User Interface Monitoring Module 8100. In particular embodiments, a User Interface Monitoring System 8000 (e.g., consent capture point monitoring system), when executing one or more steps of a User Interface Monitoring Module 8100 according to particular embodiments, is configured to: (1) automatically collect a change in capture rate for a particular capture point; (2) store time and frequency data for consents received via a particular capture pint (e.g., consent collection point); (3) monitor a rate of consent received via a particular webform on a company web site; (4) analyze data for a particular capture point to identify a change in consent capture rate from the capture point; and/or (5) take any suitable action related to the data collected and/or analyzed.


As may be understood from FIG. 81, when executing the User Interface Monitoring Module 8100, the system begins, at Step 8110, by providing a user interface at a particular capture point for initiating a transaction between an entity and a data subject. In various embodiments, the transaction involves the collection and/or processing associated with the data subject by the entity (e.g., by one or more entity systems).


As may be understood from this disclosure, a data subject may access an interaction interface (e.g., via the web) for interacting with a particular entity (e.g., one or more entity systems). The interaction interface (e.g., user interface) may include, for example, a suitable website, webpage, web form, user interface, etc. (e.g., located at any suitable domain). The interaction interface may be provided by the entity. Using the interaction interface, a data subject may initiate a transaction with the entity that requires the data subject to provide valid consent (e.g., because the transaction includes the processing of personal data by the entity). The transaction may include, for example: (1) accessing the entity's website; (2) signing up for a user account with the entity; (3) signing up for a mailing list with the entity; (4) a free trial sign up; (5) product registration; and/or (6) any other suitable transaction that may result in collection and/or processing personal data, by the entity, about the data subject.


As may be understood from this disclosure, any particular transaction may record and/or require one or more valid consents from the data subject. For example, the system may require a particular data subject to provide consent for each particular type of personal data that will be collected as part of the transaction. The system may, in various embodiments, be configured to prompt the data subject to provide valid consent, for example, by: (1) displaying, via the interaction interface, one or more pieces of information regarding the consent (e.g., what personal data will be collected, how it will be used, etc.); and (2) prompt the data subject to provide the consent.


Continuing to Step 8120, the system is configured to receive, from a respective computing device associated with each of a plurality of data subjects via the user interface, a plurality of requests to initiate the transaction between the entity and each respective data subject for the plurality of data subjects.


Next, at Step 8130, the system is configured for, in response to receiving each of the plurality of requests: (1) generating a unique consent receipt key for each respective request; and (2) storing a respective consent record for each respective request, the respective consent record comprising the unique consent receipt key. In response to a particular data subject (e.g., or the entity) initiating the transaction, the system may, for example, be configured to: (1) generate a unique receipt key (e.g., unique receipt ID); (2) associate the unique receipt key with the data subject (e.g., a unique subject identifier), the entity, and the transaction; and (3) electronically store (e.g., in computer memory) the unique receipt key. The system may further store a unique user ID (e.g., unique subject identifier) associated with the data subject (e.g., a hashed user ID, a unique user ID provided by the data subject, unique ID based on a piece of personal data such as an e-mail address, etc.).


At Step 8140, the system is configured to monitor the particular capture point to determine a rate of consent records generated in response to requests received via the user interface (e.g., at a particular capture point). The system may, for example, be configured to track data related to a particular capture point (e.g., one or more particular user interfaces at a particular capture point) to determine a transaction initiation rate for the capture point (e.g., a rate at which one or more data subjects provide consent via the particular capture point).


Continuing to Step 8150, the system is configured to identify a change in the rate of consent records generated at the particular capture point. The system may, for example, be configured to identify a decrease in the rate of consent records generated at a particular capture point. For example, the system may be configured to automatically detect that the system has stopped receiving consent records from a particular capture point. In various embodiments, the capture point may comprise, for example: (1) a webpage; (2) a domain; (3) a web application; (4) a software application; (5) a mobile application; and/or (6) any other suitable consent capture point.


Next, at Step 8160, the system is configured to, in response to identifying the change in the rate of consent records generated at the particular capture point, generate an electronic alert and transmit the alert to an individual responsible for the particular capture point. The system may be configured to generate an alert and transmit the alert to any suitable individual (e.g., privacy team member, IT department member, etc.) regarding the capture point. The system may, for example, enable an entity to identify one or more capture points that may have become non-functional (e.g., as a result of one or more changes to the capture point). For example, in response to determining that a capture point that typically generates few thousand consent records per day suddenly stops generating any, the system may be configured to: (1) determine that there is an issue with the capture point; and (2) generate and/or transmit an alert identifying the problematic capture point. The alert may include an alert that the system may be capturing data that does not have an associated consent. In various embodiments, the system may be configured to perform an updated risk analysis for one or more processing activities that are associated with the capture point in response to determining that the capture point is not properly capturing required consent.


Exemplary Consent Capture Point Monitoring User Experience



FIGS. 82-85 depict exemplary screen displays and graphical user interfaces (GUIs) for enabling a user (e.g., an administrator of a particular webpage or website) to access consent capture point data and other data.



FIG. 82 depicts an exemplary collection point data interface 8200 according to a particular embodiment. As may be understood from FIG. 82, the collection point data interface 8200 may include, for example: (1) a data of activation of a particular collection point (e.g., capture point); (2) a name of the collection point; (3) a description of the collection point; (4) a purpose of the collection point; (5) a URL at which the collection point is located/hosted/accessible; (6) a Privacy Policy URL related to the collection point; (7) a data subject identifier utilized by the collection point (e.g., e-mail); (8) a consent interaction type (e.g., form submission, implied consent through scrolling, time-on-site, etc.); (9) data related to double opt-in requirements at the collection point, etc.



FIG. 83 depicts a transaction record 8300 according to a particular embodiment. As may be understood form FIG. 83, the transaction record 8300 displays a listing of recent transactions and additional data related to, for example: (1) a collection point at which the transaction was initiated; (2) a time at which the transaction was initiated; (3) a transaction number; (4) a receipt ID; and other suitable dat.



FIGS. 84 and 85 depict exemplary collection point consent collection data. As may be understood from FIG. 84, the user interface 8400 depicted displays transaction and consent receipt data for a particular capture point (e.g., collection point). The data includes, for example, consent rate data for the collection point (e.g., which may be utilized in the context of any consent interface testing systems described herein). FIG. 85 depicts a user interface 8500 that displays comparative data for two or more different collection points. As may be understood from this interface 8500, the system is configured to track, for example; (1) a number of transactions originating from each collection point; (2) a number of receipts (e.g., consent receipts) generated from each collection point; and/ (3) a consent rate for each collection point.


Automated Process Blocking Systems and Methods


Various embodiments of an Automated Process blocking System may be implemented in the context of any suitable system (e.g., a privacy compliance system). For example, the Automated Process blocking System may be implemented to automatically determine whether a data subject has provided valid consent to a particular incidence of data processing (e.g., related to the data subject) prior to initiating and/or completing the data processing. Various aspects of the system's functionality may be executed by certain system modules, including a Consent Confirmation and Process Blocking Module 8600.


Although this module is presented as a series of steps, it should be understood in light of this disclosure that various embodiments of the Consent Confirmation and Process Blocking Module 8600 described herein may perform the steps described below in an order other than in which they are presented. In still other embodiments, the Consent Confirmation and Process Blocking Module 8600 may omit certain steps described below. In various other embodiments, the Consent Confirmation and Process Blocking Module 8600 may perform steps in addition to those described (e.g., such as one or more steps described with respect to one or more other modules, etc.).



FIG. 86 depicts exemplary steps that the system may perform when executing the Consent Confirmation and Process Blocking Module 8600. In particular embodiments, a Consent Confirmation and Process Blocking Module 8600 is configured to: (1) receive an indication that one or more entity systems are processing one or more pieces of personal data associated with a particular data subject; (2) in response to receiving the indication, identifying at least one process for which the one or more pieces of personal data are being processed; (3) determine, using a consent receipt management system, whether the data subject has provided valid consent for the processing of the one or more pieces of personal data for the at least one process; (4) at least partially in response to determining that the data subject has not provided valid consent for the processing of the one or more pieces of personal data for the at least one process, automatically blocking the processing


As may be understood from FIG. 86, when executing the Consent Confirmation and Process Blocking Module 8600, the system begins, at Step 8610, by receiving an indication that one or more computer systems have received, collected or processed one or more pieces of personal data associated with a data subject. In particular embodiments, the one or more computer systems include any suitable computer system associated with a particular entity.


In various embodiments, the system is configured to receive an indication that one or more computer systems have received, collected or processed one or more pieces of personal data associated with a data subject. In particular embodiments, the one or more computer systems include any suitable computer system associated with a particular entity. In other embodiments, the one or more computer systems comprise one or more software applications, data stores, databases, etc. that collect, process, and/or store data (e.g., personally identifiable data) on behalf of the entity (e.g., organization). In particular embodiments, the system is configured to receive the indication through integration with the one or more computer systems. In a particular example, the system may provide a software application for installation on a system device that is configured to transmit the indication in response to the system receiving, collecting, and/or processing one or more pieces of personal data.


Continuing to Step 8620, the system is configured to determine a purpose of the receipt, collection, and/or processing of the one or more pieces of personal data.


Next, at Step 8630, the system is configured to determine, based at least in part on the purpose and the one or more consent records, whether the data subject has provided valid consent to the receipt, collection, and/or processing of the one or more pieces of personal data (e.g., for the determined purpose). For example, particular consent records may record: (1) what information was provided to the consenter (e.g., data subject) at the time of consent (e.g., a privacy policy, what personal data would be collected following the provision of the consent, for what purpose that personal data would be collected, etc.); (2) how consent was received; (3) etc. The system may then be configured to determine whether: (1) the data subject has consented to the receipt, collection, and/or processing of the specific data being received, collected, and/or processed as well as whether the data subject has consented to the purpose for which the specific data is being received, collected, and/or processed. A data subject may, for example, have consented to the receipt, collection, and/or processing of a particular type of personal data in the context of a different purposes. In this example, consent to receive, collect, and/or process particular data for a different purpose may not constitute valid consent.


For example, FIG. 42 depicts an exemplary log of consent receipts 4200 for a particular transaction (e.g., the free trial signup described above). As shown in this figure, the system is configured to maintain a database of consent receipts that includes, for example, a timestamp of each receipt, a unique key associated with each receipt, a customer ID associated with each receipt (e.g., the customer's e-mail address), etc. In particular embodiments, the centralized data repository system described above may be configured to cross-reference the database of consent receipts (e.g., or maintain the database) in response to receiving the indication that a first party system has received, stored, and/or processed personal data (e.g., via the free trial signup interface) in order to confirm that the data subject has provided valid consent prior to storing the indication of the personal data.


At Step 8640, the system is configured to, in response to determining that the data subject has provided the valid consent, proceed with receiving, collecting, and/or processing the one or more pieces of personal data (e.g., and/or maintain any such data that has already been received, collected, and/or processed for which the data subject has provided valid consent.


In various embodiments, the system may be configured to: (1) receive the indication that the first party system has collected, stored, and/or processed a piece of personal data; (2) identify, based at least in part on the piece of personal data, a data subject associated with the piece of personal data; (3) determine, based at least in part on one or more consent receipts received from the data subject (e.g., one or more valid receipt keys associated with the data subject), and one or more pieces of information associated with the piece of personal data, whether the data subject has provided valid consent to collect, store, and/or process the piece of personal data; (4) in response to determining that the data subject has provided valid consent, storing the piece of personal data in any manner described herein; and (5) in response to determining that the data subject has not provided valid consent, deleting the piece of personal data (e.g., not store the piece of personal data).


At Step 8650, in response to determining that the data subject has not provided the valid consent, the system is configured to (at least temporarily) cease receiving, collecting, and/or processing the one or more pieces of personal data.


In particular embodiments, in response to determining that the data subject has not provided valid consent, the system may be further configured to: (1) automatically determine where the data subject's personal data is stored (e.g., by the first party system); and (2) in response to determining the location of the data (which may be on multiple computing systems), automatically facilitate the deletion of the data subject's personal data from the various systems (e.g., by automatically assigning a plurality of tasks to delete data across multiple business systems to effectively delete the data subject's personal data from the systems). In particular embodiments, the step of facilitating the deletion may comprise, for example: (1) overwriting the data in memory; (2) marking the data for overwrite; (2) marking the data as free (e.g., and deleting a directory entry associated with the data); and/or (3) any other suitable technique for deleting the personal data.


Data Processing Systems for Verifying an Age of a Data Subject


In particular embodiments, a data processing consent management system may be configured to utilize one or more age verification techniques to at least partially authenticate the data subject's ability to provide valid consent (e.g., under one or more prevailing legal requirements). For example, according to one or more particular legal or industry requirements, an individual (e.g., data subject) may need to be at least a particular age (e.g., an age of majority, an adult, over 18, over 21, or any other suitable age) in order to provide valid consent.


In various embodiments, a consent receipt management system may be implemented in the context of any suitable privacy management system that is configured to ensure compliance with one or more legal or industry standards related to the collection and/or storage of private information (e.g., such as personal data). In particular embodiments, the system is configured to manage one or more consent receipts between a data subject and an entity. In various embodiments, a consent receipt may include a record (e.g., a data record stored in memory and associated with the data subject) of consent, for example, as a transactional agreement where the data subject is already identified or identifiable as part of the data processing that results from the provided consent.


As may be understood from this disclosure, any particular transaction may record and/or require one or more valid consents from the data subject. For example, the system may require a particular data subject to provide consent for each particular type of personal data that will be collected as part of the transaction. The system may, in various embodiments, be configured to prompt the data subject to provide valid consent, as described herein.


The system may, for example, be configured to track data on behalf of an entity that collects and/or processes personal data related to: (1) who consented to the processing or collection of personal data (e.g., the data subject themselves or a person legally entitled to consent on their behalf such as a parent, guardian, etc.); (2) when the consent was given (e.g., a date and time); (3) what information was provided to the consenter at the time of consent (e.g., a privacy policy, what personal data would be collected following the provision of the consent, for what purpose that personal data would be collected, etc.); (4) how consent was received (e.g., one or more copies of a data capture form, webform, etc. via which consent was provided by the consenter); (5) when consent was withdrawn (e.g., a date and time of consent withdrawal if the consenter withdraws consent); and/or (6) any other suitable data related to receipt or withdrawal of consent.


In some embodiments, the system may be configured to verify the age of the data subject. The system may, for example, be configured to validate a consent provided by a data subject by authenticating an age of the data subject. For example, the system may be configured to confirm, using any suitable technique described herein, that the data subject has reached the age of majority in the jurisdiction in which the data subject resides (e.g., is not a minor).


A type of transaction that the data subject is consenting to may require the data subject to be of at least a certain age for the data subject's consent to be considered valid by the system. Similarly, the system may determine whether the data subject's consent is valid based on the data subject's age in response to determining one or more age restrictions on consent in a location (e.g., jurisdiction) in which the data subject resides, is providing the consent, etc.


For example, a data subject that is under the age of eighteen in a particular country may not be legally able to provide consent for credit card data to be collected as part of a transaction. The system may be configured to determine an age for valid consent for each particular type of personal data that will be collected as part of any particular transaction based on one or more factors. These factors may include, for example, the transaction and type of personal data collected as part of the transaction, the country where the transaction is to occur and the country of the data subject, and the age of the data subject, among others.


In various implementations, the system may be configured to verify the age of a data subject by providing a prompt for the data subject to provide a response to one or more questions. The response to each of the one or more questions may prompt the data subject to provide a selection (e.g., from a list) or input of data (e.g., input within a text box). In some implementations, the system may generate a logic problem or quiz as the prompt. The logic problem or quiz may be tailored to identify an age of the data subject or whether the data subject is younger or older than a threshold age (e.g., the age for valid consent for the particular type of personal data that will be collected as part of the transaction). The logic problem or quiz may be randomized or specific to a data subject, and in some embodiments, the logic problem or quiz may include mathematics or reading comprehension problems.


In some embodiments, the system may verify the age of a data subject in response to prompting the data subject to provide identifying information of the data subject (e.g., via a response to one or more questions), and then accessing a public third-party database to determine an age of the data subject. The identifying information may include, for example, a name, address, phone number, etc. of the data subject. In some implementations, the system may erase the provided identifying information from storage within the system after the age of the data subject is verified.


The system may, for example, be configured to: (1) receive, from a data subject, a request to enter into a particular transaction with an entity, the transaction involving the collection of personal data associated with the data subject by the entity; (2) in response to receiving the request, determining whether the collection of personal data by the entity under the transaction requires the data subject to be at least a particular age; (3) at least partially in response to determining that the transaction requires the data subject to be at least the particular age, using one or more age verification techniques to confirm the age of the data subject; (4) in response to determining, using the one or more age verification techniques, that the data subject is at least the particular age, storing a consent receipt that includes data associate with the entity, the data subject, the age verification, and the transaction; and (5) initiating the transaction between the data subject and the entity.


In particular embodiments, a particular entity may systematically confirm an age (e.g., or prompt for parental consent as described below) as a matter of course. For example, particular entities may provide one or more products or services that are often utilized and/or consumed by minors (e.g., toy companies). Such entities may, for example, utilize a system described herein such that the system is configured to automatically verify the age of every data subject that attempts to enter into a transaction with the entity. For example, Lego may require any user registering for the Lego website to verify that they are over 18, or, alternatively, to use one of the guardian/parental consent techniques described below to ensure that the entity has the consent of a guardian of the data subject in order to process the data subject's data.


In various embodiments, the one or more age verification techniques may include, for example: (1) comparing one or more pieces of information provided by the data subject to one or more pieces of publicly available information (e.g., in one or more databases, credit bureau directories, etc.); (2) prompting the data subject to provide one or more response to one or more age-challenge questions (e.g., brain puzzles, logic problems, math problems, vocabulary questions, etc.); (3) prompting the data subject to provide a copy of one or more government issued identification cards, receiving an input or image of the one or more government identification cards, confirming the authenticity of the one or more government identification cards, and confirming the age of the data subject based on information from the one or more government identification cards; (4) etc. In response to determining that the data subject is not at least the particular required age, the system may be configured to prompt a guardian or parent of the data subject to provide consent on the data subject's behalf (e.g., as described below).


Data Processing Systems for Prompting a Guardian to Provide Consent on Behalf of a Minor Data Subject


In various embodiments, the system may require guardian consent (e.g., parental consent) for a data subject. The system may prompt the data subject to initiate a request for guardian consent or the system may initiate a request for guardian consent without initiation from the data subject (e.g., in the background of a transaction). In some embodiments, the system may require guardian consent when a data subject is under the age for valid consent for the particular type of personal data that will be collected as part of the particular transaction. The system may use the any age verification method described herein to determine the age of the data subject. Additionally, in some implementations, the system may prompt the data subject to identify whether the data subject is younger, at least, or older than a particular age (e.g., an age for valid consent for the particular type of personal data that will be collected as part of the particular transaction), and the system may require guardian consent when the data subject identifies an age younger than the particular age.


In various embodiments, the system may be configured to communicate via electronic communication with the identified guardian (e.g., parent) of the data subject. The electronic communication may include, for example, email, phone call, text message, message via social media or a third-party system, etc. In some embodiments, the system may prompt the data subject to provide contact information for the data subject's guardian. The system may provide the electronic communication to the contact information provided by the data subject, and prompt the guardian to confirm they are the guardian of the data subject. In some embodiments, the system may provide a unique code (e.g., a six-digit code, or other unique code) as part of the electronic communication provided to the guardian. The guardian may then provide the received unique code to the data subject, and the system may enable the data subject to input the unique code to the system to confirm guardian consent. In some embodiments, the system may use blockchain between an electronic device of the guardian and the system and/or an electronic device of the data subject to confirm guardian consent.


In various implementations, the system may include an electronic registry of guardians for data subjects that may not be of age for valid consent for particular types of personal data to be collected as part of the particular transaction. For example, guardians may access the electronic registry to identify one or more data subjects for which they are a guardian. Additionally, the guardian may identify one or more types of personal data and transactions for which the guardian will provide guardian consent. Further, in some implementations, the system may use previous authorizations of guardian consent between a guardian and particular data subject to identify the guardian of the particular data subject, and the guardian—data subject link may be created in the electronic registry of the system.


The system may further be configured to confirm an age of the individual (e.g., parent or guardian) providing consent on the data subject's behalf. The system may confirm the individuals age using any suitable age verification technique described herein.


In response to receiving valid consent from the data subject, the system is configured to transmit the unique transaction ID and the unique consent receipt key back to the third-party consent receipt management system for processing and/or storage. In other embodiments, the system is configured to transmit the transaction ID to a data store associated with one or more entity systems (e.g., for a particular entity on behalf of whom the third-party consent receipt management system is obtaining and managing validly received consent). The system may be further configured to transmit a consent receipt to the data subject which may include, for example: (1) the unique transaction ID; (2) the unique consent receipt key; and/or (3) any other suitable data related to the validly provided consent.


Consent Sharing—WebView and Native Applications


In particular embodiments, any entity (e.g., organization, company, etc.) that collects, stores, processes, etc. personal data may require one or more of: (1) consent from a data subject from whom the personal data is collected and/or processed; and/or (2) a lawful basis for the collection and/or processing of the personal data. In various embodiments, the entity may be required to, for example: (1) demonstrate that a data subject has freely given specific, informed, and unambiguous indication of the data subject's agreement to the processing of his or her personal data (e.g., in the form of a statement or clear affirmative action); (2) demonstrate that the entity received consent from a data subject in a manner clearly distinguishable from other matters (e.g., in an intelligible and easily accessible form, using clear and plain language, etc.); (3) enable a data subject to withdraw consent as easily as the data subject can give consent; (4) separate a data subject's consent from performance under any contract unless such processing is necessary for performance under the contract; etc.


In particular, when storing or retrieving information from an end user's device, an entity may be required to receive consent from the end user for such storage and retrieval. Web cookies are a common technology that may be directly impacted by the consent requirements discussed herein. Accordingly, an entity that use cookies (e.g., on one or more webpages) may be required to use one or more banners, pop-ups or other user interfaces on the website in order to capture consent from end-users to store and retrieve cookie data.


The consent required to store and retrieve cookie data may, for example, require a clear affirmative act establishing a freely given, specific, informed and unambiguous indication of a data subject's agreement to the processing of personal data. This may include, ticking a box when visiting an internet website, choosing technical settings for information society services, or any other suitable statement or conduct which clearly indicates in this context the data subject's acceptance of the proposed processing of their personal data.


In various embodiments, pre-ticked boxes (or other preselected options) or inactivity may not be sufficient to demonstrate freely given consent. For example, an entity may be unable to rely on implied consent (e.g., “by visiting this website, you accept cookies”). Without a genuine and free choice by data subjects and/or other end users, an entity may be unable to demonstrate valid consent (e.g., and therefore unable to utilize cookies in association with such data subjects and/or end users).


A particular entity may use cookies for any number of suitable reasons. For example, an entity may utilize: (1) one or more functionality cookies (which may, for example, enhance the functionality of a website by storing user preferences such as location for a weather or news website); (2) one or more performance cookies (which may, for example, help to improve performance of the website on the user's device to provide a better user experience); (3) one or more targeting cookies (which may, for example, be used by advertising partners to build a profile of interests for a user in order to show relevant advertisements through the website; (4) etc. Cookies may also be used for any other suitable reason such as, for example: (1) to measure and improve site quality through analysis of visitor behavior (e.g., through ‘analytics’); (2) to personalize pages and remember visitor preferences; (3) to manage shopping carts in online stores; (4) to track people across websites and deliver targeted advertising; (5) etc.


Under various regulations, an entity may not be required to obtain consent to use every type of cookie utilized by a particular website. For example, strictly necessary cookies, which may include cookies that are necessary for a website to function, may not require consent. An example of strictly necessary cookies may include, for example, session cookies. Session cookies may include cookies that are strictly required for website functionality and don't track user activity once the browser window is closed. Examples of session cookies include: (1) faceted search filter cookies; (2) user authentication cookies; (3) cookies that enable shopping cart functionality; (4) cookies used to enable playback of multimedia content; (5) etc.


Cookies which may trigger a requirement for obtaining consent may include cookies such as persistent cookies. Persistent cookies may include, for example, cookies used to track user behavior even after the user has moved on from a website or closed a browser window.


In order to comply with particular regulations, an entity may be required to: (1) present visitors with information about the cookies a website uses and the purpose of the cookies (e.g., any suitable purpose described herein or other suitable purpose); (2) obtain consent to use those cookies (e.g., obtain separate consent to use each particular type of cookies used by the web site); and (3) provide a mechanism for visitors to withdraw consent (e.g., that is as straightforward as the mechanism through which the visitors initially provided consent). In any embodiment described herein, an entity may only need to receive valid consent from any particular visitor a single time (e.g., returning visitors may not be required to provide consent on subsequent visits to the site). In particular embodiments, although they may not require explicit consent to use, an entity may be required to notify a visitor of any strictly necessary cookies used by a website.


In particular embodiments, it may be desirable to share a previously provided consent between a mobile application and one or more WebViews utilized within the mobile (e.g., or other) software application. For example, in various embodiments, a native application (e.g., a native application used on a particular computing device, such as a mobile computing device) may open a WebView within the native application to display any suitable information within the WebView. In particular embodiments, a WebView may include, for example, an embeddable browser that a native application can use to display web content. In particular embodiments, a native application may include any application written in a language and UI framework designed specifically for a particular platform. In various embodiments, an embeddable browser may include, for example, any suitable browser engine configured to insert web content into a native application and programmatically instruct the native application on what web content to load within the WebView. In any embodiment described herein, a WebView may include any visual component/control widget, etc. that may be utilized in composing one or more visual aspects of a native application. As such, in particular embodiments, a WebView may be at least partially incorporated into a native UI of a native app, which may, for example, be viewed as a user of a native application as another aspect of the native application user interface.


In particular embodiments, a website being opened in a WebView may include one or more cookie banners (e.g., as described herein) in order to capture consent for the use of one or more cookies by the website opened in the WebView. In various embodiments, one or more cookies passed within a WebView may not pass to and/or otherwise persist in a default browser on the device on which the native application is running. In various embodiments, the cookie generated and stored by the WebView may be containerized within the WebView. In still other embodiments, one or more cookies may not be shared between multiple instances and/or different WebViews initiated within the native application. In still other embodiments, one or more consents provided within the native application may not automatically pass (e.g. via one or more cookies or other mechanisms) to a WebView launched within the native application. In some embodiments, this may, for example, result in a less than seamless user experience in that a user may be required to complete two or more consent workflows while using a single native application (e.g., within both the native application and separately in any WebView launched within the native application).


In a particular example, a user may initially provide consent for particular data processing during an on-boarding process within a native application (e.g., when first accessing the native application, when creating an account for use with the native application, etc.). In some embodiments, the native application may utilize one or more WebViews in which the user has to re-provide consent for the same processing (e.g., because the consent is not passed from the native application to the WebView). For example, a user accessing a news native application may initially register an account with the news agency. When accessing particular articles within the news agency, the native application may launch a WebView that displays a webpage on the news agency's website that contains the article. In some embodiments, it may be desirable to avoid requiring the user to consent to any data processing a second time (e.g., or view a consent banner) upon an initial launch of the WebView (e.g., by passing the user's consent from the native application to the WebView).


In particular embodiments, as described herein, any entity (e.g., organization, company, etc.) that collects, stores, processes, etc. personal data may require consent from a data subject from whom the personal data is collected and/or processed. In various embodiments, the entity may be required to, for example, demonstrate that a data subject has freely given specific, informed, and unambiguous indication of the data subject's agreement to the processing of his or her personal data for one or more specific purposes (e.g., in the form of a statement or clear affirmative action). In various embodiments, the system is configured to provide a third-party data repository system to facilitate the receipt and centralized storage of personal data for each of a plurality of respective data subjects, as described herein. Additionally, the third-party data repository system may be configured to interface with a centralized consent receipt management system.


In various embodiments, an entity may provide a WebView where a transaction between an entity and a data subject may be performed. The WebView may be accessible through a web browser (e.g., Chrome, Firefox, Internet Explorer, etc.). As described herein, the transaction may involve the collection or processing of personal data associated with the data subject by the entity as part of a processing activity undertaken by the entity that the data subject is consenting to as part of the transaction. Additionally, the entity may provide a native application where the transactions between the entity and a data subject may be performed. In some embodiments, the system may be configured to share consent data between the WebViews and the native application, so data subjects experience a seamless transition while using the either the WebView or the native application, and the data subjects are not required to go through a consent workflow for each of the WebViews and the native application.


In various embodiments, the data subject may provide a request to initiate a transaction between the entity and the data subject, and consent data may be required from the data subject to initiate the transaction. The system may receive data subject consent data provided at the WebView by the data subject. In various embodiments, the system may translate the data subject consent data provided at the WebView for processing within the native application associated with the entity. For example, the consent data may comprise one or more WebView cookies, which may be stored, and a consent data software development kit (SDK) may be used to execute a stub or JavaScript function to return one or more values of one or more WebView cookies. In some embodiments, the system may electronically provide the translated data subject consent data for processing within the native application associated with the entity. Based on the example above, the values of the one or more WebView cookies may be used by the consent data SDK to provide the consent data to the native application for processing and storing. Additionally, in some embodiments, the system may electronically provide the data subject consent data to the consent receipt management system for processing, as described herein.


In various embodiments, an entity may provide a native application where the transaction between the entity and the data subject may be performed. The system may translate the data subject consent data provided at the native application for storage in a storage location accessible by a WebView associated with the entity. For example, the system may create one or more consent data cookies based on the consent data provided at the native application, and the system may provide the created one or more cookies to a storage location that is accessible by the WebView for processing. Additionally, in some embodiments, the system may electronically provide the data subject consent data to the consent receipt management system for processing, as described herein.


The system may comprise, for example: (1) receiving, by one or more processors, data subject consent data provided at a WebView associated with an entity; (2) translating, by one or more processors, the data subject consent data provided at the WebView associated with the entity for processing within the native application associated with the entity; (3) electronically providing, by one or more processors, the translated data subject consent data for processing within the native application associated with the entity; and (4) electronically providing, by one or more processors, the data subject consent data to the consent receipt management system for processing.


In some embodiments, the system may comprise, for example: (1) receiving, by one or more processors, data subject consent data provided at a native application associated with an entity; (2) translating, by one or more processors, the data subject consent data provided at the native application associated with the entity for storage in a storage location accessible by a WebView associated with the entity; (3) electronically providing, by one or more processors, the translated data subject consent data to the storage location accessible by the WebView associated with the entity for processing within the WebView associated with the entity; and (4) electronically providing, by one or more processors, the data subject consent data to the consent receipt management system for processing.


Native Application Data Processing Consent Sharing Module and Related Methods


In particular embodiments, any entity (e.g., organization, company, etc.) that collects, stores, processes, etc. personal data may require consent from a data subject from whom the personal data is collected and/or processed. In various embodiments, the entity may be required to, for example, demonstrate that a data subject has freely given specific, informed, and unambiguous indication of the data subject's agreement to the processing of his or her personal data for one or more specific purposes (e.g., in the form of a statement or clear affirmative action). The system may generate and manage a consent receipt under one or more transactions for a data subject. In some implementations, the system may record consent notice information as a part of the consent receipt. For example, the generated consent receipt may include information related to whether a data subject that is giving consent for purposes of processing personal data associated with the data subject was shown a notice (e.g., a privacy policy) about the processing of the personal data associated with the data subject. In some embodiments, the system may be configured to store one or more indications consent in any suitable manner (e.g., using one or more cookies) in order to enable a user to provide consent a single time, and enable the system to access the consent in order to continue the consented-to data processing without having to re-prompt the user.


Various aspects of the system's functionality may be executed by certain system modules, including a Native Application Data Processing Consent Sharing Module 8700A, 8700B. Although this and other modules described herein are presented as a series of steps, it should be understood in light of this disclosure that various embodiments of the Native Application Data Processing Consent Sharing Module 8700A, 8700B described herein may perform the steps described below in an order other than in which they are presented. In still other embodiments, the Native Application Data Processing Consent Sharing Module 8700A, 8700B may omit certain steps described below. In various embodiments, the Native Application Data Processing Consent Sharing Module 8700A, 8700B may perform steps in addition to those described (e.g., such as one or more steps described with respect to one or more other modules, etc.). Various embodiments of the system are described more fully below.


In particular embodiments, the Native Application Data Processing Consent Sharing Module 8700A, 8700B is configured for: (1) receiving, by one or more processors, data subject consent data provided at a WebView associated with an entity (e.g., within a native application); (2) translating, by one or more processors, the data subject consent data provided at the WebView associated with the entity for processing within the native application associated with the entity; (3) electronically providing, by one or more processors, the translated data subject consent data for processing within the native application associated with the entity; and (4) electronically providing, by one or more processors, the data subject consent data to the consent receipt management system for processing. In still other embodiments, the system may be configured to receive data subject consent from within a native application, translate the data subject consent for processing by a WebView within the native application, and electronically providing the translated data subject consent from the native application to the WebView.


In particular embodiments, when executing the Native Application Data Processing Consent Sharing Module 8700A, the system begins, at Step 8710A, by receiving, by one or more processors, data subject consent data provided at a WebView associated with an entity (e.g., within a native application).


Continuing to Step 8720A, the system is configured for translating, by one or more processors, the data subject consent data provided at the WebView associated with the entity for processing within the native application associated with the entity.


Next, at Step 8730A, the system is configured to electronically provide, by one or more processors, the translated data subject consent data for processing within the native application associated with the entity.


Optionally, at Step 8740A, the system may be configured to electronically provide, by one or more processors, the data subject consent data to the consent receipt management system for processing.


In particular embodiments, when executing the Native Application Data Processing Consent Sharing Module 8700B according to yet another embodiment, the system begins, at Step 8710B, by receiving, by one or more processors, data subject consent data provided at a native application.


Continuing to Step 8720B, the system is configured for translating, by one or more processors, the data subject consent data provided at native application for processing within a WebView within the native application.


Next, at Step 8730B, the system is configured to electronically provide, by one or more processors, the translated data subject consent data for processing within the WebView.


Optionally, at Step 8740B, the system may be configured to electronically provide, by one or more processors, the data subject consent data to the consent receipt management system for processing.


For example, in various embodiments, as may be understood from the system 8800 shown in FIG. 88, when a data subject accepts one or more cookies in a WebView 8810, the system may be configured to drop a particular cookie (e.g., OptanonConsent cookie) based on one or more cookie preferences selected by the user. In other embodiments, the system may be configured to drop one or more cookies (e.g., one or more eupubconsent cookies, if applicable) and store the one or more cookies in cookie storage 8815 associated with the WebView. In various embodiments, prior to dismissing the WebView 8810, a third-party SDK 8825 associated with the native application 8820 (e.g., the native application 8820 displaying the WebView 8810) may, for example, be configured to execute a stub and/or JavaScript or other function to return one or more values of the one or more cookies from the WebView 8810. In response to identifying the one or more values, the third-party SDK 8825 may be configured to store one or more of the values in a native portion of the code (e.g., one or more user preference data files associated with the native application 8820 (e.g., NSUserDefaults in iOS and/or one or more Android equivalents). In various embodiments, the one or more values may be stored locally (e.g., in Data storage 8827 or app storage 8829). In other embodiments, the one or more values may be stored in one or more remote servers 8830.


Similarly, in the system 8890 shown in FIG. 89, the system may receive consent from a user within the native application 8820 and store the consent data for access by a WebView. The system may, for example, append data to a header in a URL request in order to cause the WebView (e.g., or other website) to set one or more cookies for the domain being loaded (e.g., in the WebView).


Overview of Personal Data Receipts


In particular embodiments, any entity (e.g., organization, company, etc.) that collects, stores, processes, etc. personal data may require one or more of: (1) consent from a data subject from whom the personal data is collected and/or processed; and/or (2) a lawful basis for the collection and/or processing of the personal data. In various embodiments, the entity may be required to, for example, demonstrate that a data subject has freely given specific, informed, and unambiguous indication of the data subject's agreement to the processing of his or her personal data for one or more specific purposes (e.g., in the form of a statement or clear affirmative action). As such, in particular embodiments, an organization may be required to demonstrate a lawful basis for each piece of personal data that the organization has collected, processed, and/or stored. In particular, each piece of personal data that an organization or entity has a lawful basis to collect and process may be tied to a particular processing activity undertaken by the organization or entity.


A particular organization may undertake a plurality of different privacy campaigns, processing activities, etc. that involve the collection and storage of personal data. In some embodiments, each of the plurality of different processing activities may collect redundant data (e.g., may collect the same personal data for a particular individual more than once), and may store data and/or redundant data in one or more particular locations (e.g., on one or more different servers, in one or more different databases, etc.). In this way, because of the number of processing activities that an organization may undertake, and the amount of data collected as part of those processing activities over time, one or more data systems associated with an entity or organization may store or continue to store data that is not associated with any particular processing activity (e.g., any particular current processing activity). Under various legal and industry standards related to the collection and storage of personal data, such data may not have or may no longer have a legal basis for the organization or entity to continue to store the data. As such, organizations and entities may require improved systems and methods to maintain an inventory of data assets utilized to process and/or store personal data for which a data subject has provided consent for such storage and/or processing.


In various embodiments, the system is configured to provide a third-party data repository system to facilitate the receipt and centralized storage of personal data (e.g., and a plurality of personal data receipts to memorialize a justification for processing particular personal data) for each of a plurality of respective data subjects, as described herein. Additionally, the third-party data repository system is configured to interface with a centralized consent receipt management system.


A triggering action may prompt the system to identify one or more pieces of personal data associated with one or more data subjects, and delete (or modify) all or a portion of the identified one or more pieces of personal data. In some implementations, the particular organization may receive a data subject access request that comprises a particular request to perform one or more actions with any personal data stored by the particular organization regarding the requestor. For example, in some embodiments, the request may include a request to view one or more pieces of personal data stored by the system regarding the requestor. In other embodiments, the request may include a request to delete one or more pieces of personal data stored by the system regarding the requestor. In still other embodiments, the request may include a request to update one or more pieces of personal data stored by the system regarding the requestor. The data subject access request may be provided to the third-party data repository system to identify and locate the personal data stored by the particular organization regarding the requestor, as described herein. Further, where consent to collect, store, and/or process particular personal data associated with a data subject is withdrawn by the data subject


Additionally, in some embodiments, once a privacy campaign is completed by the particular organization, the system may notify a privacy officer associated with the privacy campaign that the personal data stored by the particular organization associated with the privacy campaign may no longer be needed to be stored. Moreover, in some embodiments, when particular personal data stored by the particular organization has been stored for a particular period of time (e.g., based on regulations defined in privacy laws) or the particular personal data stored by the particular organization has not been accessed for a particular period of time (e.g., a threshold period of time), then the system may notify a privacy officer that such personal data stored by the particular organization may no longer be needed to be stored. Further, in some implementations, the system may initiate deleting the identified personal data (e.g., personal data associated with an expired privacy campaign, personal data stored for a particular period of time, or personal data that has not been accessed for a period of time) stored by the particular organization.


In response to identifying the personal data, the system may determine if there are one or more legal bases to retain one or more pieces of the identified personal data. The one or more legal bases may include, for example, (i) an ongoing legal case where particular personal data is to be retained, (ii) machine learning data generated by the particular organization that incorporates one or more pieces of the identified personal data (e.g., custom settings selected by the data subject, aggregate data collected by the particular organization, etc.), or (iii) any other legal basis to retain one or more pieces of the identified personal data.


In particular embodiments, the system is configured to generate a personal data receipt in response to identifying the one or more legal bases for continuing to store the one or more pieces of personal data. In some embodiments, the personal data receipt may, for example, operate in a similar manner to various embodiments of a consent receipt described herein. The personal data receipt may, for example, memorialize a basis for continuing to store, process, and otherwise collect personal data (e.g., for one or more particular data subjects) for one or more reasons other than direct consent from each of the one or more data subjects. The system may, for example, be configured to link (e.g., electronically link in computer memory) the generated personal data receipt to: (1) the determined legal basis; (2) the one or more first pieces of personal data that the system has identified as having a legal basis for continuing the processing/storage/collection of; (3) one or more processing activities associated with the personal data; (4) a unique identifier associated with the particular data subject; and/or (5) any other suitable data.


In response, the system may retain the one or more pieces of the identified personal data that have a legal basis for retention and delete the remaining one or more pieces of the identified personal data that do not have a legal basis for retention. In some embodiments, the system may identify a first set of one or more pieces of the identified personal data that have a legal basis for retention and a second set of one or more pieces of the identified personal data that do not have a legal basis for retention. In some implementations, the system may automatically retain the one or more pieces of the identified personal data that have a legal basis for retention and delete the remaining one or more pieces of the identified personal data that do not have a legal basis for retention. In some implementations, the system may provide the one or more pieces of the identified personal data that have a legal basis for retention to one or more privacy officers to review and verify there is a legal basis for retention, and the one or more privacy officer may select to retain a portion or all of the one or more pieces of the identified personal data that have a legal basis for retention. A notification may be provided to particular parties, for example, one or more privacy officers or the data subject, to indicate the action performed (e.g., which data of the identified personal data have a legal basis for retention, the data of the identified personal data that was retained and/or deleted).


In some embodiments, the system may be configured to generate and store a personal data receipt for each incidence of consent (e.g., to the processing of one or more pieces of personal data) captured by the system as well as each incidence of an identification of a basis for the processing of the data other than consent received from the data subject. The system may, for example, be configured to transmit the personal data receipt (e.g., or In such embodiments, the system may be configured, for example to enable a data subject to use the personal data receipt in the exercise of one or more rights (e.g., one or more rights related to the processing, collection, and/or storage of personal data describe herein). For example, in response to a user providing consent to the processing of one or more pieces of personal data, the system may be configured to: (1) generate a personal data receipt that stores data related to the provided consent; and (2) provide a copy of the personal data receipt to the data subject. In some embodiments, the system is configured to receive the copy of the personal data receipt in response to a request, from the data subject, to exercise one or more data subject's rights described herein. In various embodiments, the system is configured to use the personal data receipt to verify an identify of the holder of the receipt as the individual to whom the personal data receipt was issued (e.g., the data subject).


Personal Data Receipt Module and Related Methods


As may be understood in light of this disclosure, a particular organization may undertake a plurality of different privacy campaigns, processing activities, etc. that involve the collection and storage of personal data. In various embodiments, the system may be configured for identifying one or more pieces of personal data associated with a data subject, identifying a storage location of each of the one or more pieces of personal data associated with the data subject, analyzing and determining that a first portion of the one or more of the pieces of personal data has one or more legal bases for continued storage and automatically maintaining storage of the first portion of the one or more pieces of personal data, and automatically facilitating deletion of a second portion of the one or more pieces of personal data associated with the data subject, wherein the second portion of the one or more pieces of personal data associated with the data subject is different from the first portion of the one or more pieces of personal data.


Various aspects of the system's functionality may be executed by certain system modules, including a Personal Data Receipt Module 9000. Although these modules are presented as a series of steps, it should be understood in light of this disclosure that various embodiments of the Personal Data Receipt Module 9000 described herein may perform the steps described below in an order other than in which they are presented. In still other embodiments, the Personal Data Receipt Module 9000 may omit certain steps described below. In various embodiments, the Personal Data Receipt Module 9000 may perform steps in addition to those described (e.g., such as one or more steps described with respect to one or more other modules, etc.). Various embodiments of the system are described more fully below.


In particular embodiments, a Personal Data Receipt Module 9000 is configured for (1) identifying one or more pieces of personal data associated with a data subject based at least in part on one or more triggering action; (2) identifying a storage location of each of the one or more pieces of personal data associated with the data subject; (3) in response to identifying the storage location of each of the one or more pieces of personal data associated with the data subject, automatically determining that a first portion of the one or more of the pieces of personal data has one or more legal bases for continued storage; (4) in response to determining that the first portion of the one or more of the pieces of personal data associated with the data subject has one or more legal bases for continued storage, automatically maintaining storage of the first portion of the one or more pieces of personal data; and (5) automatically facilitating deletion of a second portion of the one or more pieces of personal data associated with the data subject, wherein the second portion of the one or more pieces of personal data associated with the data subject is different from the first portion of the one or more pieces of personal data.


As may be understood from FIG. 90, when executing the Personal Data Receipt Module 9000, the system begins, at Step 9010, by identifying one or more pieces of personal data associated with a data subject based at least in part on one or more triggering actions. For example, in various embodiments, the system is configured to identify any personal data stored in any database, server, or other data repository associated with a particular organization. In various embodiments, the system is configured to use one or more data models, such as those described above, to identify this personal data and suitable related information (e.g., where the personal data is stored, who has access to the personal data, etc.). In various embodiments, the system is configured to use intelligent identity scanning (e.g., as described above) to identify the requestor's personal data and related information that is to be used to fulfill the request.


In still other embodiments, the system is configured to use one or more machine learning techniques to identify such personal data. For example, the system may identify particular stored personal data based on, for example, a country in which a website that the data subject request was submitted is based, or any other suitable information.


In particular embodiments, the system is configured to scan and/or search one or more existing data models (e.g., one or more current data models) in response to receiving the request in order to identify the one or more pieces of personal data associated with the requestor. The system may, for example, identify, based on one or more data inventories (e.g., one or more inventory attributes) a plurality of storage locations that store personal data associated with the requestor. In other embodiments, the system may be configured to generate a data model or perform one or more scanning techniques in response to receiving the request (e.g., in order to automatically fulfill the request).


In various embodiments, the one or more triggering action may be a data subject access request, which comprises a particular request to perform one or more actions with any personal data stored by a particular organization regarding the data subject. For example, in some embodiments, the request may include a request to view one or more pieces of personal data stored by the system regarding the requestor. In other embodiments, the request may include a request to delete one or more pieces of personal data stored by the system regarding the requestor. In still other embodiments, the request may include a request to update one or more pieces of personal data stored by the system regarding the requestor. In still other embodiments, the request may include a request based on any suitable right afforded to a data subject, such as those discussed above.


As described herein, in various embodiments, an organization, corporation, etc. may be required to provide information requested by an individual for whom the organization stores personal data within a certain time period (e.g., 30 days). As a particular example, an organization may be required to provide an individual with a listing of, for example: (1) any personal data that the organization is processing for an individual, (2) an explanation of the categories of data being processed and the purpose of such processing; and/or (3) categories of third parties to whom the data may be disclosed. Various privacy and security policies (e.g., such as the European Union's General Data Protection Regulation, and other such policies) may provide data subjects (e.g., individuals, organizations, or other entities) with certain rights related to the data subject's personal data that is collected, stored, or otherwise processed by an organization.


Continuing to Step 9020, the system is configured to identify a storage location of each of the one or more pieces of personal data associated with the data subject. The system may, for example, be configured to connect to one or more databases associated with a particular organization (e.g., one or more databases that may serve as a storage location for any personal or other data collected, processed, etc. by the particular organization, for example, as part of a suitable processing activity. As may be understood in light of this disclosure, a particular organization may use a plurality of one or more databases, a plurality of servers, or any other suitable data storage location in order to store personal data and other data collected.


Next, at Step 9030, in response to identifying the storage location of each of the one or more pieces of personal data associated with the data subject, the system is configured for, automatically determining that a first portion of the one or more of the pieces of personal data has one or more legal bases for continued storage. The system may determine if there are one or more legal bases to retain one or more pieces of the identified personal data, which may be a first portion of personal data. The one or more legal bases may include, for example, (i) an ongoing legal case where particular personal data is to be retained, (ii) machine learning data generated by the particular organization that incorporates one or more pieces of the identified personal data (e.g., custom settings selected by the data subject, aggregate data collected by the particular organization, etc.), (iii) consent from the data subject for the continued storage of the one or more pieces of personal data, (iv) an indication provided by the organization that the one or more pieces of personal data are a part of anonymized data (e.g., aggregate data collected by the particular organization, etc.), or (v) any other legal basis to retain one or more pieces of the identified personal data.


Further, in various embodiments, the system may provide the first portion of the one or more of the pieces of personal data associated with the data subject has one or more legal bases for continued storage to one or more privacy officers of the organization, and the system may, in response, receive storage retention feedback from the one or more privacy officers associated with the first portion of the one or more of the pieces of personal data associated with the data subject. The storage retention feedback may include a selection of a first set of the first portion of the one or more pieces of personal data for which to maintain continued storage. For example, the one or more privacy officers may determine that a part of the first portion of the one or more pieces of personal data actually has a legal basis for retention; however, a second set of the first portion of the one or more pieces of personal data may not have a legal basis for retention (e.g., it may be too risky for the organization to retain that set of data).


At Step 9040, in response to determining that the first portion of the one or more of the pieces of personal data associated with the data subject has one or more legal bases for continued storage, the system is configured for, automatically maintaining storage of the first portion of the one or more pieces of personal data. In some implementations, the system may automatically retain the one or more pieces of the identified personal data that have a legal basis for retention and delete the remaining one or more pieces of the identified personal data that do not have a legal basis for retention.


In various embodiments, the system may apply one or more storage attributes to the first portion of the one or more pieces of personal data, and determine whether to maintain storage of the first portion of the one or more pieces of personal data based at least in part on the applying the one or more storage attribute to the first portion of the one or more pieces of personal data. In some implementations, the storage attribute may include a storage time (e.g., the one or more pieces of personal data have been stored for 30 days) of the one or more pieces of personal data. The system may compare the storage time of the one or more pieces of personal data to an authorized storage time for the organization to store the one or more pieces of personal data, and in response to determining that the storage time of the one or more pieces of personal data is greater than the authorized storage time for the organization to store the one or more pieces of personal data, automatically notifying one or more privacy officers. In various embodiments, in response to determining that the storage time of the one or more pieces of personal data is greater than the authorized storage time for the organization to store the one or more pieces of personal data, automatically facilitating deletion of the first portion of the one or more pieces of personal data associated with the data subject.


In some embodiments, the storage attribute may include a relevancy attribute of the one or more pieces of personal data. The system may determine that a privacy campaign associated with the one or more pieces of personal data is inactive. As may be understood in light of this disclosure, a particular organization may undertake a plurality of different privacy campaigns, processing activities, etc. that involve the collection and storage of personal data. A privacy campaign may be inactive, for example, (1) when the privacy campaign has not been accessed by a member of the organization in a set period of time, (2) when the privacy campaign is deleted, (3) etc. In response to determining that a privacy campaign associated with the one or more pieces of personal data is inactive, the system may automatically facilitate deletion of the first portion of the one or more pieces of personal data associated with the data subject.


In various other embodiments, the system is configured to generate a consent receipt (e.g., using any suitable technique described herein) and store an indication in association with the consent receipt indicating the determined legal basis for the storage and/or processing of particular data. As such, the system may be configured to maintain a record of one or more legal bases for processing personal data in addition to storing consent receipts for explicit consent provided by a data subject as described herein. In this way, the system may be configured to maintain a complete record of any determined basis for storing, collecting, and/or processing particular data (e.g., through explicit consent, implicit/implied consent, one or more legal bases, etc.).


Continuing to Step 9050, the system is configured to automatically facilitate deletion of a second portion of the one or more pieces of personal data associated with the data subject, wherein the second portion of the one or more pieces of personal data associated with the data subject is different from the first portion of the one or more pieces of personal data. The second portion of the one or more pieces of personal data may be deleted, as it may not have a legal basis for retention. The system may automatically delete the second portion of the one or more pieces of personal data. In some implementations, the system may provide the second portion of the one or more pieces of personal data to one or more privacy officers of the organization to review and delete the data.


In some implementations, the system may provide the one or more pieces of the identified personal data that have a legal basis for retention to one or more privacy officers to review and verify there is a legal basis for retention, and the one or more privacy officer may select to retain a portion or all of the one or more pieces of the identified personal data that have a legal basis for retention. A notification may be provided to particular parties, for example, one or more privacy officers or the data subject, to indicate the action performed (e.g., which data of the identified personal data have a legal basis for retention, the data of the identified personal data that was retained and/or deleted).


Overview of Personal Data Verification of Consent


In particular embodiments, any entity (e.g., organization, company, etc.) that collects, stores, processes, etc. personal data may require consent from a data subject from whom the personal data is collected and/or processed. In various embodiments, the entity may be required to, for example, demonstrate that a data subject has freely given specific, informed, and unambiguous indication of the data subject's agreement to the processing of his or her personal data for one or more specific purposes (e.g., in the form of a statement or clear affirmative action). In various embodiments, the system is configured to provide a third-party data repository system to facilitate the receipt and centralized storage of personal data for each of a plurality of respective data subjects, as described herein. In particular embodiments, a third-party data repository system is configured to interface with a consent receipt management system (e.g., such as the consent receipt management system described below).


The system may be configured to integrate with (e.g., interface with) a consent receipt management system (e.g., such as the consent receipt management system described more fully below). The system may generate and manage a consent receipt under one or more transactions for a data subject. In some implementations, the system may record consent notice information as a part of the consent receipt. For example, the generated consent receipt may include information related to whether a data subject that is giving consent for purposes of processing personal data associated with the data subject was shown a notice about the processing of the personal data associated with the data subject.


When the data subject provides consent (e.g., on a mobile application or a webform), the system may determine whether there is a privacy policy provided on the same user interface where the user provided consent or a link to a privacy policy directed to the particular consent the data subject is providing. The system may, for example, be configured to track data related to: (1) whether the data subject selected to view the privacy policy (e.g., whether the data subject select the link to the privacy policy and/or scrolled to the end of the provided privacy policy); (2) whether the data subject selected to view the privacy policy within a determined period of time and/or before another action was performed (e.g., whether the user selected to view the privacy policy before providing consent or within a number of minutes after being presented with the option to view the privacy policy or select the link to the privacy policy); or (3) etc. The system may include this tracked data in the consent receipt generated by the system.


Additionally, the system may access the privacy policy (e.g., provided on the same user interface where the user provided consent or a link to a privacy policy), and import one or more terms and conditions provided in the privacy policy to the consent receipt. A time stamp may also be provided with the one or more terms and conditions of the privacy policy. The consent receipt may then indicate the notice that was provided to the data subject when the data subject gave consent based on the content and/or time stamp associated with the privacy policy. In some implementations, a link to a stored version of the one or more terms and conditions of the privacy policy may be provided in the consent receipt.


The computer-implemented method may be configured for: (1) receiving a request to initiate a transaction between the entity and the data subject; (2) providing, at the user interface, a privacy policy associated with the entity and based at least in part on the request to initiate the transaction between the entity and the data subject; (3) accessing the privacy policy associated with the entity and based at least in part on the request to initiate the transaction between the entity and the data subject; (4) storing one or more provision of the privacy policy associated with the entity and based at least in part on the request to initiate the transaction between the entity and the data subject; (5) providing a user interface for consenting to the privacy policy associated with the entity and based at least in part on the request to initiate the transaction between the entity and the data subject; (6) receiving a selection to consent to the privacy policy associated with the entity and based at least in part on the request to initiate the transaction between the entity and the data subject; (7) in response to the selection, generating, by a third party consent receipt management system, a consent receipt to the data subject, wherein the consent receipt include the stored one or more provision of the privacy policy; and (8) storing, by the third party consent receipt management system, the generated consent receipt.


Personal Data Consent Verification Module and Related Methods


In particular embodiments, any entity (e.g., organization, company, etc.) that collects, stores, processes, etc. personal data may require consent from a data subject from whom the personal data is collected and/or processed. In various embodiments, the entity may be required to, for example, demonstrate that a data subject has freely given specific, informed, and unambiguous indication of the data subject's agreement to the processing of his or her personal data for one or more specific purposes (e.g., in the form of a statement or clear affirmative action). The system may generate and manage a consent receipt under one or more transactions for a data subject. In some implementations, the system may record consent notice information as a part of the consent receipt. For example, the generated consent receipt may include information related to whether a data subject that is giving consent for purposes of processing personal data associated with the data subject was shown a notice (e.g., a privacy policy) about the processing of the personal data associated with the data subject.


Various aspects of the system's functionality may be executed by certain system modules, including a Personal Data Consent Verification Module 9100. Although these modules are presented as a series of steps, it should be understood in light of this disclosure that various embodiments of the Personal Data Consent Verification Module 9100 described herein may perform the steps described below in an order other than in which they are presented. In still other embodiments, the Personal Data Consent Verification Module 9100 may omit certain steps described below. In various embodiments, the Personal Data Consent Verification Module 9100 may perform steps in addition to those described (e.g., such as one or more steps described with respect to one or more other modules, etc.). Various embodiments of the system are described more fully below.


In particular embodiments, a Personal Data Consent Verification Module 9100 is configured for: (1) receiving a request to initiate a transaction between the entity and the data subject; (2) providing, at the user interface, a privacy policy associated with the entity and based at least in part on the request to initiate the transaction between the entity and the data subject; (3) accessing the privacy policy associated with the entity and based at least in part on the request to initiate the transaction between the entity and the data subject; (4) storing one or more provision of the privacy policy associated with the entity and based at least in part on the request to initiate the transaction between the entity and the data subject; (5) providing a user interface for consenting to the privacy policy associated with the entity and based at least in part on the request to initiate the transaction between the entity and the data subject; (6) receiving a selection to consent to the privacy policy associated with the entity and based at least in part on the request to initiate the transaction between the entity and the data subject; (7) in response to the selection, generating, by a third party consent receipt management system, a consent receipt to the data subject, wherein the consent receipt include the stored one or more provision of the privacy policy; and (8) storing, by the third party consent receipt management system, the generated consent receipt.


As may be understood from FIG. 91, when executing the Personal Data Consent Verification Module 9100, the system begins, at Step 9110, by receiving a request to initiate a transaction between the entity and the data subject. In particular embodiments, a third-party consent receipt management system may be configured to manage one or more consent receipts for a particular entity. As may be understood from this figure, a data subject may access an interaction interface (e.g., via the web) for interacting with a particular entity (e.g., one or more entity systems). The interaction interface (e.g., user interface) may include, for example, a suitable website, web form, user interface etc. The interaction interface may be provided by the entity. Using the interaction interface, a data subject may initiate a transaction with the entity that requires the data subject to provide valid consent (e.g., because the transaction includes the processing of personal data by the entity). The transaction may include, for example: (1) accessing the entity's website; (2) signing up for a user account with the entity; (3) signing up for a mailing list with the entity; (4) a free trial sign up; (5) product registration; and/or (6) any other suitable transaction that may result in collection and/or processing personal data, by the entity, about the data subject.


As may be understood from this disclosure, any particular transaction may record and/or require one or more valid consents from the data subject. For example, the system may require a particular data subject to provide consent for each particular type of personal data that will be collected as part of the transaction. The system may, in various embodiments, be configured to prompt the data subject to provide valid consent, for example, by: (1) displaying, via the interaction interface, one or more pieces of information regarding the consent (e.g., what personal data will be collected, how it will be used, etc.); and (2) prompt the data subject to provide the consent.


In response to the data subject (e.g., or the entity) initiating the transaction, the system may be configured to: (1) generate a unique receipt key (e.g., unique receipt ID); (2) associate the unique receipt key with the data subject (e.g., a unique subject identifier), the entity, and the transaction; and (3) electronically store (e.g., in computer memory) the unique receipt key. The system may further store a unique user ID (e.g., unique subject identifier) associated with the data subject (e.g., a hashed user ID, a unique user ID provided by the data subject, unique ID based on a piece of personal data such as an e-mail address, etc.).


Continuing to Step 9120, the system is configured for providing, at the user interface, a privacy policy associated with the entity and based at least in part on the request to initiate the transaction between the entity and the data subject. The privacy policy may be configured for the particular transaction to notify the data subject of, for example, (1) what type of personal data is to be collected, (2) how long the personal data will be stored, (3) storage features of the personal data (e.g., encrypted), (4) the purpose of collecting the personal data, (5) rights of the data subject regarding data collection, (6) etc. The system may include one or more electronic links to the privacy policy stored on one or more data assets of the entity and associated with the transaction


Next, at Step 9130, the system is configured for accessing the privacy policy associated with the entity and based at least in part on the request to initiate the transaction between the entity and the data subject. The system may access the privacy policy stored within one or more data assets of the entity. At Step 9140, the system is configured for storing one or more provision of the privacy policy associated with the entity and based at least in part on the request to initiate the transaction between the entity and the data subject. The system may access the privacy policy (e.g., provided on the same user interface where the user provided consent or a link to a privacy policy), and import one or more terms and conditions provided in the privacy policy to the consent receipt. A time stamp may also be provided with the one or more terms and conditions of the privacy policy. The consent receipt may then indicate the notice that was provided to the data subject when the data subject gave consent based on the content and/or time stamp associated with the privacy policy. In some implementations, a link to a stored version of the one or more terms and conditions of the privacy policy may be provided in the consent receipt.


Continuing to Step 9150, the system is configured to provide a user interface for consenting to the privacy policy associated with the entity and based at least in part on the request to initiate the transaction between the entity and the data subject. The system may track the data subject's interaction with the user interface for consenting to the privacy policy. The system may, for example, be configured to track data related to: (1) whether the data subject selected to view the privacy policy (e.g., whether the data subject select the link to the privacy policy and/or scrolled to the end of the provided privacy policy); (2) whether the data subject selected to view the privacy policy within a determined period of time and/or before another action was performed (e.g., whether the user selected to view the privacy policy before providing consent or within a number of minutes after being presented with the option to view the privacy policy or select the link to the privacy policy); or (3) etc. The system may include this tracked data in the consent receipt generated by the system.


In some implementations, the system may be configured to capture one or more pieces of interaction data based at least in part on the data subject's interaction with the user interface for consenting to the privacy policy, and store the interaction data with the generated consent receipt. The interaction data may include, for example, (i) an indication of whether the data subject selected to view the privacy policy (e.g., whether the data subject selected one or more pixels of the user interface for consenting to the privacy policy associated with viewing the privacy policy), or (ii) an indication of whether the data subject scrolled to the end of the privacy policy. Further, in some implementations, the interaction data may include tracking how long it takes for the user to select to view the privacy policy. For example, the system may track a period of time between (i) a first time that the data subject is presented with the user interface for consenting to the privacy policy and (ii) a second time that the data subject selected one or more pixels of the user interface for consenting to the privacy policy associated with viewing the privacy policy. Further, the interaction data may include tracking a number of interactions the data subject has with the user interface before selecting to view the privacy policy. For example, the system may track a number of data subject interactions with the user interface for consenting to the privacy policy between (i) a first time that the data subject is presented with the user interface for consenting to the privacy policy and (ii) a second time that the data subject selected one or more pixels of the user interface for consenting to the privacy policy associated with viewing the privacy policy.


At Step 9160, the system may be configured for receiving a selection to consent to the privacy policy associated with the entity and based at least in part on the request to initiate the transaction between the entity and the data subject. The system may, for example, be configured to track data on behalf of an entity that collects and/or processes personal data related to: (1) who consented to the processing or collection of personal data (e.g., the data subject themselves or a person legally entitled to consent on their behalf such as a parent, guardian, etc.); (2) when the consent was given (e.g., a date and time); (3) what information was provided to the consenter at the time of consent (e.g., a privacy policy, what personal data would be collected following the provision of the consent, for what purpose that personal data would be collected, etc.); (4) how consent was received (e.g., one or more copies of a data capture form, web form, etc. via which consent was provided by the consenter); (5) when consent was withdrawn (e.g., a date and time of consent withdrawal if the consenter withdraws consent); and/or (6) any other suitable data related to receipt or withdrawal of consent. In particular embodiments, the system is configured to store metadata in association with processed personal data that indicates one or more pieces of consent data that authorized the processing of the personal data.


At Step 9170, in response to the selection, the system may generate, by a third-party consent receipt management system, a consent receipt to the data subject, wherein the consent receipt includes the stored one or more provisions of the privacy policy. In various embodiment described herein, the system may be configured to generate a consent receipt in response to a data subject providing valid consent. In various embodiments, a consent receipt management system is configured to generate a consent receipt for a data subject that links to (e.g., in computer memory) metadata identifying a particular purpose of the collection and/or processing of personal data that the data subject consented to, a capture point of the consent (e.g., a copy of the web form or other mechanism through which the data subject provided consent, and other data associated with one or more ways in which the data subject granted consent. The consent receipt may include the stored one or more provisions of the privacy policy. Further, at Step 9180, the system is configured to store, by the third-party consent receipt management system, the generated consent receipt. In particular embodiments, a third party consent receipt management system may be configured to manage one or more consent receipts for a particular entity.


Automatically Generating Consent Interfaces


In particular embodiments, any entity (e.g., organization, company, etc.) that collects, stores, processes, etc. personal data may require consent from a data subject from whom the personal data is collected and/or processed. In various embodiments, the entity may be required to, for example, demonstrate that a data subject has freely given specific, informed, and unambiguous indication of the data subject's agreement to the processing of his or her personal data for one or more specific purposes (e.g., in the form of a statement or clear affirmative action). In various embodiments, the system is configured to provide a third-party data repository system to facilitate the receipt and centralized storage of personal data for each of a plurality of respective data subjects, as described herein. In particular embodiments, a third party data repository system is configured to interface with a consent receipt management system (e.g., such as the consent receipt management system described below).


In particular embodiments, a data subject may encounter a user interface to complete that may be a webform or application interface. The user interface may be an interface for the data subject to provide consent to the processing of personal data. In some implementations, the data subject may provide particular personal data (e.g., first and last name, email, company, job title, phone number, etc.) in the webform or application interface. The system may generate the user interface for consent based on particular user interface attributes (e.g., data subject name, payment information, etc.) necessary for each particular privacy campaign or type of privacy campaign. In some implementations, the user interface for consent may be generated to limit, or otherwise reduce, the number of selections and/or text inputs required by the data subject, which, for example, may minimize the user interaction required by the user interface for consent and optimize the opt-in rate. Additionally, the user interface for consent may be generated based on the attribute of data privacy laws (e.g., key factors of data privacy laws such as explicit opt-in, equal weighting of options, granular consent, etc.) pertaining to the particular personal data collected within the webform or application interface and/or by the privacy campaign.


In some implementations, the system may automatically generate the user interface for consent that is presented within the webform or application interface. In some implementations, one or more user interfaces for consent are generated, and then presented to one or more privacy officer for selection, where the selected user interface for consent is then presented within the webform or application interface. Additionally, in some implementations, the system may be enabled to access one or more pieces of information required to be provided in the user interfaces for consent by the data subject. For example, the data subject may have previously provided the one or more pieces of information (e.g., in a different user interface for consent associated with the particular organization) to the system of the particular organization, and the system can identify the data subject and access any one or more pieces of personal information the system has stored for the data subject. Additionally, the data subject's computing device (e.g., smart phone, laptop, tablet, etc.) and/or initiated web browser or software application may include an auto-fill option that is enabled (e.g., the data subject's name set to auto-fill in the user interface for consent).



FIG. 40 provides an example user interface for consent 4000 that the system may generate. The system may identify, or otherwise select (e.g., automatically), the particular user interface for consent 4000 to minimize the user interaction required but also include the necessary user interaction required based on particular data privacy laws pertaining to the particular personal data collected within the webform or application interface and/or by the privacy campaign. In some implementations, the user interface for consent 4000 may be automatically presented within the webform or application interface. In some implementations, the user interface for consent 4000 may be presented to one or more privacy officer, and then be selected as the user interface for consent is then presented within the webform or application interface.



FIG. 40 provides an example user interface for consent where a data subject (e.g., John Doe) may provide particular personal data (e.g., first and last name, email, company, job title, phone number, etc.) when signing up for a free trial with a particular entity via a trial signup interface 4000. The system may be enabled to access one or more pieces of information required to be provided in the user interfaces for consent by the data subject, and automatically complete, or otherwise fill out, one or more portions of the user interface for consent (e.g., fill out the name John Doe based on the data subject, John Doe, previously completing a user interface for consent associated with a different privacy campaign of the same particular organization). As may be understood in light of this disclosure, the free trial may constitute a transaction between the data subject (e.g., user) and a particular entity providing the free trial. In various embodiments, the data subject (e.g., user) may encounter the interface shown in FIG. 40 in response to accessing a web site associated with the particular entity for the free trial (e.g., a sign up page).


The computer-implemented method may be configured for: (1) receiving a request to initiate a transaction between an entity and a data subject; (2) determining one or more user interface attributes based at least in part on the transaction between the entity and the data subject; (3) generating a user interface for consent based at least in part on the one or more user interface attributes and one or more user interface selections; and (4) providing the user interface for consent to the data subject for completion.


In various embodiments, the system may be configured to automatically generate a user interface for providing consent (e.g., consent for the processing of one or more pieces of personal data, personally identifiable data, etc.). In particular, the system may be configured to generate the interface based on, for example: (1) one or more privacy laws that apply to the processing of the data (e.g., based on a location of a user providing the consent); (2) one or more weighting options related to the processing; (3) a type of consent required; (4) etc. In some embodiments, the system may be configured to minimize the complexity of the user interface (e.g., by generating a user interface that includes the least number of necessary interface elements that are explicitly necessary to comply with one or more prevailing laws, regulations, and/or best practices. For example, the system may be configured to store and maintain a data store of user interface elements, each of which correspond to one or more consent collection requirements. The system may then automatically generate a consent interface that includes one or more of the elements based on one or more rules and/or regulations that apply to a particular processing activity for which the system requires some form of consent. These rules may differ, for example, based at least in part on a location of the user, a location of the entity, etc. For example, a first user accessing a website form a first country may encounter a different system-generated interface than a second visitor accessing the site from a second country (e.g., because one or more consent laws different between the first and second country). In particular embodiments, the system may be configured to generate the user interface in response to the user accessing a particular webpage for which the system may need to collect consent (e.g., consent to the user of one or more cookies by the particular webpage).


Overview of Cookie Compliance Testing with Website Scanning


In particular embodiments, any entity (e.g., organization, company, etc.) that collects, stores, processes, etc. personal data may require consent from a data subject from whom the personal data is collected and/or processed. In various embodiments, the entity may be required to, for example, demonstrate that a data subject has freely given specific, informed, and unambiguous indication of the data subject's agreement to the processing of his or her personal data for one or more specific purposes (e.g., in the form of a statement or clear affirmative action). In various embodiments, the system is configured to provide a third-party data repository system to facilitate the receipt and centralized storage of personal data for each of a plurality of respective data subjects, as described herein. In particular embodiments, a third-party data repository system is configured to interface with a consent receipt management system (e.g., such as the consent receipt management system described below).


Using an interaction interface, a data subject may initiate an interaction with the entity that requires the data subject to provide valid consent (e.g., the interaction involving a transaction that includes the processing of personal data by the entity). The interaction may include, for example: (1) interacting with the entity's website (e.g., which may utilize one or more cookies and/or other tracking technologies to monitor the data subject's activity while accessing the website or other websites; enable certain functionality on one or more pages of the entity's website, such as location services; etc.); (2) signing up for a user account with the entity; (3) signing up for a mailing list with the entity; (4) a free trial sign up; (5) product registration; and/or (6) any other suitable interaction that may result in collection and/or processing of personal data, by the entity, about the data subject.


In various embodiments, a website scanning tool may be used to determine a website category of the website (e.g., whether personal data is being used with any presentation provided in the web site, for example, targeted advertisements), and the web site scanning tool may also identify one or more website cookies within the website that track one or more interactions of the data subject with the website. The website scanning tool may use the website category and information related to the one or more website cookies to produce one or more website parameters of the website. In particular embodiments, the system may apply data subject consent parameters to the data subject's interaction with the website to determine whether the data subject provided valid consent to the collection, storage, or processing of personal data of the data subject. The data subject consent parameters may be determined based at least in part on the one or more website parameters associated with the particular website and the geo-location of the data subject when the data subject is interacting with the website. In some implementations, the system may track the data subject's interaction with the website to determine whether the data subject consent parameters have been satisfied.


In particular embodiments, the determination of the consent parameters required and the whether the data subject provided consent may be dynamic. For example, the consent parameters required may be determined based on a geo-location of the data subject when accessing the website associated with the entity, a website category of the website associated with the entity (e.g., whether the website includes advertisements or not), and/or data subject information accessed or collected by the website associated with the entity (e.g., via cookies incorporated in the website associated with the entity).


The system may determine that the data subject is interacting with (e.g., accessing) the website associated with the entity, and consent for the collection, storing, and/or processing of data subject personal data is required. The consent parameters may be determined by the system based on a website category of the website associated with the entity and/or data subject information accessed or collected by the website associated with the entity. In some implementations, for example, website categories may be defined based on whether or not the website provides advertisements, which may be targeted advertisements to the data subject. Additionally, in some implementations, the website may include one or more cookies that capture personal information of the data subject and monitor the data subject's activity while accessing the website. The one or more cookies may collect information related to, for example: (1) mouse speed; (2) mouse hovering; (3) mouse position; (4) keyboard inputs; and/or (5) any other suitable data subject action. The system may determine one or more website categories of the website and information associated with the one or more cookies of the website prior to the data subject accessing the website or while the data subject is accessing the website. Further, in some implementations, the geo-location of the data subject when the data subject accesses the website may be included in the determination of the degree of consent required. For example, each country or region may include privacy laws related to consent, and the country or regional privacy laws may differ with the degree of consent required.


In particular embodiments, the system may determine the data subject consent parameters that were determined based at least in part on the one or more website parameters associated with the particular website and the geo-location of the data subject when the data subject is interacting with the website. Additionally, the system may apply the data subject consent parameters to the data subject's interaction with the website. In some implementations, the system may track the data subject's interaction with the website to determine whether the data subject consent parameters have been satisfied. For example, in one scenario, the data subject consent parameters may require the data subject to scroll to the bottom of a particular webpage at the website for the data subject consent to be provided. However, in another scenario, the data subject consent parameters may require the data subject to select a button on the website indicating that the data subject consents to the collection of particular personal data (e.g., explicit consent) for data subject consent to be provided. In particular embodiments, the consent receipt management system may receive the data subject consent parameters and information related to the data subject's interaction with the website for further processing, as described herein. In some implementations, in response to the system determining that the data subject consent parameters have been fulfilled, a consent receipt may be generated and presented to the data subject, as described herein.


Cookie Compliance Testing Module and Related Methods


In particular embodiments, any entity (e.g., organization, company, etc.) that collects, stores, processes, etc. personal data may require consent from a data subject from whom the personal data is collected and/or processed. In various embodiments, the entity may be required to, for example, demonstrate that a data subject has freely given specific, informed, and unambiguous indication of the data subject's agreement to the processing of his or her personal data for one or more specific purposes (e.g., in the form of a statement or clear affirmative action). In various embodiments, a website scanning tool may be used to determine a website category of the website (e.g., whether personal data is being used with any presentation provided in the website, for example, targeted advertisements), and the website scanning tool may also identify one or more website cookies within the website that track one or more interactions of the data subject with the website.


One or more website parameters may be produced based on one or more website categories of the website and information associated with one or more website cookies that capture data subject information. In various embodiments, the geo-location of the data subject when the data subject accesses the website may be included in the determination of the degree of consent required. In particular embodiments, the system may apply data subject consent parameters to the data subject's interaction with the website to determine whether the data subject provided valid consent to the collection, storage, or processing of personal data of the data subject. The data subject consent parameters may be determined based at least in part on the one or more website parameters associated with the particular website and the geo-location of the data subject when the data subject is interacting with the website. In some implementations, the system may track the data subject's interaction with the website to determine whether the data subject consent parameters have been satisfied.


Various aspects of the system's functionality may be executed by certain system modules, including a Cookie Compliance Testing Module 9200. Although these modules are presented as a series of steps, it should be understood in light of this disclosure that various embodiments of the Cookie Compliance Testing Module 9200 described herein may perform the steps described below in an order other than in which they are presented. In still other embodiments, the Cookie Compliance Testing Module 9200 may omit certain steps described below. In various embodiments, the Cookie Compliance Testing Module 9200 may perform steps in addition to those described (e.g., such as one or more steps described with respect to one or more other modules, etc.). Various embodiments of the system are described more fully below.


In particular embodiments, a Cookie Compliance Testing Module 9200 is configured for: (1) determining a data subject is interacting with a particular website; (2) determining one or more website parameters associated with the particular website, wherein determining the one or more website parameters associated with the particular website comprises (a) scanning the particular website to determine one or more website cookies that capture data subject information, and (b) determining a website category of the particular website; (3) determining a geo-location of the data subject when the data subject is interacting with the particular website; (4) determining one or more data subject consent parameters based at least in part on the one or more website parameters associated with the particular website and the geo-location of the data subject when the data subject is interacting with the particular website; and (5) applying the one or more data subject consent parameters to the data subject interaction with the particular website.


As may be understood from FIG. 92, when executing the Cookie Compliance Testing Module 9200, the system begins, at Step 9210, by a data subject is interacting with a particular website. In particular embodiments, a third-party consent receipt management system may be configured to manage one or more consent receipts for a particular entity. As may be understood in light of this disclosure, a data subject may access an interaction interface (e.g., via the web) for interacting with a particular entity (e.g., one or more entity systems). The interaction interface (e.g., user interface) may include, for example, a suitable website, web form, user interface etc. The interaction interface may be provided by the entity. Using the interaction interface, a data subject may initiate an interaction (e.g., initiate a transaction) with the entity that requires the data subject to provide valid consent (e.g., because the transaction includes the processing of personal data by the entity). The interaction may include, for example: (1) accessing the entity's website; (2) signing up for a user account with the entity; (3) signing up for a mailing list with the entity; (4) a free trial sign up; (5) product registration; and/or (6) any other suitable interaction that may result in collection and/or processing personal data, by the entity, about the data subject.


As may be understood from this disclosure, any particular interaction may record and/or require one or more valid consents from the data subject. For example, the system may require a particular data subject to provide consent for each particular type of personal data that will be collected as part of the transaction. The system may, in various embodiments, be configured to prompt the data subject to provide valid consent, for example, by: (1) displaying, via the interaction interface, one or more pieces of information regarding the consent (e.g., what personal data will be collected, how it will be used, etc.); and (2) prompt the data subject to provide the consent.


Continuing to Step 9220, the system is configured for determining one or more website parameters associated with the particular website, wherein determining the one or more website parameters associated with the particular website includes Step 9222, where the system is configured for scanning the particular website to determine one or more website cookies that capture data subject information, and Step 9224, where the system is configured for determining a website category of the particular website. In various embodiments, the system may be used to determine a website category of the website (e.g., whether personal data is being used with any presentation provided in the website, for example, targeted advertisements). Steps 9222 and 9224 may be in any order relative to one another, or in some embodiments, simultaneously. In various embodiments, scanning the particular website to determine one or more website cookies that capture data subject information may include: (1) identifying one or more website cookies that capture data subject information (e.g., (a) mouse speed; (b) mouse hovering; (c) mouse position; (d) keyboard inputs; (e) selection or clicking locations; (f) scrolling locations within the webpage; and/or (g) any other suitable data subject action, etc.), and (2) for each of the identified one or more website cookies that capture data subject information, determining one or more types of personal data captured by each of the identified one or more website cookies, and storing the one or more types of personal data captured by each of the identified one or more website cookies. The type of personal data may be, for example: (1) name; (2) address; (3) telephone number; (4) e-mail address; (5) social security number; (6) information associated with one or more credit accounts (e.g., credit card numbers); (7) banking information; (8) location data; (9) internet search history; (10) data subject interactions within the particular website; (11) non-credit account data; and/or (12) any other suitable personal information discussed herein.


Next, at Step 9230, the system is configured for determining a geo-location of the data subject when the data subject is interacting with the particular website. The system may be configured to determine the geo-location based at least in part on an IP address and/or domain of the computing device of the data subject (e.g., in the case of a computer server or other computing device) or any other identifying feature of a particular data subject. Further, the system may, for example, associate the determined geo-location of the data subject with a plurality of physical locations based at least in part on one or more geographic boundaries, wherein each may include one or more privacy laws related to the geographic boundaries. These one or more geographic boundaries may include, for example: (1) one or more countries; (2) one or more continents; (3) one or more jurisdictions (e.g., such as one or more legal jurisdictions); (4) one or more territories; (5) one or more counties; (6) one or more cities; (7) one or more treaty members (e.g., such as members of a trade, defense, or other treaty); and/or (8) any other suitable geographically distinct physical locations.


At Step 9240, the system is configured for determining one or more data subject consent parameters based at least in part on the one or more website parameters associated with the particular website and the geo-location of the data subject when the data subject is interacting with the particular website. In determining the one or more data subject consent parameters, the system may access one or more privacy laws associated with the geo-location of the data subject (e.g., based on the one or more geographic boundaries), and apply the accessed privacy laws to the data subject consent parameters. For example, a privacy law associated with the geo-location of the data subject may require the data subject to be explicitly notified (e.g., presented on the webpage) of the particular type of personal data that is collected by the webpage.


Continuing to Step 9250, the system is configured to apply the one or more data subject consent parameters to the data subject interaction with the particular website. In some implementations, the system may track the data subject's interaction with the website to determine whether the data subject consent parameters have been satisfied. For example, in one scenario, the data subject consent parameters may require the data subject to scroll to the bottom of a particular webpage at the website for the data subject consent to be provided. However, in another scenario, the data subject consent parameters may require the data subject to select a button on the website indicating that the data subject consents to the collection of particular personal data (e.g., explicit consent) for data subject consent to be provided. In particular embodiments, the consent receipt management system may receive the data subject consent parameters and information related to the data subject's interaction with the website for further processing, as described herein. In some implementations, in response to the system determining that the data subject consent parameters have been fulfilled, a consent receipt may be generated and presented to the data subject, as described herein.


In various embodiments, the system may, for example, leverage one or more website scanning techniques to detect whether a website is correctly management tracking devices on the site (e.g., based on whether a JSON object of tags should or should not be triggered) based at least in part on how controls are toggled on a user interface (e.g., of user consent preferences as described herein). In some embodiments, the system may be configured to implement one or more event listeners on a webpage to trigger one or more application program interface calls in response to detecting a cookie and/or script that should not be set on the webpage (i.e., because consent has not been established for the particular script and/or cookie). In still other embodiments, the system is configured to provide facilitated integrations based at least in part on automated detection of tag management and/or consent management systems. In some embodiments, the system is configured to generate a cookie notice based at least in part on a type of tracking that the system detects on a website via a scan. The system may, for example, be configured to dynamically generate a cookie notice based at least in part on a geo-location of a visitor, enforcement of cookies policies, site scan, and or other suitable factor. The dynamically generated notice may, for example, be based one or more regulations for a particular geographic region from which a user is accessing the webpage/website.


Overview of Consent and Cookie User Interface Validity Testing


In particular embodiments, a consent user interface scoring system may be configured to evaluate one or more configuration attributes of a user interface that presents a web form. The system may evaluate the one or more attributes based at least in part on the configuration of the user interface of the web form that presents consent information to the data subject, as described herein. In various embodiments, the one or more configuration attributes may be, for example: (1) selection option presented to the data subject for selection to opt in or opt out to consent to the collection of personal data of the data subject; (2) detailed opt in or opt out selection options (e.g., selecting whether or not to consent to the collection of each particular type of personal data, selecting whether or not to consent to each of one or more third parties having access to the collected personal data); (3) location and presentation of a privacy policy (e.g., privacy policy presented on the webform, privacy policy accessed via a link presented on the web form); (4) one or more selection options for the data subject to be notified of the particular personal data collected by the system; (5) data collected by one or more cookies provided within the web form; (6) etc.


In various embodiments, the system is further configured to access one or more set of privacy regulations (e.g., CCPA, GDPR, privacy laws, etc.) to compare the one or more configuration attributes to the accessed privacy regulations or privacy laws. In some embodiments, the system may provide results based on the comparison of the one or more configuration attributes to the accessed privacy regulations or privacy laws. For example, the system may determine a user interface consent score based on the comparison of each of the one or more configuration attributes to the accessed privacy regulations or privacy laws. In various embodiments, the user interface consent score may indicate a level of compliance of the user interface of the web form with the accessed privacy regulations or privacy laws.


In some implementations, a user interface consent score may be determined for each accessed privacy regulations or privacy laws that is compared to the one or more configuration attributes of the consent user interface. In some implementations, the user interface consent score may be a value to identify a level of compliance with one or more of the accessed privacy regulations or privacy laws (e.g., a numerical value (a value between 1-100), a tiered value (low, medium, high), a compliant/non-compliant indication, etc.). In some implementations, in response to the system determining that the consent user interface includes a particular configuration attribute, the system may indicate that the consent user interface is not compliant with particular privacy regulations or privacy laws. For example, if a particular privacy regulation requires that a configuration attribute of the consent user interface include a selection option to opt in or opt out to consent to the collection of personal data, and the consent user interface does not include that particular configuration attribute, then the system may indicate that the consent user interface is not compliant with particular privacy regulation.


In various embodiments, as discussed above, the one or more configuration attributes may include data collected by one or more cookies provided within the web form. The one or more cookies may collect information related to, for example: (1) mouse speed; (2) mouse hovering; (3) mouse position; (4) keyboard inputs; (5) an amount of time spent completing the web form; and/or (5) any other suitable data subject action.


Further, in various embodiments, the system may store the level of compliance of the user interface of the web form with the accessed privacy regulations or privacy laws. In some embodiments, when the system indicates that the consent user interface is not compliant with the particular privacy regulation, the system may automatically modify one or more configuration attributes of the consent user interface to cause the consent user interface to be compliant with the particular privacy regulation. In some implementations, when the system indicates that the consent user interface is not compliant with the particular privacy regulation, the system may flag the consent user interface for review by one or more user (e.g., system administrator or privacy officer). In response to the user reviewing the flagged consent user interface, the user may initiate one or more modifications to one or more configuration attributes of the consent user interface.


Consent User Interface Validity Module and Related Methods


In particular embodiments, any entity (e.g., organization, company, etc.) that collects, stores, processes, etc. personal data may require consent from a data subject from whom the personal data is collected and/or processed. In various embodiments, the entity may be required to, for example, demonstrate that a data subject has freely given specific, informed, and unambiguous indication of the data subject's agreement to the processing of his or her personal data for one or more specific purposes (e.g., in the form of a statement or clear affirmative action). The system may generate and manage a consent receipt under one or more transactions for a data subject. In some implementations, the system may record consent notice information as a part of the consent receipt. For example, the generated consent receipt may include information related to whether a data subject that is giving consent for purposes of processing personal data associated with the data subject was shown a notice (e.g., a privacy policy) about the processing of the personal data associated with the data subject.


Various aspects of the system's functionality may be executed by certain system modules, including a Consent User Interface Validity Module 9300. Although these modules are presented as a series of steps, it should be understood in light of this disclosure that various embodiments of the Consent User Interface Validity Module 9300 described herein may perform the steps described below in an order other than in which they are presented. In still other embodiments, the Consent User Interface Validity Module 9300 may omit certain steps described below. In various embodiments, the Consent User Interface Validity Module 9300 may perform steps in addition to those described (e.g., such as one or more steps described with respect to one or more other modules, etc.). Various embodiments of the system are described more fully below.


In particular embodiments, a Consent User Interface Validity Module 9300 is configured for: (1) accessing a consent user interface presented on a web form, wherein the web form comprises consent information presented to a data subject completing the web form; (2) determining one or more configuration attributes of the consent user interface; (3) accessing one or more privacy regulations associated with presenting consent information; (4) comparing the one or more configuration attributes of the consent user interface to each of the one or more privacy regulations; (5) determining a user interface consent score of the consent user interface with respect to each of the one or more privacy regulations; (6) determining whether the consent user interface is compliant with each of the one or more privacy regulations; and (7) in response to determining that the consent user interface is not compliant with one or more privacy regulations, flagging the consent user interface.


As may be understood from FIG. 93, when executing the Consent User Interface Validity Module 9300, the system begins, at Step 9310, by accessing a consent user interface presented on a web form, wherein the web form comprises consent information presented to a data subject completing the web form. In particular embodiments, a third-party consent receipt management system may be configured to manage one or more consent receipts for a particular entity. As may be understood from the disclosure herein, a data subject may access an interaction interface (e.g., via the web) for interacting with a particular entity (e.g., one or more entity systems). The interaction interface (e.g., user interface) may include, for example, a suitable website, web form, user interface etc. The interaction interface may be provided by the entity. Using the interaction interface, a data subject may initiate a transaction with the entity that requires the data subject to provide valid consent (e.g., because the transaction includes the processing of personal data by the entity). The transaction may include, for example: (1) accessing the entity's website; (2) signing up for a user account with the entity; (3) signing up for a mailing list with the entity; (4) a free trial sign up; (5) product registration; and/or (6) any other suitable transaction that may result in collection and/or processing personal data, by the entity, about the data subject. In various embodiments, the system may access the consent user interface that would be presented to one or more data subjects completing the web form (e.g., unrelated to an actual transaction or interaction with a data subject).


Continuing to Step 9320, the system is configured for one or more configuration attributes of the consent user interface. In various embodiments, a consent user interface scoring system may be configured to evaluate one or more configuration attributes of a user interface that presents a web form. The system may evaluate the one or more attributes based at least in part on the configuration of the user interface of the web form that presents consent information to the data subject, as described herein. In various embodiments, the one or more configuration attributes may be, for example: (1) selection option presented to the data subject for selection to opt in or opt out to consent to the collection of personal data of the data subject; (2) detailed opt in or opt out selection options (e.g., selecting whether or not to consent to the collection of each particular type of personal data, selecting whether or not to consent to each of one or more third parties having access to the collected personal data); (3) location and presentation of a privacy policy (e.g., privacy policy presented on the webform, privacy policy accessed via a link presented on the web form); (4) one or more selection options for the data subject to be notified of the particular personal data collected by the system; (5) data collected by one or more cookies provided within the web form; (6) etc.


Next, at Step 9330, the system is configured for accessing, by one or more processors, one or more privacy regulations associated with presenting consent information. In various embodiments, the system is configured to access one or more set of privacy regulations (e.g., CCPA, GDPR, privacy laws, etc.). The one or more privacy regulations may include regulations related to a privacy policy provided by the entity. The privacy policy may notify the data subject of, for example, (1) what type of personal data is to be collected, (2) how long the personal data will be stored, (3) storage features of the personal data (e.g., encrypted), (4) the purpose of collecting the personal data, (5) rights of the data subject regarding data collection, (6) etc. The entity or a privacy regulatory agency may input or provide the applicable one or more set of privacy regulations to be applied for the consent user interface.


In various embodiments, the system may be configured to determine the applicable one or more privacy regulations based on a geo-location of the data subject interacting with the consent user interface. The system may identify the geo-location based at least in part on an IP address and/or domain of the computing device of the data subject (e.g., in the case of a computer server or other computing device) or any other identifying feature of a particular data subject. Further, the system may, for example, associate the determined geo-location of the data subject with a plurality of physical locations based at least in part on one or more geographic boundaries, wherein each may include one or more privacy laws or one or more privacy regulations related to the geographic boundaries. These one or more geographic boundaries may include, for example: (1) one or more countries; (2) one or more continents; (3) one or more jurisdictions (e.g., such as one or more legal jurisdictions); (4) one or more territories; (5) one or more counties; (6) one or more cities; (7) one or more treaty members (e.g., such as members of a trade, defense, or other treaty); and/or (8) any other suitable geographically distinct physical locations.


At Step 9340, the system is configured for comparing, by one or more processors, the one or more configuration attributes of the consent user interface to each of the one or more privacy regulations. The system may apply each of the one or more privacy regulations to the one or more configuration attributes of the consent user interface. At Step 9350, the system is configured for determining, by one or more processors, a user interface consent score of the consent user interface with respect to each of the one or more privacy regulations. The user interface consent score may be determined (e.g., calculated) in response to comparing the one or more configuration attributes of the consent user interface to each of the one or more privacy regulations. For example, the system may determine a user interface consent score based on the comparison of each of the one or more configuration attributes to the accessed privacy regulations or privacy laws. In various embodiments, the user interface consent score may indicate a level of compliance of the user interface of the web form with the accessed privacy regulations or privacy laws.


In some implementations, a user interface consent score may be determined for each accessed privacy regulations or privacy laws that is compared to the one or more configuration attributes of the consent user interface. In some implementations, the user interface consent score may be a value to identify a level of compliance with one or more of the accessed privacy regulations or privacy laws (e.g., a numerical value (a value between 1-100), a tiered value (low, medium, high), a compliant/non-compliant indication, etc.).


In various embodiments, the system may, for each of the one or more configuration attributes, (a) compare each particular configuration attribute to the one or more privacy regulations, and (b) calculate a configuration attribute level of compliance for each particular configuration attribute based at least in part on comparing the particular configuration attribute to the one or more privacy regulations. The system may then calculate the user interface consent score based at least in part on each calculated configuration attribute level of compliance. Further, in various implementations, the user interface consent score to a threshold user interface consent score determined based at least in part on each of the one or more privacy regulations. The threshold user interface score may be provided, for example, by (1) one or more privacy officers of the entity, (2) a regulatory agency that is associated with the one or more privacy regulations, (3) a preset score, (4) etc. The system may compare the user interface consent score with the threshold user interface consent score, and in response to determining that the user interface consent score does not meet (e.g., less than) the threshold user interface consent score, the system may determine that the consent user interface is not compliant with the one or more privacy regulations. In some implementations, the system may determine that the user interface consent score does meet (e.g., greater than or equal to) the threshold user interface consent score, the system may determine that the consent user interface is compliant with the one or more privacy regulations.


In some implementations, in response to the system determining that the consent user interface includes a particular configuration attribute, the system may indicate that the consent user interface is not compliant with particular privacy regulations or privacy laws (e.g., cause the consent user interface score to not meet the threshold consent user interface score). For example, if a particular privacy regulation requires that a configuration attribute of the consent user interface include a selection option to opt in or opt out to consent to the collection of personal data, and the consent user interface does not include that particular configuration attribute, then the system may indicate that the consent user interface is not compliant with particular privacy regulation.


At Step 9360, the system may be configured for determining whether the consent user interface is compliant with each of the one or more privacy regulations. The system may, in various embodiments, store the consent user interface score with the accessed privacy regulations or privacy laws. As described above, the consent user interface score may be determined (e.g., calculated) based at least in part on comparing the one or more configuration attributes of the consent user interface to each of the one or more privacy regulations. In some implementations, the consent user interface score may indicate (e.g., when compared to a threshold consent user interface score) whether the consent user interface is compliant with each of the one or more privacy regulations.


At Step 9370, in response to determining that the consent user interface is not compliant with one or more privacy regulations, the system may flag the consent user interface. In some embodiments, when the system indicates that the consent user interface is not compliant with the particular privacy regulation, the system may automatically modify one or more configuration attributes of the consent user interface to cause the consent user interface to be compliant with the particular privacy regulation. In some implementations, when the system indicates that the consent user interface is not compliant with the particular privacy regulation, the system may flag the consent user interface for review by one or more user (e.g., system administrator or privacy officer). In response to the user reviewing the flagged consent user interface, the user may initiate one or more modifications to one or more configuration attributes of the consent user interface. Further, in some implementations, the system may determine (e.g., automatically notified or automatically updated within the system) that one or more updates have been made to the one or more privacy regulations. The system, in various embodiments, may then compare the one or more configuration attributes of the consent user interface to each of the one or more updated privacy regulations, calculate an updated consent user interface score, and determine whether the consent user interface is compliant with each of the one or more updated privacy regulations based at least in part on the consent user interface score.


CONCLUSION

Although embodiments above are described in reference to various privacy compliance monitoring systems, it should be understood that various aspects of the system described above may be applicable to other privacy-related systems, or to other types of systems, in general.


While this specification contains many specific embodiment details, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this specification in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination may in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.


Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems may generally be integrated together in a single software product or packaged into multiple software products.


Many modifications and any embodiment described herein of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and any embodiment described herein are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for the purposes of limitation.

Claims
  • 1. A method comprising: managing consent notice information as part of a consent receipt to enable a user to provide consent a single time for a native application and iteratively access the consent receipt in order to continue consented-to data processing in the native application without re-prompting the user by: receiving, by computing hardware via the native application, the consent receipt comprising data subject consent data for a data subject;storing, by the computing hardware, the consent receipt comprising the data subject consent data in a storage location;receiving, by the computing hardware via the native application, a request to provide web content, wherein the web content requires consent from the data subject;executing, by the computing hardware via a software development kit associated with the native application, a script to pass the data subject consent data of the consent receipt from the storage location to a Web View, wherein the Web View is configured to display the web content within the native application;determining, by the computing hardware and based on the data subject consent data, that the data subject has provided the consent for the web content; andresponsive to determining that the data subject has provided the consent, displaying, by the computing hardware via the Web View, the web content.
  • 2. The method of claim 1, wherein the web content is displayed without prompting the data subject to provide additional consent via the Web View.
  • 3. The method of claim 1, wherein receiving the consent receipt comprising the data subject consent data comprises receiving the data subject consent data from the data subject during an on-boarding process within the native application.
  • 4. The method of claim 1, wherein the web content involves use of at least one of a functionality cookie, a performance cookie, a targeting cookie, or a persistent cookie and the consent is required for the use.
  • 5. The method of claim 1, wherein the web content involves at least one of collecting or processing of personal data of the data subject.
  • 6. The method of claim 1, wherein the storage location is located on at least one of the computing hardware executing the native application or remote hardware from the computing hardware.
  • 7. The method of claim 1, wherein the computing hardware comprises a mobile device and the native application comprises a mobile application.
  • 8. A system comprising: a non-transitory computer-readable medium storing instructions; anda processing device communicatively coupled to the non-transitory computer-readable medium,wherein, the processing device is configured to execute the instructions and thereby perform operations comprising:managing consent notice information as part of a consent receipt to enable a user to provide consent a single time for a native application and iteratively access the consent receipt in order to continue consented-to data processing in the native application without re-prompting the user by: receiving, via the native application, the consent receipt comprising data subject consent data for a data subject;storing the consent receipt comprising the data subject consent data in a storage location;receiving, via a Web View, a request to perform an action, wherein the Web View is provided through the native application and the action requires consent from the data subject;executing, via a software development kit associated with the native application, a script to pass the data subject consent data of the consent receipt from the storage location to the Web View;determining, based on the data subject consent data, that the data subject has provided the consent for the action; andresponsive to determining that the data subject has provided the consent, performing the action within the Web View.
  • 9. The system of claim 8, wherein the action comprises consented-to data processing in the native application and is performed without prompting the data subject to provide additional consent via the Web View.
  • 10. The system of claim 8, wherein receiving the consent receipt comprising the data subject consent data comprises receiving the data subject consent data from the data subject during an on-boarding process within the native application.
  • 11. The system of claim 8, wherein the action comprises loading at least one of a functionality cookie, a performance cookie, a targeting cookie, or a persistent cookie and the consent is required for the use of at least one of the functionality cookie, the performance cookie, the targeting cookie, or the persistent cookie.
  • 12. The system of claim 8, wherein the action comprises a transaction that involves at least one of collecting or processing of personal data of the data subject via the Web View.
  • 13. The system of claim 8, wherein the storage location is located on the system or remote from the system.
  • 14. The system of claim 8, wherein the processing device resides on a mobile device and the native application comprises a mobile application.
  • 15. A non-transitory computer-readable medium having program code that is stored thereon, the program code executable by one or more processing devices for performing operations comprising: managing consent notice information as part of a consent receipt to enable a user to provide consent a single time for a native application and iteratively access the consent receipt in order to continue consented-to data processing in the native application without re-prompting the user by: receiving the consent receipt comprising data subject consent data for a data subject;storing the consent receipt comprising the data subject consent data in a storage location;receiving a request to provide web content, wherein the web content requires consent from the data subject;executing, via a software development kit, a script to pass the data subject consent data of the consent receipt from the storage location to a Web View;determining, based on the data subject consent data, that the data subject has provided the consent for the web content; andresponsive to determining that the data subject has provided the consent, displaying, via the Web View, the web content.
  • 16. The non-transitory computer-readable medium of claim 15, wherein the web content is displayed without prompting the data subject to provide additional consent via the Web View.
  • 17. The non-transitory computer-readable medium of claim 15, wherein the web content involves use of at least one of a functionality cookie, a performance cookie, a targeting cookie, or a persistent cookie and the consent is required for the use.
  • 18. The non-transitory computer-readable medium of claim 15, wherein the web content involves at least one of collecting or processing of personal data of the data subject.
  • 19. The non-transitory computer-readable medium of claim 15, wherein the storage location is located on computing hardware on which the one or more processing devices are located or remote from the computing hardware.
  • 20. The non-transitory computer-readable medium of claim 15, wherein the one or more processing devices reside on a mobile device and the program code comprises a mobile application.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/187,329, filed Feb. 26, 2021, which is a continuation-in-part of U.S. patent application Ser. No. 16/938,509, filed Jul. 24, 2020, now U.S. Pat. No. 11,520,928, issued Dec. 6, 2022, which is a continuation-in-part of U.S. patent application Ser. No. 16/872,031, filed May 11, 2020, now U.S. Pat. No. 11,461,500, issued Oct. 4, 2022, which claims priority from U.S. Provisional Patent Application No. 62/846,178, filed May 10, 2019 and U.S. Provisional Patent Application Ser. No. 62/846,184, filed May 10, 2019, and is also a continuation-in-part of U.S. patent application Ser. No. 16/778,709, filed Jan. 31, 2020, now U.S. Pat. No. 10,846,433, issued Nov. 24, 2020, which is a continuation-in-part of U.S. patent application Ser. No. 16/560,963, filed Sep. 4, 2019, now U.S. Pat. No. 10,726,158, issued Jul. 28, 2020, which claims priority from U.S. Provisional Patent Application Ser. No. 62/728,432, filed Sep. 7, 2018, and is also a continuation-in-part of U.S. patent application Ser. No. 16/277,568, filed Feb. 15, 2019, now U.S. Pat. No. 10,440,062, issued Oct. 8, 2019, which claims priority from U.S. Provisional Patent Application Ser. No. 62/631,684, filed Feb. 17, 2018 and U.S. Provisional Patent Application Ser. No. 62/631,703, filed Feb. 17, 2018, and is also a continuation-in-part of U.S. patent application Ser. No. 16/159,634, filed Oct. 13, 2018, now U.S. Pat. No. 10,282,692, issued May 7, 2019, which claims priority from U.S. Provisional Patent Application Ser. No. 62/572,096, filed Oct. 13, 2017 and U.S. Provisional Patent Application Ser. No. 62/728,435, filed Sep. 7, 2018, and is also a continuation-in-part of U.S. patent application Ser. No. 16/055,083, filed Aug. 4, 2018, now U.S. Pat. No. 10,289,870, issued May 14, 2019, which claims priority from U.S. Provisional Patent Application Ser. No. 62/547,530, filed Aug. 18, 2017, and is also a continuation-in-part of U.S. patent application Ser. No. 15/996,208, filed Jun. 1, 2018, now U.S. Pat. No. 10,181,051, issued Jan. 15, 2019, which claims priority from U.S. Provisional Patent Application Ser. No. 62/537,839, filed Jul. 27, 2017, and is also a continuation-in-part of U.S. patent application Ser. No. 15/853,674, filed Dec. 22, 2017, now U.S. Pat. No. 10,019,597, issued Jul. 10, 2018, which claims priority from U.S. Provisional Patent Application Ser. No. 62/541,613, filed Aug. 4, 2017, and is also a continuation-in-part of U.S. patent application Ser. No. 15/619,455, filed Jun. 10, 2017, now U.S. Pat. No. 9,851,966, issued Dec. 26, 2017, which is a continuation-in-part of U.S. patent application Ser. No. 15/254,901, filed Sep. 1, 2016, now U.S. Pat. No. 9,729,583, issued Aug. 8, 2017, which claims priority from: (1) U.S. Provisional Patent Application Ser. No. 62/360,123, filed Jul. 8, 2016; (2) U.S. Provisional Patent Application Ser. No. 62/353,802, filed Jun. 23, 2016; (3) U.S. Provisional Patent Application Ser. No. 62/348,695, filed Jun. 10, 2016. The disclosures of all of the above patent applications are hereby incorporated herein by reference in their entirety.

US Referenced Citations (1636)
Number Name Date Kind
4536866 Jerome et al. Aug 1985 A
4574350 Starr Mar 1986 A
5193162 Bordsen et al. Mar 1993 A
5276735 Boebert et al. Jan 1994 A
5329447 Leedom, Jr. Jul 1994 A
5404299 Tsurubayashi et al. Apr 1995 A
5535393 Reeve et al. Jul 1996 A
5560005 Hoover et al. Sep 1996 A
5668986 Nilsen et al. Sep 1997 A
5710917 Musa et al. Jan 1998 A
5761529 Raji Jun 1998 A
5764906 Edelstein et al. Jun 1998 A
5872973 Mitchell et al. Feb 1999 A
5913041 Ramanathan et al. Jun 1999 A
5913214 Madnick et al. Jun 1999 A
6009429 Greer et al. Dec 1999 A
6016394 Walker Jan 2000 A
6122627 Carey et al. Sep 2000 A
6148297 Swor et al. Nov 2000 A
6148342 Ho Nov 2000 A
6171112 Clark Jan 2001 B1
6240416 Immon et al. May 2001 B1
6240422 Atkins et al. May 2001 B1
6243816 Fang et al. Jun 2001 B1
6253203 Oflaherty et al. Jun 2001 B1
6263335 Paik et al. Jul 2001 B1
6272631 Thomlinson et al. Aug 2001 B1
6275824 Oflaherty et al. Aug 2001 B1
6282548 Burner et al. Aug 2001 B1
6330562 Boden et al. Dec 2001 B1
6363488 Ginter et al. Mar 2002 B1
6374237 Reese Apr 2002 B1
6374252 Althoff et al. Apr 2002 B1
6408336 Schneider et al. Jun 2002 B1
6427230 Goiffon et al. Jul 2002 B1
6430556 Goldberg et al. Aug 2002 B1
6442688 Moses et al. Aug 2002 B1
6446120 Dantressangle Sep 2002 B1
6463488 San Juan Oct 2002 B1
6484149 Jammes et al. Nov 2002 B1
6484180 Lyons et al. Nov 2002 B1
6516314 Birkler et al. Feb 2003 B1
6516337 Tripp et al. Feb 2003 B1
6519571 Guheen et al. Feb 2003 B1
6574631 Subramanian et al. Jun 2003 B1
6591272 Williams Jul 2003 B1
6601233 Underwood Jul 2003 B1
6606744 Mikurak Aug 2003 B1
6611812 Hurtado et al. Aug 2003 B2
6625602 Meredith et al. Sep 2003 B1
6629081 Cornelius et al. Sep 2003 B1
6633878 Underwood Oct 2003 B1
6662192 Rebane Dec 2003 B1
6662357 Bowman-Amuah Dec 2003 B1
6697824 Bowman-Amuah Feb 2004 B1
6699042 Smith et al. Mar 2004 B2
6701314 Conover et al. Mar 2004 B1
6721713 Guheen et al. Apr 2004 B1
6725200 Rost Apr 2004 B1
6732109 Lindberg et al. May 2004 B2
6754665 Futagami et al. Jun 2004 B1
6755344 Mollett et al. Jun 2004 B1
6757685 Raffaele et al. Jun 2004 B2
6757888 Knutson et al. Jun 2004 B1
6816944 Peng Nov 2004 B2
6826693 Yoshida et al. Nov 2004 B1
6850252 Hoffberg Feb 2005 B1
6886101 Glazer et al. Apr 2005 B2
6901346 Tracy et al. May 2005 B2
6904417 Clayton et al. Jun 2005 B2
6909897 Kikuchi Jun 2005 B2
6912676 Gusler et al. Jun 2005 B1
6925443 Baggett, Jr. et al. Aug 2005 B1
6938041 Brandow et al. Aug 2005 B1
6956845 Baker et al. Oct 2005 B2
6957261 Lortz Oct 2005 B2
6978270 Carty et al. Dec 2005 B1
6980927 Tracy et al. Dec 2005 B2
6980987 Kaminer Dec 2005 B2
6983221 Tracy et al. Jan 2006 B2
6985887 Sunstein et al. Jan 2006 B1
6990454 McIntosh Jan 2006 B2
6993448 Tracy et al. Jan 2006 B2
6993495 Smith, Jr. et al. Jan 2006 B2
6996807 Vardi et al. Feb 2006 B1
7003560 Mullen et al. Feb 2006 B1
7003662 Genty et al. Feb 2006 B2
7013290 Ananian Mar 2006 B2
7017105 Flanagin et al. Mar 2006 B2
7023979 Wu et al. Apr 2006 B1
7039594 Gersting May 2006 B1
7039654 Eder May 2006 B1
7047517 Brown et al. May 2006 B1
7051036 Rosnow et al. May 2006 B2
7051038 Yeh et al. May 2006 B1
7058970 Shaw Jun 2006 B2
7069427 Adler et al. Jun 2006 B2
7076558 Dunn Jul 2006 B1
7093200 Schreiber et al. Aug 2006 B2
7093283 Chen et al. Aug 2006 B1
7095854 Ginter et al. Aug 2006 B1
7100195 Underwood Aug 2006 B1
7120800 Ginter et al. Oct 2006 B2
7124101 Mikurak Oct 2006 B1
7124107 Pishevar et al. Oct 2006 B1
7127705 Christfort et al. Oct 2006 B2
7127741 Bandini et al. Oct 2006 B2
7133845 Ginter et al. Nov 2006 B1
7139999 Bowman-Amuah Nov 2006 B2
7143091 Charnock et al. Nov 2006 B2
7149698 Guheen et al. Dec 2006 B2
7165041 Guheen et al. Jan 2007 B1
7167842 Josephson, II et al. Jan 2007 B1
7167844 Leong et al. Jan 2007 B1
7171379 Menninger et al. Jan 2007 B2
7181438 Szabo Feb 2007 B1
7188252 Dunn Mar 2007 B1
7203929 Vinodkrishnan et al. Apr 2007 B1
7213233 Vinodkrishnan et al. May 2007 B1
7216155 Stuckman et al. May 2007 B2
7216232 Cox et al. May 2007 B1
7216340 Vinodkrishnan et al. May 2007 B1
7219066 Parks et al. May 2007 B2
7223234 Stupp et al. May 2007 B2
7225460 Barzilai et al. May 2007 B2
7234065 Breslin et al. Jun 2007 B2
7247625 Zhang et al. Jul 2007 B2
7251624 Lee et al. Jul 2007 B1
7260830 Sugimoto Aug 2007 B2
7266566 Kennaley et al. Sep 2007 B1
7272818 Ishimitsu et al. Sep 2007 B2
7275063 Horn Sep 2007 B2
7281020 Fine Oct 2007 B2
7284232 Bates et al. Oct 2007 B1
7284271 Lucovsky et al. Oct 2007 B2
7287280 Young Oct 2007 B2
7290275 Baudoin et al. Oct 2007 B2
7293119 Beale Nov 2007 B2
7299299 Hollenbeck et al. Nov 2007 B2
7302569 Betz et al. Nov 2007 B2
7313575 Carr et al. Dec 2007 B2
7313699 Koga Dec 2007 B2
7313825 Redlich et al. Dec 2007 B2
7315826 Guheen et al. Jan 2008 B1
7315849 Bakalash et al. Jan 2008 B2
7322047 Redlich et al. Jan 2008 B2
7330850 Seibel et al. Feb 2008 B1
7340447 Ghatare Mar 2008 B2
7340776 Zobel et al. Mar 2008 B2
7343434 Kapoor et al. Mar 2008 B2
7346518 Frank et al. Mar 2008 B1
7353204 Liu Apr 2008 B2
7353281 New, Jr. et al. Apr 2008 B2
7353283 Henaff et al. Apr 2008 B2
7356559 Jacobs et al. Apr 2008 B1
7367014 Griffin Apr 2008 B2
7370025 Pandit May 2008 B1
7376835 Olkin et al. May 2008 B2
7380120 Garcia May 2008 B1
7382903 Ray Jun 2008 B2
7383570 Pinkas et al. Jun 2008 B2
7391854 Salonen et al. Jun 2008 B2
7392546 Patrick Jun 2008 B2
7398393 Mont et al. Jul 2008 B2
7401235 Mowers et al. Jul 2008 B2
7403942 Bayliss Jul 2008 B1
7409354 Putnam et al. Aug 2008 B2
7412402 Cooper Aug 2008 B2
7424680 Carpenter Sep 2008 B2
7428546 Nori et al. Sep 2008 B2
7428707 Quimby Sep 2008 B2
7430585 Sibert Sep 2008 B2
7454457 Lowery et al. Nov 2008 B1
7454508 Mathew et al. Nov 2008 B2
7478157 Bohrer et al. Jan 2009 B2
7480694 Blennerhassett et al. Jan 2009 B2
7480755 Herrell et al. Jan 2009 B2
7487170 Stevens Feb 2009 B2
7493282 Manly et al. Feb 2009 B2
7500607 Williams Mar 2009 B2
7506248 Xu et al. Mar 2009 B2
7512987 Williams Mar 2009 B2
7516882 Cucinotta Apr 2009 B2
7523053 Pudhukottai et al. Apr 2009 B2
7529836 Bolen May 2009 B1
7548968 Bura et al. Jun 2009 B1
7552480 Voss Jun 2009 B1
7562339 Racca et al. Jul 2009 B2
7565685 Ross et al. Jul 2009 B2
7567541 Karimi et al. Jul 2009 B2
7584505 Mondri et al. Sep 2009 B2
7584508 Kashchenko et al. Sep 2009 B1
7587749 Leser et al. Sep 2009 B2
7590705 Mathew et al. Sep 2009 B2
7590972 Axelrod et al. Sep 2009 B2
7603356 Schran et al. Oct 2009 B2
7606783 Carter Oct 2009 B1
7606790 Levy Oct 2009 B2
7607120 Sanyal et al. Oct 2009 B2
7610391 Dunn Oct 2009 B2
7613700 Lobo et al. Nov 2009 B1
7617136 Lessing et al. Nov 2009 B1
7617167 Griffis et al. Nov 2009 B2
7620644 Cote et al. Nov 2009 B2
7627666 Degiulio et al. Dec 2009 B1
7630874 Fables et al. Dec 2009 B2
7630998 Zhou et al. Dec 2009 B2
7636742 Olavarrieta et al. Dec 2009 B1
7640322 Wendkos et al. Dec 2009 B2
7650497 Thornton et al. Jan 2010 B2
7653592 Flaxman et al. Jan 2010 B1
7657476 Barney Feb 2010 B2
7657694 Mansell et al. Feb 2010 B2
7665073 Meijer et al. Feb 2010 B2
7665125 Heard et al. Feb 2010 B2
7668947 Hutchinson et al. Feb 2010 B2
7673282 Amaru et al. Mar 2010 B2
7676034 Wu et al. Mar 2010 B1
7681034 Lee et al. Mar 2010 B1
7681140 Ebert Mar 2010 B2
7685561 Deem et al. Mar 2010 B2
7685577 Pace et al. Mar 2010 B2
7693593 Ishibashi et al. Apr 2010 B2
7698398 Lai Apr 2010 B1
7702639 Stanley et al. Apr 2010 B2
7707224 Chastagnol et al. Apr 2010 B2
7712029 Ferreira et al. May 2010 B2
7716242 Pae et al. May 2010 B2
7725474 Tamai et al. May 2010 B2
7725875 Waldrep May 2010 B2
7729940 Harvey et al. Jun 2010 B2
7730142 Levasseur et al. Jun 2010 B2
7735036 Dennison et al. Jun 2010 B2
7752124 Green et al. Jul 2010 B2
7756826 Bots et al. Jul 2010 B2
7756987 Wang et al. Jul 2010 B2
7761586 Olenick et al. Jul 2010 B2
7774745 Fildebrandt et al. Aug 2010 B2
7788212 Beckmann et al. Aug 2010 B2
7788222 Shah et al. Aug 2010 B2
7788632 Kuester et al. Aug 2010 B2
7788726 Teixeira Aug 2010 B2
7793318 Deng Sep 2010 B2
7797726 Ashley et al. Sep 2010 B2
7801758 Gracie et al. Sep 2010 B2
7801765 Denny Sep 2010 B2
7801826 Abrou et al. Sep 2010 B2
7801912 Ransil et al. Sep 2010 B2
7802305 Leeds Sep 2010 B1
7805349 Yu et al. Sep 2010 B2
7805451 Hosokawa Sep 2010 B2
7813947 Deangelis et al. Oct 2010 B2
7822620 Dixon et al. Oct 2010 B2
7827523 Ahmed et al. Nov 2010 B2
7836078 Dettinger et al. Nov 2010 B2
7844640 Bender et al. Nov 2010 B2
7849143 Vuong Dec 2010 B2
7853468 Callahan et al. Dec 2010 B2
7853470 Sonnleithner et al. Dec 2010 B2
7853925 Kemmler Dec 2010 B2
7860816 Fokoue-Nkoutche et al. Dec 2010 B2
7870540 Zare et al. Jan 2011 B2
7870608 Shraim et al. Jan 2011 B2
7873541 Klar et al. Jan 2011 B1
7877327 Gwiazda et al. Jan 2011 B2
7877812 Koved et al. Jan 2011 B2
7885841 King Feb 2011 B2
7890461 Oeda et al. Feb 2011 B2
7895260 Archer et al. Feb 2011 B2
7904478 Yu et al. Mar 2011 B2
7904487 Ghatare Mar 2011 B2
7917888 Chong et al. Mar 2011 B2
7917963 Goyal et al. Mar 2011 B2
7921152 Ashley et al. Apr 2011 B2
7930197 Ozzie et al. Apr 2011 B2
7930753 Mellinger et al. Apr 2011 B2
7941443 Sobel et al. May 2011 B1
7953725 Burris et al. May 2011 B2
7954150 Croft et al. May 2011 B2
7958087 Blumenau Jun 2011 B2
7958494 Chaar et al. Jun 2011 B2
7962900 Barraclough et al. Jun 2011 B2
7966310 Sullivan et al. Jun 2011 B2
7966599 Malasky et al. Jun 2011 B1
7966663 Strickland et al. Jun 2011 B2
7974992 Fastabend et al. Jul 2011 B2
7975000 Dixon et al. Jul 2011 B2
7991559 Dzekunov et al. Aug 2011 B2
7991747 Upadhyay et al. Aug 2011 B1
7996372 Rubel, Jr. Aug 2011 B2
8005891 Knowles et al. Aug 2011 B2
8010612 Costea et al. Aug 2011 B2
8010720 Iwaoka et al. Aug 2011 B2
8019881 Sandhu et al. Sep 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8024384 Prabhakar et al. Sep 2011 B2
8032721 Murai Oct 2011 B2
8036374 Noble, Jr. Oct 2011 B2
8037409 Jacob et al. Oct 2011 B2
8041749 Beck Oct 2011 B2
8041763 Kordun et al. Oct 2011 B2
8041913 Wang Oct 2011 B2
8069161 Bugir et al. Nov 2011 B2
8069471 Boren Nov 2011 B2
8082539 Schelkogonov Dec 2011 B1
8090754 Schmidt et al. Jan 2012 B2
8095923 Harvey et al. Jan 2012 B2
8099709 Baikov et al. Jan 2012 B2
8103962 Embley et al. Jan 2012 B2
8117441 Kurien et al. Feb 2012 B2
8126926 Atre et al. Feb 2012 B2
8135815 Mayer Mar 2012 B2
8146054 Baker et al. Mar 2012 B2
8146074 Ito et al. Mar 2012 B2
8150717 Whitmore Apr 2012 B2
8156105 Altounian et al. Apr 2012 B2
8156158 Rolls et al. Apr 2012 B2
8156159 Ebrahimi et al. Apr 2012 B2
8166406 Goldfeder et al. Apr 2012 B1
8176061 Swanbeck et al. May 2012 B2
8176177 Sussman et al. May 2012 B2
8176334 Vainstein May 2012 B2
8176470 Klumpp et al. May 2012 B2
8180759 Hamzy May 2012 B2
8181151 Sedukhin et al. May 2012 B2
8185409 Putnam et al. May 2012 B2
8195489 Bhamidipaty et al. Jun 2012 B2
8196176 Berteau et al. Jun 2012 B2
8205093 Argott Jun 2012 B2
8205140 Hafeez et al. Jun 2012 B2
8214362 Djabarov Jul 2012 B1
8214803 Horii et al. Jul 2012 B2
8234133 Smith Jul 2012 B2
8234145 Kissner et al. Jul 2012 B2
8234377 Cohn Jul 2012 B2
8239244 Ginsberg et al. Aug 2012 B2
8250051 Bugir et al. Aug 2012 B2
8255468 Vitaldevara et al. Aug 2012 B2
8260262 Ben Ayed Sep 2012 B2
8261362 Goodwin et al. Sep 2012 B2
8266231 Golovin et al. Sep 2012 B1
8275632 Awaraji et al. Sep 2012 B2
8275793 Ahmad et al. Sep 2012 B2
8286239 Sutton Oct 2012 B1
8312549 Goldberg et al. Nov 2012 B2
8316237 Felsher et al. Nov 2012 B1
8327141 Vysogorets et al. Dec 2012 B2
8332908 Hatakeyama et al. Dec 2012 B2
8340999 Kumaran et al. Dec 2012 B2
8341405 Meijer et al. Dec 2012 B2
8346929 Lai Jan 2013 B1
8364713 Pollard Jan 2013 B2
8370224 Grewal Feb 2013 B2
8370794 Moosmann et al. Feb 2013 B2
8380630 Felsher Feb 2013 B2
8380743 Convertino et al. Feb 2013 B2
8381180 Rostoker Feb 2013 B2
8381297 Touboul Feb 2013 B2
8386314 Kirkby et al. Feb 2013 B2
8392982 Harris et al. Mar 2013 B2
8418226 Gardner Apr 2013 B2
8423954 Ronen et al. Apr 2013 B2
8429179 Mirhaji Apr 2013 B1
8429597 Prigge Apr 2013 B2
8429630 Nickolov et al. Apr 2013 B2
8429758 Chen et al. Apr 2013 B2
8438644 Watters et al. May 2013 B2
8452693 Shah et al. May 2013 B2
8463247 Misiag Jun 2013 B2
8464311 Ashley et al. Jun 2013 B2
8468244 Redlich et al. Jun 2013 B2
8473324 Alvarez et al. Jun 2013 B2
8474012 Ahmed et al. Jun 2013 B2
8494894 Jaster et al. Jul 2013 B2
8504481 Motahari et al. Aug 2013 B2
8510199 Erlanger Aug 2013 B1
8515988 Jones et al. Aug 2013 B2
8516076 Thomas Aug 2013 B2
8526922 Koster Sep 2013 B1
8527337 Lim et al. Sep 2013 B1
8533746 Nolan et al. Sep 2013 B2
8533844 Mahaffey et al. Sep 2013 B2
8538817 Wilson Sep 2013 B2
8539359 Rapaport et al. Sep 2013 B2
8539437 Finlayson et al. Sep 2013 B2
8560645 Linden et al. Oct 2013 B2
8560841 Chin et al. Oct 2013 B2
8560956 Curtis et al. Oct 2013 B2
8561100 Hu et al. Oct 2013 B2
8561153 Grason et al. Oct 2013 B2
8565729 Moseler et al. Oct 2013 B2
8566726 Dixon et al. Oct 2013 B2
8566938 Prakash et al. Oct 2013 B1
8571909 Miller et al. Oct 2013 B2
8572717 Narayanaswamy Oct 2013 B2
8578036 Holfelder et al. Nov 2013 B1
8578166 De Monseignat et al. Nov 2013 B2
8578481 Rowley Nov 2013 B2
8578501 Ogilvie Nov 2013 B1
8583694 Siegel et al. Nov 2013 B2
8583766 Dixon et al. Nov 2013 B2
8589183 Awaraji et al. Nov 2013 B2
8601467 Hofhansl et al. Dec 2013 B2
8601591 Krishnamurthy et al. Dec 2013 B2
8606746 Yeap et al. Dec 2013 B2
8612420 Sun et al. Dec 2013 B2
8612993 Grant et al. Dec 2013 B2
8615549 Knowles et al. Dec 2013 B2
8615731 Doshi Dec 2013 B2
8620952 Bennett et al. Dec 2013 B2
8621637 Al-Harbi et al. Dec 2013 B2
8626671 Federgreen Jan 2014 B2
8627114 Resch et al. Jan 2014 B2
8630961 Beilby et al. Jan 2014 B2
8631048 Davis et al. Jan 2014 B1
8640110 Kopp et al. Jan 2014 B2
8646072 Savant Feb 2014 B1
8650399 Le Bihan et al. Feb 2014 B2
8655939 Redlich et al. Feb 2014 B2
8656265 Paulin et al. Feb 2014 B1
8656456 Maxson et al. Feb 2014 B2
8661036 Turski et al. Feb 2014 B2
8667074 Farkas Mar 2014 B1
8667487 Boodman et al. Mar 2014 B1
8677472 Dotan et al. Mar 2014 B1
8681984 Lee et al. Mar 2014 B2
8682698 Cashman et al. Mar 2014 B2
8683201 Shaty Mar 2014 B2
8683502 Shkedi et al. Mar 2014 B2
8688601 Jaiswal Apr 2014 B2
8689292 Williams et al. Apr 2014 B2
8693689 Belenkiy et al. Apr 2014 B2
8700524 Williams et al. Apr 2014 B2
8700699 Shen et al. Apr 2014 B2
8706742 Ravid et al. Apr 2014 B1
8707451 Ture et al. Apr 2014 B2
8712813 King Apr 2014 B2
8713098 Adya et al. Apr 2014 B1
8713638 Hu et al. Apr 2014 B2
8719366 Mathew et al. May 2014 B2
8719421 Mao et al. May 2014 B2
8732839 Hohl May 2014 B2
8744894 Christiansen et al. Jun 2014 B2
8751285 Deb et al. Jun 2014 B2
8762406 Ho et al. Jun 2014 B2
8762413 Graham, Jr. et al. Jun 2014 B2
8763071 Sinha et al. Jun 2014 B2
8763082 Huber et al. Jun 2014 B2
8763131 Archer et al. Jun 2014 B2
8767947 Ristock et al. Jul 2014 B1
8769242 Tkac et al. Jul 2014 B2
8769412 Gill et al. Jul 2014 B2
8769671 Shraim et al. Jul 2014 B2
8776241 Zaitsev Jul 2014 B2
8788935 Hirsch et al. Jul 2014 B1
8793614 Wilson et al. Jul 2014 B2
8793650 Hilerio et al. Jul 2014 B2
8793781 Grossi et al. Jul 2014 B2
8793809 Falkenburg et al. Jul 2014 B2
8799984 Ahn Aug 2014 B2
8805707 Schumann, Jr. et al. Aug 2014 B2
8805806 Amarendran et al. Aug 2014 B2
8805925 Price et al. Aug 2014 B2
8812342 Barcelo et al. Aug 2014 B2
8812752 Shih et al. Aug 2014 B1
8812766 Kranendonk et al. Aug 2014 B2
8813028 Farooqi Aug 2014 B2
8813177 Srour et al. Aug 2014 B2
8813214 McNair et al. Aug 2014 B1
8819253 Simeloff et al. Aug 2014 B2
8819617 Koenig et al. Aug 2014 B1
8819800 Gao et al. Aug 2014 B2
8826446 Liu et al. Sep 2014 B1
8832649 Bishop et al. Sep 2014 B2
8832854 Staddon et al. Sep 2014 B1
8839232 Taylor et al. Sep 2014 B2
8843487 McGraw et al. Sep 2014 B2
8843745 Roberts, Jr. Sep 2014 B2
8849757 Kruglick Sep 2014 B2
8856534 Khosravi et al. Oct 2014 B2
8856936 Datta Ray et al. Oct 2014 B2
8862507 Sandhu et al. Oct 2014 B2
8863261 Yang Oct 2014 B2
8875232 Blom et al. Oct 2014 B2
8887047 Digiantomasso et al. Nov 2014 B2
8893078 Schaude et al. Nov 2014 B2
8893286 Oliver Nov 2014 B1
8893297 Eversoll et al. Nov 2014 B2
8904494 Kindler et al. Dec 2014 B2
8914263 Shimada et al. Dec 2014 B2
8914299 Pesci-Anderson et al. Dec 2014 B2
8914342 Kalaboukis et al. Dec 2014 B2
8914888 Satish et al. Dec 2014 B1
8914902 Moritz et al. Dec 2014 B2
8918306 Cashman et al. Dec 2014 B2
8918392 Brooker et al. Dec 2014 B1
8918632 Sartor Dec 2014 B1
8924388 Elliot et al. Dec 2014 B2
8930896 Wiggins Jan 2015 B1
8930897 Nassar Jan 2015 B2
8935198 Phillips et al. Jan 2015 B1
8935266 Wu Jan 2015 B2
8935342 Patel Jan 2015 B2
8935804 Clark et al. Jan 2015 B1
8938221 Brazier et al. Jan 2015 B2
8943076 Stewart et al. Jan 2015 B2
8943548 Drokov et al. Jan 2015 B2
8943602 Roy et al. Jan 2015 B2
8949137 Crapo et al. Feb 2015 B2
8955038 Nicodemus et al. Feb 2015 B2
8959568 Hudis et al. Feb 2015 B2
8959584 Piliouras Feb 2015 B2
8966575 McQuay et al. Feb 2015 B2
8966597 Saylor et al. Feb 2015 B1
8973108 Roth et al. Mar 2015 B1
8977234 Chava Mar 2015 B2
8977643 Schindlauer et al. Mar 2015 B2
8978158 Rajkumar et al. Mar 2015 B2
8983972 Kriebel et al. Mar 2015 B2
8984031 Todd Mar 2015 B1
8990933 Magdalin Mar 2015 B1
8996417 Channakeshava Mar 2015 B1
8996480 Agarwala et al. Mar 2015 B2
8997213 Papakipos et al. Mar 2015 B2
9001673 Birdsall et al. Apr 2015 B2
9003295 Baschy Apr 2015 B2
9003552 Goodwin et al. Apr 2015 B2
9009851 Droste et al. Apr 2015 B2
9014661 Decharms Apr 2015 B2
9015796 Fujioka Apr 2015 B1
9021469 Hilerio et al. Apr 2015 B2
9026526 Bau et al. May 2015 B1
9030987 Bianchetti et al. May 2015 B2
9032067 Prasad et al. May 2015 B2
9043217 Cashman et al. May 2015 B2
9043480 Barton et al. May 2015 B2
9047463 Porras Jun 2015 B2
9047582 Hutchinson et al. Jun 2015 B2
9047583 Patton et al. Jun 2015 B2
9047639 Quintiliani et al. Jun 2015 B1
9049244 Prince et al. Jun 2015 B2
9049314 Pugh et al. Jun 2015 B2
9055071 Gates et al. Jun 2015 B1
9058590 Criddle et al. Jun 2015 B2
9064033 Jin et al. Jun 2015 B2
9069940 Hars Jun 2015 B2
9076231 Hill et al. Jul 2015 B1
9077736 Werth et al. Jul 2015 B2
9081952 Sagi et al. Jul 2015 B2
9087090 Cormier et al. Jul 2015 B1
9092478 Vaitheeswaran et al. Jul 2015 B2
9092796 Eversoll et al. Jul 2015 B2
9094434 Williams et al. Jul 2015 B2
9098515 Richter et al. Aug 2015 B2
9100337 Battré et al. Aug 2015 B1
9100778 Stogaitis et al. Aug 2015 B2
9106691 Burger et al. Aug 2015 B1
9106710 Feimster Aug 2015 B1
9110918 Rajaa et al. Aug 2015 B1
9111105 Barton et al. Aug 2015 B2
9111295 Tietzen et al. Aug 2015 B2
9123330 Sharifi et al. Sep 2015 B1
9123339 Shaw et al. Sep 2015 B1
9129311 Schoen et al. Sep 2015 B2
9135261 Maunder et al. Sep 2015 B2
9135444 Carter et al. Sep 2015 B2
9141823 Dawson Sep 2015 B2
9141911 Zhao et al. Sep 2015 B2
9152818 Hathaway et al. Oct 2015 B1
9152820 Pauley, Jr. et al. Oct 2015 B1
9154514 Prakash Oct 2015 B1
9154556 Dotan et al. Oct 2015 B1
9158655 Wadhwani et al. Oct 2015 B2
9165036 Mehra Oct 2015 B2
9170996 Lovric et al. Oct 2015 B2
9172706 Krishnamurthy et al. Oct 2015 B2
9177293 Gagnon et al. Nov 2015 B1
9178901 Xue et al. Nov 2015 B2
9183100 Gventer et al. Nov 2015 B2
9189642 Perlman Nov 2015 B2
9201572 Lyon et al. Dec 2015 B2
9201770 Duerk Dec 2015 B1
9202026 Reeves Dec 2015 B1
9202085 Mawdsley et al. Dec 2015 B2
9215076 Roth et al. Dec 2015 B1
9215252 Smith et al. Dec 2015 B2
9218596 Ronca et al. Dec 2015 B2
9224009 Liu et al. Dec 2015 B1
9230036 Davis Jan 2016 B2
9231935 Bridge et al. Jan 2016 B1
9232040 Barash et al. Jan 2016 B2
9235476 McHugh et al. Jan 2016 B2
9240987 Barrett-Bowen et al. Jan 2016 B2
9241259 Daniela et al. Jan 2016 B2
9245126 Christodorescu et al. Jan 2016 B2
9245266 Hardt Jan 2016 B2
9253609 Hosier, Jr. Feb 2016 B2
9264443 Weisman Feb 2016 B2
9274858 Milliron et al. Mar 2016 B2
9280581 Grimes et al. Mar 2016 B1
9286149 Sampson et al. Mar 2016 B2
9286282 Ling, III et al. Mar 2016 B2
9288118 Pattan Mar 2016 B1
9288556 Kim et al. Mar 2016 B2
9294498 Yampolskiy et al. Mar 2016 B1
9299050 Stiffler et al. Mar 2016 B2
9306939 Chan et al. Apr 2016 B2
9317697 Maier et al. Apr 2016 B2
9317715 Schuette et al. Apr 2016 B2
9325731 McGeehan Apr 2016 B2
9336184 Mital et al. May 2016 B2
9336220 Li et al. May 2016 B2
9336324 Lomme et al. May 2016 B2
9336332 Davis et al. May 2016 B2
9336400 Milman et al. May 2016 B2
9338188 Ahn May 2016 B1
9342623 Narayanan et al. May 2016 B2
9342706 Chawla et al. May 2016 B2
9344297 Shah et al. May 2016 B2
9344424 Tenenboym et al. May 2016 B2
9344484 Ferris May 2016 B2
9348802 Massand May 2016 B2
9348862 Kawecki, III May 2016 B2
9348929 Eberlein May 2016 B2
9349016 Brisebois et al. May 2016 B1
9350718 Sondhi et al. May 2016 B2
9355157 Mohammed et al. May 2016 B2
9356961 Todd et al. May 2016 B1
9361446 Demirjian et al. Jun 2016 B1
9369488 Woods et al. Jun 2016 B2
9372869 Joseph et al. Jun 2016 B2
9374693 Olincy et al. Jun 2016 B1
9384199 Thereska et al. Jul 2016 B2
9384357 Patil et al. Jul 2016 B2
9386078 Reno et al. Jul 2016 B2
9386104 Adams et al. Jul 2016 B2
9395959 Hatfield et al. Jul 2016 B2
9396332 Abrams et al. Jul 2016 B2
9401900 Levasseur et al. Jul 2016 B2
9411967 Parecki et al. Aug 2016 B2
9411982 Dippenaar et al. Aug 2016 B1
9417859 Gounares et al. Aug 2016 B2
9418221 Turgeman Aug 2016 B2
9424021 Zamir Aug 2016 B2
9424414 Demirjian et al. Aug 2016 B1
9426177 Wang et al. Aug 2016 B2
9450940 Belov et al. Sep 2016 B2
9460136 Todd et al. Oct 2016 B1
9460171 Marrelli et al. Oct 2016 B2
9460307 Breslau et al. Oct 2016 B2
9461876 Van Dusen et al. Oct 2016 B2
9462009 Kolman et al. Oct 2016 B1
9465702 Gventer et al. Oct 2016 B2
9465800 Lacey Oct 2016 B2
9473446 Vijay et al. Oct 2016 B2
9473505 Asano et al. Oct 2016 B1
9473535 Sartor Oct 2016 B2
9477523 Warman et al. Oct 2016 B1
9477660 Scott et al. Oct 2016 B2
9477685 Leung et al. Oct 2016 B1
9477942 Adachi et al. Oct 2016 B2
9483659 Bao et al. Nov 2016 B2
9489366 Scott et al. Nov 2016 B2
9495547 Schepis et al. Nov 2016 B1
9501523 Hyatt et al. Nov 2016 B2
9507960 Bell et al. Nov 2016 B2
9509674 Nasserbakht et al. Nov 2016 B1
9509702 Grigg et al. Nov 2016 B2
9514231 Eden Dec 2016 B2
9516012 Chochois et al. Dec 2016 B2
9521166 Wilson Dec 2016 B2
9524500 Dave et al. Dec 2016 B2
9529989 Kling et al. Dec 2016 B2
9536108 Powell et al. Jan 2017 B2
9537546 Cordeiro et al. Jan 2017 B2
9542568 Francis et al. Jan 2017 B2
9549047 Fredinburg et al. Jan 2017 B1
9552395 Bayer et al. Jan 2017 B2
9552470 Turgeman et al. Jan 2017 B2
9553918 Manion et al. Jan 2017 B1
9558497 Carvalho Jan 2017 B2
9569752 Deering et al. Feb 2017 B2
9571506 Boss et al. Feb 2017 B2
9571509 Satish et al. Feb 2017 B1
9571526 Sartor Feb 2017 B2
9571559 Raleigh et al. Feb 2017 B2
9571991 Brizendine et al. Feb 2017 B1
9576289 Henderson et al. Feb 2017 B2
9578060 Brisebois et al. Feb 2017 B1
9578173 Sanghavi et al. Feb 2017 B2
9582681 Mishra Feb 2017 B2
9584964 Pelkey Feb 2017 B2
9589110 Carey et al. Mar 2017 B2
9600181 Patel et al. Mar 2017 B2
9602529 Jones et al. Mar 2017 B2
9606971 Seolas et al. Mar 2017 B2
9607041 Himmelstein Mar 2017 B2
9619652 Slater Apr 2017 B2
9619661 Finkelstein Apr 2017 B1
9621357 Williams et al. Apr 2017 B2
9621566 Gupta et al. Apr 2017 B2
9626124 Lipinski et al. Apr 2017 B2
9626680 Ryan et al. Apr 2017 B1
9629064 Graves et al. Apr 2017 B2
9642008 Wyatt et al. May 2017 B2
9646095 Gottlieb et al. May 2017 B1
9647949 Varki et al. May 2017 B2
9648036 Seiver et al. May 2017 B2
9652314 Mahiddini May 2017 B2
9654506 Barrett May 2017 B2
9654541 Kapczynski et al. May 2017 B1
9665722 Nagasundaram et al. May 2017 B2
9665733 Sills et al. May 2017 B1
9665883 Roullier et al. May 2017 B2
9672053 Tang et al. Jun 2017 B2
9672355 Titonis et al. Jun 2017 B2
9678794 Barrett et al. Jun 2017 B1
9691090 Barday Jun 2017 B1
9697368 Dharawat Jul 2017 B2
9699209 Ng et al. Jul 2017 B2
9703549 Dufresne Jul 2017 B2
9704103 Suskind et al. Jul 2017 B2
9705840 Pujare et al. Jul 2017 B2
9705880 Siris Jul 2017 B2
9721078 Cornick et al. Aug 2017 B2
9721108 Krishnamurthy et al. Aug 2017 B2
9727751 Oliver et al. Aug 2017 B2
9729583 Barday Aug 2017 B1
9734148 Bendersky et al. Aug 2017 B2
9734255 Jiang Aug 2017 B2
9736004 Jung et al. Aug 2017 B2
9740985 Byron et al. Aug 2017 B2
9740987 Dolan Aug 2017 B2
9749408 Subramani et al. Aug 2017 B2
9753703 Jemiolo Sep 2017 B2
9754091 Kode et al. Sep 2017 B2
9756059 Demirjian et al. Sep 2017 B2
9760620 Nachnani et al. Sep 2017 B2
9760635 Bliss et al. Sep 2017 B2
9760697 Walker Sep 2017 B1
9760849 Vinnakota et al. Sep 2017 B2
9762553 Ford et al. Sep 2017 B2
9767202 Darby et al. Sep 2017 B2
9767309 Patel et al. Sep 2017 B1
9769124 Yan Sep 2017 B2
9773269 Lazarus Sep 2017 B1
9785795 Grondin et al. Oct 2017 B2
9787671 Bogrett Oct 2017 B1
9798749 Saner Oct 2017 B2
9798826 Wilson et al. Oct 2017 B2
9798896 Jakobsson Oct 2017 B2
9800605 Baikalov et al. Oct 2017 B2
9800606 Yumer Oct 2017 B1
9804649 Cohen et al. Oct 2017 B2
9804928 Davis et al. Oct 2017 B2
9805381 Frank et al. Oct 2017 B2
9811532 Parkison et al. Nov 2017 B2
9817850 Dubbels et al. Nov 2017 B2
9817978 Marsh et al. Nov 2017 B2
9819684 Cernoch et al. Nov 2017 B2
9825928 Lelcuk et al. Nov 2017 B2
9830563 Paknad Nov 2017 B2
9832633 Gerber, Jr. et al. Nov 2017 B2
9836598 Iyer et al. Dec 2017 B2
9838407 Oprea et al. Dec 2017 B1
9838839 Vudali et al. Dec 2017 B2
9841969 Seibert, Jr. et al. Dec 2017 B2
9842042 Chhatwal et al. Dec 2017 B2
9842349 Sawczuk et al. Dec 2017 B2
9848005 Ardeli et al. Dec 2017 B2
9848061 Jain et al. Dec 2017 B1
9852150 Sharpe et al. Dec 2017 B2
9853959 Kapczynski et al. Dec 2017 B1
9860226 Thormaehlen Jan 2018 B2
9864735 Lamprecht Jan 2018 B1
9876825 Amar et al. Jan 2018 B2
9877138 Franklin Jan 2018 B1
9880157 Levak et al. Jan 2018 B2
9882935 Barday Jan 2018 B2
9887965 Kay et al. Feb 2018 B2
9888377 McCorkendale et al. Feb 2018 B1
9892441 Barday Feb 2018 B2
9892442 Barday Feb 2018 B2
9892443 Barday Feb 2018 B2
9892444 Barday Feb 2018 B2
9894076 Li et al. Feb 2018 B2
9898613 Swerdlow et al. Feb 2018 B1
9898739 Monastyrsky et al. Feb 2018 B2
9898769 Barday Feb 2018 B2
9912625 Mutha et al. Mar 2018 B2
9912677 Chien Mar 2018 B2
9912810 Segre et al. Mar 2018 B2
9916703 Levinson et al. Mar 2018 B2
9922124 Rathod Mar 2018 B2
9923927 McClintock et al. Mar 2018 B1
9928379 Hoffer Mar 2018 B1
9934493 Castinado et al. Apr 2018 B2
9934544 Whitfield et al. Apr 2018 B1
9936127 Todasco Apr 2018 B2
9942214 Burciu et al. Apr 2018 B1
9942244 Lahoz et al. Apr 2018 B2
9942276 Sartor Apr 2018 B2
9946897 Lovin Apr 2018 B2
9948652 Yu et al. Apr 2018 B2
9948663 Wang et al. Apr 2018 B1
9953189 Cook et al. Apr 2018 B2
9954879 Sadaghiani et al. Apr 2018 B1
9954883 Ahuja et al. Apr 2018 B2
9959551 Schermerhorn et al. May 2018 B1
9959582 Sukman et al. May 2018 B2
9961070 Tang May 2018 B2
9973518 Lee et al. May 2018 B2
9973585 Ruback et al. May 2018 B2
9977904 Khan et al. May 2018 B2
9977920 Danielson et al. May 2018 B2
9983936 Dornemann et al. May 2018 B2
9984252 Pollard May 2018 B2
9990499 Chan et al. Jun 2018 B2
9992213 Sinnema Jun 2018 B2
10001975 Bharthulwar Jun 2018 B2
10002064 Muske Jun 2018 B2
10007895 Vanasco Jun 2018 B2
10013577 Beaumont et al. Jul 2018 B1
10015164 Hamburg et al. Jul 2018 B2
10019339 Von Hanxleden et al. Jul 2018 B2
10019588 Garcia et al. Jul 2018 B2
10019591 Beguin Jul 2018 B1
10019741 Hesselink Jul 2018 B2
10021143 Cabrera et al. Jul 2018 B2
10025804 Vranyes et al. Jul 2018 B2
10025836 Batchu et al. Jul 2018 B2
10028226 Ayyagari et al. Jul 2018 B2
10032172 Barday Jul 2018 B2
10044761 Ducatel et al. Aug 2018 B2
10055426 Arasan et al. Aug 2018 B2
10055869 Borrelli et al. Aug 2018 B2
10061847 Mohammed et al. Aug 2018 B2
10069858 Robinson et al. Sep 2018 B2
10069914 Smith Sep 2018 B1
10073924 Karp et al. Sep 2018 B2
10075437 Costigan et al. Sep 2018 B1
10075451 Hall et al. Sep 2018 B1
10084817 Saher et al. Sep 2018 B2
10091214 Godlewski et al. Oct 2018 B2
10091312 Khanwalkar et al. Oct 2018 B1
10097551 Chan et al. Oct 2018 B2
10102533 Barday Oct 2018 B2
10108409 Pirzadeh et al. Oct 2018 B2
10122663 Hu et al. Nov 2018 B2
10122760 Terrill et al. Nov 2018 B2
10127403 Kong et al. Nov 2018 B2
10129211 Heath Nov 2018 B2
10140666 Wang et al. Nov 2018 B1
10142113 Zaidi et al. Nov 2018 B2
10152560 Potiagalov et al. Dec 2018 B2
10157269 Thomas Dec 2018 B2
10158676 Barday Dec 2018 B2
10165011 Barday Dec 2018 B2
10169762 Ogawa Jan 2019 B2
10176503 Barday et al. Jan 2019 B2
10181043 Pauley, Jr. et al. Jan 2019 B1
10181051 Barday et al. Jan 2019 B2
10187363 Smirnoff et al. Jan 2019 B2
10187394 Bar et al. Jan 2019 B2
10188950 Biswas et al. Jan 2019 B2
10204154 Barday et al. Feb 2019 B2
10205994 Splaine et al. Feb 2019 B2
10210347 McCorkendale et al. Feb 2019 B2
10212134 Rai Feb 2019 B2
10212175 Seul et al. Feb 2019 B2
10223533 Dawson Mar 2019 B2
10230571 Rangasamy et al. Mar 2019 B2
10230711 Kohli Mar 2019 B2
10242228 Barday et al. Mar 2019 B2
10250594 Chathoth et al. Apr 2019 B2
10255602 Wang Apr 2019 B2
10257127 Dotan-Cohen et al. Apr 2019 B2
10257181 Sherif et al. Apr 2019 B1
10268838 Yadgiri et al. Apr 2019 B2
10275221 Thattai et al. Apr 2019 B2
10275614 Barday et al. Apr 2019 B2
10282370 Barday et al. May 2019 B1
10282559 Barday et al. May 2019 B2
10284604 Barday et al. May 2019 B2
10289584 Chiba May 2019 B2
10289857 Brinskelle May 2019 B1
10289866 Barday et al. May 2019 B2
10289867 Barday et al. May 2019 B2
10289870 Barday et al. May 2019 B2
10291731 Huang May 2019 B2
10296504 Hock et al. May 2019 B2
10304442 Rudden et al. May 2019 B1
10310723 Rathod Jun 2019 B2
10311042 Kumar Jun 2019 B1
10311249 Sharifi et al. Jun 2019 B2
10311475 Yuasa Jun 2019 B2
10311492 Gelfenbeyn et al. Jun 2019 B2
10318761 Barday et al. Jun 2019 B2
10320940 Brennan et al. Jun 2019 B1
10324960 Skvortsov et al. Jun 2019 B1
10326768 Verweyst et al. Jun 2019 B2
10326798 Lambert Jun 2019 B2
10326841 Bradley et al. Jun 2019 B2
10327100 Davis et al. Jun 2019 B1
10331689 Sorrentino et al. Jun 2019 B2
10331904 Sher-Jan et al. Jun 2019 B2
10333975 Soman et al. Jun 2019 B2
10339470 Dutta et al. Jul 2019 B1
10346186 Kalyanpur Jul 2019 B2
10346635 Kumar et al. Jul 2019 B2
10346637 Barday et al. Jul 2019 B2
10346638 Barday et al. Jul 2019 B2
10346849 Ionescu et al. Jul 2019 B2
10348726 Caluwaert Jul 2019 B2
10348775 Barday Jul 2019 B2
10353673 Barday et al. Jul 2019 B2
10361857 Woo Jul 2019 B2
10366241 Sartor Jul 2019 B2
10373119 Driscoll et al. Aug 2019 B2
10373409 White et al. Aug 2019 B2
10375115 Mallya Aug 2019 B2
10387559 Wendt et al. Aug 2019 B1
10387577 Hill et al. Aug 2019 B2
10387657 Belfiore, Jr. et al. Aug 2019 B2
10387952 Sandhu et al. Aug 2019 B1
10395201 Vescio Aug 2019 B2
10402545 Gorfein et al. Sep 2019 B2
10404729 Turgeman Sep 2019 B2
10410243 Boal Sep 2019 B2
10417401 Votaw et al. Sep 2019 B2
10417445 Wouhaybi et al. Sep 2019 B2
10417621 Cassel et al. Sep 2019 B2
10419476 Parekh Sep 2019 B2
10423985 Dutta et al. Sep 2019 B1
10425492 Comstock Sep 2019 B2
10430608 Peri et al. Oct 2019 B2
10435350 Ito et al. Oct 2019 B2
10437412 Barday et al. Oct 2019 B2
10437860 Barday et al. Oct 2019 B2
10438016 Barday et al. Oct 2019 B2
10438273 Burns et al. Oct 2019 B2
10440062 Barday et al. Oct 2019 B2
10445508 Sher-Jan et al. Oct 2019 B2
10445526 Barday et al. Oct 2019 B2
10452864 Barday et al. Oct 2019 B2
10452866 Barday et al. Oct 2019 B2
10453076 Parekh et al. Oct 2019 B2
10453092 Wang et al. Oct 2019 B1
10454934 Parimi et al. Oct 2019 B2
10460322 Williamson et al. Oct 2019 B2
10481763 Bartkiewicz et al. Nov 2019 B2
10489454 Chen Nov 2019 B1
10503926 Barday et al. Dec 2019 B2
10509644 Shoavi et al. Dec 2019 B2
10510031 Barday et al. Dec 2019 B2
10521623 Rodriguez et al. Dec 2019 B2
10534851 Chan et al. Jan 2020 B1
10535081 Ferreira et al. Jan 2020 B2
10536475 McCorkle, Jr. et al. Jan 2020 B1
10536478 Kirti et al. Jan 2020 B2
10540212 Feng et al. Jan 2020 B2
10541938 Timmerman et al. Jan 2020 B1
10546135 Kassoumeh et al. Jan 2020 B1
10552462 Hart Feb 2020 B1
10558809 Joyce et al. Feb 2020 B1
10558821 Barday et al. Feb 2020 B2
10564815 Soon-Shiong Feb 2020 B2
10564935 Barday et al. Feb 2020 B2
10564936 Barday et al. Feb 2020 B2
10565161 Barday et al. Feb 2020 B2
10565236 Barday et al. Feb 2020 B1
10567439 Barday Feb 2020 B2
10567517 Weinig et al. Feb 2020 B2
10572684 Lafever et al. Feb 2020 B2
10572686 Barday et al. Feb 2020 B2
10574705 Barday et al. Feb 2020 B2
10581825 Poschel et al. Mar 2020 B2
10592648 Barday et al. Mar 2020 B2
10592692 Brannon et al. Mar 2020 B2
10599456 Lissack Mar 2020 B2
10606916 Brannon et al. Mar 2020 B2
10613971 Vasikarla Apr 2020 B1
10614365 Sathish et al. Apr 2020 B2
10628553 Murrish et al. Apr 2020 B1
10645102 Hamdi May 2020 B2
10645548 Reynolds et al. May 2020 B2
10649630 Vora et al. May 2020 B1
10650408 Andersen et al. May 2020 B1
10657469 Bade et al. May 2020 B2
10657504 Zimmerman et al. May 2020 B1
10659566 Luah et al. May 2020 B1
10671749 Felice-Steele et al. Jun 2020 B2
10671760 Esmailzadeh et al. Jun 2020 B2
10678945 Barday et al. Jun 2020 B2
10685140 Barday et al. Jun 2020 B2
10706176 Brannon et al. Jul 2020 B2
10706226 Byun et al. Jul 2020 B2
10708305 Barday et al. Jul 2020 B2
10713387 Brannon Jul 2020 B2
10726145 Duminy et al. Jul 2020 B2
10726153 Nerurkar et al. Jul 2020 B2
10726158 Brannon et al. Jul 2020 B2
10732865 Jain et al. Aug 2020 B2
10735388 Rose et al. Aug 2020 B2
10740487 Barday et al. Aug 2020 B2
10747893 Kiriyama et al. Aug 2020 B2
10747897 Cook Aug 2020 B2
10749870 Brouillette et al. Aug 2020 B2
10762213 Rudek et al. Sep 2020 B2
10762230 Ancin et al. Sep 2020 B2
10762236 Brannon et al. Sep 2020 B2
10769302 Barday et al. Sep 2020 B2
10769303 Brannon et al. Sep 2020 B2
10776510 Antonelli et al. Sep 2020 B2
10776518 Barday et al. Sep 2020 B2
10778792 Handy Bosma et al. Sep 2020 B1
10783256 Brannon et al. Sep 2020 B2
10785173 Willett et al. Sep 2020 B2
10785299 Gupta et al. Sep 2020 B2
10789594 Moshir et al. Sep 2020 B2
10791150 Barday et al. Sep 2020 B2
10795527 Legge et al. Oct 2020 B1
10796020 Barday et al. Oct 2020 B2
10796260 Brannon et al. Oct 2020 B2
10798133 Barday et al. Oct 2020 B2
10803196 Bodegas Martinez et al. Oct 2020 B2
10805331 Boyer et al. Oct 2020 B2
10831831 Greene Nov 2020 B2
10834590 Turgeman et al. Nov 2020 B2
10839100 Hollinger et al. Nov 2020 B2
10846433 Brannon et al. Nov 2020 B2
10853356 McPherson et al. Dec 2020 B1
10853501 Brannon Dec 2020 B2
10860721 Gentile Dec 2020 B1
10860742 Joseph et al. Dec 2020 B2
10860979 Geffen et al. Dec 2020 B2
10878127 Brannon et al. Dec 2020 B2
10885485 Brannon et al. Jan 2021 B2
10891393 Currier et al. Jan 2021 B2
10893074 Sartor Jan 2021 B2
10896394 Brannon et al. Jan 2021 B2
10902490 He et al. Jan 2021 B2
10909488 Hecht et al. Feb 2021 B2
10924514 Altman et al. Feb 2021 B1
10929557 Chavez Feb 2021 B2
10949555 Rattan et al. Mar 2021 B2
10949565 Barday et al. Mar 2021 B2
10956213 Chambers et al. Mar 2021 B1
10957326 Bhaya et al. Mar 2021 B2
10963571 Bar Joseph et al. Mar 2021 B2
10963572 Belfiore, Jr. et al. Mar 2021 B2
10965547 Esposito et al. Mar 2021 B1
10970418 Durvasula et al. Apr 2021 B2
10972509 Barday et al. Apr 2021 B2
10976950 Trezzo et al. Apr 2021 B1
10983963 Venkatasubramanian et al. Apr 2021 B1
10984458 Gutierrez Apr 2021 B1
10997318 Barday et al. May 2021 B2
11003748 Oliker et al. May 2021 B2
11012475 Patnala et al. May 2021 B2
11019062 Chittampally May 2021 B2
11023528 Lee et al. Jun 2021 B1
11023921 Wang et al. Jun 2021 B2
11037168 Lee et al. Jun 2021 B1
11057356 Malhotra et al. Jul 2021 B2
11057427 Wright et al. Jul 2021 B2
11062051 Barday et al. Jul 2021 B2
11068318 Kuesel et al. Jul 2021 B2
11068584 Burriesci et al. Jul 2021 B2
11068618 Brannon et al. Jul 2021 B2
11068797 Bhide et al. Jul 2021 B2
11068847 Boutros et al. Jul 2021 B2
11082499 Rivera Aug 2021 B2
11093643 Hennebert Aug 2021 B2
11093950 Hersh et al. Aug 2021 B2
11138299 Brannon et al. Oct 2021 B2
11144622 Brannon et al. Oct 2021 B2
11144678 Dondini et al. Oct 2021 B2
11144862 Jackson et al. Oct 2021 B1
11195134 Brannon et al. Dec 2021 B2
11201929 Dudmesh et al. Dec 2021 B2
11210420 Brannon et al. Dec 2021 B2
11222139 Jones et al. Jan 2022 B2
11222142 Jones et al. Jan 2022 B2
11238390 Brannon et al. Feb 2022 B2
11240273 Barday et al. Feb 2022 B2
11245951 Lim et al. Feb 2022 B2
11246520 Clifford et al. Feb 2022 B2
11252159 Kannan et al. Feb 2022 B2
11256777 Brannon et al. Feb 2022 B2
11263262 Chen Mar 2022 B2
11327996 Reynolds et al. May 2022 B2
11443062 Latka et al. Sep 2022 B2
11695975 Giraud Jul 2023 B1
20020004736 Roundtree et al. Jan 2002 A1
20020049907 Woods et al. Apr 2002 A1
20020055932 Wheeler et al. May 2002 A1
20020077941 Halligan et al. Jun 2002 A1
20020103854 Okita Aug 2002 A1
20020129216 Collins Sep 2002 A1
20020161594 Bryan et al. Oct 2002 A1
20020161733 Grainger Oct 2002 A1
20030041250 Proudler Feb 2003 A1
20030065641 Chaloux Apr 2003 A1
20030093680 Astley et al. May 2003 A1
20030097451 Bjorksten et al. May 2003 A1
20030097661 Li et al. May 2003 A1
20030115142 Brickell et al. Jun 2003 A1
20030130893 Farmer Jul 2003 A1
20030131001 Matsuo Jul 2003 A1
20030131093 Aschen et al. Jul 2003 A1
20030140150 Kemp et al. Jul 2003 A1
20030167216 Brown et al. Sep 2003 A1
20030212604 Cullen Nov 2003 A1
20040002818 Kulp et al. Jan 2004 A1
20040025053 Hayward Feb 2004 A1
20040088235 Ziekle et al. May 2004 A1
20040098366 Sinclair et al. May 2004 A1
20040098493 Rees May 2004 A1
20040111359 Hudock Jun 2004 A1
20040128508 Wheeler et al. Jul 2004 A1
20040186912 Harlow et al. Sep 2004 A1
20040193907 Patanella Sep 2004 A1
20050022198 Olapurath et al. Jan 2005 A1
20050033616 Vavul et al. Feb 2005 A1
20050076294 Dehamer et al. Apr 2005 A1
20050114343 Wesinger et al. May 2005 A1
20050144066 Cope et al. Jun 2005 A1
20050197884 Mullen Sep 2005 A1
20050198177 Black Sep 2005 A1
20050198646 Kortela Sep 2005 A1
20050246292 Sarcanin Nov 2005 A1
20050251865 Mont et al. Nov 2005 A1
20050278538 Fowler Dec 2005 A1
20060031078 Pizzinger et al. Feb 2006 A1
20060035204 Lamarche et al. Feb 2006 A1
20060041507 Novack et al. Feb 2006 A1
20060075122 Lindskog et al. Apr 2006 A1
20060149730 Curtis Jul 2006 A1
20060156052 Bodnar et al. Jul 2006 A1
20060190280 Hoebel et al. Aug 2006 A1
20060206375 Scott et al. Sep 2006 A1
20060224422 Cohen Oct 2006 A1
20060253597 Mujica Nov 2006 A1
20060259416 Johnson Nov 2006 A1
20070011058 Dev Jan 2007 A1
20070027715 Gropper et al. Feb 2007 A1
20070061125 Bhatt et al. Mar 2007 A1
20070061393 Moore Mar 2007 A1
20070130101 Anderson et al. Jun 2007 A1
20070130323 Landsman et al. Jun 2007 A1
20070157311 Meier et al. Jul 2007 A1
20070173355 Klein Jul 2007 A1
20070179793 Bagchi et al. Aug 2007 A1
20070180490 Renzi et al. Aug 2007 A1
20070192438 Goei Aug 2007 A1
20070266420 Hawkins et al. Nov 2007 A1
20070283171 Breslin et al. Dec 2007 A1
20080005194 Smolen et al. Jan 2008 A1
20080015927 Ramirez Jan 2008 A1
20080028065 Caso et al. Jan 2008 A1
20080028435 Strickland et al. Jan 2008 A1
20080047016 Spoonamore Feb 2008 A1
20080120699 Spear May 2008 A1
20080140696 Mathuria Jun 2008 A1
20080189306 Hewett et al. Aug 2008 A1
20080195436 Whyte Aug 2008 A1
20080222271 Spires Sep 2008 A1
20080235177 Kim et al. Sep 2008 A1
20080270203 Holmes et al. Oct 2008 A1
20080270351 Thomsen Oct 2008 A1
20080270381 Thomsen Oct 2008 A1
20080270382 Thomsen et al. Oct 2008 A1
20080270451 Thomsen et al. Oct 2008 A1
20080270462 Thomsen Oct 2008 A1
20080281649 Morris Nov 2008 A1
20080282320 Denovo et al. Nov 2008 A1
20080288271 Faust Nov 2008 A1
20080288299 Schultz Nov 2008 A1
20090012896 Arnold Jan 2009 A1
20090022301 Mudaliar Jan 2009 A1
20090037975 Ishikawa et al. Feb 2009 A1
20090119500 Roth et al. May 2009 A1
20090132419 Grammer et al. May 2009 A1
20090138276 Hayashida et al. May 2009 A1
20090140035 Miller Jun 2009 A1
20090144702 Atkin et al. Jun 2009 A1
20090158249 Tomkins et al. Jun 2009 A1
20090172705 Cheong Jul 2009 A1
20090182818 Krywaniuk Jul 2009 A1
20090187764 Astakhov et al. Jul 2009 A1
20090204452 Iskandar et al. Aug 2009 A1
20090204820 Brandenburg et al. Aug 2009 A1
20090210347 Sarcanin Aug 2009 A1
20090216610 Chorny Aug 2009 A1
20090249076 Reed et al. Oct 2009 A1
20090303237 Liu et al. Dec 2009 A1
20100010912 Jones et al. Jan 2010 A1
20100010968 Redlich et al. Jan 2010 A1
20100077484 Paretti et al. Mar 2010 A1
20100082533 Nakamura et al. Apr 2010 A1
20100094650 Tran et al. Apr 2010 A1
20100100398 Auker et al. Apr 2010 A1
20100121773 Currier et al. May 2010 A1
20100131595 Sugasaki May 2010 A1
20100192201 Shimoni et al. Jul 2010 A1
20100205057 Hook et al. Aug 2010 A1
20100223349 Thorson Sep 2010 A1
20100228786 Török Sep 2010 A1
20100234987 Benschop et al. Sep 2010 A1
20100235297 Mamorsky Sep 2010 A1
20100235915 Memon et al. Sep 2010 A1
20100262624 Pullikottil Oct 2010 A1
20100268628 Pitkow et al. Oct 2010 A1
20100268932 Bhattacharjee Oct 2010 A1
20100281313 White et al. Nov 2010 A1
20100287114 Bartko et al. Nov 2010 A1
20100333012 Adachi et al. Dec 2010 A1
20110006996 Smith et al. Jan 2011 A1
20110010202 Neale Jan 2011 A1
20110054924 Mitchell Mar 2011 A1
20110082794 Blechman Apr 2011 A1
20110137696 Meyer et al. Jun 2011 A1
20110145154 Rivers et al. Jun 2011 A1
20110153396 Marcuvitz et al. Jun 2011 A1
20110191664 Sheleheda et al. Aug 2011 A1
20110208850 Sheleheda et al. Aug 2011 A1
20110209067 Bogess et al. Aug 2011 A1
20110231896 Tovar Sep 2011 A1
20110238573 Varadarajan Sep 2011 A1
20110252456 Hatakeyama Oct 2011 A1
20110287748 Angel et al. Nov 2011 A1
20110302643 Pichna et al. Dec 2011 A1
20120030128 Nelson Feb 2012 A1
20120041939 Amsterdamski Feb 2012 A1
20120084151 Kozak et al. Apr 2012 A1
20120084349 Lee et al. Apr 2012 A1
20120102411 Sathish Apr 2012 A1
20120102543 Kohli et al. Apr 2012 A1
20120109830 Vogel May 2012 A1
20120110674 Belani et al. May 2012 A1
20120116923 Irving et al. May 2012 A1
20120131438 Li et al. May 2012 A1
20120143650 Crowley et al. Jun 2012 A1
20120144499 Tan et al. Jun 2012 A1
20120191596 Kremen et al. Jul 2012 A1
20120226621 Petran et al. Sep 2012 A1
20120239557 Weinflash et al. Sep 2012 A1
20120254320 Dove et al. Oct 2012 A1
20120259752 Agee Oct 2012 A1
20120323700 Aleksandrovich et al. Dec 2012 A1
20120330769 Arceo Dec 2012 A1
20120330869 Durham Dec 2012 A1
20130004933 Bhaskaran Jan 2013 A1
20130018954 Cheng Jan 2013 A1
20130085801 Sharpe et al. Apr 2013 A1
20130091156 Raiche et al. Apr 2013 A1
20130103485 Postrel Apr 2013 A1
20130111323 Taghaddos et al. May 2013 A1
20130124257 Schubert May 2013 A1
20130159351 Hamann et al. Jun 2013 A1
20130160120 Malaviya et al. Jun 2013 A1
20130171968 Wang Jul 2013 A1
20130179982 Bridges et al. Jul 2013 A1
20130179988 Bekker et al. Jul 2013 A1
20130185806 Hatakeyama Jul 2013 A1
20130211872 Cherry et al. Aug 2013 A1
20130218829 Martinez Aug 2013 A1
20130219459 Bradley Aug 2013 A1
20130254139 Lei Sep 2013 A1
20130254649 ONeill Sep 2013 A1
20130254699 Bashir et al. Sep 2013 A1
20130262328 Federgreen Oct 2013 A1
20130282438 Hunter et al. Oct 2013 A1
20130282466 Hampton Oct 2013 A1
20130290169 Bathula et al. Oct 2013 A1
20130298071 Wine Nov 2013 A1
20130311224 Heroux et al. Nov 2013 A1
20130318207 Dotter Nov 2013 A1
20130326112 Park et al. Dec 2013 A1
20130332362 Ciurea Dec 2013 A1
20130340086 Blom Dec 2013 A1
20140006355 Kirihata Jan 2014 A1
20140006616 Aad et al. Jan 2014 A1
20140012833 Humprecht Jan 2014 A1
20140019561 Belity et al. Jan 2014 A1
20140032259 Lafever et al. Jan 2014 A1
20140032265 Paprocki Jan 2014 A1
20140040134 Ciurea Feb 2014 A1
20140040161 Berlin Feb 2014 A1
20140040979 Barton et al. Feb 2014 A1
20140041048 Goodwin et al. Feb 2014 A1
20140047551 Nagasundaram et al. Feb 2014 A1
20140052463 Cashman et al. Feb 2014 A1
20140067973 Eden Mar 2014 A1
20140074550 Chourey Mar 2014 A1
20140074645 Ingram Mar 2014 A1
20140075493 Krishnan et al. Mar 2014 A1
20140089027 Brown Mar 2014 A1
20140089039 McClellan Mar 2014 A1
20140108173 Cooper et al. Apr 2014 A1
20140108968 Vishria Apr 2014 A1
20140137257 Martinez et al. May 2014 A1
20140142988 Grosso et al. May 2014 A1
20140143011 Mudugu et al. May 2014 A1
20140143844 Goertzen May 2014 A1
20140164476 Thomson Jun 2014 A1
20140188956 Subba et al. Jul 2014 A1
20140196143 Fliderman et al. Jul 2014 A1
20140208418 Libin Jul 2014 A1
20140222468 Araya et al. Aug 2014 A1
20140244309 Francois Aug 2014 A1
20140244325 Cartwright Aug 2014 A1
20140244375 Kim Aug 2014 A1
20140244399 Orduna et al. Aug 2014 A1
20140257917 Spencer et al. Sep 2014 A1
20140258093 Gardiner et al. Sep 2014 A1
20140278539 Edwards Sep 2014 A1
20140278663 Samuel et al. Sep 2014 A1
20140278730 Muhart et al. Sep 2014 A1
20140278802 MacPherson Sep 2014 A1
20140283027 Orona et al. Sep 2014 A1
20140283106 Stahura et al. Sep 2014 A1
20140288971 Whibbs, III Sep 2014 A1
20140289366 Choi et al. Sep 2014 A1
20140289681 Wielgosz Sep 2014 A1
20140289862 Gorfein et al. Sep 2014 A1
20140317171 Fox et al. Oct 2014 A1
20140324480 Dufel et al. Oct 2014 A1
20140337041 Madden et al. Nov 2014 A1
20140337466 Li et al. Nov 2014 A1
20140344015 Puértolas-Montañés et al. Nov 2014 A1
20150006514 Hung Jan 2015 A1
20150012363 Grant et al. Jan 2015 A1
20150019530 Felch Jan 2015 A1
20150026056 Calman et al. Jan 2015 A1
20150026260 Worthley Jan 2015 A1
20150033112 Norwood et al. Jan 2015 A1
20150066577 Christiansen et al. Mar 2015 A1
20150066865 Yara et al. Mar 2015 A1
20150074765 Haight et al. Mar 2015 A1
20150088598 Acharyya et al. Mar 2015 A1
20150088635 Maycotte et al. Mar 2015 A1
20150089585 Novack Mar 2015 A1
20150106260 Andrews et al. Apr 2015 A1
20150106264 Johnson Apr 2015 A1
20150106867 Liang Apr 2015 A1
20150106948 Holman et al. Apr 2015 A1
20150106949 Holman et al. Apr 2015 A1
20150121462 Courage Apr 2015 A1
20150143258 Carolan et al. May 2015 A1
20150149362 Baum et al. May 2015 A1
20150154520 Federgreen et al. Jun 2015 A1
20150169318 Nash Jun 2015 A1
20150172296 Fujioka Jun 2015 A1
20150178740 Borawski et al. Jun 2015 A1
20150199534 Francis et al. Jul 2015 A1
20150199541 Koch et al. Jul 2015 A1
20150199702 Singh Jul 2015 A1
20150229664 Hawthorn et al. Aug 2015 A1
20150235049 Cohen et al. Aug 2015 A1
20150235050 Wouhaybi et al. Aug 2015 A1
20150235283 Nishikawa Aug 2015 A1
20150242638 Bitran et al. Aug 2015 A1
20150242778 Wilcox et al. Aug 2015 A1
20150242858 Smith et al. Aug 2015 A1
20150248391 Watanabe Sep 2015 A1
20150254597 Jahagirdar Sep 2015 A1
20150261887 Joukov Sep 2015 A1
20150262189 Vergeer Sep 2015 A1
20150264417 Spitz et al. Sep 2015 A1
20150269384 Holman et al. Sep 2015 A1
20150271167 Kalai Sep 2015 A1
20150288715 Hotchkiss Oct 2015 A1
20150309813 Patel Oct 2015 A1
20150310227 Ishida et al. Oct 2015 A1
20150310575 Shelton Oct 2015 A1
20150312767 Jactat Oct 2015 A1
20150347421 Steiner et al. Dec 2015 A1
20150348200 Fair et al. Dec 2015 A1
20150356362 Demos Dec 2015 A1
20150379430 Dirac et al. Dec 2015 A1
20160006760 Lala et al. Jan 2016 A1
20160012465 Sharp Jan 2016 A1
20160026394 Goto Jan 2016 A1
20160034918 Bjelajac et al. Feb 2016 A1
20160048700 Stransky-Heilkron Feb 2016 A1
20160050213 Storr Feb 2016 A1
20160063523 Nistor et al. Mar 2016 A1
20160063567 Srivastava Mar 2016 A1
20160071112 Unser Mar 2016 A1
20160080405 Schler et al. Mar 2016 A1
20160087957 Shah et al. Mar 2016 A1
20160099963 Mahaffey et al. Apr 2016 A1
20160103963 Mishra Apr 2016 A1
20160104259 Menrad Apr 2016 A1
20160125550 Joao et al. May 2016 A1
20160125749 Delacroix et al. May 2016 A1
20160125751 Barker et al. May 2016 A1
20160140466 Sidebottom et al. May 2016 A1
20160143570 Valacich et al. May 2016 A1
20160148143 Anderson et al. May 2016 A1
20160148259 Baek et al. May 2016 A1
20160162269 Pogorelik et al. Jun 2016 A1
20160164915 Cook Jun 2016 A1
20160180386 Konig Jun 2016 A1
20160188450 Appusamy et al. Jun 2016 A1
20160189156 Kim et al. Jun 2016 A1
20160196189 Miyagi et al. Jul 2016 A1
20160225000 Glasgow Aug 2016 A1
20160232465 Kurtz et al. Aug 2016 A1
20160232534 Lacey et al. Aug 2016 A1
20160234319 Griffin Aug 2016 A1
20160253497 Christodorescu et al. Sep 2016 A1
20160255139 Rathod Sep 2016 A1
20160261631 Vissamsetty et al. Sep 2016 A1
20160262163 Gonzalez Garrido et al. Sep 2016 A1
20160292453 Patterson et al. Oct 2016 A1
20160292621 Ciccone et al. Oct 2016 A1
20160321582 Broudou et al. Nov 2016 A1
20160321748 Mahatma et al. Nov 2016 A1
20160330237 Edlabadkar Nov 2016 A1
20160335531 Mullen et al. Nov 2016 A1
20160342811 Whitcomb et al. Nov 2016 A1
20160359861 Manov et al. Dec 2016 A1
20160364736 Maugans, III Dec 2016 A1
20160370954 Burningham et al. Dec 2016 A1
20160378762 Rohter Dec 2016 A1
20160381064 Chan et al. Dec 2016 A1
20160381560 Margaliot Dec 2016 A1
20170004055 Horan et al. Jan 2017 A1
20170032395 Kaufman et al. Feb 2017 A1
20170032408 Kumar et al. Feb 2017 A1
20170034101 Kumar et al. Feb 2017 A1
20170041324 Ionutescu et al. Feb 2017 A1
20170046399 Sankaranarasimhan et al. Feb 2017 A1
20170046753 Deupree, IV Feb 2017 A1
20170061501 Horwich Mar 2017 A1
20170068785 Experton et al. Mar 2017 A1
20170070495 Cherry et al. Mar 2017 A1
20170075513 Watson et al. Mar 2017 A1
20170093917 Chandra et al. Mar 2017 A1
20170115864 Thomas et al. Apr 2017 A1
20170124570 Nidamanuri et al. May 2017 A1
20170140174 Lacey et al. May 2017 A1
20170140467 Neag et al. May 2017 A1
20170142158 Laoutaris et al. May 2017 A1
20170142177 Hu May 2017 A1
20170154188 Meier et al. Jun 2017 A1
20170161520 Lockhart, III et al. Jun 2017 A1
20170171235 Mulchandani et al. Jun 2017 A1
20170171325 Perez Jun 2017 A1
20170177324 Frank et al. Jun 2017 A1
20170180378 Tyler et al. Jun 2017 A1
20170180505 Shaw et al. Jun 2017 A1
20170193017 Migliori Jul 2017 A1
20170193624 Tsai Jul 2017 A1
20170201518 Holmqvist et al. Jul 2017 A1
20170206707 Guay et al. Jul 2017 A1
20170208084 Steelman et al. Jul 2017 A1
20170213206 Shearer Jul 2017 A1
20170220685 Yan et al. Aug 2017 A1
20170220964 Datta Ray Aug 2017 A1
20170228454 Bose et al. Aug 2017 A1
20170249394 Loeb et al. Aug 2017 A1
20170249710 Guillama et al. Aug 2017 A1
20170269791 Meyerzon et al. Sep 2017 A1
20170270318 Ritchie Sep 2017 A1
20170278004 McElhinney et al. Sep 2017 A1
20170278117 Wallace et al. Sep 2017 A1
20170286719 Krishnamurthy et al. Oct 2017 A1
20170287031 Barday Oct 2017 A1
20170289199 Barday Oct 2017 A1
20170308875 O'Regan et al. Oct 2017 A1
20170316400 Venkatakrishnan et al. Nov 2017 A1
20170330197 DiMaggio et al. Nov 2017 A1
20170353404 Hodge Dec 2017 A1
20180032757 Michael Feb 2018 A1
20180039975 Hefetz Feb 2018 A1
20180041498 Kikuchi Feb 2018 A1
20180046753 Shelton Feb 2018 A1
20180046939 Meron et al. Feb 2018 A1
20180063174 Grill et al. Mar 2018 A1
20180063190 Wright et al. Mar 2018 A1
20180082024 Curbera et al. Mar 2018 A1
20180082368 Weinflash et al. Mar 2018 A1
20180083843 Sambandam Mar 2018 A1
20180091476 Jakobsson et al. Mar 2018 A1
20180131574 Jacobs et al. May 2018 A1
20180131658 Bhagwan et al. May 2018 A1
20180165637 Romero et al. Jun 2018 A1
20180198614 Neumann Jul 2018 A1
20180204281 Painter et al. Jul 2018 A1
20180219917 Chiang Aug 2018 A1
20180239500 Allen et al. Aug 2018 A1
20180248914 Sartor Aug 2018 A1
20180285887 Maung Oct 2018 A1
20180301222 Dew, Sr. et al. Oct 2018 A1
20180307859 Lafever et al. Oct 2018 A1
20180336509 Guttmann Nov 2018 A1
20180343215 Ganapathi et al. Nov 2018 A1
20180349583 Turgeman et al. Dec 2018 A1
20180351888 Howard Dec 2018 A1
20180352003 Winn et al. Dec 2018 A1
20180357243 Yoon Dec 2018 A1
20180365720 Goldman et al. Dec 2018 A1
20180374030 Barday et al. Dec 2018 A1
20180375814 Hart Dec 2018 A1
20190005210 Wiederspohn et al. Jan 2019 A1
20190012211 Selvaraj Jan 2019 A1
20190012672 Francesco Jan 2019 A1
20190019184 Acey et al. Jan 2019 A1
20190050547 Welsh et al. Feb 2019 A1
20190087570 Sloane Mar 2019 A1
20190096020 Barday et al. Mar 2019 A1
20190108353 Sadeh et al. Apr 2019 A1
20190130132 Barbas et al. May 2019 A1
20190132350 Smith et al. May 2019 A1
20190138496 Yamaguchi May 2019 A1
20190139087 Dabbs et al. May 2019 A1
20190148003 Van Hoe May 2019 A1
20190156053 Vogel et al. May 2019 A1
20190156058 Van Dyne et al. May 2019 A1
20190171801 Barday et al. Jun 2019 A1
20190179652 Hesener et al. Jun 2019 A1
20190180051 Barday et al. Jun 2019 A1
20190182294 Rieke et al. Jun 2019 A1
20190188402 Wang et al. Jun 2019 A1
20190266200 Francolla Aug 2019 A1
20190266201 Barday et al. Aug 2019 A1
20190266350 Barday et al. Aug 2019 A1
20190268343 Barday et al. Aug 2019 A1
20190268344 Barday et al. Aug 2019 A1
20190272492 Elledge et al. Sep 2019 A1
20190294818 Barday et al. Sep 2019 A1
20190332802 Barday et al. Oct 2019 A1
20190332807 Lafever et al. Oct 2019 A1
20190333118 Crimmins et al. Oct 2019 A1
20190354709 Brinskelle Nov 2019 A1
20190356684 Sinha et al. Nov 2019 A1
20190362169 Lin et al. Nov 2019 A1
20190362268 Fogarty et al. Nov 2019 A1
20190377901 Balzer et al. Dec 2019 A1
20190378073 Lopez et al. Dec 2019 A1
20190384934 Kim Dec 2019 A1
20190392162 Stern et al. Dec 2019 A1
20190392170 Barday et al. Dec 2019 A1
20190392171 Barday et al. Dec 2019 A1
20200004938 Brannon et al. Jan 2020 A1
20200020454 McGarvey et al. Jan 2020 A1
20200050966 Enuka et al. Feb 2020 A1
20200051117 Mitchell Feb 2020 A1
20200057781 McCormick Feb 2020 A1
20200074471 Adjaoute Mar 2020 A1
20200081865 Farrar et al. Mar 2020 A1
20200082270 Gu et al. Mar 2020 A1
20200090197 Rodriguez et al. Mar 2020 A1
20200092179 Chieu et al. Mar 2020 A1
20200110589 Bequet et al. Apr 2020 A1
20200110904 Shinde et al. Apr 2020 A1
20200117737 Gopalakrishnan et al. Apr 2020 A1
20200137097 Zimmermann et al. Apr 2020 A1
20200143301 Bowers May 2020 A1
20200143797 Manoharan et al. May 2020 A1
20200159952 Dain et al. May 2020 A1
20200159955 Barlik et al. May 2020 A1
20200167653 Manjunath et al. May 2020 A1
20200175424 Kursun Jun 2020 A1
20200183655 Barday et al. Jun 2020 A1
20200186355 Davies Jun 2020 A1
20200193018 Van Dyke Jun 2020 A1
20200193022 Lunsford et al. Jun 2020 A1
20200210558 Barday et al. Jul 2020 A1
20200210620 Haletky Jul 2020 A1
20200211002 Steinberg Jul 2020 A1
20200220901 Barday et al. Jul 2020 A1
20200226156 Borra et al. Jul 2020 A1
20200226196 Brannon et al. Jul 2020 A1
20200242259 Chirravuri et al. Jul 2020 A1
20200242719 Lee Jul 2020 A1
20200250342 Miller et al. Aug 2020 A1
20200252413 Buzbee et al. Aug 2020 A1
20200252817 Brouillette et al. Aug 2020 A1
20200272764 Brannon et al. Aug 2020 A1
20200285755 Kassoumeh et al. Sep 2020 A1
20200293679 Handy Bosma et al. Sep 2020 A1
20200296171 Mocanu et al. Sep 2020 A1
20200302089 Barday et al. Sep 2020 A1
20200310917 Tkachev et al. Oct 2020 A1
20200311310 Barday et al. Oct 2020 A1
20200344233 Lai Oct 2020 A1
20200344243 Brannon et al. Oct 2020 A1
20200356695 Brannon et al. Nov 2020 A1
20200364369 Brannon et al. Nov 2020 A1
20200372178 Barday et al. Nov 2020 A1
20200394327 Childress et al. Dec 2020 A1
20200401380 Jacobs et al. Dec 2020 A1
20200401962 Gottemukkala et al. Dec 2020 A1
20200410117 Barday et al. Dec 2020 A1
20200410131 Barday et al. Dec 2020 A1
20200410132 Brannon et al. Dec 2020 A1
20210012341 Garg et al. Jan 2021 A1
20210056569 Silberman et al. Feb 2021 A1
20210075775 Cheng et al. Mar 2021 A1
20210081567 Park et al. Mar 2021 A1
20210099449 Frederick et al. Apr 2021 A1
20210110047 Fang Apr 2021 A1
20210124821 Spivak et al. Apr 2021 A1
20210125089 Nickl et al. Apr 2021 A1
20210136065 Liokumovich et al. May 2021 A1
20210152496 Kim et al. May 2021 A1
20210182940 Gupta et al. Jun 2021 A1
20210224402 Sher-Jan et al. Jul 2021 A1
20210233157 Crutchfield, Jr. Jul 2021 A1
20210243595 Buck et al. Aug 2021 A1
20210248247 Poothokaran et al. Aug 2021 A1
20210256163 Fleming et al. Aug 2021 A1
20210279360 Gimenez Palop et al. Sep 2021 A1
20210288995 Attar et al. Sep 2021 A1
20210297441 Olalere Sep 2021 A1
20210303828 Lafreniere et al. Sep 2021 A1
20210312061 Schroeder et al. Oct 2021 A1
20210314328 Simons Oct 2021 A1
20210326786 Sun et al. Oct 2021 A1
20210328969 Gaddam et al. Oct 2021 A1
20210350022 Brannon et al. Nov 2021 A1
20210382949 Yastrebenetsky et al. Dec 2021 A1
20210397735 Samatov et al. Dec 2021 A1
20210400018 Vettaikaran et al. Dec 2021 A1
20210406712 Bhide et al. Dec 2021 A1
20220004663 Brannon et al. Jan 2022 A1
20220137850 Boddu et al. May 2022 A1
20220171759 Jindal et al. Jun 2022 A1
20220217045 Blau et al. Jul 2022 A1
20220414255 Wang et al. Dec 2022 A1
20230342734 Padmanabhan Oct 2023 A1
Foreign Referenced Citations (19)
Number Date Country
2875255 Dec 2013 CA
3056394 Mar 2021 CA
111496802 Aug 2020 CN
112115859 Dec 2020 CN
1394698 Mar 2004 EP
2031540 Mar 2009 EP
20130024345 Mar 2013 KR
20130062500 Jun 2013 KR
20210030622 Mar 2021 KR
2001033430 May 2001 WO
20020067158 Aug 2002 WO
20030050773 Jun 2003 WO
2005008411 Jan 2005 WO
2007002412 Jan 2007 WO
2008134203 Nov 2008 WO
2012174659 Dec 2012 WO
2015116905 Aug 2015 WO
2020146028 Jul 2020 WO
2022006421 Jan 2022 WO
Non-Patent Literature Citations (969)
Entry
NPL Search Terms (Year: 2024).
Notice of Allowance, dated Jul. 26, 2021, from corresponding U.S. Appl. No. 17/207,316.
Notice of Allowance, dated Jul. 27, 2022, from corresponding U.S. Appl. No. 17/679,750.
Notice of Allowance, dated Jul. 29, 2022, from corresponding U.S. Appl. No. 17/670,341.
Notice of Allowance, dated Jul. 31, 2019, from corresponding U.S. Appl. No. 16/221,153.
Notice of Allowance, dated Jul. 7, 2022, from corresponding U.S. Appl. No. 17/571,871.
Notice of Allowance, dated Jul. 8, 2021, from corresponding U.S. Appl. No. 17/201,040.
Notice of Allowance, dated Jun. 1, 2020, from corresponding U.S. Appl. No. 16/813,321.
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 16/862,948.
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 16/862,952.
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 17/216,436.
Notice of Allowance, dated Jun. 12, 2019, from corresponding U.S. Appl. No. 16/278,123.
Notice of Allowance, dated Jun. 12, 2019, from corresponding U.S. Appl. No. 16/363,454.
Notice of Allowance, dated Jun. 14, 2022, from corresponding U.S. Appl. No. 17/679,734.
Notice of Allowance, dated Jun. 16, 2020, from corresponding U.S. Appl. No. 16/798,818.
Notice of Allowance, dated Jun. 16, 2022, from corresponding U.S. Appl. No. 17/119,080.
Notice of Allowance, dated Jun. 17, 2020, from corresponding U.S. Appl. No. 16/656,895.
Notice of Allowance, dated Jun. 18, 2019, from corresponding U.S. Appl. No. 16/410,566.
Notice of Allowance, dated Jun. 19, 2018, from corresponding U.S. Appl. No. 15/894,890.
Notice of Allowance, dated Jun. 19, 2019, from corresponding U.S. Appl. No. 16/042,673.
Notice of Allowance, dated Jun. 19, 2019, from corresponding U.S. Appl. No. 16/055,984.
Notice of Allowance, dated Jun. 2, 2021, from corresponding U.S. Appl. No. 17/198,581.
Notice of Allowance, dated Jun. 2, 2022, from corresponding U.S. Appl. No. 17/493,290.
Notice of Allowance, dated Jun. 21, 2019, from corresponding U.S. Appl. No. 16/404,439.
Notice of Allowance, dated Jun. 22, 2020, from corresponding U.S. Appl. No. 16/791,337.
Notice of Allowance, dated Jun. 23, 2022, from corresponding U.S. Appl. No. 17/588,645.
Notice of Allowance, dated Jun. 27, 2018, from corresponding U.S. Appl. No. 15/882,989.
Notice of Allowance, dated Jun. 29, 2022, from corresponding U.S. Appl. No. 17/675,118.
Notice of Allowance, dated Jun. 4, 2019, from corresponding U.S. Appl. No. 16/159,566.
Notice of Allowance, dated Jun. 5, 2019, from corresponding U.S. Appl. No. 16/220,899.
Notice of Allowance, dated Jun. 5, 2019, from corresponding U.S. Appl. No. 16/357,260.
Notice of Allowance, dated Jun. 6, 2018, from corresponding U.S. Appl. No. 15/875,570.
Notice of Allowance, dated Jun. 6, 2019, from corresponding U.S. Appl. No. 16/159,628.
Notice of Allowance, dated Jun. 7, 2021, from corresponding U.S. Appl. No. 17/099,270.
Notice of Allowance, dated Jun. 8, 2020, from corresponding U.S. Appl. No. 16/712,104.
Notice of Allowance, dated Jun. 8, 2022, from corresponding U.S. Appl. No. 17/722,551.
Notice of Allowance, dated Mar. 1, 2018, from corresponding U.S. Appl. No. 15/853,674.
Notice of Allowance, dated Mar. 1, 2019, from corresponding U.S. Appl. No. 16/059,911.
Notice of Allowance, dated Mar. 10, 2021, from corresponding U.S. Appl. No. 16/925,628.
Notice of Allowance, dated Mar. 10, 2021, from corresponding U.S. Appl. No. 17/128,666.
Notice of Allowance, dated Mar. 13, 2019, from corresponding U.S. Appl. No. 16/055,083.
Notice of Allowance, dated Mar. 14, 2019, from corresponding U.S. Appl. No. 16/055,944.
Notice of Allowance, dated Mar. 16, 2020, from corresponding U.S. Appl. No. 16/778,704.
Notice of Allowance, dated Mar. 16, 2021, from corresponding U.S. Appl. No. 17/149,380.
Notice of Allowance, dated Mar. 16, 2022, from corresponding U.S. Appl. No. 17/486,350.
Notice of Allowance, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/560,885.
Notice of Allowance, dated Mar. 18, 2020, from corresponding U.S. Appl. No. 16/560,963.
Notice of Allowance, dated Mar. 19, 2021, from corresponding U.S. Appl. No. 17/013,757.
Notice of Allowance, dated Mar. 2, 2018, from corresponding U.S. Appl. No. 15/858,802.
Notice of Allowance, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 16/872,130.
Notice of Allowance, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/535,098.
Notice of Allowance, dated Aug. 4, 2021, from corresponding U.S. Appl. No. 16/895,278.
Notice of Allowance, dated Aug. 4, 2022, from corresponding U.S. Appl. No. 17/670,349.
Notice of Allowance, dated Aug. 7, 2020, from corresponding U.S. Appl. No. 16/901,973.
Notice of Allowance, dated Aug. 9, 2018, from corresponding U.S. Appl. No. 15/882,989.
Notice of Allowance, dated Aug. 9, 2021, from corresponding U.S. Appl. No. 16/881,699.
Notice of Allowance, dated Aug. 9, 2022, from corresponding U.S. Appl. No. 17/832,313.
Notice of Allowance, dated Dec. 10, 2018, from corresponding U.S. Appl. No. 16/105,602.
Notice of Allowance, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/278,122.
Notice of Allowance, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/593,634.
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/169,643.
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/619,212.
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/619,382.
Notice of Allowance, dated Dec. 13, 2019, from corresponding U.S. Appl. No. 16/512,033.
Notice of Allowance, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 16/908,081.
Notice of Allowance, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 17/347,853.
Notice of Allowance, dated Dec. 15, 2020, from corresponding U.S. Appl. No. 16/989,086.
Notice of Allowance, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/505,461.
Notice of Allowance, dated Dec. 17, 2020, from corresponding U.S. Appl. No. 17/034,772.
Notice of Allowance, dated Dec. 18, 2019, from corresponding U.S. Appl. No. 16/659,437.
Notice of Allowance, dated Dec. 2, 2021, from corresponding U.S. Appl. No. 16/901,654.
Notice of Allowance, dated Dec. 23, 2019, from corresponding U.S. Appl. No. 16/656,835.
Notice of Allowance, dated Dec. 23, 2020, from corresponding U.S. Appl. No. 17/068,557.
Notice of Allowance, dated Dec. 3, 2019, from corresponding U.S. Appl. No. 16/563,749.
Notice of Allowance, dated Dec. 30, 2021, from corresponding U.S. Appl. No. 16/938,520.
Notice of Allowance, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 16/159,634.
Notice of Allowance, dated Dec. 31, 2019, from corresponding U.S. Appl. No. 16/404,399.
Notice of Allowance, dated Dec. 4, 2019, from corresponding U.S. Appl. No. 16/594,670.
Notice of Allowance, dated Dec. 5, 2017, from corresponding U.S. Appl. No. 15/633,703.
Notice of Allowance, dated Dec. 6, 2017, from corresponding U.S. Appl. No. 15/619,451.
Notice of Allowance, dated Dec. 6, 2017, from corresponding U.S. Appl. No. 15/619,459.
Notice of Allowance, dated Dec. 7, 2020, from corresponding U.S. Appl. No. 16/817,136.
Notice of Allowance, dated Dec. 8, 2021, from corresponding U.S. Appl. No. 17/397,472.
Notice of Allowance, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/565,261.
Notice of Allowance, dated Dec. 9, 2020, from corresponding U.S. Appl. No. 16/404,491.
Notice of Allowance, dated Feb. 1, 2022, from corresponding U.S. Appl. No. 17/346,509.
Notice of Allowance, dated Feb. 10, 2020, from corresponding U.S. Appl. No. 16/552,765.
Notice of Allowance, dated Feb. 11, 2021, from corresponding U.S. Appl. No. 17/086,732.
Notice of Allowance, dated Feb. 12, 2020, from corresponding U.S. Appl. No. 16/572,182.
Notice of Allowance, dated Feb. 13, 2019, from corresponding U.S. Appl. No. 16/041,563.
Notice of Allowance, dated Feb. 14, 2019, from corresponding U.S. Appl. No. 16/226,272.
Notice of Allowance, dated Feb. 14, 2022, from corresponding U.S. Appl. No. 16/623,157.
Notice of Allowance, dated Feb. 14, 2023, from corresponding U.S. Appl. No. 17/373,444.
Notice of Allowance, dated Feb. 19, 2019, from corresponding U.S. Appl. No. 16/159,632.
Notice of Allowance, dated Feb. 19, 2021, from corresponding U.S. Appl. No. 16/832,451.
Notice of Allowance, dated Feb. 2, 2023, from corresponding U.S. Appl. No. 17/850,244.
Notice of Allowance, dated Feb. 22, 2022, from corresponding U.S. Appl. No. 17/535,065.
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/034,355.
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/068,198.
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/101,106.
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/101,253.
Matte et al, “Do Cookie Banners Respect my Choice?: Measuring Legal Compliance of Banners from IAB Europe's Transparency and Consent Framework,” 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 791-809 (Year: 2020).
McGarth et al, “Digital Library Technology for Locating and Accessing Scientific Data”, ACM, pp. 188-194 (Year: 1999).
Mesbah et al, “Crawling Ajax-Based Web Applications Through Dynamic Analysis of User Interface State Changes,” ACM Transactions on the Web (TWEB) vol. 6, No. 1, Article 3, Mar. 2012, pp. 1-30 (Year: 2012).
Milic et al, “Comparative Analysis of Metadata Models on e-Government Open Data Platforms,” IEEE, pp. 119-130 (Year: 2021).
Moiso et al, “Towards a User-Centric Personal Data Ecosystem The Role of the Bank of Individual's Data,” 2012 16th International Conference on Intelligence in Next Generation Networks, Berlin, 2012, pp. 202-209 (Year: 2012).
Moscoso-Zea et al, “Datawarehouse Design for Educational Data Mining,” IEEE, pp. 1-6 (Year: 2016).
Mudepalli et al, “An efficient data retrieval approach using blowfish encryption on cloud CipherText Retrieval in Cloud Computing” IEEE, pp. 267-271 (Year: 2017).
Mundada et al, “Half-Baked Cookies: Hardening Cookie-Based Authentication for the Modern Web,” Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, 2016, pp. 675-685 (Year: 2016).
Nemec et al, “Assessment of Query Execution Performance Using Selected Business Intelligence Tools and Experimental Agile Oriented Data Modeling Approach,” Sep. 16, 2015, IEEE, pp. 1327-1333. (Year: 2015).
Newman et al, “High Speed Scientific Data Transfers using Software Defined Networking,” ACM, pp. 1-9 (Year: 2015).
Newman, “Email Archive Overviews using Subject Indexes”, ACM, pp. 652-653, 2002 (Year: 2002).
Nishikawa, Taiji, English Translation of JP 2019154505, Aug. 27, 2019 (Year: 2019).
Niu, et al, “Achieving Data Truthfulness and Privacy Preservation in Data Markets”, IEEE Transactions on Knowledge and Data Engineering, IEEE Service Centre, Los Alamitos, CA, US, vol. 31, No. 1, Jan. 1, 2019, pp. 105-119 (Year 2019).
Notice of Filing Date for Petition for Post-Grant Review of related U.S. Pat. No. 9,691,090 dated Apr. 12, 2018.
Nouwens et al, “Dark Patterns after the GDPR: Scraping Consent Pop-ups and Demonstrating their Influence,” ACM, pp. 1-13, Apr. 25, 2020 (Year: 2020).
O'Keefe et al, “Privacy-Preserving Data Linkage Protocols,” Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, 2004, pp. 94-102 (Year: 2004).
Olenski, Steve, For Consumers, Data Is A Matter Of Trust, CMO Network, Apr. 18, 2016, https://www.forbes.com/sites/steveolenski/2016/04/18/for-consumers-data-is-a-matter-of-trust/#2e48496278b3.
Ozdikis et al, “Tool Support for Transformation from an OWL Ontology to an HLA Object Model,” ACM, pp. 1-6 (Year: 2010).
Paes, “Student Research Abstract: Automatic Detection of Cross-Browser Incompatibilities using Machine Learning and Screenshot Similarity,” ACM, pp. 697-698, Apr. 3, 2017 (Year: 2017).
Pearson, et al, “A Model-Based Privacy Compliance Checker,” IJEBR, vol. 5, No. 2, pp. 63-83, 2009, Nov. 21, 2008. [Online]. Available: http://dx.doi.org/10.4018/jebr.2009040104 (Year: 2008).
Pechenizkiy et al, “Process Mining Online Assessment Data,” Educational Data Mining, pp. 279-288 (Year: 2009).
Petition for Post-Grant Review of related U.S. Pat. No. 9,691,090 dated Mar. 27, 2018.
Petrie et al, “The Relationship between Accessibility and Usability of Websites”, ACM, pp. 397-406 (Year: 2007).
Pfeifle, Sam, The Privacy Advisor, IAPP and AvePoint Launch New Free PIA Tool, International Association of Privacy Professionals, Mar. 5, 2014.
Pfeifle, Sam, The Privacy Advisor, IAPP Heads to Singapore with APIA Template in Tow, International Association of Privacy Professionals, https://iapp.org/news/a/iapp-heads-to-singapore-with-apia-template_in_tow/, Mar. 28, 2014, p. 1-3.
Ping et al, “Wide Area Placement of Data Replicas for Fast and Highly Available Data Access,” ACM, pp. 1-8 (Year: 2011).
Popescu-Zeletin, “The Data Access and Transfer Support in a Local Heterogeneous Network (HMINET)”, IEEE, pp. 147-152 (Year: 1979).
Porter, “De-Identified Data and Third Party Data Mining: The Risk of Re-Identification of Personal Information,” Shidler JL Com. & Tech. 5, 2008, pp. 1-9 (Year: 2008).
Pretorius, et al, “Attributing Users Based on Web Browser History,” 2017 IEEE Conference on Application, Information and Network Security (AINS), 2017, pp. 69-74 (Year: 2017).
Preuveneers et al, “Access Control with Delegated Authorization Policy Evaluation for Data-Driven Microservice Workflows,” Future Internet 2017, MDPI, pp. 1-21 (Year: 2017).
Qing-Jiang et al, “The (P, a, K) Anonymity Model for Privacy Protection of Personal Information in the Social Networks,” 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, vol. 2 EEE, 2011, pp. 420-423 (Year: 2011).
Qiu, et al, “Design and Application of Data Integration Platform Based on Web Services and XML,” IEEE, pp. 253-256 (Year: 2016).
Qu et al, “Metadata Type System: Integrate Presentation, Data Models and Extraction to Enable Exploratory Browsing Interfaces,” ACM, pp. 107-116 (Year: 2014).
Radu, et al, “Analyzing Risk Evaluation Frameworks and Risk Assessment Methods,” IEEE, Dec. 12, 2020, pp. 1-6 (Year: 2020).
Rakers, “Managing Professional and Personal Sensitive Information,” ACM, pp. 9-13, Oct. 24-27, 2010 (Year: 2010).
Reardon et al., User-Level Secure Deletion on Log-Structured File Systems, ACM, 2012, retrieved online on Apr. 22, 2021, pp. 1-11. Retrieved from the Internet: URL: http://citeseerx.ist.psu.edu/viewdoc/download;isessionid=450713515DC7F19F8ED09AE961D4B60E. (Year: 2012).
Regulation (EU) 2016/679, “On the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation),” Official Journal of the European Union, May 4, 2016, pp. L 119/1-L 119/88 (Year: 2016).
Roesner et al, “Detecting and Defending Against Third-Party Tracking on the Web,” 9th USENIX Symposium on Networked Systems Design and Implementation, Apr. 11, 2013, pp. 1-14, ACM (Year: 2013).
Rozepz, “What is Google Privacy Checkup? Everything You Need to Know,” Tom's Guide web post, Apr. 26, 2018, pp. 1-11 (Year: 2018).
Sachinopoulou et al, “Ontology-Based Approach for Managing Personal Health and Wellness Information,” IEEE, pp. 1802-1805 (Year: 2007).
Salim et al, “Data Retrieval and Security using Lightweight Directory Access Protocol”, IEEE, pp. 685-688 (Year: 2009).
Sanchez-Rola et al, “Can I Opt Out Yet?: GDPR and the Global Illusion of Cookie Control,” Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security, 2019, pp. 340-351 (Year: 2019).
Santhisree, et al, “Web Usage Data Clustering Using Dbscan Algorithm and Set Similarities,” IEEE, pp. 220-224 (Year: 2010).
Sanzo et al, “Analytical Modeling of Lock-Based Concurrency Control with Arbitrary Transaction Data Access Patterns,” ACM, pp. 69-78 (Year: 2010).
Sarkar et al, “Towards Enforcement of the EU GDPR: Enabling Data Erasure,” 2018 IEEE Confs on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and Information Technology, Congress on Cybermatics, 2018, pp. 222-229, IEEE (Year: 2018).
Schwartz, Edward J., et al, 2010 IEEE Symposium on Security and Privacy: All You Ever Wanted to Know About Dynamic Analysis and forward Symbolic Execution (but might have been afraid to ask), Carnegie Mellon University, EEE Computer Society, 2010, p. 317-331.
Sedinic et al, “Security Risk Management in Complex Organization,” May 29, 2015, IEEE, pp. 1331-1337 (Year: 2015).
Shahriar et al, “A Model-Based Detection of Vulnerable and Malicious Browser Extensions,” IEEE, pp. 198-207 (Year: 2013).
Shankar et al, “Doppleganger: Better Browser Privacy Without the Bother,” Proceedings of the 13th ACM Conference on Computer and Communications Security; [ACM Conference on Computer and Communications Security], New York, NY : ACM, US, Oct. 30, 2006, pp. 154-167 (Year: 2006).
Shulz et al, “Generative Data Models for Validation and Evaluation of Visualization Techniques,” ACM, pp. 1-13 (Year: 2016).
Office Action, dated Apr. 26, 2022, from corresponding U.S. Appl. No. 17/151,334.
Office Action, dated Apr. 28, 2020, from corresponding U.S. Appl. No. 16/798,818.
Office Action, dated Apr. 28, 2020, from corresponding U.S. Appl. No. 16/808,500.
Office Action, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 16/808,497.
Office Action, dated Apr. 29, 2020, from corresponding U.S. Appl. No. 16/791,337.
Office Action, dated Apr. 5, 2019, from corresponding U.S. Appl. No. 16/278,119.
Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/788,633.
Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/791,589.
Office Action, dated Apr. 8, 2022, from corresponding U.S. Appl. No. 16/938,509.
Office Action, dated Aug. 12, 2022, from corresponding U.S. Appl. No. 17/679,734.
Office Action, dated Aug. 13, 2019, from corresponding U.S. Appl. No. 16/505,430.
Office Action, dated Aug. 13, 2019, from corresponding U.S. Appl. No. 16/512,033.
Office Action, dated Aug. 15, 2019, from corresponding U.S. Appl. No. 16/505,461.
Office Action, dated Aug. 17, 2022, from corresponding U.S. Appl. No. 17/373,444.
Office Action, dated Aug. 17, 2022, from corresponding U.S. Appl. No. 17/836,430.
Office Action, dated Aug. 18, 2021, from corresponding U.S. Appl. No. 17/222,725.
Office Action, dated Aug. 19, 2019, from corresponding U.S. Appl. No. 16/278,122.
Office Action, dated Aug. 19, 2022, from corresponding U.S. Appl. No. 17/584,187.
Office Action, dated Aug. 2, 2022, from corresponding U.S. Appl. No. 17/670,354.
Office Action, dated Aug. 20, 2020, from corresponding U.S. Appl. No. 16/817,136.
Office Action, dated Aug. 23, 2017, from corresponding U.S. Appl. No. 15/626,052.
Office Action, dated Aug. 24, 2017, from corresponding U.S. Appl. No. 15/169,643.
Office Action, dated Aug. 24, 2017, from corresponding U.S. Appl. No. 15/619,451.
Office Action, dated Aug. 24, 2020, from corresponding U.S. Appl. No. 16/595,327.
Office Action, dated Aug. 27, 2019, from corresponding U.S. Appl. No. 16/410,296.
Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/187,329.
Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/334,948.
Office Action, dated Aug. 29, 2017, from corresponding U.S. Appl. No. 15/619,237.
Office Action, dated Aug. 30, 2017, from corresponding U.S. Appl. No. 15/619,212.
Office Action, dated Aug. 30, 2017, from corresponding U.S. Appl. No. 15/619,382.
Office Action, dated Aug. 30, 2021, from corresponding U.S. Appl. No. 16/938,520.
Office Action, dated Aug. 4, 2022, from corresponding U.S. Appl. No. 17/828,953.
Office Action, dated Aug. 6, 2019, from corresponding U.S. Appl. No. 16/404,491.
Office Action, dated Aug. 6, 2020, from corresponding U.S. Appl. No. 16/862,956.
Office Action, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/578,712.
Office Action, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 17/476,209.
Office Action, dated Dec. 14, 2018, from corresponding U.S. Appl. No. 16/104,393.
Office Action, dated Dec. 15, 2016, from corresponding U.S. Appl. No. 15/256,419.
Office Action, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/563,754.
Office Action, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/565,265.
Office Action, dated Dec. 16, 2020, from corresponding U.S. Appl. No. 17/020,275.
Office Action, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/395,759.
Office Action, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/499,582.
Office Action, dated Dec. 18, 2020, from corresponding U.S. Appl. No. 17/030,714.
Office Action, dated Dec. 19, 2019, from corresponding U.S. Appl. No. 16/410,866.
Office Action, dated Dec. 2, 2019, from corresponding U.S. Appl. No. 16/560,963.
Office Action, dated Dec. 2, 2021, from corresponding U.S. Appl. No. 17/504,102.
Office Action, dated Dec. 21, 2022, from corresponding U.S. Appl. No. 17/013,756.
Office Action, dated Dec. 23, 2019, from corresponding U.S. Appl. No. 16/593,639.
Office Action, dated Dec. 24, 2020, from corresponding U.S. Appl. No. 17/068,454.
He et al, “A Crowdsourcing Framework for Detecting of Cross-Browser Issues in Web Application,” ACM, pp. 1-4, Nov. 6, 2015 (Year: 2015).
Heil et al, “Downsizing and Rightsizing,” https://web.archive.org/web/20130523153311/https://www.referenceforbusiness.com/management/De-Ele/Downsizing-and-Rightsizing.html (Year: 2013).
Hernandez, et al, “Data Exchange with Data-Metadata Translations,” ACM, pp. 260-273 (Year: 2008).
Hinde, “A Model to Assess Organisational Information Privacy Maturity Against the Protection of Personal Information Act” Dissertation University of Cape Town 2014, pp. 1-121 (Year: 2014).
Hodge, et al, “Managing Virtual Data Marts with Metapointer Tables,” pp. 1-7 (Year: 2002).
Horrall et al, “Evaluating Risk: IBM's Country Financial Risk and Treasury Risk Scorecards,” Jul. 21, 2014, IBM, vol. 58, issue 4, pp. 2:1-2:9 (Year: 2014).
Hu, et al, “Attribute Considerations for Access Control Systems,” NIST Special Publication 800-205, Jun. 2019, pp. 1-42 (Year: 2019).
Hu, et al, “Guide to Attribute Based Access Control (ABAC) Definition and Considerations (Draft),” NIST Special Publication 800-162, pp. 1-54 (Year: 2013).
Huang, et al, “A Study on Information Security Management with Personal Data Protection,” IEEE, Dec. 9, 2011, pp. 624-630 (Year: 2011).
Huettner, “Digital Risk Management: Protecting Your Privacy, Improving Security, and Preparing for Emergencies,” EEE, pp. 136-138 (Year: 2006).
Huner et al, “Towards a Maturity Model for Corporate Data Quality Management”, ACM, pp. 231-238, 2009 (Year: 2009).
Hunton & Williams LLP, The Role of Risk Management in Data Protection, Privacy Risk Framework and the Risk-based Approach to Privacy, Centre for Information Policy Leadership, Workshop II, Nov. 23, 2014.
Huo et al, “A Cloud Storage Architecture Model for Data-Intensive Applications,” IEEE, pp. 1-4 (Year: 2011).
IAPP, Daily Dashboard, PIA Tool Stocked With New Templates for DPI, Infosec, International Association of Privacy Professionals, Apr. 22, 2014.
IAPP, ISO/IEC 27001 Information Security Management Template, Resource Center, International Association of Privacy Professionals.
Imran et al, “Searching in Cloud Object Storage by Using a Metadata Model”, IEEE, 2014, retrieved online on Apr. 1, 2020, pp. 121-128. Retrieved from the Internet: URL: https://ieeeexplore.ieee.org/stamp/stamp.jsp? (Year: 2014).
Iordanou et al, “Tracing Cross Border Web Tracking,” Oct. 31, 2018, pp. 329-342, ACM (Year: 2018).
Islam, et al, “Mixture Model Based Label Association Techniques for Web Accessibility,” ACM, pp. 67-76 (Year: 2010).
Jayasinghe et al, “Matching Facial Images Using Age Related Morphing Changes,” ISSRI, 2009, pp. 2901-2907 (Year: 2009).
Jensen, et al, “Temporal Data Management,” IEEE Transactions on Knowledge and Data Engineering, vol. 11, No. 1, Jan./Feb. 1999, pp. 36-44 (Year: 1999).
Jiahao Chen et al. “Fairness Under Unawareness: Assessing Disparity when Protected Class is Unobserved,” arxiv.org, Cornell University Library, 201 Olin Library Cornell University, Ithaca, NY 14853, Nov. 27, 2018 (Nov. 27, 2018), Section 2, Figure 2. (Year 2018).
Joel Reardon et al., Secure Data Deletion from Persistent Media, ACM, Nov. 4, 2013, retrieved online on Jun. 13, 2019, pp. 271-283. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/2520000/2516699/p271-reardon.pdf? (Year: 2013).
Jones et al, “AI and the Ethics of Automating Consent,” IEEE, pp. 64-72, May 2018 (Year: 2018).
Joonbakhsh et al, “Mining and Extraction of Personal Software Process measures through IDE Interaction logs,” ACM/IEEE, 2018, retrieved online on Dec. 2, 2019, pp. 78-81. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/3200000/3196462/p78-joonbakhsh.pdf? (Year: 2018).
Jun et al, “Scalable Multi-Access Flash Store for Big Data Analytics,” ACM, pp. 55-64 (Year: 2014).
Khan et al, “Wrinkles Energy Based Age Estimation Using Discrete Cosine Transform,” IEEE, 2015, pp. 1-4 (Year: 2015).
Kirkham, et al, “A Personal Data Store for an Internet of Subjects,” IEEE, pp. 92-97 (Year: 2011).
Korba, Larry et al.; “Private Data Discovery for Privacy Compliance in Collaborative Environments”; Cooperative Design, Visualization, and Engineering; Springer Berlin Heidelberg; Sep. 21, 2008; pp. 142-150.
Kristian et al, “Human Facial Age Classification Using Active Shape Module, Geometrical Feature, and Support Vendor Machine on Early Growth Stage,” ISICO, 2015, pp. 1-8 (Year: 2015).
Krol, Kat, et al, Control versus Effort in Privacy Warnings for Webforms, ACM, Oct. 24, 2016, pp. 13-23.
Lamb et al, “Role-Based Access Control for Data Service Integration”, ACM, pp. 3-11 (Year: 2006).
Lasierra et al, “Data Management in Home Scenarios Using an Autonomic Ontology-Based Approach,” IEEE, pp. 94-99 (Year: 2012).
Leadbetter, et al, “Where Big Data Meets Linked Data: Applying Standard Data Models to Environmental Data Streams,” IEEE, pp. 2929-2937 (Year: 2016).
Lebeau, Franck, et al, “Model-Based Vulnerability Testing for Web Applications,” 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops, pp. 445-452, IEEE, 2013 (Year: 2013).
Lenzerini et al, “Ontology-based Data Management,” ACM, pp. 5-6 (Year: 2011).
Lewis, James et al, “Microservices,” Mar. 25, 2014 (Mar. 25, 2014), XP055907494, Retrieved from the Internet: https://martinfowler.com/articles/microservices.html. [retrieved on Mar. 31, 2022].
Li, Ninghui, et al, t-Closeness: Privacy Beyond k-Anonymity and I-Diversity, IEEE, 2014, p. 106-115.
Liu et al, “A Novel Approach for Detecting Browser-based Silent Miner,” IEEE, pp. 490-497 (Year: 2018).
Liu et al, “Cross-Geography Scientific Data Transferring Trends and Behavior,” ACM, pp. 267-278 (Year: 2018).
Liu et al, “Overview on Ontology Mapping and Approach,” IEEE, pp. 592-595 (Year: 2011).
Liu, Kun, et al, A Framework for Computing the Privacy Scores of Users in Online Social Networks, ACM Transactions on Knowledge Discovery from Data, vol. 5, No. 1, Article 6, Dec. 2010, 30 pages.
Liu, Yandong, et al, “Finding the Right Consumer: Optimizing for Conversion in Display Advertising Campaigns,” Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, Feb. 2, 2012, pp. 473-428 (Year: 2012).
Lizar et al, “Usable Consents: Tracking and Managing Use of Personal Data with a Consent Transaction Receipt,” Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, 2014, pp. 647-652 (Year: 2014).
Lu et al, “An HTTP Flooding Detection Method Based on Browser Behavior,” IEEE, pp. 1151-1154 (Year: 2006).
Lu, “How Machine Learning Mitigates Racial Bias in the US Housing Market,” Available as SSRN 3489519, pp. 1-73, Nov. 2019 (Year: 2019).
Luu, et al, “Combined Local and Holistic Facial Features for Age-Determination,” 2010 11th Int. Conf. Control, Automation, Robotics and Vision, Singapore, Dec. 7, 2010, IEEE, pp. 900-904 (Year: 2010).
Ma Ziang, et al, “LibRadar: Fast and Accurate Detection of Third-Party Libraries in Android Apps,” 2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion (ICSE-C), ACM, May 14, 2016, pp. 653-656, DOI: http://dx.doi.org/10.1145/2889160.2889178, p. 653, r.col. par. 1-3; figure 3 (Year: 2016).
Mandal, et al, “Automated Age Prediction Using Wrinkles Features of Facial Images and Neural Network,” International Journal of Emerging Engineering Research and Technology, vol. 5, Issue 2, Feb. 2017, pp. 12-20 (Year: 2017).
Maret et al, “Multimedia Information Interchange: Web Forms Meet Data Servers”, IEEE, pp. 499-505 (Year: 1999).
Martin, et al, “Hidden Surveillance by Web Sites: Web Bugs in Contemporary Use,” Communications of the ACM, vol. 46, No. 12, Dec. 2003, pp. 258-264. Internet source https://doi.org/10.1145/953460.953509. (Year: 2003).
Invitation to Pay Additional Search Fees, dated Aug. 10, 2017, from corresponding International Application No. PCT/US2017/036912.
Invitation to Pay Additional Search Fees, dated Aug. 10, 2017, from corresponding International Application No. PCT/US2017/036917.
Invitation to Pay Additional Search Fees, dated Aug. 24, 2017, from corresponding International Application No. PCT/US2017/036888.
Invitation to Pay Additional Search Fees, dated Jan. 18, 2019, from corresponding International Application No. PCT/US2018/055736.
Invitation to Pay Additional Search Fees, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055773.
Invitation to Pay Additional Search Fees, dated Jan. 8, 2019, from corresponding International Application No. PCT/US2018/055774.
Invitation to Pay Additional Search Fees, dated Oct. 23, 2018, from corresponding International Application No. PCT/US2018/045296.
International Search Report, dated Apr. 12, 2022, from corresponding International Application No. PCT/US2022/016735.
International Search Report, dated Aug. 15, 2017, from corresponding International Application No. PCT/US2017/036919.
International Search Report, dated Aug. 21, 2017, from corresponding International Application No. PCT/US2017/036914.
International Search Report, dated Aug. 29, 2017, from corresponding International Application No. PCT/US2017/036898.
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036889.
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036890.
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036893.
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036901.
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036913.
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036920.
International Search Report, dated Dec. 14, 2018, from corresponding International Application No. PCT/US2018/045296.
International Search Report, dated Dec. 22, 2021, from corresponding International Application No. PCT/US2021/051217.
International Search Report, dated Dec. 27, 2022, from corresponding International Application No. PCT/US2022/044574.
International Search Report, dated Feb. 11, 2022, from corresponding International Application No. PCT/US2021/053518.
International Search Report, dated Feb. 14, 2022, from corresponding International Application No. PCT/US2021/058274.
International Search Report, dated Jan. 14, 2019, from corresponding International Application No. PCT/US2018/046949.
International Search Report, dated Jan. 27, 2023, from corresponding International Application No. PCT/US2022/045520.
International Search Report, dated Jan. 5, 2022, from corresponding International Application No. PCT/US2021/050497.
International Search Report, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055772.
International Search Report, dated Jun. 1, 2022, from corresponding International Application No. PCT/US2022/016930.
International Search Report, dated Jun. 21, 2017, from corresponding International Application No. PCT/US2017/025600.
International Search Report, dated Jun. 22, 2022, from corresponding International Application No. PCT/US2022/019358.
International Search Report, dated Jun. 24, 2022, from corresponding International Application No. PCT/US2022/019882.
International Search Report, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025605.
International Search Report, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025611.
International Search Report, dated Mar. 14, 2019, from corresponding International Application No. PCT/US2018/055736.
International Search Report, dated Mar. 18, 2022, from corresponding International Application No. PCT/US2022/013733.
International Search Report, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055773.
International Search Report, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055774.
International Search Report, dated May 12, 2022, from corresponding International Application No. PCT/US2022/015929.
International Search Report, dated May 17, 2022, from corresponding International Application No. PCT/US2022/015241.
International Search Report, dated May 19, 2022, from corresponding International Application No. PCT/US2022/015637.
International Search Report, dated Nov. 12, 2021, from corresponding International Application No. PCT/US2021/043481.
International Search Report, dated Nov. 19, 2018, from corresponding International Application No. PCT/US2018/046939.
International Search Report, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/040893.
International Search Report, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/044910.
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043975.
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043976.
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043977.
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/044026.
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/045240.
International Search Report, dated Oct. 12, 2017, from corresponding International Application No. PCT/US2017/036888.
International Search Report, dated Oct. 12, 2018, from corresponding International Application No. PCT/US2018/044046.
Cha et al, “A Data-Driven Security Risk Assessment Scheme for Personal Data Protection,” IEEE, pp. 50510-50517 (Year: 2018).
Cha, et al, “Process-Oriented Approach for Validating Asset Value for Evaluating Information Security Risk,” IEEE, Aug. 31, 2009, pp. 379-385 (Year: 2009).
Chang et al, “A Ranking Approach for Human Age Estimation Based on Face Images,” IEEE, 2010, pp. 3396-3399 (Year: 2010).
Chapados et al, “Scoring Models for Insurance Risk Sharing Pool Optimization,” 2008, IEEE, pp. 97-105 (Year: 2008).
Cheng, Raymond, et al, “Radiatus: A Shared-Nothing Server-Side Web Architecture,” Proceedings of the Seventh ACM Symposium on Cloud Computing, Oct. 5, 2016, pp. 237-250 (Year: 2016).
Choi et al, “A Survey on Ontology Mapping,” ACM, pp. 34-41 (Year: 2006).
Choi et al, “Retrieval Effectiveness of Table of Contents and Subject Headings,” ACM, pp. 103-104 (Year: 2007).
Chowdhury et al, “A System Architecture for Subject-Centric Data Sharing”, ACM, pp. 1-10 (Year: 2018).
Chowdhury et al, “Managing Data Transfers in Computer Clusters with Orchestra,” ACM, pp. 98-109 (Year: 2011).
Civili et al, “Mastro Studio: Managing Ontology-Based Data Access Applications,” ACM, pp. 1314-1317, Aug. 26-30, 2013 (Year: 2013).
Cruz et al, “Interactive User Feedback in Ontology Matching Using Signature Vectors,” IEEE, pp. 1321-1324 (Year: 2012).
Cudre-Mauroux, “ESWC 2008 Ph.D. Symposium,” The ESWC 2008 Ph.D. Symposium is sponsored by the Okkam project (http://fp7.okkam.org/), MIT, pp. 1-92 (Year: 2008).
Cui et al, “Domain Ontology Management Environment,” IEEE, pp. 1-9 (Year: 2000).
Czeskis et al, “Lightweight Server Support for Browser-based CSRF Protection,” Proceedings of the 22nd International Conference on World Wide Web, 2013, pp. 273-284 (Year: 2013).
Decision Regarding Institution of Post-Grant Review in Case PGR2018-00056 for U.S. Pat. No. 9,691,090 B1, Oct. 11, 2018.
Degeling et al, “We Value Your Privacy . . . Now Take Some Cookies: Measuring the GDPRs Impact on Web Privacy,” arxiv.org, Cornell University Library, 201 Olin Library Cornell University, Ithaca, NY 14853, Aug. 15, 2018, pp. 1-15 (Year: 2019).
Dimou et al, “Machine-Interpretable Dataset and Service Descriptions for Heterogeneous Data Access and Retrieval”, ACM, pp. 145-152 (Year: 2015).
Dokholyan et al, “Regulatory and Ethical Considerations for Linking Clinical and Administrative Databases,” American Heart Journal 157.6 (2009), pp. 971-982 (Year: 2009).
Dowling, “Auditing Global HR Compliance,” published May 23, 2014, retrieved from https://www.shrm.org/resourcesandtools/hr-topics/ global-hr/pages/auditing-global-hr-compliance.aspx Jul. 2, 2022 (Year: 2014).
Dunkel et al, “Data Organization and Access for Efficient Data Mining”, IEEE, pp. 522-529 (Year: 1999).
Dwork, Cynthia, Differential Privacy, Microsoft Research, p. 1-12.
Edinger et al, “Age and Gender Estimation of Unfiltered Faces,” IEEE, 2014, pp. 2170-2179 (Year: 2014).
Emerson, et al, “A Data Mining Driven Risk Profiling Method for Road Asset Management,” ACM, pp. 1267-1275 (Year: 2013).
Enck, William, et al, TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones, ACM Transactions on Computer Systems, vol. 32, No. 2, Article 5, Jun. 2014, p. 5:1-5:29.
Everypixel Team, “A New Age Recognition API Detects the Age of People on Photos,” May 20, 2019, pp. 1-5 (Year: 2019).
Falahrastegar, Marjan, et al, Tracking Personal Identifiers Across the Web, Medical Image Computing and Computer-Assisted Intervention—Miccai 2015, 18th International Conference, Oct. 5, 2015, Munich, Germany.
Falbo et al, “An Ontological Approach to Domain Engineering,” ACM, pp. 351-358 (Year: 2002).
Fan et al, “Intrusion Investigations with Data-hiding for Computer Log-file Forensics,” IEEE, pp. 1-6 (Year: 2010).
Final Written Decision Regarding Post-Grant Review in Case PGR2018-00056 for U.S. Pat. No. 9,691,090 B1, Oct. 10, 2019.
Francis, Andre, Business Mathematics and Statistics, South-Western Cengage Learning, 2008, Sixth Edition.
Friedman et al, “Data Mining with Differential Privacy,” ACM, Jul. 2010, pp. 493-502 (Year: 2010).
Friedman et al, “Informed Consent in the Mozilla Browser: Implementing Value-Sensitive Design,” Proceedings of the 35th Annual Hawaii International Conference on System Sciences, 2002, IEEE, pp. 1-10 (Year: 2002).
Frikken, Keith B., et al, Yet Another Privacy Metric for Publishing Micro-data, Miami University, Oct. 27, 2008, pp. 117-121.
Fung et al, “Discover Information and Knowledge from Websites using an Integrated Summarization and Visualization Framework”, IEEE, pp. 232-235 (Year: 2010).
Gajare et al, “Improved Automatic Feature Selection Approach for Health Risk Prediction,” Feb. 16, 2018, IEEE, pp. 816-819 (Year: 2018).
Geko et al, “An Ontology Capturing the Interdependence of the General Data Protection Regulation (GDPR) and Information Security,” ACM, pp. 1-6, Nov. 15-16, 2018 (Year: 2018).
Ghiglieri, Marco et al.; Personal DLP for Facebook, 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (Percom Workshops); IEEE; Mar. 24, 2014; pp. 629-634.
Gilda, et al, “Blockchain for Student Data Privacy and Consent,” 2018 International Conference on Computer Communication and Informatics, Jan. 4-6, 2018, IEEE, pp. 1-5 (Year: 2018).
Golab, et al, “Issues in Data Stream Management,” ACM, SIGMOD Record, vol. 32, No. 2, Jun. 2003, pp. 5-14 (Year: 2003).
Golfarelli et al, “Beyond Data Warehousing: What's Next in Business Intelligence?,” ACM, pp. 1-6 (Year: 2004).
Gonçalves et al, “The XML Log Standard for Digital Libraries: Analysis, Evolution, and Deployment,” IEEE, pp. 312-314 (Year: 2003).
Goni, Kyriaki, “Deletion Process_Only you can see my history: Investigating Digital Privacy, Digital Oblivion, and Control on Personal Data Through an Interactive Art Installation,” ACM, 2016, retrieved online on Oct. 3, 2019, pp. 324-333. Retrieved from the Internet URL: http://delivery.acm.org/10.1145/2920000/291.
Gowadia et al, “RDF Metadata for XML Access Control,” ACM, pp. 31-48 (Year: 2003).
Grolinger, et al, “Data Management in Cloud Environments: NoSQL and NewSQL Data Stores,” Journal of Cloud Computing: Advances, Systems and Applications, pp. 1-24 (Year: 2013).
Guo, et al, “OPAL: A Passe-partout for Web Forms,” ACM, pp. 353-356 (Year: 2012).
Gustarini, et al, “Evaluation of Challenges in Human Subject Studies “In-the-Wild” Using Subjects' Personal Smartphones,” ACM, pp. 1447-1456 (Year: 2013).
Hacigümüs, Hakan, et al, Executing SQL over Encrypted Data in the Database-Service-Provider Model, ACM, Jun. 4, 2002, pp. 216-227.
Halevy, et al, “Schema Mediation in Peer Data Management Systems,” IEEE, Proceedings of the 19th International Conference on Data Engineering, 2003, pp. 505-516 (Year: 2003).
Han et al, “Demographic Estimation from Face Images: Human vs. Machine Performance,” IEEE, 2015, pp. 1148-1161 (Year: 2015).
Hauch, et al, “Information Intelligence: Metadata for Information Discovery, Access, and Integration,” ACM, pp. 793-798 (Year: 2005).
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/862,948.
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/863,226.
Office Action, dated May 5, 2020, from corresponding U.S. Appl. No. 16/410,336.
Office Action, dated May 9, 2022, from corresponding U.S. Appl. No. 16/840,943.
Office Action, dated Nov. 1, 2017, from corresponding U.S. Appl. No. 15/169,658.
Office Action, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/380,485.
Office Action, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/409,999.
Office Action, dated Nov. 10, 2022, from corresponding U.S. Appl. No. 17/670,341.
Office Action, dated Nov. 12, 2020, from corresponding U.S. Appl. No. 17/034,355.
Office Action, dated Nov. 12, 2020, from corresponding U.S. Appl. No. 17/034,772.
Office Action, dated Nov. 12, 2021, from corresponding U.S. Appl. No. 17/346,586.
Office Action, dated Nov. 12, 2021, from corresponding U.S. Appl. No. 17/373,444.
Office Action, dated Nov. 15, 2018, from corresponding U.S. Appl. No. 16/059,911.
Office Action, dated Nov. 15, 2019, from corresponding U.S. Appl. No. 16/552,758.
Office Action, dated Nov. 15, 2022, from corresponding U.S. Appl. No. 17/200,698.
Office Action, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/370,650.
Office Action, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/486,350.
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/560,885.
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/560,889.
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/572,347.
Office Action, dated Nov. 18, 2022, from corresponding U.S. Appl. No. 17/836,454.
Office Action, dated Nov. 19, 2019, from corresponding U.S. Appl. No. 16/595,342.
Office Action, dated Nov. 20, 2019, from corresponding U.S. Appl. No. 16/595,327.
Office Action, dated Nov. 23, 2018, from corresponding U.S. Appl. No. 16/042,673.
Office Action, dated Nov. 23, 2021, from corresponding U.S. Appl. No. 17/013,756.
Office Action, dated Nov. 24, 2020, from corresponding U.S. Appl. No. 16/925,628.
Office Action, dated Nov. 26, 2021, from corresponding U.S. Appl. No. 16/925,550.
Office Action, dated Nov. 29, 2022, from corresponding U.S. Appl. No. 17/838,939.
Office Action, dated Nov. 4, 2021, from corresponding U.S. Appl. No. 17/491,906.
Office Action, dated Nov. 8, 2021, from corresponding U.S. Appl. No. 16/872,130.
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/041,563.
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/055,083.
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/055,944.
Office Action, dated Oct. 12, 2021, from corresponding U.S. Appl. No. 17/346,509.
Office Action, dated Oct. 14, 2020, from corresponding U.S. Appl. No. 16/927,658.
Office Action, dated Oct. 15, 2018, from corresponding U.S. Appl. No. 16/054,780.
Office Action, dated Oct. 15, 2021, from corresponding U.S. Appl. No. 16/908,081.
Office Action, dated Oct. 16, 2019, from corresponding U.S. Appl. No. 16/557,392.
Office Action, dated Oct. 16, 2020, from corresponding U.S. Appl. No. 16/808,489.
Office Action, dated Oct. 23, 2018, from corresponding U.S. Appl. No. 16/055,961.
Office Action, dated Oct. 25, 2022, from corresponding U.S. Appl. No. 17/836,865.
Office Action, dated Oct. 26, 2018, from corresponding U.S. Appl. No. 16/041,468.
Office Action, dated Oct. 27, 2022, from corresponding U.S. Appl. No. 17/161,159.
Office Action, dated Oct. 8, 2019, from corresponding U.S. Appl. No. 16/552,765.
Office Action, dated Sep. 1, 2017, from corresponding U.S. Appl. No. 15/619,459.
Office Action, dated Sep. 11, 2017, from corresponding U.S. Appl. No. 15/619,375.
Office Action, dated Sep. 11, 2017, from corresponding U.S. Appl. No. 15/619,478.
Office Action, dated Sep. 15, 2021, from corresponding U.S. Appl. No. 16/623,157.
Office Action, dated Sep. 16, 2019, from corresponding U.S. Appl. No. 16/277,715.
Office Action, dated Sep. 16, 2022, from corresponding U.S. Appl. No. 17/306,438.
Office Action, dated Jul. 21, 2021, from corresponding U.S. Appl. No. 16/901,654.
Office Action, dated Jul. 23, 2019, from corresponding U.S. Appl. No. 16/436,616.
Office Action, dated Jul. 24, 2020, from corresponding U.S. Appl. No. 16/404,491.
Office Action, dated Jul. 27, 2020, from corresponding U.S. Appl. No. 16/595,342.
Office Action, dated Jul. 27, 2022, from corresponding U.S. Appl. No. 17/831,713.
Office Action, dated Jul. 28, 2022, from corresponding U.S. Appl. No. 16/925,550.
Office Action, dated Jul. 7, 2022, from corresponding U.S. Appl. No. 17/370,650.
Office Action, dated Jun. 1, 2020, from corresponding U.S. Appl. No. 16/862,952.
Office Action, dated Jun. 1, 2022, from corresponding U.S. Appl. No. 17/306,496.
Office Action, dated Jun. 14, 2022, from corresponding U.S. Appl. No. 17/346,586.
Office Action, dated Jun. 16, 2022, from corresponding U.S. Appl. No. 17/689,683.
Office Action, dated Jun. 24, 2019, from corresponding U.S. Appl. No. 16/410,336.
Office Action, dated Jun. 24, 2021, from corresponding U.S. Appl. No. 17/234,205.
Office Action, dated Jun. 27, 2019, from corresponding U.S. Appl. No. 16/404,405.
Office Action, dated Jun. 7, 2021, from corresponding U.S. Appl. No. 17/200,698.
Office Action, dated Jun. 9, 2021, from corresponding U.S. Appl. No. 17/222,523.
Office Action, dated Mar. 1, 2022, from corresponding U.S. Appl. No. 17/119,080.
Office Action, dated Mar. 11, 2019, from corresponding U.S. Appl. No. 16/220,978.
Office Action, dated Mar. 12, 2019, from corresponding U.S. Appl. No. 16/221,153.
Office Action, dated Mar. 15, 2021, from corresponding U.S. Appl. No. 17/149,421.
Office Action, dated Mar. 16, 2020, from corresponding U.S. Appl. No. 16/719,488.
Office Action, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/565,395.
Office Action, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/719,071.
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/020,275.
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/161,159.
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/200,698.
Office Action, dated Mar. 20, 2020, from corresponding U.S. Appl. No. 16/778,709.
Office Action, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/571,871.
Office Action, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/187,329.
Office Action, dated Mar. 23, 2020, from corresponding U.S. Appl. No. 16/671,444.
Office Action, dated Mar. 25, 2019, from corresponding U.S. Appl. No. 16/278,121.
Office Action, dated Mar. 25, 2020, from corresponding U.S. Appl. No. 16/701,043.
Office Action, dated Mar. 25, 2020, from corresponding U.S. Appl. No. 16/791,006.
Office Action, dated Mar. 27, 2019, from corresponding U.S. Appl. No. 16/278,120.
Office Action, dated Mar. 30, 2018, from corresponding U.S. Appl. No. 15/894,890.
Office Action, dated Mar. 30, 2018, from corresponding U.S. Appl. No. 15/896,790.
Office Action, dated Mar. 30, 2021, from corresponding U.S. Appl. No. 17/151,399.
Office Action, dated Mar. 4, 2019, from corresponding U.S. Appl. No. 16/237,083.
Office Action, dated May 12, 2022, from corresponding U.S. Appl. No. 17/509,974.
Office Action, dated May 14, 2020, from corresponding U.S. Appl. No. 16/808,497.
Office Action, dated May 14, 2020, from corresponding U.S. Appl. No. 16/808,503.
Office Action, dated May 15, 2020, from corresponding U.S. Appl. No. 16/808,493.
Office Action, dated May 16, 2018, from corresponding U.S. Appl. No. 15/882,989.
Office Action, dated May 16, 2022, from corresponding U.S. Appl. No. 17/679,750.
Office Action, dated May 17, 2019, from corresponding U.S. Appl. No. 16/277,539.
Office Action, dated May 18, 2021, from corresponding U.S. Appl. No. 17/196,570.
Office Action, dated May 2, 2018, from corresponding U.S. Appl. No. 15/894,809.
Office Action, dated May 2, 2019, from corresponding U.S. Appl. No. 16/104,628.
Office Action, dated May 24, 2022, from corresponding U.S. Appl. No. 17/674,187.
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/862,944.
Office Action, dated Dec. 27, 2021, from corresponding U.S. Appl. No. 17/493,332.
Office Action, dated Dec. 29, 2021, from corresponding U.S. Appl. No. 17/479,807.
Office Action, dated Dec. 3, 2018, from corresponding U.S. Appl. No. 16/055,998.
Office Action, dated Dec. 30, 2021, from corresponding U.S. Appl. No. 17/149,421.
Office Action, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 16/160,577.
Office Action, dated Dec. 7, 2021, from corresponding U.S. Appl. No. 17/499,609.
Office Action, dated Dec. 8, 2020, from corresponding U.S. Appl. No. 17/013,758.
Office Action, dated Dec. 8, 2020, from corresponding U.S. Appl. No. 17/068,198.
Office Action, dated Feb. 10, 2021, from corresponding U.S. Appl. No. 16/862,944.
Office Action, dated Feb. 10, 2021, from corresponding U.S. Appl. No. 17/106,469.
Office Action, dated Feb. 15, 2019, from corresponding U.S. Appl. No. 16/220,899.
Office Action, dated Feb. 15, 2023, from corresponding U.S. Appl. No. 17/499,582.
Office Action, dated Feb. 16, 2022, from corresponding U.S. Appl. No. 16/872,031.
Office Action, dated Feb. 17, 2021, from corresponding U.S. Appl. No. 16/862,948.
Office Action, dated Feb. 18, 2021, from corresponding U.S. Appl. No. 16/862,952.
Office Action, dated Feb. 2, 2021, from corresponding U.S. Appl. No. 17/101,915.
Office Action, dated Feb. 2, 2023, from corresponding U.S. Appl. No. 17/510,001.
Office Action, dated Feb. 2, 2023, from corresponding U.S. Appl. No. 17/872,266.
Office Action, dated Feb. 26, 2019, from corresponding U.S. Appl. No. 16/228,250.
Office Action, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 17/013,757.
Office Action, dated Feb. 5, 2020, from corresponding U.S. Appl. No. 16/586,202.
Office Action, dated Feb. 6, 2020, from corresponding U.S. Appl. No. 16/707,762.
Office Action, dated Feb. 8, 2021, from corresponding U.S. Appl. No. 17/139,650.
Office Action, dated Feb. 9, 2021, from corresponding U.S. Appl. No. 16/808,493.
Office Action, dated Feb. 9, 2022, from corresponding U.S. Appl. No. 17/543,546.
Office Action, dated Jan. 12, 2023, from corresponding U.S. Appl. No. 17/872,084.
Office Action, dated Jan. 14, 2022, from corresponding U.S. Appl. No. 17/499,595.
Office Action, dated Jan. 18, 2019, from corresponding U.S. Appl. No. 16/055,984.
Office Action, dated Jan. 19, 2023, from corresponding U.S. Appl. No. 17/205,165.
Office Action, dated Jan. 21, 2022, from corresponding U.S. Appl. No. 17/499,624.
Office Action, dated Jan. 22, 2021, from corresponding U.S. Appl. No. 17/099,270.
Office Action, dated Jan. 24, 2020, from corresponding U.S. Appl. No. 16/505,426.
Office Action, dated Jan. 24, 2020, from corresponding U.S. Appl. No. 16/700,049.
Office Action, dated Jan. 25, 2022, from corresponding U.S. Appl. No. 17/494,220.
Office Action, dated Jan. 27, 2020, from corresponding U.S. Appl. No. 16/656,895.
Office Action, dated Jan. 28, 2020, from corresponding U.S. Appl. No. 16/712,104.
Office Action, dated Jan. 29, 2021, from corresponding U.S. Appl. No. 17/101,106.
Office Action, dated Jan. 31, 2022, from corresponding U.S. Appl. No. 17/493,290.
Office Action, dated Jan. 31, 2023, from corresponding U.S. Appl. No. 17/836,872.
Office Action, dated Jan. 4, 2019, from corresponding U.S. Appl. No. 16/159,566.
Office Action, dated Jan. 4, 2019, from corresponding U.S. Appl. No. 16/159,628.
Office Action, dated Jan. 4, 2021, from corresponding U.S. Appl. No. 17/013,756.
Office Action, dated Jan. 4, 2022, from corresponding U.S. Appl. No. 17/480,377.
Office Action, dated Jan. 7, 2020, from corresponding U.S. Appl. No. 16/572,182.
Office Action, dated Jan. 7, 2022, from corresponding U.S. Appl. No. 17/387,421.
Office Action, dated Jul. 13, 2021, from corresponding U.S. Appl. No. 17/306,496.
Office Action, dated Jul. 15, 2021, from corresponding U.S. Appl. No. 17/020,275.
Office Action, dated Jul. 18, 2019, from corresponding U.S. Appl. No. 16/410,762.
Office Action, dated Jul. 19, 2021, from corresponding U.S. Appl. No. 17/316,179.
Office Action, dated Jul. 21, 2017, from corresponding U.S. Appl. No. 15/256,430.
Hammer, Eran et al., “The OAuth 2.0 Authorization Framework; draft-ietf-oauth-v2-26,” Internet Engineering Task Force, IETF; StandardWorkingDraft, Internet Society (ISOC) 4, Rue Des Falaises CH-1205 Geneva, Switzerland, Jun. 8, 2012 (Jun. 8, 2012), pp. 1-71, XP015083227, [retrieved on Jun. 8, 2012] the whole document.
Invitation to Pay Additional Fees, dated May 2, 2023, from corresponding International Application No. PCT/US2023/011446.
Notice of Allowance, dated Jul. 26, 2023, from corresponding U.S. Appl. No. 18/109,556.
Notice of Allowance, dated Jun. 2, 2023, from corresponding U.S. Appl. No. 18/096,935.
Notice of Allowance, dated May 10, 2023, from corresponding U.S. Appl. No. 17/872,084.
Office Action, dated Jul. 20, 2023, from corresponding U.S. Appl. No. 18/104,981.
Office Action, dated May 4, 2023, from corresponding U.S. Appl. No. 18/096,935.
Beelders et al, “The Influence of Syntax Highlighting on Scanning and Reading Behaviour for Source Code,” SAICSIT Sep. 26-28, 2016, Johannesburg, South Africa, ACM, pp. 1-10 (Year: 2016).
Final Office Action, dated Aug. 17, 2023, from corresponding U.S. Appl. No. 17/872,266.
Hall-Holt et al, “Stripe Boundary Codes for Real-Time Structured-Light Range Scanning of Moving Objects,” IEEE, pp. 359-366 (Year: 2001).
International Search Report, dated Aug. 9, 2023, from corresponding International Application No. PCT/US2023/011446.
Office Action, dated Aug. 17, 2023, from corresponding U.S. Appl. No. 17/942,242.
Office Action, dated Aug. 9, 2023, from corresponding U.S. Appl. No. 17/743,749.
Office Action, dated Sep. 21, 2023, from corresponding U.S. Appl. No. 18/116,791.
Written Opinion of the International Searching Authority, dated Aug. 9, 2023, from corresponding International Application No. PCT/US2023/011446.
Notice of Allowance, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/366,754.
Notice of Allowance, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/475,244.
Notice of Allowance, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/504,102.
Notice of Allowance, dated Mar. 24, 2020, from corresponding U.S. Appl. No. 16/552,758.
Notice of Allowance, dated Mar. 25, 2019, from corresponding U.S. Appl. No. 16/054,780.
Notice of Allowance, dated Mar. 26, 2020, from corresponding U.S. Appl. No. 16/560,889.
Notice of Allowance, dated Mar. 26, 2020, from corresponding U.S. Appl. No. 16/578,712.
Notice of Allowance, dated Mar. 27, 2019, from corresponding U.S. Appl. No. 16/226,280.
Notice of Allowance, dated Mar. 28, 2022, from corresponding U.S. Appl. No. 17/499,609.
Notice of Allowance, dated Mar. 29, 2019, from corresponding U.S. Appl. No. 16/055,998.
Notice of Allowance, dated Mar. 31, 2020, from corresponding U.S. Appl. No. 16/563,744.
Notice of Allowance, dated Mar. 31, 2021, from corresponding U.S. Appl. No. 17/013,758.
Notice of Allowance, dated Mar. 31, 2021, from corresponding U.S. Appl. No. 17/162,205.
Notice of Allowance, dated Mar. 31, 2022, from corresponding U.S. Appl. No. 17/476,209.
Notice of Allowance, dated Mar. 4, 2022, from corresponding U.S. Appl. No. 17/409,999.
Notice of Allowance, dated May 1, 2020, from corresponding U.S. Appl. No. 16/586,202.
Notice of Allowance, dated May 11, 2020, from corresponding U.S. Appl. No. 16/786,196.
Notice of Allowance, dated May 11, 2022, from corresponding U.S. Appl. No. 17/395,759.
Notice of Allowance, dated May 13, 2021, from corresponding U.S. Appl. No. 17/101,915.
Notice of Allowance, dated May 18, 2022, from corresponding U.S. Appl. No. 17/670,354.
Notice of Allowance, dated May 19, 2020, from corresponding U.S. Appl. No. 16/505,430.
Notice of Allowance, dated May 19, 2020, from corresponding U.S. Appl. No. 16/808,496.
Notice of Allowance, dated May 20, 2020, from corresponding U.S. Appl. No. 16/707,762.
Notice of Allowance, dated May 21, 2018, from corresponding U.S. Appl. No. 15/896,790.
Notice of Allowance, dated May 25, 2022, from corresponding U.S. Appl. No. 16/872,031.
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 16/808,493.
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 16/865,874.
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 17/199,514.
Notice of Allowance, dated May 27, 2020, from corresponding U.S. Appl. No. 16/820,208.
Notice of Allowance, dated May 27, 2021, from corresponding U.S. Appl. No. 16/927,658.
Notice of Allowance, dated May 27, 2021, from corresponding U.S. Appl. No. 17/198,757.
Notice of Allowance, dated May 27, 2022, from corresponding U.S. Appl. No. 17/543,546.
Notice of Allowance, dated May 28, 2019, from corresponding U.S. Appl. No. 16/277,568.
Notice of Allowance, dated May 28, 2020, from corresponding U.S. Appl. No. 16/799,279.
Notice of Allowance, dated May 28, 2021, from corresponding U.S. Appl. No. 16/862,944.
Notice of Allowance, dated May 31, 2022, from corresponding U.S. Appl. No. 17/679,715.
Notice of Allowance, dated May 5, 2017, from corresponding U.S. Appl. No. 15/254,901.
Notice of Allowance, dated May 5, 2020, from corresponding U.S. Appl. No. 16/563,754.
Notice of Allowance, dated May 6, 2022, from corresponding U.S. Appl. No. 17/666,886.
Notice of Allowance, dated May 7, 2020, from corresponding U.S. Appl. No. 16/505,426.
Notice of Allowance, dated May 7, 2021, from corresponding U.S. Appl. No. 17/194,662.
Notice of Allowance, dated Nov. 14, 2019, from corresponding U.S. Appl. No. 16/436,616.
Notice of Allowance, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/491,871.
Notice of Allowance, dated Nov. 16, 2022, from corresponding U.S. Appl. No. 17/860,255.
Notice of Allowance, dated Nov. 2, 2018, from corresponding U.S. Appl. No. 16/054,762.
Notice of Allowance, dated Nov. 21, 2022, from corresponding U.S. Appl. No. 17/831,713.
Notice of Allowance, dated Nov. 22, 2021, from corresponding U.S. Appl. No. 17/383,889.
Notice of Allowance, dated Nov. 22, 2022, from corresponding U.S. Appl. No. 17/828,953.
Notice of Allowance, dated Nov. 23, 2020, from corresponding U.S. Appl. No. 16/791,589.
Notice of Allowance, dated Nov. 24, 2020, from corresponding U.S. Appl. No. 17/027,019.
Final Office Action, dated Feb. 25, 2022, from corresponding U.S. Appl. No. 17/346,586.
Final Office Action, dated Feb. 3, 2020, from corresponding U.S. Appl. No. 16/557,392.
Final Office Action, dated Feb. 8, 2021, from corresponding U.S. Appl. No. 16/927,658.
Final Office Action, dated Jan. 17, 2018, from corresponding U.S. Appl. No. 15/619,278.
Final Office Action, dated Jan. 21, 2020, from corresponding U.S. Appl. No. 16/410,762.
Final Office Action, dated Jan. 23, 2018, from corresponding U.S. Appl. No. 15/619,479.
Final Office Action, dated Jan. 23, 2020, from corresponding U.S. Appl. No. 16/505,430.
Final Office Action, dated Jul. 1, 2022, from corresponding U.S. Appl. No. 17/187,329.
Final Office Action, dated Jul. 21, 2021, from corresponding U.S. Appl. No. 17/151,334.
Final Office Action, dated Jul. 6, 2022, from corresponding U.S. Appl. No. 17/200,698.
Final Office Action, dated Jul. 7, 2021, from corresponding U.S. Appl. No. 17/149,421.
Final Office Action, dated Jun. 10, 2022, from corresponding U.S. Appl. No. 17/161,159.
Final Office Action, dated Jun. 29, 2022, from corresponding U.S. Appl. No. 17/020,275.
Final Office Action, dated Jun. 9, 2022, from corresponding U.S. Appl. No. 17/494,220.
Final Office Action, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/373,444.
Final Office Action, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/380,485.
Final Office Action, dated Mar. 26, 2021, from corresponding U.S. Appl. No. 17/020,275.
Final Office Action, dated Mar. 5, 2019, from corresponding U.S. Appl. No. 16/055,961.
Final Office Action, dated Mar. 6, 2020, from corresponding U.S. Appl. No. 16/595,342.
Final Office Action, dated May 12, 2022, from corresponding U.S. Appl. No. 17/499,624.
Final Office Action, dated May 14, 2021, from corresponding U.S. Appl. No. 17/013,756.
Final Office Action, dated May 16, 2022, from corresponding U.S. Appl. No. 17/480,377.
Final Office Action, dated May 2, 2022, from corresponding U.S. Appl. No. 17/499,595.
Final Office Action, dated May 24, 2022, from corresponding U.S. Appl. No. 17/499,582.
Final Office Action, dated Nov. 29, 2017, from corresponding U.S. Appl. No. 15/619,237.
Final Office Action, dated Nov. 8, 2022, from corresponding U.S. Appl. No. 17/151,334.
Final Office Action, dated Oct. 26, 2021, from corresponding U.S. Appl. No. 17/306,496.
Final Office Action, dated Oct. 27, 2022, from corresponding U.S. Appl. No. 17/346,586.
Final Office Action, dated Oct. 28, 2021, from corresponding U.S. Appl. No. 17/234,205.
Final Office Action, dated Oct. 29, 2021, from corresponding U.S. Appl. No. 17/020,275.
Final Office Action, dated Sep. 17, 2021, from corresponding U.S. Appl. No. 17/200,698.
Final Office Action, dated Sep. 19, 2022, from corresponding U.S. Appl. No. 17/306,496.
Final Office Action, dated Sep. 21, 2020, from corresponding U.S. Appl. No. 16/808,493.
Final Office Action, dated Sep. 21, 2020, from corresponding U.S. Appl. No. 16/862,944.
Final Office Action, dated Sep. 22, 2020, from corresponding U.S. Appl. No. 16/808,497.
Final Office Action, dated Sep. 23, 2020, from corresponding U.S. Appl. No. 16/862,948.
Final Office Action, dated Sep. 24, 2020, from corresponding U.S. Appl. No. 16/862,952.
Final Office Action, dated Sep. 25, 2019, from corresponding U.S. Appl. No. 16/278,119.
Final Office Action, dated Sep. 28, 2020, from corresponding U.S. Appl. No. 16/565,395.
Final Office Action, dated Sep. 8, 2020, from corresponding U.S. Appl. No. 16/410,866.
Office Action, dated Apr. 1, 2021, from corresponding U.S. Appl. No. 17/119,080.
Office Action, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/670,341.
Office Action, dated Apr. 15, 2021, from corresponding U.S. Appl. No. 17/161,159.
Office Action, dated Apr. 18, 2018, from corresponding U.S. Appl. No. 15/894,819.
Office Action, dated Apr. 18, 2022, from corresponding U.S. Appl. No. 17/670,349.
Office Action, dated Apr. 2, 2021, from corresponding U.S. Appl. No. 17/151,334.
Office Action, dated Apr. 20, 2020, from corresponding U.S. Appl. No. 16/812,795.
Office Action, dated Apr. 22, 2019, from corresponding U.S. Appl. No. 16/241,710.
Office Action, dated Apr. 22, 2020, from corresponding U.S. Appl. No. 16/811,793.
Office Action, dated Apr. 25, 2022, from corresponding U.S. Appl. No. 17/588,645.
Choe et al, “Understanding Quantified-Selfers' Practices in Collecting and Exploring Personal Data,” ACM, pp. 1143-1152 (Year: 2014).
Final Office Action, dated Feb. 8, 2024, from corresponding U.S. Appl. No. 17/743,749.
Final Office Action, dated Jan. 4, 2024, from corresponding U.S. Appl. No. 18/116,791.
Jesus et al, “Consent Receipts for a Usable and Auditable Web of Personal Data,” IEEE, pp. 28545-28563 (Year: 2022).
Notice of Allowance, dated Nov. 16, 2023, from corresponding U.S. Appl. No. 17/942,242.
Notice of Allowance, dated Nov. 30, 2023, from corresponding U.S. Appl. No. 18/104,981.
Office Action, dated Feb. 14, 2024, from corresponding U.S. Appl. No. 17/717,587.
Su et al, “Privacy as a Service: Protecting the Individual in Healthcare Data Processing,” IEEE, pp. 49-59 (Year: 2016).
Office Action, dated Sep. 19, 2017, from corresponding U.S. Appl. No. 15/671,073.
Office Action, dated Sep. 2, 2022, from corresponding U.S. Appl. No. 17/499,624.
Office Action, dated Sep. 22, 2017, from corresponding U.S. Appl. No. 15/619,278.
Office Action, dated Sep. 24, 2021, from corresponding U.S. Appl. No. 17/342,153.
Office Action, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/989,086.
Office Action, dated Sep. 5, 2017, from corresponding U.S. Appl. No. 15/619,469.
Office Action, dated Sep. 6, 2017, from corresponding U.S. Appl. No. 15/619,479.
Office Action, dated Sep. 7, 2017, from corresponding U.S. Appl. No. 15/633,703.
Office Action, dated Sep. 8, 2017, from corresponding U.S. Appl. No. 15/619,251.
Office Action, dated Sep. 8, 2022, from corresponding U.S. Appl. No. 17/850,244.
Notice of Allowance, dated Apr. 12, 2017, from corresponding U.S. Appl. No. 15/256,419.
Notice of Allowance, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/479,807.
Notice of Allowance, dated Apr. 14, 2022, from corresponding U.S. Appl. No. 17/572,276.
Notice of Allowance, dated Apr. 17, 2020, from corresponding U.S. Appl. No. 16/593,639.
Notice of Allowance, dated Apr. 19, 2021, from corresponding U.S. Appl. No. 17/164,029.
Notice of Allowance, dated Apr. 2, 2019, from corresponding U.S. Appl. No. 16/160,577.
Notice of Allowance, dated Apr. 2, 2021, from corresponding U.S. Appl. No. 17/162,006.
Notice of Allowance, dated Apr. 20, 2022, from corresponding U.S. Appl. No. 17/573,808.
Notice of Allowance, dated Apr. 22, 2021, from corresponding U.S. Appl. No. 17/163,701.
Notice of Allowance, dated Apr. 25, 2018, from corresponding U.S. Appl. No. 15/883,041.
Notice of Allowance, dated Apr. 27, 2022, from corresponding U.S. Appl. No. 17/573,999.
Notice of Allowance, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 17/135,445.
Notice of Allowance, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 17/181,828.
Notice of Allowance, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 17/592,922.
Notice of Allowance, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 17/670,352.
Notice of Allowance, dated Apr. 29, 2020, from corresponding U.S. Appl. No. 16/700,049.
Notice of Allowance, dated Apr. 29, 2022, from corresponding U.S. Appl. No. 17/387,421.
Notice of Allowance, dated Apr. 30, 2020, from corresponding U.S. Appl. No. 16/565,265.
Notice of Allowance, dated Apr. 30, 2020, from corresponding U.S. Appl. No. 16/820,346.
Notice of Allowance, dated Apr. 30, 2021, from corresponding U.S. Appl. No. 16/410,762.
Notice of Allowance, dated Apr. 4, 2022, from corresponding U.S. Appl. No. 17/493,332.
Notice of Allowance, dated Apr. 4, 2022, from corresponding U.S. Appl. No. 17/572,298.
Notice of Allowance, dated Apr. 8, 2019, from corresponding U.S. Appl. No. 16/228,250.
Notice of Allowance, dated Apr. 8, 2020, from corresponding U.S. Appl. No. 16/791,348.
Notice of Allowance, dated Apr. 9, 2020, from corresponding U.S. Appl. No. 16/791,075.
Notice of Allowance, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/671,444.
Notice of Allowance, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/788,633.
Notice of Allowance, dated Aug. 12, 2020, from corresponding U.S. Appl. No. 16/719,488.
Notice of Allowance, dated Aug. 12, 2021, from corresponding U.S. Appl. No. 16/881,832.
Notice of Allowance, dated Aug. 14, 2018, from corresponding U.S. Appl. No. 15/989,416.
Notice of Allowance, dated Aug. 18, 2017, from corresponding U.S. Appl. No. 15/619,455.
Notice of Allowance, dated Aug. 20, 2019, from corresponding U.S. Appl. No. 16/241,710.
Notice of Allowance, dated Aug. 22, 2022, from corresponding U.S. Appl. No. 17/499,595.
Notice of Allowance, dated Aug. 24, 2018, from corresponding U.S. Appl. No. 15/619,479.
Notice of Allowance, dated Aug. 26, 2019, from corresponding U.S. Appl. No. 16/443,374.
Notice of Allowance, dated Aug. 26, 2020, from corresponding U.S. Appl. No. 16/808,503.
Notice of Allowance, dated Aug. 28, 2019, from corresponding U.S. Appl. No. 16/278,120.
Notice of Allowance, dated Aug. 3, 2022, from corresponding U.S. Appl. No. 17/668,714.
Notice of Allowance, dated Aug. 30, 2018, from corresponding U.S. Appl. No. 15/996,208.
Notice of Allowance, dated Aug. 31, 2021, from corresponding U.S. Appl. No. 17/326,901.
Final Office Action, dated Mar. 13, 2023, from corresponding U.S. Appl. No. 17/161,159.
Notice of Allowance, dated Mar. 13, 2023, from corresponding U.S. Appl. No. 17/200,698.
Written Opinion of the International Searching Authority, dated Oct. 16, 2018, from corresponding International Application No. PCT/US2018/045243.
Written Opinion of the International Searching Authority, dated Oct. 18, 2018, from corresponding International Application No. PCT/US2018/045249.
Written Opinion of the International Searching Authority, dated Oct. 20, 2017, from corresponding International Application No. PCT/US2017/036917.
Written Opinion of the International Searching Authority, dated Oct. 3, 2017, from corresponding International Application No. PCT/US2017/036912.
Written Opinion of the International Searching Authority, dated Sep. 1, 2017, from corresponding International Application No. PCT/US2017/036896.
Written Opinion of the International Searching Authority, dated Sep. 12, 2018, from corresponding International Application No. PCT/US2018/037504.
Written Opinion of the International Searching Authority, dated Sep. 15, 2021, from corresponding International Application No. PCT/US2021/033631.
Abdullah et al, “The Mapping Process of Unstructured Data to the Structured Data”, ACM, pp. 151-155 (Year: 2013).
Acar, Gunes, et al, The Web Never Forgets, Computer and Communications Security, ACM, Nov. 3, 2014, pp. 674-689.
Aghasian, Erfan, et al, Scoring Users' Privacy Disclosure Across Multiple Online Social Networks, IEEE Access, Multidisciplinary Rapid Review Open Access Journal, Jul. 31, 2017, vol. 5, 2017.
Agosti et al, “Access and Exchange of Hierarchically Structured Resources on the Web with the Nestor Framework”, IEEE, pp. 659-662 (Year: 2009).
Agrawal et al, “Securing Electronic Health Records Without Impeding the Flow of Information,” International Journal of Medical Informatics 76, 2007, pp. 471-479 (Year: 2007).
Ahmad et al, “Task-Oriented Access Model for Secure Data Sharing Over Cloud,” ACM, pp. 1-7 (Year: 2015).
Ahmad, et al, “Performance of Resource Management Algorithms for Processable Bulk Data Transfer Tasks in Grid Environments,” ACM, pp. 177-188 (Year: 2008).
Alaa et al, “Personalized Risk Scoring for Critical Care Prognosis Using Mixtures of Gaussian Processes,” Apr. 27, 2017, IEEE, vol. 65, issue 1, pp. 207-217 (Year: 2017).
Ali et al, “Age Estimation from Facial Images Using Biometric Ratios and Wrinkle Analysis,” IEEE, 2015, pp. 1-5 (Year: 2015).
Alkalha et al, “Investigating the Effects of Human Resource Policies on Organizational Performance: An Empirical Study on Commercial Banks Operating in Jordan,” European Journal of Economics, Finance and Administrative Science, pp. 1-22 (Year: 2012).
Aman et al, “Detecting Data Tampering Attacks in Synchrophasor Networks using Time Hopping,” IEEE, pp. 1-6 (Year: 2016).
Amar et al, “Privacy-Aware Infrastructure for Managing Personal Data,” ACM, pp. 571-572, Aug. 22-26, 2016 (Year: 2016).
Antunes et al, “Preserving Digital Data in Heterogeneous Environments”, ACM, pp. 345-348, 2009 (Year: 2009).
Ardagna, et al, “A Privacy-Aware Access Control System,” Journal of Computer Security, 16:4, pp. 369-397 (Year: 2008).
AvePoint, Automating Privacy Impact Assessments, AvePoint, Inc.
AvePoint, AvePoint Privacy Impact Assessment 1: User Guide, Cumulative Update 2, Revision E, Feb. 2015, AvePoint, Inc.
AvePoint, Installing and Configuring the APIA System, International Association of Privacy Professionals, AvePoint, Inc.
Ball, et al, “Aspects of the Computer-Based Patient Record,” Computers in Healthcare, Springer-Verlag New York Inc., pp. 1-23 (Year: 1992).
Banerjee et al, “Link Before You Share: Managing Privacy Policies through Blockchain,” IEEE, pp. 4438-4447 (Year: 2017).
Bang et al, “Building an Effective and Efficient Continuous Web Application Security Program,” 2016 International Conference on Cyber Security Situational Awareness, Data Analytics and Assessment (CyberSA), London, 2016, pp. 1-4 (Year: 2016).
Bansal et al, “Integrating Big Data: A Semantic Extract-Transform-Load Framework,” IEEE, pp. 42-50 (Year: 2015).
Bao et al, “Performance Modeling and Workflow Scheduling of Microservice-Based Applications in Clouds,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, No. 9, Sep. 2019, pp. 2101-2116 (Year: 2019).
Barker, “Personalizing Access Control by Generalizing Access Control,” ACM, pp. 149-158 (Year: 2010).
Barr, “Amazon Rekognition Update—Estimated Age Range for Faces,” AWS News Blog, Feb. 10, 2017, pp. 1-5 (Year: 2017).
Bayardo et al, “Technological Solutions for Protecting Privacy,” Computer 36.9 (2003), pp. 115-118, (Year: 2003).
Berezovskiy et al, “A framework for dynamic data source identification and orchestration on the Web”, ACM, pp. 1-8 (Year: 2010).
Bertino et al, “On Specifying Security Policies for Web Documents with an XML-based Language,” ACM, pp. 57-65 (Year: 2001).
Bertino et al, “Towards Mechanisms for Detection and Prevention of Data Exfiltration by Insiders,” Mar. 22, 2011, ACM, pp. 10-19 (Year: 2011).
Bhargav-Spantzel et al, Receipt Management—Transaction History based Trust Establishment, 2007, ACM, p. 82-91.
Bhuvaneswaran et al, “Redundant Parallel Data Transfer Schemes for the Grid Environment”, ACM, pp. 18 (Year: 2006).
Bieker, et al, “Privacy-Preserving Authentication Solutions—Best Practices for Implementation and EU Regulatory Perspectives,” Oct. 29, 2014, IEEE, pp. 1-10 (Year: 2014).
Bin, et al, “Research on Data Mining Models for the Internet of Things,” IEEE, pp. 1-6 (Year: 2010).
Bindschaedler et al, “Privacy Through Fake Yet Semantically Real Traces,” Arxiv.org, Cornell University Library, 201 Olin Library Cornell University Ithaca, NY 14853, May 27, 2015 (Year: 2015).
Binns, et al, “Data Havens, or Privacy Sans Frontières? A Study of International Personal Data Transfers,” ACM, pp. 273-274 (Year: 2002).
Bjorn Greif, “Cookie Pop-up Blocker: Cliqz Automatically Denies Consent Requests,” Cliqz.com, pp. 1-9, Aug. 11, 2019 (Year: 2019).
Borgida, “Description Logics in Data Management,” IEEE Transactions on Knowledge and Data Engineering, vol. 7, No. 5, Oct. 1995, pp. 671-682 (Year: 1995).
Brandt et al, “Efficient Metadata Management in Large Distributed Storage Systems,” IEEE, pp. 1-9 (Year: 2003).
Bujlow et al, “Web Tracking: Mechanisms, Implications, and Defenses,” Proceedings of the IEEE, Aug. 1, 2017, vol. 5, No. 8, pp. 1476-1510 (Year: 2017).
Byun, Ji-Won, Elisa Bertino, and Ninghui Li. “Purpose based access control of complex data for privacy protection.” Proceedings of the tenth ACM symposium on Access control models and technologies. ACM, 2005. (Year: 2005).
Carminati et al, “Enforcing Access Control Over Data Streams,” ACM, pp. 21-30 (Year: 2007).
Carpineto et al, “Automatic Assessment of Website Compliance to the European Cookie Law with CoolCheck,” Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society, 2016, pp. 135-138 (Year: 2016).
Castro et al, “Creating Lightweight Ontologies for Dataset Description,” IEEE, pp. 1-4 (Year: 2014).
Cerpzone, “How to Access Data on Data Archival Storage and Recovery System”, https://www.saj.usace.army.mil/Portals/44/docs/Environmental/Lake%20O%20Watershed/15February2017/How%20To%20Access%20Model%20Data%20on%20DASR.pdf?ver=2017-02-16-095535-633, Feb. 16, 2017.
Singh, et al, “A Metadata Catalog Service for Data Intensive Applications,” ACM, pp. 1-17 (Year: 2003).
Sjosten et al, “Discovering Browser Extensions via Web Accessible Resources,” ACM, pp. 329-336, Mar. 22, 2017 (Year: 2017).
Slezak, et al, “Brighthouse: An Analytic Data Warehouse for Ad-hoc Queries,” ACM, pp. 1337-1345 (Year: 2008).
Soceanu, et al, “Managing the Privacy and Security of eHealth Data,” May 29, 2015, IEEE, pp. 1-8 (Year: 2015).
Srinivasan et al, “Descriptive Data Analysis of File Transfer Data,” ACM, pp. 1-8 (Year: 2014).
Srivastava, Agrima, et al, Measuring Privacy Leaks in Online Social Networks, International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2013.
Stack Overflow, “Is there a way to force a user to scroll to the bottom of a div?,” Stack Overflow, pp. 1-11, Nov. 2013. [Online]. Available: https://stackoverflow.com/questions/2745935/is-there-a-way-to-force-a-user-to-scroll-to-the-bottom-of-a-div (Year: 2013).
Stern, Joanna, “iPhone Privacy Is Broken . . . and Apps Are to Blame”, The Wall Street Journal, wsj.com, May 31, 2019.
Strodl, et al, “Personal & Soho Archiving,” Vienna University of Technology, Vienna, Austria, JCDL '08, Jun. 16-20, 2008, Pittsburgh, Pennsylvania, USA, pp. 115-123 (Year: 2008).
Sukumar et al, “Review on Modern Data Preprocessing Techniques in Web Usage Mining (WUM),” IEEE, 2016, pp. 64-69 (Year: 2016).
Symantec, Symantex Data Loss Prevention—Discover, monitor, and protect confidential data; 2008; Symantec Corporation; http://www.mssuk.com/images/Symantec%2014552315_IRC_BR_DLP_03.09_sngl.pdf.
Tanasa et al, “Advanced Data Preprocessing for Intersites Web Usage Mining,” IEEE, Mar. 2004, pp. 59-65 (Year: 2004).
Tanwar, et al, “Live Forensics Analysis: Violations of Business Security Policy,” 2014 International Conference on Contemporary Computing and Informatics (IC31), 2014, pp. 971-976 (Year: 2014).
The Cookie Collective, Optanon Cookie Policy Generator, The Cookie Collective, Year 2016, http:/web.archive.org/web/20160324062743/https:/optanon.com/.
Thomas et al, “MooM—A Prototype Framework for Management of Ontology Mappings,” IEEE, pp. 548-555 (Year: 2011).
Thuraisingham, “Security Issues for the Semantic Web,” Proceedings 27th Annual International Computer Software and Applications Conference, COMPSAC 2003, Dallas, TX, USA, 2003, pp. 633-638 (Year: 2003).
TRUSTe Announces General Availability of Assessment Manager for Enterprises to Streamline Data Privacy Management with Automation, PRNewswire, Mar. 4, 2015.
Tsai et al, “Determinants of Intangible Assets Value: The Data Mining Approach,” Knowledge Based System, pp. 67-77 http://www.elsevier.com/locate/knosys (Year: 2012).
Tuomas Aura et al, Scanning Electronic Documents for Personally Identifiable Information, ACM, Oct. 30, 2006, retrieved online on Jun. 13, 2019, pp. 41-49. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/1180000/1179608/p41-aura.pdf? (Year: 2006).
Van Eijk et al, “The Impact of User Location on Cookie Notices (Inside and Outside of the European Union,” IEEE Security & Privacy Workshop on Technology and Consumer Protection (CONPRO '19), Jan. 1, 2019 (Year: 2019).
Vukovic et al, “Managing Enterprise IT Systems Using Online Communities,” Jul. 9, 2011, IEEE, pp. 552-559. (Year: 2011).
Wang et al, “Revealing Key Non-Financial Factors for Online Credit-Scoring in E-Financing,” 2013, IEEE, pp. 1-6 (Year: 2013).
Wang et al, “Secure and Efficient Access to Outsourced Data,” ACM, pp. 55-65 (Year: 2009).
Weaver et al, “Understanding Information Preview in Mobile Email Processing”, ACM, pp. 303-312, 2011 (Year: 2011).
Wong et al, “Ontology Mapping for the Interoperability Problem in Network Management,” IEEE, pp. 2058-2068 (Year: 2005).
Wu et al, “Data Mining with Big Data,” IEEE, Jan. 2014, pp. 97-107, vol. 26, No. 1, (Year: 2014).
www.truste.com (1), 200150207, Internet Archive Wayback Machine, www.archive.org,2_7_2015.
Xu, et al, “GatorShare: A File System Framework for High-Throughput Data Management,” ACM, pp. 776-786 (Year: 2010).
Yang et al, “DAC-MACS: Effective Data Access Control for Multiauthority Cloud Storage Systems,” IEEE, pp. 1790-1801 (Year: 2013).
Yang et al, “Mining Web Access Sequence with Improved Apriori Algorithm,” IEEE, 2017, pp. 780-784 (Year: 2017).
Ye et al, “An Evolution-Based Cache Scheme for Scalable Mobile Data Access,” ACM, pp. 1-7 (Year: 2007).
Yin et al, “Multibank Memory Optimization for Parallel Data Access in Multiple Data Arrays”, ACM, pp. 1-8 (Year: 2016).
Yiu et al, “Outsourced Similarity Search on Metric Data Assets”, IEEE, pp. 338-352 (Year: 2012).
Yu, “Using Data from Social Media Websites to Inspire the Design of Assistive Technology”, ACM, pp. 1-2 (Year: 2016).
Yu, et al, “Performance and Fairness Issues in Big Data Transfers,” ACM, pp. 9-11 (Year: 2014).
Yue et al, “An Automatic HTTP Cookie Management System,” Computer Networks, Elsevier, Amsterdam, NL, vol. 54, No. 13, Sep. 15, 2010, pp. 2182-2198 (Year: 2010).
Zannone, et al, “Maintaining Privacy on Derived Objects,” ACM, pp. 10-19 (Year: 2005).
Zeldovich, Nickolai, et al, Making Information Flow Explicit in HiStar, OSDI '06: 7th USENIX Symposium on Operating Systems Design and Implementation, USENIX Association, p. 263-278.
Zhang et al, “Data Transfer Performance Issues for a Web Services Interface to Synchrotron Experiments”, ACM, pp. 59-65 (Year: 2007).
Zhang et al, “Dynamic Topic Modeling for Monitoring Market Competition from Online Text and Image Data”, ACM, pp. 1425-1434 (Year: 2015).
Zheng, et al, “Methodologies for Cross-Domain Data Fusion: An Overview,” IEEE, pp. 16-34 (Year: 2015).
Zheng, et al, “Toward Assured Data Deletion in Cloud Storage,” IEEE, vol. 34, No. 3, pp. 101-107 May/Jun. 2020 (Year: 2020).
Zhu, et al, “Dynamic Data Integration Using Web Services,” IEEE, pp. 1-8 (Year: 2004).
International Search Report, dated Oct. 16, 2018, from corresponding International Application No. PCT/US2018/045243.
International Search Report, dated Oct. 18, 2018, from corresponding International Application No. PCT/US2018/045249.
International Search Report, dated Oct. 20, 2017, from corresponding International Application No. PCT/US2017/036917.
International Search Report, dated Oct. 3, 2017, from corresponding International Application No. PCT/US2017/036912.
International Search Report, dated Sep. 1, 2017, from corresponding International Application No. PCT/US2017/036896.
International Search Report, dated Sep. 12, 2018, from corresponding International Application No. PCT/US2018/037504.
International Search Report, dated Sep. 15, 2021, from corresponding International Application No. PCT/US2021/033631.
Written Opinion of the International Searching Authority, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025611.
Written Opinion of the International Searching Authority, dated Apr. 12, 2022, from corresponding International Application No. PCT/US2022/016735.
Written Opinion of the International Searching Authority, dated Aug. 15, 2017, from corresponding International Application No. PCT/US2017/036919.
Written Opinion of the Intemational Searching Authority, dated Aug. 21, 2017, from corresponding International Application No. PCT/US2017/036914.
Written Opinion of the International Searching Authority, dated Aug. 29, 2017, from corresponding International Application No. PCT/US2017/036898.
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036889.
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036890.
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036893.
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036901.
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036913.
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036920.
Written Opinion of the International Searching Authority, dated Dec. 14, 2018, from corresponding International Application No. PCT/US2018/045296.
Written Opinion of the International Searching Authority, dated Dec. 22, 2021, from corresponding International Application No. PCT/US2021/051217.
Written Opinion of the International Searching Authority, dated Dec. 27, 2022, from corresponding International Application No. PCT/US2022/044574.
Written Opinion of the International Searching Authority, dated Feb. 11, 2022, from corresponding International Application No. PCT/US2021/053518.
Written Opinion of the International Searching Authority, dated Feb. 14, 2022, from corresponding International Application No. PCT/US2021/058274.
Written Opinion of the International Searching Authority, dated Jan. 14, 2019, from corresponding International Application No. PCT/US2018/046949.
Written Opinion of the International Searching Authority, dated Jan. 27, 2023, from corresponding International Application No. PCT/US2022/045520.
Written Opinion of the International Searching Authority, dated Jan. 5, 2022, from corresponding International Application No. PCT/US2021/050497.
Written Opinion of the International Searching Authority, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055772.
Written Opinion of the International Searching Authority, dated Jun. 1, 2022, from corresponding Intemational Application No. PCT/US2022/016930.
Written Opinion of the International Searching Authority, dated Jun. 21, 2017, from corresponding International Application No. PCT/US2017/025600.
Written Opinion of the International Searching Authority, dated Jun. 22, 2022, from corresponding International Application No. PCT/US2022/019358.
Written Opinion of the International Searching Authority, dated Jun. 24, 2022, from corresponding Intemational Application No. PCT/US2022/019882.
Written Opinion of the International Searching Authority, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025605.
Written Opinion of the International Searching Authority, dated Mar. 14, 2019, from corresponding International Application No. PCT/US2018/055736.
Written Opinion of the International Searching Authority, dated Mar. 18, 2022, from corresponding International Application No. PCT/US2022/013733.
Written Opinion of the International Searching Authority, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055773.
Written Opinion of the International Searching Authority, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055774.
Written Opinion of the International Searching Authority, dated May 12, 2022, from corresponding International Application No. PCT/US2022/015929.
Written Opinion of the International Searching Authority, dated May 17, 2022, from corresponding International Application No. PCT/US2022/015241.
Written Opinion of the International Searching Authority, dated May 19, 2022, from corresponding International Application No. PCT/US2022/015637.
Written Opinion of the International Searching Authority, dated Nov. 12, 2021, from corresponding Intemational Application No. PCT/US2021/043481.
Written Opinion of the International Searching Authority, dated Nov. 19, 2018, from corresponding International Application No. PCT/US2018/046939.
Written Opinion of the International Searching Authority, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/040893.
Written Opinion of the International Searching Authority, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/044910.
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043975.
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043976.
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043977.
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/044026.
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/045240.
Written Opinion of the International Searching Authority, dated Oct. 12, 2017, from corresponding International Application No. PCT/US2017/036888.
Written Opinion of the International Searching Authority, dated Oct. 12, 2018, from corresponding International Application No. PCT/US2018/044046.
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/808,493.
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,944.
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,948.
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,952.
Advisory Action, dated Jan. 6, 2021, from corresponding U.S. Appl. No. 16/808,497.
Advisory Action, dated Jun. 19, 2020, from corresponding U.S. Appl. No. 16/595,342.
Advisory Action, dated Jun. 2, 2020, from corresponding U.S. Appl. No. 16/404,491.
Advisory Action, dated May 21, 2020, from corresponding U.S. Appl. No. 16/557,392.
Ex Parte Quayle Action, dated May 10, 2022, from corresponding U.S. Appl. No. 17/668,714.
Restriction Requirement, dated Apr. 10, 2019, from corresponding U.S. Appl. No. 16/277,715.
Restriction Requirement, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/584,187.
Restriction Requirement, dated Apr. 13, 2020, from corresponding U.S. Appl. No. 16/817,136.
Restriction Requirement, dated Apr. 24, 2019, from corresponding U.S. Appl. No. 16/278,122.
Restriction Requirement, dated Aug. 7, 2019, from corresponding U.S. Appl. No. 16/410,866.
Restriction Requirement, dated Aug. 9, 2019, from corresponding U.S. Appl. No. 16/404,399.
Restriction Requirement, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/475,244.
Restriction Requirement, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 15/169,668.
Restriction Requirement, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/565,395.
Restriction Requirement, dated Jan. 18, 2017, from corresponding U.S. Appl. No. 15/256,430.
Restriction Requirement, dated Jul. 28, 2017, from corresponding U.S. Appl. No. 15/169,658.
Restriction Requirement, dated Jun. 15, 2021, from corresponding U.S. Appl. No. 17/187,329.
Restriction Requirement, dated Jun. 15, 2021, from corresponding U.S. Appl. No. 17/222,556.
Restriction Requirement, dated Jun. 9, 2021, from corresponding U.S. Appl. No. 17/222,725.
Restriction Requirement, dated May 5, 2020, from corresponding U.S. Appl. No. 16/808,489.
Restriction Requirement, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/366,754.
Restriction Requirement, dated Nov. 14, 2022, from corresponding U.S. Appl. No. 17/836,872.
Restriction Requirement, dated Nov. 15, 2019, from corresponding U.S. Appl. No. 16/586,202.
Restriction Requirement, dated Nov. 21, 2016, from corresponding U.S. Appl. No. 15/254,901.
Restriction Requirement, dated Nov. 5, 2019, from corresponding U.S. Appl. No. 16/563,744.
Restriction Requirement, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 16/055,984.
Restriction Requirement, dated Oct. 6, 2021, from corresponding U.S. Appl. No. 17/340,699.
Restriction Requirement, dated Sep. 15, 2020, from corresponding U.S. Appl. No. 16/925,628.
Restriction Requirement, dated Sep. 9, 2019, from corresponding U.S. Appl. No. 16/505,426.
Final Office Action, dated Apr. 1, 2022, from corresponding U.S. Appl. No. 17/370,650.
Final Office Action, dated Apr. 23, 2020, from corresponding U.S. Appl. No. 16/572,347.
Final Office Action, dated Apr. 25, 2022, from corresponding U.S. Appl. No. 17/149,421.
Final Office Action, dated Apr. 27, 2021, from corresponding U.S. Appl. No. 17/068,454.
Final Office Action, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 16/925,550.
Final Office Action, dated Apr. 5, 2022, from corresponding U.S. Appl. No. 17/013,756.
Final Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/595,327.
Final Office Action, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/791,589.
Final Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/161,159.
Final Office Action, dated Aug. 28, 2020, from corresponding U.S. Appl. No. 16/410,336.
Final Office Action, dated Aug. 5, 2020, from corresponding U.S. Appl. No. 16/719,071.
Final Office Action, dated Aug. 9, 2021, from corresponding U.S. Appl. No. 17/119,080.
Final Office Action, dated Dec. 10, 2021, from corresponding U.S. Appl. No. 17/187,329.
Final Office Action, dated Dec. 7, 2020, from corresponding U.S. Appl. No. 16/862,956.
Final Office Action, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/410,336.
Final Office Action, dated Feb. 19, 2020, from corresponding U.S. Appl. No. 16/404,491.
Final Office Action, dated Feb. 23, 2023, from corresponding U.S. Appl. No. 17/370,650.
Notice of Allowance, dated Feb. 24, 2022, from corresponding U.S. Appl. No. 17/234,205.
Notice of Allowance, dated Feb. 24, 2022, from corresponding U.S. Appl. No. 17/549,170.
Notice of Allowance, dated Feb. 25, 2020, from corresponding U.S. Appl. No. 16/714,355.
Notice of Allowance, dated Feb. 25, 2021, from corresponding U.S. Appl. No. 17/106,469.
Notice of Allowance, dated Feb. 26, 2021, from corresponding U.S. Appl. No. 17/139,650.
Notice of Allowance, dated Feb. 27, 2019, from corresponding U.S. Appl. No. 16/041,468.
Notice of Allowance, dated Feb. 27, 2019, from corresponding U.S. Appl. No. 16/226,290.
Notice of Allowance, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 16/827,039.
Notice of Allowance, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 17/068,558.
Notice of Allowance, dated Feb. 4, 2022, from corresponding U.S. Appl. No. 17/520,272.
Notice of Allowance, dated Feb. 8, 2022, from corresponding U.S. Appl. No. 17/342,153.
Notice of Allowance, dated Feb. 8, 2023, from corresponding U.S. Appl. No. 17/584,187.
Notice of Allowance, dated Feb. 8, 2023, from corresponding U.S. Appl. No. 17/831,700.
Notice of Allowance, dated Jan. 1, 2021, from corresponding U.S. Appl. No. 17/026,727.
Notice of Allowance, dated Jan. 11, 2022, from corresponding U.S. Appl. No. 17/371,350.
Notice of Allowance, dated Jan. 12, 2022, from corresponding U.S. Appl. No. 17/334,948.
Notice of Allowance, dated Jan. 12, 2022, from corresponding U.S. Appl. No. 17/463,775.
Notice of Allowance, dated Jan. 14, 2020, from corresponding U.S. Appl. No. 16/277,715.
Notice of Allowance, dated Jan. 15, 2021, from corresponding U.S. Appl. No. 17/030,714.
Notice of Allowance, dated Jan. 18, 2018, from corresponding U.S. Appl. No. 15/619,478.
Notice of Allowance, dated Jan. 18, 2019 from corresponding U.S. Appl. No. 16/159,635.
Notice of Allowance, dated Jan. 2, 2020, from corresponding U.S. Appl. No. 16/410,296.
Notice of Allowance, dated Jan. 23, 2018, from corresponding U.S. Appl. No. 15/619,251.
Notice of Allowance, dated Jan. 24, 2022, from corresponding U.S. Appl. No. 17/340,699.
Notice of Allowance, dated Jan. 25, 2021, from corresponding U.S. Appl. No. 16/410,336.
Notice of Allowance, dated Jan. 25, 2023, from corresponding U.S. Appl. No. 17/675,760.
Notice of Allowance, dated Jan. 26, 2018, from corresponding U.S. Appl. No. 15/619,469.
Notice of Allowance, dated Jan. 26, 2022, from corresponding U.S. Appl. No. 17/491,906.
Notice of Allowance, dated Jan. 29, 2020, from corresponding U.S. Appl. No. 16/278,119.
Notice of Allowance, dated Jan. 31, 2022, from corresponding U.S. Appl. No. 17/472,948.
Notice of Allowance, dated Jan. 31, 2023, from corresponding U.S. Appl. No. 17/499,624.
Notice of Allowance, dated Jan. 5, 2022, from corresponding U.S. Appl. No. 17/475,241.
Notice of Allowance, dated Jan. 6, 2021, from corresponding U.S. Appl. No. 16/595,327.
Notice of Allowance, dated Jan. 6, 2022, from corresponding U.S. Appl. No. 17/407,765.
Notice of Allowance, dated Jan. 7, 2022, from corresponding U.S. Appl. No. 17/222,725.
Notice of Allowance, dated Jan. 8, 2020, from corresponding U.S. Appl. No. 16/600,879.
Notice of Allowance, dated Jul. 10, 2019, from corresponding U.S. Appl. No. 16/237,083.
Notice of Allowance, dated Jul. 10, 2019, from corresponding U.S. Appl. No. 16/403,358.
Notice of Allowance, dated Jul. 12, 2019, from corresponding U.S. Appl. No. 16/278,121.
Notice of Allowance, dated Jul. 14, 2020, from corresponding U.S. Appl. No. 16/701,043.
Notice of Allowance, dated Jul. 15, 2020, from corresponding U.S. Appl. No. 16/791,006.
Notice of Allowance, dated Jul. 16, 2020, from corresponding U.S. Appl. No. 16/901,979.
Notice of Allowance, dated Jul. 17, 2019, from corresponding U.S. Appl. No. 16/055,961.
Notice of Allowance, dated Jul. 17, 2020, from corresponding U.S. Appl. No. 16/778,709.
Notice of Allowance, dated Jul. 19, 2021, from corresponding U.S. Appl. No. 17/306,252.
Notice of Allowance, dated Jul. 20, 2022, from corresponding U.S. Appl. No. 16/938,509.
Notice of Allowance, dated Jul. 21, 2020, from corresponding U.S. Appl. No. 16/557,392.
Notice of Allowance, dated Jul. 23, 2019, from corresponding U.S. Appl. No. 16/220,978.
Notice of Allowance, dated Jul. 26, 2019, from corresponding U.S. Appl. No. 16/409,673.
Notice of Allowance, dated Jul. 26, 2021, from corresponding U.S. Appl. No. 17/151,399.
Notice of Allowance, dated Nov. 25, 2020, from corresponding U.S. Appl. No. 17/019,771.
Notice of Allowance, dated Nov. 26, 2019, from corresponding U.S. Appl. No. 16/563,735.
Notice of Allowance, dated Nov. 27, 2019, from corresponding U.S. Appl. No. 16/570,712.
Notice of Allowance, dated Nov. 27, 2019, from corresponding U.S. Appl. No. 16/577,634.
Notice of Allowance, dated Nov. 3, 2020, from corresponding U.S. Appl. No. 16/719,071.
Notice of Allowance, dated Nov. 5, 2019, from corresponding U.S. Appl. No. 16/560,965.
Notice of Allowance, dated Nov. 7, 2017, from corresponding U.S. Appl. No. 15/671,073.
Notice of Allowance, dated Nov. 8, 2018, from corresponding U.S. Appl. No. 16/042,642.
Notice of Allowance, dated Nov. 9, 2020, from corresponding U.S. Appl. No. 16/595,342.
Notice of Allowance, dated Nov. 9, 2022, from corresponding U.S. Appl. No. 17/187,329.
Notice of Allowance, dated Oct. 1, 2021, from corresponding U.S. Appl. No. 17/340,395.
Notice of Allowance, dated Oct. 10, 2019, from corresponding U.S. Appl. No. 16/277,539.
Notice of Allowance, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 15/896,790.
Notice of Allowance, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 16/054,672.
Notice of Allowance, dated Oct. 17, 2019, from corresponding U.S. Appl. No. 16/563,741.
Notice of Allowance, dated Oct. 18, 2022, from corresponding U.S. Appl. No. 16/840,943.
Notice of Allowance, dated Oct. 21, 2019, from corresponding U.S. Appl. No. 16/404,405.
Notice of Allowance, dated Oct. 21, 2020, from corresponding U.S. Appl. No. 16/834,812.
Notice of Allowance, dated Oct. 22, 2021, from corresponding U.S. Appl. No. 17/346,847.
Notice of Allowance, dated Oct. 25, 2022, from corresponding U.S. Appl. No. 17/711,331.
Notice of Allowance, dated Oct. 3, 2019, from corresponding U.S. Appl. No. 16/511,700.
Notice of Allowance, dated Sep. 1, 2021, from corresponding U.S. Appl. No. 17/196,570.
Notice of Allowance, dated Sep. 1, 2021, from corresponding U.S. Appl. No. 17/222,556.
Notice of Allowance, dated Sep. 1, 2022, from corresponding U.S. Appl. No. 17/480,377.
Notice of Allowance, dated Sep. 12, 2019, from corresponding U.S. Appl. No. 16/512,011.
Notice of Allowance, dated Sep. 12, 2022, from corresponding U.S. Appl. No. 17/674,187.
Notice of Allowance, dated Sep. 13, 2018, from corresponding U.S. Appl. No. 15/894,809.
Notice of Allowance, dated Sep. 13, 2018, from corresponding U.S. Appl. No. 15/894,890.
Notice of Allowance, dated Sep. 14, 2021, from corresponding U.S. Appl. No. 16/808,497.
Notice of Allowance, dated Sep. 16, 2020, from corresponding U.S. Appl. No. 16/915,097.
Notice of Allowance, dated Sep. 17, 2020, from corresponding U.S. Appl. No. 16/863,226.
Notice of Allowance, dated Sep. 18, 2018, from corresponding U.S. Appl. No. 15/894,819.
Notice of Allowance, dated Sep. 18, 2018, from corresponding U.S. Appl. No. 16/041,545.
Notice of Allowance, dated Sep. 18, 2020, from corresponding U.S. Appl. No. 16/812,795.
Notice of Allowance, dated Sep. 2, 2022, from corresponding U.S. Appl. No. 17/380,485.
Notice of Allowance, dated Sep. 23, 2020, from corresponding U.S. Appl. No. 16/811,793.
Notice of Allowance, dated Sep. 23, 2021, from corresponding U.S. Appl. No. 17/068,454.
Notice of Allowance, dated Sep. 24, 2021, from corresponding U.S. Appl. No. 17/334,939.
Notice of Allowance, dated Sep. 25, 2020, from corresponding U.S. Appl. No. 16/983,536.
Notice of Allowance, dated Sep. 27, 2017, from corresponding U.S. Appl. No. 15/626,052.
Notice of Allowance, dated Sep. 27, 2021, from corresponding U.S. Appl. No. 17/222,523.
Notice of Allowance, dated Sep. 28, 2018, from corresponding U.S. Appl. No. 16/041,520.
Notice of Allowance, dated Sep. 28, 2022, from corresponding U.S. Appl. No. 17/509,974.
Notice of Allowance, dated Sep. 28, 2022, from corresponding U.S. Appl. No. 17/689,683.
Notice of Allowance, dated Sep. 29, 2021, from corresponding U.S. Appl. No. 17/316,179.
Notice of Allowance, dated Sep. 30, 2022, from corresponding U.S. Appl. No. 17/867,068.
Notice of Allowance, dated Sep. 4, 2018, from corresponding U.S. Appl. No. 15/883,041.
Notice of Allowance, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/808,500.
Notice of Allowance, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/901,662.
Notice of Allowance, dated Sep. 9, 2021, from corresponding U.S. Appl. No. 17/334,909.
Related Publications (1)
Number Date Country
20230195939 A1 Jun 2023 US
Provisional Applications (13)
Number Date Country
62846184 May 2019 US
62846178 May 2019 US
62728435 Sep 2018 US
62728432 Sep 2018 US
62631684 Feb 2018 US
62631703 Feb 2018 US
62572096 Oct 2017 US
62547530 Aug 2017 US
62541613 Aug 2017 US
62537839 Jul 2017 US
62360123 Jul 2016 US
62353802 Jun 2016 US
62348695 Jun 2016 US
Continuations (1)
Number Date Country
Parent 17187329 Feb 2021 US
Child 18110511 US
Continuation in Parts (11)
Number Date Country
Parent 16938509 Jul 2020 US
Child 17187329 US
Parent 16872031 May 2020 US
Child 16938509 US
Parent 16778709 Jan 2020 US
Child 16872031 US
Parent 16560963 Sep 2019 US
Child 16778709 US
Parent 16277568 Feb 2019 US
Child 16560963 US
Parent 16159634 Oct 2018 US
Child 16277568 US
Parent 16055083 Aug 2018 US
Child 16159634 US
Parent 15996208 Jun 2018 US
Child 16055083 US
Parent 15853674 Dec 2017 US
Child 15996208 US
Parent 15619455 Jun 2017 US
Child 15853674 US
Parent 15254901 Sep 2016 US
Child 15619455 US