This application claims priority to Korean Patent Application No. 2009-84031, filed on Sep. 7, 2009, and all the benefits accruing therefrom under 35 U.S.C. §119, the content of which in its entirety is herein incorporated by reference.
(1) Field of the Invention
The present invention relates to a data processing device, a display system including the data processing device and a method of processing data. More particularly, the present invention relates to a data processing device including a color compensation function, a display system including the data processing device and a method of processing data.
(2) Description of the Related Art
A pixel of a display apparatus typically includes sub-pixels which display red, green and blue colors, to display an image. Recently, a pixel structure including a red sub-pixel R, a green sub-pixel G, a blue sub-pixel B, as well as a white sub-pixel W, has been suggested to improve brightness of the display apparatus. Moreover, to improve an aperture ratio and transmittance, six sub-pixels, e.g., RGBRGB sub-pixels, of a conventional pixel design may be replaced with four sub-pixels, e.g., RGBW sub-pixels, (hereinafter, referred to as “PENTILE® technology”).
A display apparatus employing the PENTILE® technology includes a rendering module that renders RGB image data to RGBW sub-pixel data to compensate for a lowered resolution thereof, which is caused by a reduced number of sub-pixels, e.g. from RGBRGB to RGBW.
An aspect of present invention relates to a data processing device which performs color compensation for rendered data.
An aspect of the present invention also relates to a display system including the data processing device.
An aspect of the present invention also relates to a method of processing data which compensates for rendered data
In an exemplary embodiment, a data processing device processes image data and provides the image data to a display apparatus including pixels, each including a first sub-pixel, a second sub-pixel, a third sub-pixel and a fourth sub-pixel, which have difference colors from each other. The data processing device includes a receiving module, a rendering module and a color compensation module.
The receiving module receives the image data, the rendering module renders the image data into first sub-pixel data, second sub-pixel data, third sub-pixel data and fourth sub-pixel data based on a layout of the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel and the color compensation module compensates for a color of the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel data.
The color compensation module includes a first compensation block and a second compensation block. The first compensation block converts the first sub-pixel data, the second sub-pixel data and the third sub-pixel data corresponding to the first sub-pixel, the second sub-pixel and the third sub-pixel, respectively, included in a reference block set based on the fourth sub-pixel, into first intermediate data, second intermediate data and third intermediate data, respectively, based on a gamma compensation value. The second compensation block converts the fourth sub-pixel data, corresponding to the fourth sub-pixel, into fourth compensation data based on the gamma compensation value, and converts the first intermediate data, the second intermediate data and the third intermediate data into first compensation data, second compensation data and third compensation data based on a first delta value, a second delta value and a third delta value, respectively, which are determined based on the fourth sub-pixel data.
In an exemplary embodiment, a display system includes an image source which outputs image data, a display apparatus which includes pixels and displays an image, and a data processing device which processes the image data and provides processed image data to the display apparatus. Each of the pixel includes a first sub-pixel, a second sub-pixel, a third sub-pixel and a fourth sub-pixel which have difference colors from each other.
The data processing device includes a receiving module which receives the image data from the image source, a rendering module which renders the image data into first sub-pixel data, second sub-pixel data, third sub-pixel data and fourth sub-pixel data based on a layout of the first sub-pixel, the second sub-pixel, the third sub-pixel, and the fourth sub-pixel and a color compensation module which compensates for a color of the first sub-pixel data, the second sub-pixel data, the third sub-pixel data and the fourth sub-pixel data.
The color compensation module includes a first compensation block and a second compensation block. The first compensation block converts the first sub-pixel data, the second sub-pixel data and the third sub-pixel data corresponding to the first sub-pixel, the second sub-pixel and the third sub-pixel, respectively, included in a reference block set based on the fourth sub-pixel, into first intermediate data, second intermediate data and third intermediate data, respectively, based on a gamma compensation value. The second compensation block converts the fourth sub-pixel data corresponding to the fourth sub-pixel into fourth compensation data based on the gamma compensation value and converts the first intermediate data, the second intermediate data and the third intermediate data into first compensation data, second compensation data and third compensation data, respectively, based on a first delta value, a second delta value and a third delta value which are determined based on the fourth sub-pixel data.
In an exemplary embodiment, a method of processing image data provided to a display apparatus including pixels, each including a first sub-pixel, a second sub-pixel, a third sub-pixel and a fourth sub-pixel which have difference colors from each other includes receiving the image data, rendering the image data into first sub-pixel data, second sub-pixel data, third sub-pixel data and fourth sub-pixel data based on a layout of the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel and compensating for a color of the first sub-pixel data, the second sub-pixel data, the third sub-pixel data and the fourth sub-pixel data.
The compensating for the color includes converting the first sub-pixel data, the second sub-pixel data and the third sub-pixel data corresponding to the first sub-pixel, the second sub-pixel and the third sub-pixel, respectively, included in a reference block set based on the fourth sub-pixel into first intermediate data, second intermediate data and third intermediate data, respectively, based on a gamma compensation value, converting the fourth sub-pixel data corresponding to the fourth sub-pixel into fourth compensation data based on the gamma compensation value, and converting the first intermediate data, the second intermediate data and the third intermediate data into first compensation data, second compensation data and third compensation data based on a first delta value, a second delta value and a third delta value, respectively, which are determined based on the fourth sub-pixel data.
In an exemplary embodiment, the first sub-pixel data, the second sub-pixel data and the third sub-pixel data may be compensated by adding the first delta value, the second delta value and the third delta value which are determined based on a gray scale value of the fourth sub-pixel data into the first compensation data, the second compensation data and the third compensation data. Thus, colors are substantially accurately compensated, and the display apparatus including a PENTILE® pixel structure including red, green, blue and white sub-pixels thereby displays colors substantially accurately.
The above and other aspects and features of the present invention will become more readily apparent by describing in further detail exemplary embodiments thereof with reference to the accompanying drawings, in which:
The invention now will be described more fully hereinafter with reference to the accompanying drawings, in which various embodiments are shown. This invention may, however, be embodied in many different forms, and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like reference numerals refer to like elements throughout. It will be understood that when an element is referred to as being “on” another element, it can be directly on the other element or intervening elements may be present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower,” can therefore, encompasses both an orientation of “lower” and “upper,” depending on the particular orientation of the figure. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Exemplary embodiments are described herein with reference to cross section illustrations that are schematic illustrations of idealized embodiments. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments described herein should not be construed as limited to the particular shapes of regions as illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, a region illustrated or described as flat may, typically, have rough and/or nonlinear features. Moreover, sharp angles that are illustrated may be rounded. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the present claims.
Hereinafter, exemplary embodiments of the present invention will be described in further detail with reference to the accompanying drawings.
As shown in
The image source 10 outputs the image data including red, green and blue image data R, G and B, respectively. The image source 10 may be various electric appliances such as a personal computer, a television set, a video player, a digital cellular phone and other similar devices, but alternative exemplary embodiments are not limited thereto or thereby.
The image data, e.g., the red, green and blue image data R, G and B, outputted from the image source 10 are provided to the data processing device 100. The data processing device 100 renders the images data, e.g., the red, green and blue image data R, G and B, and supplies the rendered data, e.g., the red, green, blue and white image data R, G, B and W, to the display apparatus 200. The rendered data, e.g., the red, green, blue and white image data R, G, B and W, may be red, green, blue and white sub-pixel data.
The display apparatus 200 includes pixels, each including red, green, blue and white sub-pixels. Particularly, the data processing device 100 renders the image data, e.g., the red, green and blue image data R, G and B based on a layout of the sub-pixels. Accordingly, the display apparatus 200 may display the image using the rendered data, e.g., the red, green, blue and white image data R, G, B and W. The display apparatus 200 may be a flat-type display apparatus including a liquid crystal display such as a television set, a monitor or a cellular phone, for example.
As shown in
As shown in
The receiving module 110 receives the image data, e.g., the red, green and blue image data R, G and B, from the image source 10 shown in
The rendering module 120 renders the image data, e.g., the red, green and blue image data R, G and B, received from the receiving module 110, to sub-pixel data, e.g., red, green, blue and white sub-pixel data Ri, Gi, Bi and Wi, based on the layout of the sub-pixels in the display apparatus 200. In an exemplary embodiment, when each of the pixels of the display apparatus 200 includes red, green, blue and white sub-pixels, the rendering module 120 renders the red, green and blue image data R, G and B to the red, green, blue and white sub-pixel data Ri, Gi, Bi and Wi.
The rendering process by the rendering module 120 will be described in further detail below with reference to
The color compensation module 130 compensates for colors of the sub-pixel data, e.g., the red, green, blue and white sub-pixel data Ri, Gi, Bi and Wi, and outputs compensation data, e.g., red, green, blue and white compensation data Rc, Gc, Bc and Wc. Particularly, the color compensation module 130 gamma-compensates the sub-pixel data, e.g., the red, green, blue and white sub-pixel data Ri, Gi, Bi and Wi, based on a gamma compensation value set by a gamma characteristic of the display apparatus 200 and outputs the compensation data, e.g., the red, green, blue and white compensation data Rc, Gc, Bc and Wc. In an exemplary embodiment, the compensation data, e.g., the red, green, blue and white compensation data Rc, Gc, Bc and Wc, may have bit numbers expanded more than bit numbers of the sub-pixel data, e.g., the red, green, blue and white sub-pixel data Ri, Gi, Bi and Wi. Thus, the color compensation module 130 may effectively prevent a color coordinate value from varying depending on gray scales, and thereby improves color characteristics of the display apparatus 200.
As shown in
The first compensation block 131 receives the red, green and blue sub-pixel data Ri, Gi and Bi and converts the red, green and blue sub-pixel data Ri, Gi and Bi into red, green and blue intermediate data Ro, Go and Bo, respectively, based on red, green and blue gamma compensation values set by red, green and blue gamma characteristics.
The red, green and blue sub-pixel data Ri, Gi and Bi provided to the first compensation block 131 may be the red, green and blue sub-pixel data Ri, Gi and Bi corresponding to the red, green and blue sub-pixels, respectively, included in a reference block determined with reference to the white sub-pixel. The reference block will be described later in more detail with reference to
The second compensation block 132 converts white sub-pixel data Wi corresponding to the white sub-pixel to white compensation data Wo based on a predetermined white gamma compensation value, e.g., Wo=Wi. In addition, the second compensation block 132 converts the red, green and blue intermediate data Ro, Go and Bo into red, green and blue compensation data Rc, Gc and Bc, respectively, based on the white sub-pixel data Wi.
Referring now to
As shown in
Referring to
Accordingly, the second compensation block 132 may generate the white compensation data Wo and the red, green and blue compensation data Rc, Gc and Bc with reference to the white look-up table W-LUT.
More particularly, the second compensation block 132 adds the red, green and blue delta values ΔRo, ΔGo and ΔBo to the red, green and blue intermediate data Ro, Go and Bo, respectively, according to the white compensation data Wo and thereby generates the red, green and blue compensation data Rc, Gc and Bc.
Thus, the compensation value of each of the red, green and blue sub-pixel data Ri, Gi and Bi may be increased or decreased according to the gray scale value of the white sub-pixel data Wi. In an exemplary embodiment, when the red, green and blue compensation data Rc, Gc and Bc are generated based on the gray scale values of the red, green and blue sub-pixel data Ri, Gi and Bi and the gray scale value of the white sub-pixel data Wi, the colors are substantially accurately compensated, and the color coordinates of the red, green, blue and white sub-pixels are substantially uniformly maintained with respect to all gray scale levels.
Referring to
The second compensation block 132 adds the red, green and blue delta values ΔRo, ΔGo and ΔBo respectively to the red, green and blue intermediate data Ro, Go and Bo corresponding to the red, green and blue sub-pixels Pr, Pg and Pb, respectively, included in the reference block B1 and thereby generates the red, green and blue compensation data Rc, Gc and Bc.
In an exemplary embodiment, the reference block B1 includes one red sub-pixel Pr, one green sub-pixel Pg and one blue sub-pixel Pb, but it should not be limited thereto or thereby. In another exemplary embodiment, the numbers of the red, green and blue sub-pixels Pr, Pg and Pb included in the reference block B1 may vary based on design of the reference block B1. Accordingly, the delta value added to each of the red, green and blue intermediate data Ro, Go and Bo may vary based on the numbers of red, green and blue sub-pixels Pr, Pg and Pb included in the reference block B1.
In an exemplary embodiment, the second compensation block 132 divides the red delta value ΔRo by the number (n1) of the red sub-pixels Pr in the reference block B1 to generate a result value of “ΔRo/n1”, and adds the result value of ΔRo/n1 to the red intermediate data Ro of each of the red sub-pixels Pr, and thereby generates the red compensation data Rc. The second compensation block 132 divides the green delta value ΔGo by the number (n2) of the green sub-pixels Pg in the reference block B1 to generate a result value of “ΔGo/n2”, and adds the result value of ΔGo/n2 to the green intermediate data Go of each of the green sub-pixels Pg, and thereby generates the green compensation data Gc. Similarly, the second compensation block 132 divides the blue delta value ΔBo by the number (n3) of the blue sub-pixels Pb in the reference block B1 to generates a result value of “ΔBo/n3”, and adds the result value of ΔBo/n3 to the blue intermediate data Bo of each of the blue sub-pixels Pb, and thereby generates the blue compensation data Bc.
Referring again to
Referring to
As shown in
In an exemplary embodiment, the second compensation block 132 adds the red delta value ΔRo to the red intermediate data Ro corresponding to the red sub-pixel Pr to generate the red compensation data Rc, and adds the blue delta value ΔBo to the blue intermediate data Bo corresponding to the blue sub-pixel Pb to generate the blue compensation data Bc.
As shown in
As shown in
As shown in
In another exemplary embodiment, the reference blocks B1, B2 and B3 may include various structures aside from the structures shown in
As shown in
The input gamma control part 121 applies a gamma function to the image data, e.g., the red, green and blue image data R, G and B, received from the receiving module 110 shown in
In an exemplary embodiment, the input gamma control part 121 may linearize the image data due to difficulties in hardware embodiment when blocks, e.g. mapping part, SPR and other similar blocks, execute various calculation processes using the red, green and blue image data R, G and B, which are non-linear.
The mapping part 123 maps the linearized red, green and blue data R′, G′ and B′ from the input gamma control part 121 to red, green, blue and white data R, G, B and W. In an exemplary embodiment, the mapping part 123 may map RGB gamut of the red, green and blue data to RGBW gamut of the red, green, blue and white data using a gamut mapping algorithm (“GMA”). In another exemplary embodiment, the gamut mapping process may be omitted from the mapping processes by the mapping part 123.
The 2-line buffer 125 stores the red, green, blue and white data R, G, B and W outputted from the mapping part 123. The SPR 124 receives the red, green, blue and white data R, G, B and W from the 2-line buffer 125 at a predetermined time point and starts the rendering operation. The SPR 124 includes an SPR filter, and thereby performs the rendering operation. In an exemplary embodiment, the SPR 124 renders the red, green, blue and white data R, G, B and W provided from the 2-line buffer 125 when the red, green, blue and white data R, G, B and W are passed through the SPR filter, and thereby generates the red, green, blue and white sub-pixel data Ri, Gi, Bi and Wi.
The rendering method used in the SPR 124 will be described in more detail later with reference to
In an exemplary embodiment, the SPR 124 may further include a sharpening filter that filters the red, green, blue and white sub-pixel data Ri, Gi, Bi and Wi that have been rendered by the SPR filter to improve vividness of colors displayed on a display apparatus.
The color compensation module 130 compensates for the red, green, blue and white sub-pixel data Ri, Gi, Bi and Wi and thereby outputs red, green, blue and white compensation data Rc, Gc, Bc and Wc. A structure of the color compensation module 130 is substantially the same as the structure of the color compensation module 130 shown in
The output gamma control part 126 applies a reverse gamma function to the red, green, blue and white compensation data Rc, Gc, Bc and Wc to non-linearize the red, green, blue and white compensation data Rc, Gc, Bc and Wc. In an exemplary embodiment, when the input gamma control part 121 linearizes the red, green and blue data R, G and B using the gamma function, “f=x2.2”, the output gamma control part 126 may non-linearize the red, green, blue and white compensation data Rc, Gc, Bc and Wc using a reverse gamma function, “f=x1/2.2”.
Non-linearized red, green, blue and white compensation data Rc′, Gc′, Bc′ and Wc′ by the output gamma control part 126 may be provided to the display apparatus 200.
The structure of the above-described rendering module 120 should not be limited thereto or thereby, and the rendering module 120 may further include function parts, e.g., a dithering function part, other than the parts shown in
Referring to
In the PENTILE® pixel structure of
Referring to
Referring to
As shown in
In
Referring to
The image source 10 outputs the image data including red, green and blue image data R, G and B, respectively. The image data, e.g., the red, green and blue image data R, G and B, outputted from the image source 10 are provided to the data processing device 101. The data processing device 101 renders the images data, e.g., the red, green and blue image data R, G and B, and supplies the rendered data, e.g., the red, green, blue and yellow image data R, G, B and Y, to the display apparatus 200. The rendered data, e.g., the red, green, blue and yellow image data R, G, B and Y, may be red, green, blue and yellow sub-pixel data.
The display apparatus 200 includes pixels, each including red, green, blue and yellow sub-pixels. Particularly, the data processing device 101 renders the image data, e.g., the red, green and blue image data R, G and B based on a layout of the sub-pixels. Accordingly, the display apparatus 200 may display the image using the rendered data, e.g., the red, green, blue and yellow image data R, G, B and Y.
As shown in
The receiving module 110 receives the image data, e.g., the red, green and blue image data R, G and B, from the image source 10 shown in
The rendering module 121 renders the image data, e.g., the red, green and blue image data R, G and B, received from the receiving module 110, to sub-pixel data, e.g., red, green, blue and yellow sub-pixel data Ri, Gi, Bi and Yi, based on the layout of the sub-pixels in the display apparatus 200. In an exemplary embodiment, when each of the pixels of the display apparatus 200 includes red, green, blue and yellow sub-pixels, the rendering module 121 renders the red, green and blue image data R, G and B to the red, green, blue and yellow sub-pixel data Ri, Gi, Bi and Yi.
The rendering process by the rendering module 121 may be similar to the rendering process shown in
The color compensation module 135 compensates for colors of the sub-pixel data, e.g., the red, green, blue and yellow sub-pixel data Ri, Gi, Bi and Yi, and outputs compensation data, e.g., red, green, blue and yellow compensation data Rc, Gc, Bc and Yc. Particularly, the color compensation module 135 gamma-compensates the sub-pixel data, e.g., the red, green, blue and yellow sub-pixel data Ri, Gi, Bi and Yi, based on a gamma compensation value set by a gamma characteristic of the display apparatus 200 and outputs the compensation data, e.g., the red, green, blue and yellow compensation data Rc, Gc, Bc and Yc. In an exemplary embodiment, the compensation data, e.g., the red, green, blue and yellow compensation data Rc, Gc, Bc and Yc, may have bit numbers expanded more than bit numbers of the sub-pixel data, e.g., the red, green, blue and yellow sub-pixel data Ri, Gi, Bi and Yi. Thus, the color compensation module 135 may effectively prevent a color coordinate value from varying depending on gray scales, and thereby improves color characteristics of the display apparatus 200.
As shown in
The first compensation block 133 receives the red, green and blue sub-pixel data Ri, Gi and Bi and converts the red, green and blue sub-pixel data Ri, Gi and Bi into red, green and blue intermediate data Ro, Go and Bo, respectively, based on red, green and blue gamma compensation values set by red, green and blue gamma characteristics.
The red, green and blue sub-pixel data Ri, Gi and Bi provided to the first compensation block 133 may be the red, green and blue sub-pixel data Ri, Gi and Bi corresponding to the red, green and blue sub-pixels, respectively, included in a reference block determined with reference to the yellow sub-pixel. The reference block may be similarly determined to the reference block shown in
The second compensation block 134 converts yellow sub-pixel data Yi corresponding to the yellow sub-pixel to yellow compensation data Yo based on a predetermined yellow gamma compensation value, e.g., Yo=Yi. In addition, the second compensation block 134 converts the red, green and blue intermediate data Ro, Go and Bo into red, green and blue compensation data Rc, Gc and Bc, respectively, based on the yellow sub-pixel data Yi.
In
As shown in
The display panel 210 displays an image and includes pixels disposed therein. Each of the pixels includes a PENTILE® pixel structure and thus includes four sub-pixels, e.g., red, green, blue and white sub-pixels R, G, B and W. In another exemplary embodiment, the each of the pixels may include a yellow sub-pixel instead of the white sub-pixel. When the display apparatus displays the image using the display panel 210 including the PENTILE® pixel structure, the data processing device 100, e.g., a data processor 100, provides rendered data to the timing controller 220. In an exemplary embodiment, as described above, the data processing device 100 may compensate for colors of the rendered data using the color compensation module 130 of
The timing controller 220 receives the rendered data, e.g., rendered red, green, blue and white sub-pixel data R, G, B and W, from the data processing device 100 and converts the rendered red, green, blue and white sub-pixel data R, G, B and W into a predetermined data format and provides converted red, green, blue and white sub-pixel data R′, G′, B′ and W′ to the data driver 240. In an exemplary embodiment, the timing controller 220 receives various control signals O-CS and converts the control signals O-CS into a data control signal DCS and a gate control signal GCS and provides the data control signal DCS and the gate control signal GCS to the gate driver 230 and the data driver 240, respectively.
The data driver 240 converts the converted red, green, blue and white sub-pixel data R′, G′, B′ and W′ to data voltages in response to the data control signal DCS and provides the data voltages to the display panel 210, and the gate driver 230 outputs a gate signal in a predetermined order to drive the pixels in a row by row manner.
Accordingly, the display apparatus 200 according to the exemplary embodiments described herein includes the PENTILE® pixel structure and displays an image having substantially improved brightness and, accordingly, accurately displays colors of the image.
The present invention should not be construed as being limited to the exemplary embodiment set forth herein. Rather, these exemplary embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concept of the present invention to those skilled in the art.
While the present invention has been particularly shown and described with reference to the exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit or scope of the present invention as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0084031 | Sep 2009 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
6342896 | Shetter et al. | Jan 2002 | B1 |
7705810 | Choi et al. | Apr 2010 | B2 |
7782335 | Baek | Aug 2010 | B2 |
8018476 | Credelle et al. | Sep 2011 | B2 |
8035655 | Kim et al. | Oct 2011 | B2 |
20040051724 | Elliott et al. | Mar 2004 | A1 |
20080252797 | Hamer et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
2008026339 | Feb 2008 | JP |
1020060062912 | Jun 2006 | KR |
1020070011830 | Jan 2007 | KR |
Entry |
---|
Hung, et al “Manipulation image processing algorithmic technology to realize 1.8″ RGBW transflective TFT-LCDs with adjustable color gamut”, Displays, 29(5), pp. 526-535, Dec. 2008. |
Brown-Elliott, et al “Adding a White Subpixel”, Information Display, pp. 26-31, May 2005. |
Number | Date | Country | |
---|---|---|---|
20110057950 A1 | Mar 2011 | US |