Various websites use tracking tools, such as cookies, to track a user and/or the user's behavior as they are using a browser application (or simply browser) to visit one or more webpages. Such tracking tools may, for example, track a user's interests, location, age, and/or search trends by detecting and analyzing the user's interaction with the webpages. While this information may be used by a website provider to enhance the user's experience, this information may also, or instead, be provided (e.g., sold) to third parties that may use the information, for example, to provide the user with advertisements that are customized to the user. On some websites, the tracking tools themselves are created and/or provided by the third parties seeking to collect user information.
Privacy laws and regulations may require that websites obtain consent from a user before using tracking tools to collect a user's personal data. Many users consent to the use of such tracking tools because the use of tracking tools may enhance the user's experience on websites. For example, some users may consent to the use of cookies as they browse on-line shopping websites because they want to receive offers (e.g., discounts, coupons) that are tailored to their needs and interests. Some users, on the other hand, prefer to block the use of some or all tracking tools. This has resulted in a demand for automated tools to reject the use of tracking tools.
To fill this demand, various developers now offer automated applications that can be integrated into a web browser application (e.g., add-ins, extensions, plug-ins, etc.) that automatically reject any request for consent to use tracking tools. However, by automatically rejecting such consent, the user may not be making an informed decision and the website operator may not be able to ensure the website is in full compliance with applicable privacy laws and regulations. Therefore, there is currently a need for improved tools for detecting technologies that automatically block consent requests to ensure that user consent options are fully presented, and that user consent preferences are properly obtained from actual users rather than from automated tools.
A method, according to various aspects, may include: detecting, by computing hardware, a browser state of a browser application executed on a user device, wherein the browser state comprises a request for a webpage; generating, by the computing hardware and based on the browser state, a consent request interface associated with the webpage by configuring a first control element configured to generate a first call to a consent rejection function on the consent request interface and a second control element configured to generate a second call to a consent acceptance function on the consent request interface; transmitting, by the computing hardware, an instruction to the browser application instructing (e.g., causing) the browser application to present the consent request interface on the user device; detecting, by the computing hardware, the first call; determining, by the computing hardware and based on the first call, that the first call was initiated by an automated consent rejection tool; and in response to determining that the first call was initiated by the automated consent rejection tool, preventing, by the computing hardware, execution of a consent rejection action associated with the consent rejection function.
In particular aspects, detecting the first call comprises incrementing a function call counter associated with the consent rejection function; and determining that the first call was initiated by the automated consent rejection tool comprises determining that the function call counter exceeds a threshold. In particular aspects, the threshold is a number of function calls or a rate of function calls. In particular aspects, determining that the first call was initiated by the automated consent rejection tool comprises detecting the first call before the browser application presents the consent request interface on the user device. In particular aspects, determining that the first call was initiated by the automated consent rejection tool comprises determining that data associated with the first call does not comprise a valid token. In particular aspects, the method may further include: detecting a third call to the consent rejection function; determining that the third call was not initiated by the automated consent rejection tool; and in response to determining that the third call was not initiated by the automated consent rejection tool, executing the consent rejection action associated with the consent rejection function. In particular aspects, determining that the third call was not initiated by the automated consent rejection tool comprises detecting the third call after the browser application presents the consent request interface on the user device.
A system, according to various aspects, may include: a non-transitory computer-readable medium storing instructions; and processing hardware communicatively coupled to the non-transitory computer-readable medium, wherein the processing hardware is configured to execute the instructions and thereby perform operations comprising: receiving a request to provide a webpage from a browser application executed on a user device; in response to receiving the request, generating a consent request interface associated with the webpage by configuring a first control element configured to generate a first call to a consent rejection function and a second control element configured to generate a second call to a consent acceptance function on the consent request interface; transmitting a first instruction to the browser application causing the browser application to present the consent request interface on the user device; detecting the first call; updating function call data for the consent rejection function based on the first call; determining that the first call was initiated by an automated consent rejection tool based on the function call data; in response to determining that the first call was initiated by the automated consent rejection tool, preventing execution of a consent rejection action associated with the consent rejection function; and transmitting a second instruction to the browser application instructing the browser application to present the consent request interface on the user device.
In particular aspects, the operations may also include: detecting a third call to the consent rejection function; in response to detecting the third call, generating a consent rejection confirmation interface by configuring a display element configured to present a consent rejection confirmation query and a user input element configured to accept user input associated with the consent rejection confirmation query on the consent rejection confirmation interface; and transmitting a third instruction to the browser application instructing the browser application to present the consent rejection confirmation interface on the user device. In particular aspects, the operations may also include: detecting the user input; and executing the consent rejection action based on the user input. In particular aspects, the operations may also include: detecting the user input; and transmitting a fourth instruction to the browser application instructing the browser application to present the consent request interface on the user device. In particular aspects, the operations may also include: detecting a third call to the consent rejection function; determining that a token associated with the third call corresponds to a valid consent rejection function token; and in response to determining that the token corresponds to the valid consent rejection function token, executing the consent rejection action. In particular aspects, the consent rejection action comprises storing an indication of a denial of all requests for consent. In particular aspects, the operations may also include: detecting a third call to an obfuscated consent rejection function; and in response to detecting the third call, executing a second consent rejection action associated with the obfuscated consent rejection function.
A non-transitory computer-readable medium, according to various aspects, may store computer-executable instructions that, when executed by processing hardware, configure the processing hardware to perform operations comprising: detecting browser data associated with a browser application executed on a user device, wherein the browser data comprises a request for a webpage; generating, based on the browser data, a consent request interface associated with the webpage by configuring a first control element configured to generate a first call to a consent rejection function and a second control element configured to generate a second call to a consent acceptance function on the consent request interface; transmitting a first instruction to the browser application instructing the browser application to present the consent request interface on the user device; detecting the first call; generating function call data associated with the consent rejection function based on the first call; determining that the first call was initiated by an automated consent rejection tool based on the function call data; in response to determining that the first call was initiated by the automated consent rejection tool, preventing execution of a consent rejection action associated with the consent rejection function; and transmitting a second instruction to the browser application instructing the browser application to present the consent request interface on the user device.
In particular aspects, generating the function call data for the consent rejection function comprises incrementing a function call counter associated with a plurality of functions; and the plurality of functions comprises the consent rejection function. In particular aspects, determining that the first call was initiated by the automated consent rejection tool comprises determining that the function call counter exceeds a threshold number of calls to the plurality of functions. In particular aspects, the threshold number of calls comprises a threshold number of calls to the plurality of functions during a single loading of the webpage. In particular aspects, generating the function call data comprises determining a time of detection of the first call; and determining that the first call was initiated by the automated consent rejection tool comprises determining that the first call was detected before the browser application presented the consent request interface on the user device based on the time of detection of the first call. In particular aspects, the operations may also include: detecting a third call to the consent rejection function; in response to detecting the third call, generating a consent rejection confirmation interface by configuring a display element configured to present a consent rejection confirmation query and a user input element configured to accept user input associated with the consent rejection confirmation query on the consent rejection confirmation interface; transmitting a third instruction to the browser application instructing the browser application to present the consent rejection confirmation interface on the user device; detecting second browser data associated with the browser application, wherein the second browser data comprises the user input; and executing the consent rejection action based on the user input.
Various aspects of a system and method for automatically redacting unstructured data from a data subject access request are described below. In the course of this description, reference will be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
Various aspects now will be described more fully hereinafter with reference to the accompanying drawings. It should be understood that the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
Detection and Prevention of Automated Consent Rejection Tools
The use of tracking tools (e.g., “cookies”) that collect information about a user's interactions with a website and/or webpage has steadily increased over time, as have the privacy laws and regulations applicable to the use of such tools. These laws and regulations may require that websites obtain consent from a user before using tracking tools to collect the user's personal data and/or other interaction information. With the increased use of tracking tools has come an increase in the use of automated consent rejection applications or tools. These tools are designed to block the presentation of an interface or other means of requesting tracking tool consent. The intent of such tools is to automatically deny consent to the use of tracking tools. However, without user interaction with a consent request interface or other consent request means, it may be unclear as to whether affirmation or denial of user consent was actually received.
Automated consent rejection tools may take many forms. The automated consent rejection tool includes program code executable by processing hardware to perform one or more operations, such as issue one or more calls to execute a method or function that rejects or denies a website's request to collect user data (e.g., personal data) and/or may simulate a click, virtually submit, and/or otherwise activate one or more of control elements to simulate a user clicking, submitting, or otherwise activating the one or more elements to deny or reject consent on behalf of the user. The program code for the automated consent rejection tool can be installed on a computing device of a user who is visiting a website. In one example, such an automated consent rejection tool may take the form of a browser extension (which may be referred to as a “plug-in” or an “add-in”) integrated into a browser application that automatically blocks a request for consent. A browser application can include a software tool for accessing content, software functions, or other features over the Internet. Examples of a browser application include, but are not limited to, a software application for accessing different websites (e.g., a CHROME® browser or a MICROSOFT EDGE® browser), an application installed on a computing device that is designed to access specific content providers (e.g., a social media application or a banking application for a specific bank), etc. These automated consent rejection extensions may issue one or more calls to execute a method or function that rejects or denies a website's request to collect user data (e.g., personal data). For example, an automated consent rejection extension may call a function that rejects all requests for consent (e.g., a “RejectAll( )” function or any similar function or method, may be referred to as a “reject all” method or function). By performing such a function call, the extension may automatically suppress a banner or prevent other means of requesting consent from being presented to a user.
An automated consent rejection extension may also, or instead, scan the text of a webpage and/or associated code (e.g., HTML code) for one or more elements (e.g., HTML elements) associated with denying or rejecting a request (e.g., all requests) for consent. In response to detecting such elements, the extension may simulate a click, virtually submit, and/or otherwise activate one or more of the detected elements to simulate a user clicking, submitting, or otherwise activating the one or more elements to deny or reject consent on behalf of the user. By performing these actions before the webpage has time to fully render the user interface on the screen, the extension may suppress a banner or prevent other means of requesting consent from being seen by the user at all.
In various aspects, a system for detecting an automated consent rejection tool may be configured to detect the use of technologies that automatically attempt to block the presentation of a consent request and/or the receipt of consent from a user. Such a system may be a consent management provider (CMP) system that obtains and manages consent data on behalf of an entity. The system, in response to detecting such a tool, may take steps to ensure that a request for consent is still presented to a user, despite the presence and/or execution of the automated consent rejection tool.
Generation and Use of Private Consent Rejection Methods and Functions
Automated consent rejection tools will often use a call to a public method or function configured on a webpage that rejects or denies all requests presented for consent, such as a banner, interface, or other visual request to approve the use of one or more tracking tools (e.g., cookies). A “public” method or function is a method or function that has a commonly used name for such functions and/or methods that reject requests for consent so that automated consent rejection tools are able to recognize such functions or methods more easily on a webpage. Alternatively, or in addition, automated consent rejection tools may scan code (e.g., HTML, code) associated with a webpage to identify text that may be associated with one or more elements for denying or rejecting a request for consent and then simulate and/or submit a click corresponding to such elements. In response to detecting the call of such a method or function and/or the simulation of a click of a reject/deny element (e.g., based on and/or in combination with various criteria), the system may reject the call or click and/or request user intervention in order to complete execution of the method or function.
In various aspects, in order to prevent an automated consent rejection tools from preemptively closing a request for consent, the system may configure a webpage with a private method or function that, when called, may deny (e.g., all) requests for consent (e.g., via a banner requesting consent to use cookies). Here, a “private” method or function is a method or function given a name that is not commonly used by functions and/or methods that reject requests for consent and are generally unrecognizable by automated consent rejection tools. Therefore, in particular aspects, the system may obfuscate the calls to such private methods and/or functions to form obfuscated consent rejection functions so that they do not have standardized names and/or are not publicly or commonly known. In such aspects, the system may label such functions and/or methods with names based on, or associated with, the particular domain at which they are to be used. For example, rather than using a common and/or public call name (e.g., “RejectAll( )”) for a function that rejects all requests for consent, the system may label such a “reject all” function configured on a first webpage in a first domain with a first particular label (e.g., “9d7fa9( )”) and a different particular name for a similar function configured on a second webpage in a second domain (e.g., “adskfjoi0( )”). By using such customized and/or private function/method calls, the system may prevent automated consent rejection tools from blocking banners and/or other requests for consent by ensuring that the names of the functions or methods for rejecting all requests for consent remain unknown to such automated tools and/or difficult to discover. In such aspects, these automated tools may have no way of determining the proper means to call the private (or obfuscated) function or method, and therefore, no way to easily and generally deny all requests for consent. Also, with various websites and/or webpages using different private or obfuscated names for such functions, a provider of automated tools for blocking consent requests will have much greater difficulty in calling such functions because it will be much more difficult to discover and maintain up-to-date knowledge of each particular private function name, rather than one or a handful of commonly used names for functions or methods that reject all requests for consent.
In particular aspects, the system may configure a webpage with one or more private “reject all” method/function calls and one or more public “reject all” method/function calls. In other aspects, the system may configure a webpage with only private “reject all” method/function calls or public “reject all” method/function calls. In various aspects, the system may also, or instead, configure a webpage with any combination of any number of public and/or private “accept all” functions or methods that accept or provide consent to all requests for consent.
In aspects that include the use of a public “reject all” method or function call (e.g., “RejectAll( )”), for example, in a webpage that is also configured with a private “reject all” method or function call, the system may configure the code associated with the public method of function call to perform no functions or no function related to rejecting consent. For example, the system may configure such a method or function to be empty, return without taking any consent rejection actions, return null, and/or perform other actions that do not reject consent. A consent rejection action includes program code executable by processing hardware to perform one or more operations, such as recording the consent rejection and/or blocking the use of a tracking tool used on a website. For example, a consent rejection action may involve recording the consent rejection in some type of repository for documentation purposes. In addition, a consent rejection action may involve blocking the use of some type of tracking tool such as a cookie. The program code for a consent rejection action can be installed on a server within a CMP system or on a computing device being used by the user who is visiting the website.
In particular aspects, a public “reject all” method or function may be configured to perform consent rejection actions, but those actions may differ from those performed by an obfuscated “reject all” method or function. In this way, the system may be able to detect and track the issuer of calls to such methods or functions. For example, the system may determine and/or record that an internal system issued a call to the obfuscated “reject all” method or function by virtue of the call being made to the obfuscated “reject all” method or function, whereas the system may determine and/or record that an external system issued a call to the public “reject all” method or function by virtue of the call being made to the “reject all” method or function that is available and/or known outside of internal systems.
In various aspects that employ one or more private function or method calls that reject all requests for consent, the system may “seed” (e.g., insert, include) the values or labels for such calls into one or more scripts and/or code associated with a website and/or webpage so that these values would be known to the system, but difficult or impossible for a third party (e.g., a provider of automated tools for blocking consent requests) to guess or discover. In this way, the system may ensure that such private function or method calls are available to it without making such calls public. In particular aspects, the system may generate a name for such a function or method randomly, based at least in part on website-related and/or webpage-related information (e.g., domain, URL, etc.), based at least in part on any other information, and/or based at least in part on any combination thereof.
Detection and Blocking of Automated Consent Rejection Tools
In various aspects, the system may be configured to also, or instead, enable the use of one or more public methods or functions to deny or reject all requests for consent (e.g., a public “reject all” method or function), but may analyze the manner in which a call to such a function or method is made to determine if the particular function/method is being called by an automated consent rejection tool.
In particular aspects, the system may analyze the timing of a call to a particular function or method to deny or reject a request for consent (e.g., a call to a public “reject all” method or function) to determine whether the function call is likely to have been made by an automated tool. The system may determine whether such a function call was made before or after the presentation of the request for consent has been rendered to the user. If the function call was made before the webpage was able to render the request for consent (e.g., via a consent request interface) to the user, the system may determine that such a call was made by an automated tool because the call was made before a human user reasonably would have been able (e.g., would have been physically able) to see and respond to the request such as, for example, by clicking on a control element configured in the consent request interface that would have generated a call to the consent rejection function or method. Here, for example, the consent request interface may have been generated to include a first control element, such as a button, dropdown menu, checkbox, etc., that can be activated (e.g., click on) to generate the call to the consent rejection function or method. In addition, the consent request interface may have been generated to include a second control element, such as a button, dropdown menu, checkbox, etc., that can be activated (e.g., click on) to generate a call to a consent acceptance function or method. A consent acceptance function includes program code executable by processing hardware to perform one or more operations, such as submitting and/or recording a consent acceptance from the user who is visiting the website to allow for performance of one or more actions on the web site such as the use of a tracking tool to collect data (e.g., personal data) on the user. The program code for a consent acceptance function can be installed on a server within a CMP system or on a computing device being used by the user who is visiting the web site.
If the system determines that the function call was made before the consent request interface was presented to a user or otherwise rendered, the system may take steps in response to ensure that a request for consent is presented to the user. For example, if the system determines that the function call was made before the consent request interface was presented, the system may not process such a call as a valid consent rejection or may otherwise perform no consent rejection actions despite the function call. The system may also, or instead, continue to take steps to generate, present, and/or render the consent request interface (e.g., on a web browser application executing on a user device). In some aspects, in response to determining that the function call was made after the consent request interface was rendered, but faster than a human reasonably could have responded to seeing the consent request interface (e.g., the function call was made within 10 milliseconds—or another predetermined period of time—of the consent request interface being rendered), the system may not process such a call as a valid consent rejection or may otherwise perform no consent rejection actions despite the function call.
If the system determines that the call was made some time after the webpage was able to generate, present, and/or render the consent request interface (e.g., on a web browser application executing on a user device), the system may determine that such a call could have been the result of human user interaction in response to the request for consent (e.g., by a human user clicking on a control on the consent request interface that activated a call to the function or method to reject consent). In this case, the system may process the consent rejection normally or otherwise process the call to the consent rejection function as a valid call.
In various aspects, the system may analyze the number and/or frequency (e.g., rate) of multiple calls to one or more consent rejection functions or methods to deny or reject (e.g., all) requests for consent to determine whether the calls were likely to have been made by an automated tool. For example, by analyzing the number of calls to a rejection function, the number of calls to the rejection function in a certain period of time (frequency/rate), or the number of calls to the rejection function during a particular activity (e.g., a single loading of the webpage), the system may determine whether the number or rate of function calls corresponds to human activity or to the actions of an automated tool. If many calls to a consent rejection method or function were made (e.g., 30-40 calls), or many calls were made in a short amount of time (e.g., 30-40 times or more in a very brief time period, such as during the loading of a single webpage), the system may determine that such multiple calls were made by an automated tool. In response, the system may not process such calls as valid consent rejections or otherwise may perform no consent rejection actions despite the multiple calls to the consent rejection function. In such cases, the system may continue to take steps to ensure that a request for consent is presented to the user by, for example, generating, presenting, and/or rendering the consent request interface (e.g., on a web browser application executing on a user device) despite the consent rejection function calls.
If a call to a consent rejection method or function is made only once or multiple calls are made a relatively few times (e.g., 1-5 times, less than 10 times, etc.), the system may determine that calls were made by a human user (e.g., clicking a control on a consent request interface once or a few times). In this case, the system may process the consent rejection normally or otherwise process the call to the consent rejection function as a valid function call.
In various aspects, the system may analyze information provided or associated with a call to a function or method to deny or reject (e.g., all) requests for consent to determine whether the call is likely to have been made by an automated tool. For example, the system may integrate a requirement that a signed token be “passed” in (e.g., provided within or associated with) the call to a public “reject all” function on a particular website (e.g., “RejectAll(signed_key)”). This token may be generated and passed to the system when the function call is generated using the controls on a consent request interface that may be manipulated by a user. However, an automated tool that generates function calls automatically and sends them directly to the system (e.g., without user interaction with the consent request interface) may not have knowledge or means of generating and passing such a token. Because the automated tool cannot generate an appropriate token, the function calls generated by such a tool may be detected by the system by virtue of the absence of such a token in the tool's function calls.
In such aspects, when a function is called via a webpage (e.g., in response to manual human user interaction with a consent request interface), the system may evaluate the token generated by the web page in response to the user interaction and transmitted in the function call to the system to determine whether it corresponds to an appropriate webpage-generated token (e.g., a token associated with an owner, operator, or other authorized entity associated with the webpage or associated website, etc.) or not. If not, the system may determine that the function call was made by an automated tool and take steps to ensure that a request for consent is still presented to the user and may not perform consent rejection actions. In this way, the system may distinguish between a function call generated by a user directly activating a control element on the webpage and a function call automatically made and transmitted directly to the system by a browser extension or other automated consent rejection tool. In determining whether a call is likely to have been made by an automated tool, the system may analyze any information that may be passed by a call to a function or method, or any information associated with a function or method.
In various aspects, the system may take additional steps to determine whether a call to a consent rejection function was made by, or otherwise originated with, a human user. For example, if the system determines, using any one or more of the methods set forth herein, that one or more calls to a consent rejection method or function have likely been made by an automated consent rejection tool, the system may be configured to take one or more additional steps to ensure that the denial of the request for consent was not received from a human user. Alternatively, or in addition, if the system determines, using any one or more of the methods set forth herein, that one or more calls to a consent rejection method or function have likely been made by a human user and not by an automated tool, the system may be configured to take one or more additional steps to ensure that the denial of the request for consent was not received from an automated consent rejection tool. A consent rejection function includes program code executable by processing hardware to perform one or more operations, such as submitting and/or recording a consent rejection from the user who is visiting the website and has declined performance of one or more activities on the website, such as the use of a tracking tool to collect data (e.g., personal data) on the user, and/or taking steps to block performance of the one or more activities. The program code for a consent rejection function can be installed on a server within a CMP system or on a computing device being used by the user who is visiting the website.
In various aspects, in order to determine whether a call to a consent rejection function originated with a human user, the system may, in response to a detection of such a function call, prevent or suspend the execution of the call and present a consent rejection confirmation interface that requests further user input regarding consent despite the function call. In particular aspects, the system may suspend the execution of the call and present an interface to the user requesting manual confirmation that a human user is interacting with the system by providing a specific type of input, such as typing in characters recognized in an image (e.g., text “CAPTCHA”) and/or selecting one or more images that include a particular item from a group of images (e.g., image “CAPTCHA”). If the user provides the appropriate input, the system may determine to confirm that the user is a human user and may continue or allow the execution of the consent rejection function call. If the user fails to provide the appropriate input to the consent rejection confirmation interface, the system may cancel the execution of the consent rejection function. In such cases, the system may also continue to attempt to obtain consent from a human user.
Example Computing Environment
Referring now to the figures,
The CMP system 100 or a computing system that provides a website that can execute program code for providing one or more interfaces, such as a consent request interface or a consent rejection confirmation interface. Each of these interfaces includes program code executable by processing hardware to perform one or more functions. These functions can include detecting events generated by an input device that is operated by a user (e.g., mouse clicks, dragging inputs, taps, pinches, applying pressure with a stylus, etc.). Additionally or alternatively, these functions can include implementing commands indicated by the user-generated events.
In one example, a consent request interface could include one or more sets of program code that control the operation of a display device (e.g., by rendering one or more interfaces on the display device that solicit input indicative of a consent to a transaction) and obtain data for transmission to a remote computing system (e.g., by receiving the input indicative of a consent to a transaction). For instance, one or more interface elements (e.g., menus, pop-up dialogs, etc.) within the consent request interface could allow an input device to provide input indicating consent to a transaction. One or more event listeners for the consent request interface can detect events, such as data entry in certain fields or menu selections, that are used to indicate consent. These events could include detecting interaction with the consent request interface itself (e.g., clicking a displayed button) or detecting interaction with other content in which the consent request interface is displayed (e.g., clicking on features provided by a website after the consent request interface notifies a user that continued interaction indicates consent). The program code for the consent request interface could include or communicate with other program code for transmitting consent data (e.g., the input or control data derived from the input) to the CMP system 100 or a computing system that provides a website.
Additionally or alternatively, a consent rejection confirmation interface could include one or more sets of program code that control the operation of a display device (e.g., by rendering one or more interfaces on the display device that solicit input confirming rejection of consent to a transaction) and obtain data for transmission to a remote computing system (e.g., by receiving the input confirming the rejection of consent). For instance, one or more interface elements (e.g., menus, pop-up dialogs, etc.) within the consent rejection confirmation interface could allow an input device to provide input confirming that consent to a transaction has been rejected. One or more event listeners for the consent rejection confirmation interface can detect events, such as data entry in certain fields or menu selections, that are used to provide this input. These events could include detecting interaction with the consent rejection confirmation interface itself (e.g., clicking a displayed button) or detecting interaction with other content in which the consent rejection confirmation interface is displayed (e.g., clicking on features provided by a website after the consent rejection confirmation interface notifies a user that continued interaction indicates consent). The program code for the consent rejection confirmation interface could include or communicate with other program code for transmitting consent data (e.g., the input or control data derived from the input) to the CMP system 100 or a computing system that provides a website.
Accordingly, in various aspects, the CMP system 100 receiving the call to the “reject all” method or function from the user computing device 160 may comprise one or more servers executing a number of different modules to perform the functionality as just described. Specifically, in particular aspects, the CMP system 100 includes a Private “Reject All” Consent Function Module 110. The Private “Reject All” Consent Function Module 110 is configured in various aspects to determine whether to perform the functionality associated with the call or not. For instance, in some aspects, the Private “Reject All” Consent Function Module 110 determines whether the call has been made to an obfuscated “reject all” method or function or a public “reject all” method or function and performs corresponding actions accordingly. For example, the Private “Reject All” Consent Function Module 110 may reject all consent for the user (e.g., process the consent rejection for the user) if the call has been made to an obfuscated “reject all” function and perform no consent rejection action for the user (e.g., not process the consent rejection for the user) if the call has been made to a public “reject all” function.
In addition, in particular aspects, the CMP system 100 includes a Consent Rejection Function Call Prevention Module 120. The Consent Rejection Function Call Prevention Module 120 is configured to in some aspects to determine whether the call has been received before a consent interface can be rendered and displayed to the user. If this is the case, then the Consent Rejection Function Call Prevention Module 120 does not process the consent rejection for the user. In addition, the Consent Rejection Function Call Prevention Module 120 is configured in some aspects to determine whether the call results in a number of calls being made to the method or function that exceeds a threshold. If this is the case, then the Consent Rejection Function Call Prevention Module 120 also does not process the consent rejection for the user.
Further, in particular aspects, the CMP system 100 includes a Tokenized Consent Rejection Function Module 130. The Tokenized Consent Rejection Function Module 130 is configured in various aspects to determine whether the call received from the user device 160 is associated with a valid token. If so, then the call is considered to have originated from the user and the Tokenized Consent Rejection Function Module 130 processes the consent rejection accordingly. If not, then the Tokenized Consent Rejection Function Module 130 does not process the consent rejection for the user.
Finally, in particular aspects, the CMP system 100 includes a Consent Rejection Function Confirmation Module 140. The Consent Rejection Function Confirmation Module 140 is configured to determine whether the call has likely originated from the user (e.g., a human) or an automated tool. If the Consent Rejection Function Confirmation Module 140 determines the call has not likely originated from the user, then the Consent Rejection Function Confirmation Module 140 presents a consent rejection confirmation interface to the user to confirm the consent rejection. If the user does confirm the consent rejection through the consent rejection confirmation interface, then the Consent Rejection Function Confirmation Module 140 processes the consent rejection accordingly. If not, then the Consent Rejection Function Confirmation Module 140 does not process the consent rejection for the user. Further detail is now provided on the configuration and functionality of the different modules 110, 120, 130, 140 according to various aspects of the disclosure.
Private “Reject All” Consent Function Process
At Step 220, the system may generate the webpage code for a webpage and may include or integrate into such code the obfuscated “reject all” function generated at Step 210. In particular aspects, the code generated for the webpage may also include a public “reject all” function. As noted herein, this public “reject all” function may perform no consent rejection actions or different consent rejection actions from those performed by the obfuscated “reject all” function generated at Step 210. In other particular aspects, the code generated for the webpage may not include a public “reject all” function.
At Step 230, the system may receive a request or instruction to generate and/or present the webpage and may, in response, generate and transmit one or more instructions to present the webpage (e.g., on a web browser application executing on a user device).
At Step 240, the system may determine whether a call to the obfuscated “reject all” function has been detected. If so, at Step 250, the system may perform the consent rejections functions associated with the obfuscated “reject all” function.
At Step 260, in those aspects that include a public “reject all” function associated with the webpage, the system may determine whether a call to the public “reject all” function has been detected. If so, at Step 270, the system may perform the consent rejections functions associated with the public “reject all” function (e.g., different functions than those associated with the obfuscated “reject all” function or no consent reject functions).
Automated Consent Rejection Function Call Prevention Process
At Step 320, the system may detect a call to a particular consent rejection function configured on the webpage. In response to detecting this function call, the system may update function call data for the particular consent rejection function by incrementing a function call counter associated with the particular consent rejection function (and may first initialize such a counter if the function call is the first call detected to this particular consent rejection function). The function call counter includes program code executable by processing hardware to perform one or more operations, such as indicate a number of times in which a call had been made to the particular consent rejection function since the webpage was generated and presented to a user. The program code for the automated consent rejection tool can be installed on a server within the system. The system can access and use the function call counter by accessing memory in which the function call counter is being stored (e.g., memory of a server used in the system) and increment the counter accordingly. In particular aspects, the system may generate, initialize, and maintain a function call counter for each particular consent rejection function configured on a webpage that tracks the number of times the particular consent rejection function has been called since the webpage was generated and presented to a user. Alternatively, or in addition, a function call counter for a particular consent rejection function may track the number of times the particular consent rejection function has been called in a particular time period and/or during a particular activity, such as a single loading of the webpage.
Alternatively, or in addition, the system may generate, initialize, and maintain a function call counter for all, or a subset, of the consent rejection functions configured on a webpage. In such aspects, the system may track the number of calls to one or more of various consent rejection functions configured on a webpage using a single counter that tracks the total number of calls to the functions associated with the counter (as opposed to the number of calls to each particular consent rejection function). Such a function call counter may track the number of times the any of the consent rejection functions associated with the counter have been called since the webpage was generated and presented to a user. Alternatively, or in addition, a function call counter for one or more various consent rejection functions may track the number of times the any one of the associated consent rejection functions have been called in a particular time period and/or during a particular activity, such as a single loading of the webpage. Still further, the system may track the number of calls to one or more various consent rejection functions across multiple webpages within a website, in a domain, or in a subdomain.
At Step 330, the system may determine whether the call to the consent rejection function detected at Step 320 was received by the system before the consent interface that allows a human user to provide input that would generate a call to that particular consent rejection function has been rendered on a user device. In particular aspects, this particular step may involve the system updating function call data for the consent rejection function by determining a time of detection of the call to the consent rejection function and using the time of detection in determining whether the call was received before the consent interface has been rendered on the user device. If the function call was detected before the associated consent interface was fully rendered, the system may determine that the call must have been made by an automated tool because the interface that allows a user to provide input that would generate such a function call was not available to the user. The system also may determine that the call must have been made by an automated tool because the function call was made after the consent request interface was rendered but before the user reasonably could have responded (e.g., a response in less than 10 milliseconds). However, if the function call was detected after the consent interface was rendered, the system may determine that the function call may have been the result of human user interaction and may therefore process the consent rejection normally.
If the interface providing a means for a human user to generate the detected function call was not rendered before detecting the function call, the system may, at Step 340, not process the function call as a valid consent rejection and/or may not perform the consent rejection actions or activities associated with the function call. The system may also, at Step 340, continue to take actions to ensure that the consent interface is presented to a user to obtain consent preferences. In this case, the system may return to Step 320 for subsequent function call detection. If, at Step 330, the system determines that the function call was detected after a rendering of the associated consent interface on a user device, the system may then move to Step 350 to determine whether the number of calls to that particular function exceeds a threshold or rate of function calls that may indicate the use of an automated tool. Alternatively, the system may, at Step 360, process the consent rejection normally and/or perform the actions and/or activities associated with the function call.
At Step 350, the system may determine whether the number of calls to a particular consent rejection function or a set of consent rejection functions associated with a particular function call counter exceeds a threshold. Depending on the aspect, the threshold may be manually or automatically set. For instance, in particular aspects, the threshold may be set by an individual through an interface provided by the system. In other aspects, the threshold may be set through an automated process such as the system automatically setting the threshold based on a history of automated tools submitting multiple calls to a consent rejection function. For example, in some aspects, the system may be configured to make use of a machine learning model that has been trained on a history of automated tools submitting multiple calls to generate a threshold.
Accordingly, the system may be configured to determine that any number of calls to a particular consent rejection function or a set of consent rejection functions greater than a predetermined threshold value (e.g., 25, 30, 50, etc.) indicates that the calls are likely being made by an automated tool. Alternatively, or in addition, the threshold may be a rate threshold indicating a number of calls in a particular time period or during a particular activity. For example, the system may be configured to determine that a rate of function calls (e.g., a number of calls to a particular consent rejection function or a set of consent rejection functions (e.g., 25, 30, 50, etc.) within a particular time period (e.g., 30 seconds, one minute, five minutes, etc.)) greater than a predetermined rate threshold value (e.g., one call per second, 100 calls per minute, 250 calls within five minutes, etc.) indicates that the calls are likely being made by an automated tool. In another example, the system may be configured to determine that a number of calls to a particular consent rejection function or a set of consent rejection functions greater than a predetermined threshold value (e.g., 25, 30, 50, etc.) during a single loading of the webpage indicates that the calls are likely being made by an automated tool.
If, at Step 350, the system determines that the number of calls to a particular consent rejection function or a set of consent rejection functions exceeds the threshold number of calls or rate, the system may, at Step 340, not process the function calls as valid consent rejections and/or may not perform the consent rejection actions or activities associated with the function call, continuing to take actions to ensure that the consent interface is presented to a user and/or consent preferences are otherwise properly obtained. If, at Step 350, the system determines that the number of calls to a particular consent rejection function or a set of consent rejection functions does not exceed the threshold number of calls or rate, the system may move to Step 360 to process the consent rejection normally and/or perform the actions and/or activities associated with the function call. If, at Step 240, the system does not process the function calls as valid consent rejections and/or does not perform the consent rejection actions or activities associated with the function call, the system may also return to Step 220 to analyze subsequent calls to one or more consent rejection function calls.
Tokenized Consent Rejection Function Process
At Step 420, the system may detect a call to a particular consent rejection function configured on the webpage. In response to detecting this function call, the system may analyze the information included with the function call and/or associated with the function call to identify one or more tokens. In particular aspects, the webpage may generate and/or include such a token when a user activates a control element that generates a call to a consent rejection function on a consent request interface. Alternatively, or in addition, the system may include information in a function call (e.g., a pointer) that indicates such a token.
At Step 430, the system may determine whether the token associated with the detected function call is a valid token (e.g., that it is associated with the webpage and/or a consent request interface). If the token is not valid (or not present), the system may determine that the call must have been made by an unauthorized system or script (e.g., an automated tool, a browser extension, etc.) because the call does not include a token that would have been included if the call was made by the consent request interface associated with the webpage. However, if the token is valid, the system may determine that the function call must have been made as a result of human user interaction with the consent request interface associated with the webpage and may therefore process the consent rejection normally.
If the token is determined to be invalid at Step 430, the system, at Step 440, may not process the function call as a valid consent rejection and/or may not perform the consent rejection actions or activities associated with the function call. The system may also, at Step 440, continue to take actions to ensure that the consent request interface is presented to a user to obtain consent preferences. In this case, the system may return to Step 420 to detect any subsequent consent rejection function calls.
If, at Step 430, the system determines that the token is valid, the system may then move to Step 450 to process the consent rejection normally and/or perform the actions and/or activities associated with the detected function call. The system may also continue to detect and evaluate subsequent consent rejection function calls at Step 420.
Consent Rejection Function Confirmation Process
At Step 520, the system may be configured to detect a call to a consent rejection function and determine the likelihood that the call has been made by an automated tool (e.g., an automated consent rejection tool). In making this determination, the system may use any effective means, including the methods described herein (e.g., number, rate, and or frequency of function calls, presence of valid token in the function call, etc.). Based upon this determination of the likelihood of the function call originating from an automated tool, the system may determine whether or not to present a consent rejection confirmation interface requesting further user input to confirm that the consent rejection function call originated with a human user.
For example, if the system determines (e.g., using one or more methods described herein) that it is highly (e.g., overwhelmingly) likely that the function call originated with a human user, the system may determine that no additional confirmation of a human user is necessary. Alternatively, the system may be configured to request additional confirmation in the event that it is highly likely that the function call originated with a human user to be certain that consent preferences were properly received. Similarly, if the system determines (e.g., using one or more methods described herein) that it is highly likely that the function call originated with an automated tool, the system may determine that no additional confirmation of a human user is necessary since there is little chance that there was a human user involved. Alternatively, the system may be configured to request additional confirmation in the event that it is highly likely that the function call originated with an automated tool just to be certain that consent preferences from a human user are not ignored.
In various aspects, if the system is unable to make a determination of the likelihood of an automated tool making a function call, or if the determined likelihood is not definite, the system may determine to present a consent rejection confirmation interface to obtain additional information for determining the origin of the function call. Alternatively, or in addition, the system may be configured to present a consent rejection confirmation interface for each consent rejection function call to ensure that valid human user input is received for all activities initiated by such a function call.
At Step 530, the system may determine whether to generate and transmit an instruction to present a consent rejection confirmation interface (e.g., on a web browser application executing on a user device) based on the likelihood of the function call originating from an automated tool. If the system determines to present the consent rejection confirmation interface, at Step 540 the system generates and transmits an instruction to a user device to present the consent rejection confirmation interface (e.g., on a web browser application executing on a user device). Accordingly, in some aspects, the consent rejection confirmation may be generated to include a display element to present a consent rejection confirmation query and a user input element associated with the consent rejection confirmation query. For example, the user input element may be one or more control elements such as buttons, dropdown menus, checkboxes that allow for a user to confirm or decline the consent rejection. In another example, the user input element may be one or more CAPTCHA challenges. Further at Step 440, the system detects user input (or a lack thereof) in the consent rejection confirmation interface (e.g., from a browser state or browser data associated with a web browser application executing on a user device).
If, at Step 530, the system determines not to generate and present a consent rejection confirmation interface, the system, at Step 560, may not process the function call as a valid consent rejection and/or may not perform the consent rejection actions or activities associated with the function call. The system may also continue to take actions to ensure that a consent request interface is presented to a user to obtain consent preferences (e.g., by returning to Step 520 to detect any subsequent consent rejection function calls). For example, the system may determine that it is highly likely that the function originated with an automated tool, and therefore there is no reason to pursue further confirmation.
Alternatively, if, at Step 530, the system determines the call likely did originate from a human rather than an automated tool, the system, at Step 570, may process the consent rejection normally and/or perform the actions and/or activities associated with the detected function call. The system may also continue to detect and evaluate subsequent consent rejection function calls (e.g., by returning to Step 520). For example, the system may determine that it is highly likely that the function originated with a human user and therefore there is no reason to pursue further confirmation.
If the system has determined to present a consent confirmation interface at Step 530 and has detected input at that interface (or a lack thereof) at Step 540, the system may, at Step 550, determine whether the consent rejection confirmation interface input is indicative of a human user. For example, system may determine whether the user input element, such as a button or a checkbox, associated with the consent rejection confirmation query has been activated (clicked and/or selected) confirming the consent rejection and thus, a human response. In another example, the consent rejection confirmation interface may request input regarding one or more CAPTCHA challenges. If the system determines that the detected input indicates a human response to the one or more CAPTCHA challenges, the system may determine that such input is indicative of interaction with a human user. Alternatively, if the system determines that the input does not correspond to input that would typically be associated with a human user, or if the system detects no input received via the consent rejection confirmation interface, the system may determine that there is no human user interacting with the consent rejection confirmation interface (and therefore the function call likely originated from an automated tool).
If the system determines that the consent rejection confirmation interface input is indicative of a human user, the system may, at Step 570, process the consent rejection normally and/or perform the actions and/or activities associated with the detected function call. The system may also continue to detect and evaluate subsequent consent rejection function calls (e.g., by returning to Step 520).
If the system determines that the consent rejection confirmation interface input is indicative of an automated tool, the system, at Step 560, may not process the function call as a valid consent rejection and/or may not perform the consent rejection actions or activities associated with the function call. The system may also continue to take actions to ensure that a consent request interface is presented to a user to obtain consent preferences (e.g., by returning to Step 520).
Technical Contributions of Various Aspects
An entity that handles (e.g., collects, receives, transmits, stores, processes, shares, and/or the like) sensitive and/or personal information associated with particular individuals (e.g., personally identifiable information (PII) data, sensitive data, personal data, etc.) may request consent from such individuals before handling their information. For various reasons, such individuals may deny consent for the entity to process their information. As an increasing number of entities attempt to comply with consent requirements associated with various laws and regulations around the world, more and more websites and webpages require an indication of consent preferences (e.g., allow or deny collection of personal data, etc.) from a user before allowing the user to access the page or site. Many users find these requests for consent to be annoying and therefore have installed tools that automatically deny consent to a webpage or website without requiring that an actual human user actively review and respond to the request for consent presented by the webpage or website. This may be a problem for entities because such automated consent rejection tools may perform function calls and other activities related to denying consent at a rate and frequency much greater than that possible of a human user, thereby wasting consent processing resources and other system resources. This may also be an issue for entities that are required to obtain consent from users because consent feedback from automated tools may not satisfy the legal requirements for obtaining consent preferences. In conventional systems, such automated consent rejection tools are difficult or impossible to distinguish from human users and are therefore allowed to operate unchecked, resulting in a waste of resources and decreased consent processing efficiency.
Accordingly, various aspects of the present disclosure overcome many of the technical challenges associated with efficiently interacting with automated consent rejection tools in a networked computer environment. More particularly, various aspects of the present disclosure include implementing a specific technical solution of determining whether calls to consent rejection functions originate with a human user or an automated tool based on various attributes of the function calls. The various aspects of the disclosure are directed to a computational framework configured for determining whether a function call originated with an automated tool based on whether the function call was made to a public consent rejection function, or a private (obfuscated) consent rejection function configured on a webpage. If the call was not made to the private consent rejection function, the system may determine that it originated with an automated tool and may not process the consent rejection associated with the function, essentially ignoring it, and saving system resources while continuing to attempt to obtain consent preferences from a human user. Alternatively, or in addition, the computational framework may be configured for determining whether a function call originated with an automated tool based on a number of times the function call was made or the timing of the function call. If the function call was received before the interface requesting consent was rendered to the user or before a particular time thereafter, the system may determine that the call must have been made by an automated tool. If the function call is one of a large number of function calls (e.g., total, within a particular time period, during a single loading of the webpage etc.), the system may determine that the call was likely made by an automated tool. The framework may also, or instead, require a token known to the system to be passed with a function call and reject as related to an automated tool any function calls lacking the token. The framework may also, or instead, require an additional confirmation of the consent rejection by presenting a consent rejection confirmation interface that requires appropriate human user input (e.g., “CAPTCHA”) before processing a consent rejection. By automatically ensuring that a consent rejection actually is received from a human user and preventing the processing of consent rejections received from automated tools, the various aspects represent a significant improvement to existing and conventional processes for obtaining and processing consent preferences.
Accordingly, various aspects of the disclosure provided herein are more effective, efficient, accurate, and faster in determining whether and how to process consent rejection function calls received from remote devices in a networked computer environment. The various aspects of the disclosure provided herein provide improved means of increasing efficiency of computing environments that use consent data to control delivery of content or functionality via the Internet. For instance, features described herein can block consent rejections from automated tools from being processed, ensure that consent rejections are received from actual human users rather than from automated tools, or some combination thereof. The features described herein thereby improve the operation of software tools for consent management that may be used to, for example, process many consent rejection function calls received from many “users” that often may be automated tools. In facilitating the efficient processing of consent rejection function calls, the various aspects of the present disclosure make major technical contributions to improving the computational efficiency and reliability of various privacy management systems and procedures for obtaining and processing consent. In turn, this translates to more computationally efficient software systems.
Example Technical Platforms
As will be appreciated by one skilled in the relevant field, data processing systems and methods for detecting tools for the automated blocking of consent requests and taking responsive action, according to various aspects described herein, may be, for example, embodied as a computer system, a method, or a computer program product. Accordingly, various aspects may take the form of an entirely hardware aspect, an entirely software aspect, or an aspect combining software and hardware aspects. Furthermore, particular aspects may take the form of a computer program product stored on a computer-readable storage medium having computer-readable instructions (e.g., software) embodied in the storage medium. Various aspects may take the form of web, mobile, and/or wearable computer-implemented computer software. Any suitable computer-readable storage medium may be utilized including, for example, hard disks, compact disks, DVDs, optical storage devices, and/or magnetic storage devices.
It should be understood that each step described herein as being executed by a system or systems (and/or other steps described herein), and any combinations of such steps, may be implemented by a computer executing computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus to create means for implementing the various steps described herein.
These computer program instructions may also be stored in a computer-readable memory that may direct a computer or other programmable data processing apparatus to function in a particular manner such that the instructions stored in the computer-readable memory produce an article of manufacture that is configured for implementing the function specified in the flowchart step or steps. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions that execute on the computer or other programmable apparatus provide steps for implementing the functions specified in the flowchart step or steps.
Accordingly, steps of the block diagrams and flowchart illustrations support combinations of mechanisms for performing the specified functions, combinations of steps for performing the specified functions, and program instructions for performing the specified functions. It should also be understood that each step, and combinations of such steps, may be implemented by special-purpose hardware-based computer systems that perform the specified functions or steps, or combinations of special purpose hardware and other hardware executing appropriate computer instructions.
Example System Architecture
The one or more computer networks 150 may include any of a variety of types of wired and/or wireless computer networks and any combination therefore, such as the Internet, a private intranet, a public switched telephone network (PSTN), or any other type of network. The communication link between the server 620, one or more user computing devices 640, 650, 660, 670, 680, 690, and/or storage device 630 may be, for example, implemented via a Local Area Network (LAN), a Wide Area Network (WAN), and/or via the Internet.
Example Computing Hardware Architecture
The computing hardware 700 may include a processor 702, a main memory 704 (e.g., read-only memory (ROM), flash memory, dynamic random-access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.), a static memory 706 (e.g., flash memory, static random access memory (SRAM), etc.), and/or a data storage device 718, which communicate with each other via a bus 732.
The processor 702 represents one or more general-purpose processing devices such as a microprocessor, a central processing unit, or the like. More particularly, the processor 702 may be a complex instruction set computing (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, or a processor or processors implementing other instruction sets and/or any combination of instruction sets. The processor 702 may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. The processor 702 may be configured to execute processing logic 726 for performing various operations and steps discussed herein.
The computing hardware 700 may further include a network interface device 708. The computing hardware 700 also may include a video display unit 710 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device 712 (e.g., a keyboard), a cursor control device 714 (e.g., a mouse), and/or a signal generation device 716 (e.g., a speaker). The data storage device 718 may include a non-transitory computer-readable storage medium 730 (also known as a non-transitory computer-readable storage medium or a non-transitory computer-readable medium) on which may be stored one or more modules 722 (e.g., software, sets of instructions) embodying any one or more of the methodologies and/or functions described herein. For example, the one or more modules 722 may include the Private “Reject All” Consent Function Module 110, Consent Rejection Function Call Prevention Module 120, Tokenized Consent Rejection Function Module 130, and/or Consent Rejection Function Confirmation Module 140 as described herein. The modules 722 may also reside, completely or at least partially, within the main memory 704 and/or within the processor 702 during execution thereof by the computing hardware 700, the main memory 704 and the processor 702 also constituting computer-accessible storage media. The modules 722 may further be transmitted or received over a network 150 via the network interface device 708.
While the computer-readable storage medium 730 is shown in an example to be a single medium, the terms “computer-readable storage medium” and “machine-accessible storage medium” should be understood to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable storage medium” should also be understood to include any medium or media that is capable of storing, encoding, and/or carrying a set of instructions for execution by a computer and that cause a computer to perform any one or more of the methodologies of described herein. The term “computer-readable storage medium” should accordingly be understood to include, but not be limited to, solid-state memories, optical and magnetic media, etc.
Example of a System Platform
According to various aspects, the processes and logic flows described in this specification may be performed by a system (e.g., system 100) that includes, but is not limited to, one or more programmable processors (e.g., processor 702) executing one or more computer program modules to perform functions by operating on input data and generating output, thereby tying the process to a particular machine (e.g., a machine programmed to perform the processes described herein). This includes processors located in one or more of user computing devices (e.g., user computing devices 640, 650, 660, 670, 680, 690 of
Alternative System Environment
In various aspects, an alternative system environment may be used for detecting an automated consent rejection tool being used to automatically attempt to block the presentation of a consent request and/or the receipt of consent from a user according to various aspects. Instead of the functionality described herein with respect to the various modules 110, 120, 130, 140 being carried out in a consent management provider system 100 remote from the user computing device 160 rendering the webpage via a browser application, the functionality may be implemented as a script (e.g., JavaScript) to run on the webpage as the webpage is rendered. Accordingly, the script (or scripts) may be configured to include the functionality of the various modules 110, 120, 130, 140 described herein and operate in a similar manner in handling calls made to methods and/or functions used in rejecting consent. Therefore, instead of the call to a method and/or function being sent to the consent management provider system 100, the call is instead handled locally on the user computing device 160 through the script.
Advanced Processing in Various Aspects
In various aspects, the system uses advanced processing techniques to analyze function calls, determine the origins of a function call (e.g., human user or automated tool), determine whether to obtain confirmation interface consent, analyze input data that may indicate whether a human user is interacting with an interface, and/or implement any of the various aspects of the disclosed systems and methods. In particular aspects, the system may determine a type of input and/or a type of originator of a function call using advanced processing techniques that may include artificial intelligence, machine learning, neural networking, big data methods, natural language processing, contextual awareness, and/or continual learning (in any combination). In particular aspects, the system may evaluate interface input using any one or more of these advanced processing techniques and/or any combination thereof. In various aspects, the system may use any such advanced processing techniques to perform any of the processing (e.g., execute any of the modules) described herein to locate, identify, retrieve, modify, and/or perform any other functions related to consent, consent-related function calls, and obtaining consent from users, including generating interfaces and analyzing function calls.
In particular aspects, one or more neural networks may be used to implement any of the advanced processing techniques described herein. A neural network, according to various aspects, may include a plurality of nodes that mimic the operation of the human brain, a training mechanism that analyzes supplied information, and/or a personal data location engine for performing any one or more of the functions involving consent and function calls as described herein, including, but not limited to, generating consent request and consent rejection confirmation interfaces, and analyzing function calls and interface input. The neural network may also perform any of the processing (e.g., execute any of the modules) described herein to locate, identify, retrieve, modify, and/or perform any other functions related to consent and calls to functions or methods. In various aspects, each of the nodes may include one or more weighted input connections, one or more transfer functions that combine the inputs, and one or more output connections. In particular aspects, the neural network is a variational autoencoder (AE) neural network, a denoising AE neural network, any other suitable neural network, or any combination thereof.
Although aspects above are described in reference to various systems and methods for automated blocking of consent requests and taking responsive actions, it should be understood that various aspects of the system described above may be applicable to other types of systems, in general.
While this specification contains many specific aspect details, these should not be construed as limitations on the scope of any aspect or of what may be claimed, but rather as descriptions of features that may be specific to particular aspects of particular inventions. Certain features that are described in this specification in the context of separate aspects may also be implemented in combination in a single aspect. Conversely, various features that are described in the context of a single aspect may also be implemented in multiple aspects separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination may in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
Similarly, while operations are described in a particular order, this should not be understood as requiring that such operations be performed in the particular order described or in sequential order, or that all described operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the aspects described above should not be understood as requiring such separation in all aspects, and it should be understood that the described program components and systems may generally be integrated together in a single software product or packaged into multiple software products.
Many modifications and other aspects will come to mind to one skilled in the art to which this disclosure pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific aspects disclosed and that modifications and other aspects are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for the purposes of limitation.
This Applications claims the benefit of U.S. Provisional Patent Application Ser. No. 63/078,560, filed Sep. 15, 2020, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4536866 | Jerome et al. | Aug 1985 | A |
4574350 | Starr | Mar 1986 | A |
5193162 | Bordsen et al. | Mar 1993 | A |
5276735 | Boebert et al. | Jan 1994 | A |
5329447 | Leedom, Jr. | Jul 1994 | A |
5404299 | Tsurubayashi et al. | Apr 1995 | A |
5535393 | Reeve et al. | Jul 1996 | A |
5560005 | Hoover et al. | Sep 1996 | A |
5668986 | Nilsen et al. | Sep 1997 | A |
5710917 | Musa et al. | Jan 1998 | A |
5761529 | Raji | Jun 1998 | A |
5764906 | Edelstein et al. | Jun 1998 | A |
5872973 | Mitchell et al. | Feb 1999 | A |
5913041 | Ramanathan et al. | Jun 1999 | A |
5913214 | Madnick et al. | Jun 1999 | A |
6016394 | Walker | Jan 2000 | A |
6122627 | Carey et al. | Sep 2000 | A |
6148297 | Swor et al. | Nov 2000 | A |
6148342 | Ho | Nov 2000 | A |
6240416 | Immon et al. | May 2001 | B1 |
6243816 | Fang et al. | Jun 2001 | B1 |
6253203 | Oflaherty et al. | Jun 2001 | B1 |
6263335 | Paik et al. | Jul 2001 | B1 |
6272631 | Thomlinson et al. | Aug 2001 | B1 |
6275824 | Oflaherty et al. | Aug 2001 | B1 |
6282548 | Burner et al. | Aug 2001 | B1 |
6330562 | Boden et al. | Dec 2001 | B1 |
6363488 | Ginter et al. | Mar 2002 | B1 |
6374237 | Reese | Apr 2002 | B1 |
6374252 | Althoff et al. | Apr 2002 | B1 |
6408336 | Schneider et al. | Jun 2002 | B1 |
6427230 | Goiffon et al. | Jul 2002 | B1 |
6442688 | Moses et al. | Aug 2002 | B1 |
6446120 | Dantressangle | Sep 2002 | B1 |
6463488 | San Juan | Oct 2002 | B1 |
6484149 | Jammes et al. | Nov 2002 | B1 |
6484180 | Lyons et al. | Nov 2002 | B1 |
6516314 | Birkler et al. | Feb 2003 | B1 |
6516337 | Tripp et al. | Feb 2003 | B1 |
6519571 | Guheen et al. | Feb 2003 | B1 |
6574631 | Subramanian et al. | Jun 2003 | B1 |
6591272 | Williams | Jul 2003 | B1 |
6601233 | Underwood | Jul 2003 | B1 |
6606744 | Mikurak | Aug 2003 | B1 |
6611812 | Hurtado et al. | Aug 2003 | B2 |
6625602 | Meredith et al. | Sep 2003 | B1 |
6629081 | Cornelius et al. | Sep 2003 | B1 |
6633878 | Underwood | Oct 2003 | B1 |
6662192 | Rebane | Dec 2003 | B1 |
6662357 | Bowman-Amuah | Dec 2003 | B1 |
6697824 | Bowman-Amuah | Feb 2004 | B1 |
6699042 | Smith et al. | Mar 2004 | B2 |
6701314 | Conover et al. | Mar 2004 | B1 |
6721713 | Guheen et al. | Apr 2004 | B1 |
6725200 | Rost | Apr 2004 | B1 |
6732109 | Lindberg et al. | May 2004 | B2 |
6754665 | Futagami et al. | Jun 2004 | B1 |
6755344 | Mollett et al. | Jun 2004 | B1 |
6757685 | Raffaele et al. | Jun 2004 | B2 |
6757888 | Knutson et al. | Jun 2004 | B1 |
6816944 | Peng | Nov 2004 | B2 |
6826693 | Yoshida et al. | Nov 2004 | B1 |
6850252 | Hoffberg | Feb 2005 | B1 |
6886101 | Glazer et al. | Apr 2005 | B2 |
6901346 | Tracy et al. | May 2005 | B2 |
6904417 | Clayton et al. | Jun 2005 | B2 |
6909897 | Kikuchi | Jun 2005 | B2 |
6925443 | Baggett, Jr. et al. | Aug 2005 | B1 |
6938041 | Brandow et al. | Aug 2005 | B1 |
6956845 | Baker et al. | Oct 2005 | B2 |
6978270 | Carty et al. | Dec 2005 | B1 |
6980927 | Tracy et al. | Dec 2005 | B2 |
6980987 | Kaminer | Dec 2005 | B2 |
6983221 | Tracy et al. | Jan 2006 | B2 |
6985887 | Sunstein et al. | Jan 2006 | B1 |
6990454 | McIntosh | Jan 2006 | B2 |
6993448 | Tracy et al. | Jan 2006 | B2 |
6993495 | Smith, Jr. et al. | Jan 2006 | B2 |
6996807 | Vardi et al. | Feb 2006 | B1 |
7003560 | Mullen et al. | Feb 2006 | B1 |
7003662 | Genty et al. | Feb 2006 | B2 |
7013290 | Ananian | Mar 2006 | B2 |
7017105 | Flanagin et al. | Mar 2006 | B2 |
7023979 | Wu et al. | Apr 2006 | B1 |
7039594 | Gersting | May 2006 | B1 |
7039654 | Eder | May 2006 | B1 |
7047517 | Brown et al. | May 2006 | B1 |
7051036 | Rosnow et al. | May 2006 | B2 |
7051038 | Yeh et al. | May 2006 | B1 |
7058970 | Shaw | Jun 2006 | B2 |
7069427 | Adler et al. | Jun 2006 | B2 |
7076558 | Dunn | Jul 2006 | B1 |
7093200 | Schreiber et al. | Aug 2006 | B2 |
7095854 | Ginter et al. | Aug 2006 | B1 |
7100195 | Underwood | Aug 2006 | B1 |
7120800 | Ginter et al. | Oct 2006 | B2 |
7124101 | Mikurak | Oct 2006 | B1 |
7124107 | Pishevar et al. | Oct 2006 | B1 |
7127705 | Christfort et al. | Oct 2006 | B2 |
7127741 | Bandini et al. | Oct 2006 | B2 |
7133845 | Ginter et al. | Nov 2006 | B1 |
7139999 | Bowman-Amuah | Nov 2006 | B2 |
7143091 | Charnock et al. | Nov 2006 | B2 |
7149698 | Guheen et al. | Dec 2006 | B2 |
7165041 | Guheen et al. | Jan 2007 | B1 |
7167842 | Josephson, II et al. | Jan 2007 | B1 |
7167844 | Leong et al. | Jan 2007 | B1 |
7171379 | Menninger et al. | Jan 2007 | B2 |
7181438 | Szabo | Feb 2007 | B1 |
7203929 | Vinodkrishnan et al. | Apr 2007 | B1 |
7213233 | Vinodkrishnan et al. | May 2007 | B1 |
7216340 | Vinodkrishnan et al. | May 2007 | B1 |
7219066 | Parks et al. | May 2007 | B2 |
7223234 | Stupp et al. | May 2007 | B2 |
7225460 | Barzilai et al. | May 2007 | B2 |
7234065 | Breslin et al. | Jun 2007 | B2 |
7247625 | Zhang et al. | Jul 2007 | B2 |
7251624 | Lee et al. | Jul 2007 | B1 |
7260830 | Sugimoto | Aug 2007 | B2 |
7266566 | Kennaley et al. | Sep 2007 | B1 |
7272818 | Ishimitsu et al. | Sep 2007 | B2 |
7275063 | Horn | Sep 2007 | B2 |
7281020 | Fine | Oct 2007 | B2 |
7284232 | Bates et al. | Oct 2007 | B1 |
7284271 | Lucovsky et al. | Oct 2007 | B2 |
7287280 | Young | Oct 2007 | B2 |
7290275 | Baudoin et al. | Oct 2007 | B2 |
7293119 | Beale | Nov 2007 | B2 |
7299299 | Hollenbeck et al. | Nov 2007 | B2 |
7302569 | Betz et al. | Nov 2007 | B2 |
7313575 | Carr et al. | Dec 2007 | B2 |
7313699 | Koga | Dec 2007 | B2 |
7313825 | Redlich et al. | Dec 2007 | B2 |
7315826 | Guheen et al. | Jan 2008 | B1 |
7315849 | Bakalash et al. | Jan 2008 | B2 |
7322047 | Redlich et al. | Jan 2008 | B2 |
7330850 | Seibel et al. | Feb 2008 | B1 |
7340447 | Ghatare | Mar 2008 | B2 |
7340776 | Zobel et al. | Mar 2008 | B2 |
7343434 | Kapoor et al. | Mar 2008 | B2 |
7346518 | Frank et al. | Mar 2008 | B1 |
7353204 | Liu | Apr 2008 | B2 |
7356559 | Jacobs et al. | Apr 2008 | B1 |
7367014 | Griffin | Apr 2008 | B2 |
7370025 | Pandit | May 2008 | B1 |
7376835 | Olkin et al. | May 2008 | B2 |
7380120 | Garcia | May 2008 | B1 |
7382903 | Ray | Jun 2008 | B2 |
7383570 | Pinkas et al. | Jun 2008 | B2 |
7391854 | Salonen et al. | Jun 2008 | B2 |
7398393 | Mont et al. | Jul 2008 | B2 |
7401235 | Mowers et al. | Jul 2008 | B2 |
7403942 | Bayliss | Jul 2008 | B1 |
7409354 | Putnam et al. | Aug 2008 | B2 |
7412402 | Cooper | Aug 2008 | B2 |
7424680 | Carpenter | Sep 2008 | B2 |
7428546 | Nori et al. | Sep 2008 | B2 |
7430585 | Sibert | Sep 2008 | B2 |
7454457 | Lowery et al. | Nov 2008 | B1 |
7454508 | Mathew et al. | Nov 2008 | B2 |
7478157 | Bohrer et al. | Jan 2009 | B2 |
7480755 | Herrell et al. | Jan 2009 | B2 |
7487170 | Stevens | Feb 2009 | B2 |
7493282 | Manly et al. | Feb 2009 | B2 |
7512987 | Williams | Mar 2009 | B2 |
7516882 | Cucinotta | Apr 2009 | B2 |
7523053 | Pudhukottai et al. | Apr 2009 | B2 |
7529836 | Bolen | May 2009 | B1 |
7548968 | Bura et al. | Jun 2009 | B1 |
7552480 | Voss | Jun 2009 | B1 |
7562339 | Racca et al. | Jul 2009 | B2 |
7565685 | Ross et al. | Jul 2009 | B2 |
7567541 | Karimi et al. | Jul 2009 | B2 |
7584505 | Mondri et al. | Sep 2009 | B2 |
7584508 | Kashchenko et al. | Sep 2009 | B1 |
7587749 | Leser et al. | Sep 2009 | B2 |
7590705 | Mathew et al. | Sep 2009 | B2 |
7590972 | Axelrod et al. | Sep 2009 | B2 |
7603356 | Schran et al. | Oct 2009 | B2 |
7606783 | Carter | Oct 2009 | B1 |
7606790 | Levy | Oct 2009 | B2 |
7607120 | Sanyal et al. | Oct 2009 | B2 |
7613700 | Lobo et al. | Nov 2009 | B1 |
7617136 | Lessing et al. | Nov 2009 | B1 |
7617167 | Griffis et al. | Nov 2009 | B2 |
7620644 | Cote et al. | Nov 2009 | B2 |
7627666 | Degiulio et al. | Dec 2009 | B1 |
7630874 | Fables et al. | Dec 2009 | B2 |
7630998 | Zhou et al. | Dec 2009 | B2 |
7636742 | Olavarrieta et al. | Dec 2009 | B1 |
7640322 | Wendkos et al. | Dec 2009 | B2 |
7650497 | Thornton et al. | Jan 2010 | B2 |
7653592 | Flaxman et al. | Jan 2010 | B1 |
7657476 | Barney | Feb 2010 | B2 |
7657694 | Mansell et al. | Feb 2010 | B2 |
7665073 | Meijer et al. | Feb 2010 | B2 |
7665125 | Heard et al. | Feb 2010 | B2 |
7668947 | Hutchinson et al. | Feb 2010 | B2 |
7673282 | Amaru et al. | Mar 2010 | B2 |
7676034 | Wu et al. | Mar 2010 | B1 |
7681034 | Lee et al. | Mar 2010 | B1 |
7681140 | Ebert | Mar 2010 | B2 |
7685561 | Deem et al. | Mar 2010 | B2 |
7685577 | Pace et al. | Mar 2010 | B2 |
7693593 | Ishibashi et al. | Apr 2010 | B2 |
7698398 | Lai | Apr 2010 | B1 |
7702639 | Stanley et al. | Apr 2010 | B2 |
7707224 | Chastagnol et al. | Apr 2010 | B2 |
7712029 | Ferreira et al. | May 2010 | B2 |
7716242 | Pae et al. | May 2010 | B2 |
7725474 | Tamai et al. | May 2010 | B2 |
7725875 | Waldrep | May 2010 | B2 |
7729940 | Harvey et al. | Jun 2010 | B2 |
7730142 | Levasseur et al. | Jun 2010 | B2 |
7752124 | Green et al. | Jul 2010 | B2 |
7756826 | Bots et al. | Jul 2010 | B2 |
7756987 | Wang et al. | Jul 2010 | B2 |
7761586 | Olenick et al. | Jul 2010 | B2 |
7774745 | Fildebrandt et al. | Aug 2010 | B2 |
7788212 | Beckmann et al. | Aug 2010 | B2 |
7788222 | Shah et al. | Aug 2010 | B2 |
7788632 | Kuester et al. | Aug 2010 | B2 |
7788726 | Teixeira | Aug 2010 | B2 |
7801758 | Gracie et al. | Sep 2010 | B2 |
7801826 | Labrou et al. | Sep 2010 | B2 |
7801912 | Ransil et al. | Sep 2010 | B2 |
7802305 | Leeds | Sep 2010 | B1 |
7805349 | Yu et al. | Sep 2010 | B2 |
7805451 | Hosokawa | Sep 2010 | B2 |
7813947 | Deangelis et al. | Oct 2010 | B2 |
7822620 | Dixon et al. | Oct 2010 | B2 |
7827523 | Ahmed et al. | Nov 2010 | B2 |
7844640 | Bender et al. | Nov 2010 | B2 |
7849143 | Vuong | Dec 2010 | B2 |
7853468 | Callahan et al. | Dec 2010 | B2 |
7853470 | Sonnleithner et al. | Dec 2010 | B2 |
7853925 | Kemmler | Dec 2010 | B2 |
7860816 | Fokoue-Nkoutche et al. | Dec 2010 | B2 |
7870540 | Zare et al. | Jan 2011 | B2 |
7870608 | Shraim et al. | Jan 2011 | B2 |
7873541 | Klar et al. | Jan 2011 | B1 |
7877327 | Gwiazda et al. | Jan 2011 | B2 |
7877812 | Koved et al. | Jan 2011 | B2 |
7885841 | King | Feb 2011 | B2 |
7890461 | Oeda et al. | Feb 2011 | B2 |
7895260 | Archer et al. | Feb 2011 | B2 |
7904478 | Yu et al. | Mar 2011 | B2 |
7904487 | Ghatare | Mar 2011 | B2 |
7917888 | Chong et al. | Mar 2011 | B2 |
7917963 | Goyal et al. | Mar 2011 | B2 |
7921152 | Ashley et al. | Apr 2011 | B2 |
7930197 | Ozzie et al. | Apr 2011 | B2 |
7930753 | Mellinger et al. | Apr 2011 | B2 |
7953725 | Burris et al. | May 2011 | B2 |
7954150 | Croft et al. | May 2011 | B2 |
7958087 | Blumenau | Jun 2011 | B2 |
7958494 | Chaar et al. | Jun 2011 | B2 |
7962900 | Barraclough et al. | Jun 2011 | B2 |
7966310 | Sullivan et al. | Jun 2011 | B2 |
7966599 | Malasky et al. | Jun 2011 | B1 |
7966663 | Strickland et al. | Jun 2011 | B2 |
7974992 | Fastabend et al. | Jul 2011 | B2 |
7975000 | Dixon et al. | Jul 2011 | B2 |
7991559 | Dzekunov et al. | Aug 2011 | B2 |
7991747 | Upadhyay et al. | Aug 2011 | B1 |
7996372 | Rubel, Jr. | Aug 2011 | B2 |
8005891 | Knowles et al. | Aug 2011 | B2 |
8010612 | Costea et al. | Aug 2011 | B2 |
8010720 | Iwaoka et al. | Aug 2011 | B2 |
8019881 | Sandhu et al. | Sep 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8024384 | Prabhakar et al. | Sep 2011 | B2 |
8032721 | Murai | Oct 2011 | B2 |
8037409 | Jacob et al. | Oct 2011 | B2 |
8041749 | Beck | Oct 2011 | B2 |
8041913 | Wang | Oct 2011 | B2 |
8069161 | Bugir et al. | Nov 2011 | B2 |
8069471 | Boren | Nov 2011 | B2 |
8082539 | Schelkogonov | Dec 2011 | B1 |
8090754 | Schmidt et al. | Jan 2012 | B2 |
8095923 | Harvey et al. | Jan 2012 | B2 |
8099709 | Baikov et al. | Jan 2012 | B2 |
8103962 | Embley et al. | Jan 2012 | B2 |
8117441 | Kurien et al. | Feb 2012 | B2 |
8135815 | Mayer | Mar 2012 | B2 |
8146054 | Baker et al. | Mar 2012 | B2 |
8146074 | Ito et al. | Mar 2012 | B2 |
8150717 | Whitmore | Apr 2012 | B2 |
8156105 | Altounian et al. | Apr 2012 | B2 |
8156158 | Rolls et al. | Apr 2012 | B2 |
8156159 | Ebrahimi et al. | Apr 2012 | B2 |
8166406 | Goldfeder | Apr 2012 | B1 |
8176061 | Swanbeck et al. | May 2012 | B2 |
8176177 | Sussman et al. | May 2012 | B2 |
8176334 | Vainstein | May 2012 | B2 |
8176470 | Klumpp et al. | May 2012 | B2 |
8180759 | Hamzy | May 2012 | B2 |
8181151 | Sedukhin et al. | May 2012 | B2 |
8185409 | Putnam et al. | May 2012 | B2 |
8196176 | Berteau et al. | Jun 2012 | B2 |
8205093 | Argott | Jun 2012 | B2 |
8205140 | Hafeez et al. | Jun 2012 | B2 |
8214362 | Djabarov | Jul 2012 | B1 |
8214803 | Horii et al. | Jul 2012 | B2 |
8234377 | Cohn | Jul 2012 | B2 |
8239244 | Ginsberg et al. | Aug 2012 | B2 |
8250051 | Bugir et al. | Aug 2012 | B2 |
8255468 | Vitaldevara et al. | Aug 2012 | B2 |
8260262 | Ben Ayed | Sep 2012 | B2 |
8261362 | Goodwin et al. | Sep 2012 | B2 |
8266231 | Golovin et al. | Sep 2012 | B1 |
8275632 | Awaraji et al. | Sep 2012 | B2 |
8275793 | Ahmad et al. | Sep 2012 | B2 |
8286239 | Sutton | Oct 2012 | B1 |
8312549 | Goldberg et al. | Nov 2012 | B2 |
8316237 | Felsher et al. | Nov 2012 | B1 |
8332908 | Hatakeyama et al. | Dec 2012 | B2 |
8340999 | Kumaran et al. | Dec 2012 | B2 |
8341405 | Meijer et al. | Dec 2012 | B2 |
8346929 | Lai | Jan 2013 | B1 |
8364713 | Pollard | Jan 2013 | B2 |
8370224 | Grewal | Feb 2013 | B2 |
8370794 | Moosmann et al. | Feb 2013 | B2 |
8380630 | Felsher | Feb 2013 | B2 |
8380743 | Converting et al. | Feb 2013 | B2 |
8381180 | Rostoker | Feb 2013 | B2 |
8381297 | Touboul | Feb 2013 | B2 |
8386314 | Kirkby et al. | Feb 2013 | B2 |
8392982 | Harris et al. | Mar 2013 | B2 |
8418226 | Gardner | Apr 2013 | B2 |
8423954 | Ronen et al. | Apr 2013 | B2 |
8429179 | Mirhaji | Apr 2013 | B1 |
8429597 | Prigge | Apr 2013 | B2 |
8429630 | Nickolov et al. | Apr 2013 | B2 |
8429758 | Chen et al. | Apr 2013 | B2 |
8438644 | Watters et al. | May 2013 | B2 |
8463247 | Misiag | Jun 2013 | B2 |
8464311 | Ashley et al. | Jun 2013 | B2 |
8468244 | Redlich et al. | Jun 2013 | B2 |
8473324 | Alvarez et al. | Jun 2013 | B2 |
8474012 | Ahmed et al. | Jun 2013 | B2 |
8494894 | Jaster et al. | Jul 2013 | B2 |
8504481 | Motahari et al. | Aug 2013 | B2 |
8510199 | Erlanger | Aug 2013 | B1 |
8515988 | Jones et al. | Aug 2013 | B2 |
8516076 | Thomas | Aug 2013 | B2 |
8527337 | Lim et al. | Sep 2013 | B1 |
8533746 | Nolan et al. | Sep 2013 | B2 |
8533844 | Mahaffey et al. | Sep 2013 | B2 |
8539359 | Rapaport et al. | Sep 2013 | B2 |
8539437 | Finlayson et al. | Sep 2013 | B2 |
8560645 | Linden et al. | Oct 2013 | B2 |
8560841 | Chin et al. | Oct 2013 | B2 |
8560956 | Curtis et al. | Oct 2013 | B2 |
8561100 | Hu et al. | Oct 2013 | B2 |
8561153 | Grason et al. | Oct 2013 | B2 |
8565729 | Moseler et al. | Oct 2013 | B2 |
8566726 | Dixon et al. | Oct 2013 | B2 |
8566938 | Prakash et al. | Oct 2013 | B1 |
8571909 | Miller et al. | Oct 2013 | B2 |
8572717 | Narayanaswamy | Oct 2013 | B2 |
8578036 | Holfelder et al. | Nov 2013 | B1 |
8578166 | De Monseignat et al. | Nov 2013 | B2 |
8578481 | Rowley | Nov 2013 | B2 |
8578501 | Ogilvie | Nov 2013 | B1 |
8583694 | Siegel et al. | Nov 2013 | B2 |
8583766 | Dixon et al. | Nov 2013 | B2 |
8589183 | Awaraji et al. | Nov 2013 | B2 |
8601467 | Hofhansl et al. | Dec 2013 | B2 |
8601591 | Krishnamurthy et al. | Dec 2013 | B2 |
8606746 | Yeap et al. | Dec 2013 | B2 |
8612420 | Sun et al. | Dec 2013 | B2 |
8612993 | Grant et al. | Dec 2013 | B2 |
8615549 | Knowles et al. | Dec 2013 | B2 |
8615731 | Doshi | Dec 2013 | B2 |
8620952 | Bennett et al. | Dec 2013 | B2 |
8621637 | Al-Harbi et al. | Dec 2013 | B2 |
8626671 | Federgreen | Jan 2014 | B2 |
8627114 | Resch et al. | Jan 2014 | B2 |
8630961 | Beilby et al. | Jan 2014 | B2 |
8631048 | Davis et al. | Jan 2014 | B1 |
8640110 | Kopp et al. | Jan 2014 | B2 |
8646072 | Savant | Feb 2014 | B1 |
8650399 | Le Bihan et al. | Feb 2014 | B2 |
8655939 | Redlich et al. | Feb 2014 | B2 |
8656265 | Paulin et al. | Feb 2014 | B1 |
8656456 | Maxson et al. | Feb 2014 | B2 |
8661036 | Turski et al. | Feb 2014 | B2 |
8667074 | Farkas | Mar 2014 | B1 |
8667487 | Boodman et al. | Mar 2014 | B1 |
8677472 | Dotan et al. | Mar 2014 | B1 |
8681984 | Lee et al. | Mar 2014 | B2 |
8682698 | Cashman et al. | Mar 2014 | B2 |
8683502 | Shkedi et al. | Mar 2014 | B2 |
8688601 | Jaiswal | Apr 2014 | B2 |
8689292 | Williams et al. | Apr 2014 | B2 |
8693689 | Belenkiy et al. | Apr 2014 | B2 |
8700524 | Williams et al. | Apr 2014 | B2 |
8700699 | Shen et al. | Apr 2014 | B2 |
8706742 | Ravid et al. | Apr 2014 | B1 |
8707451 | Ture et al. | Apr 2014 | B2 |
8712813 | King | Apr 2014 | B2 |
8713098 | Adya et al. | Apr 2014 | B1 |
8713638 | Hu et al. | Apr 2014 | B2 |
8719366 | Mathew et al. | May 2014 | B2 |
8732839 | Hohl | May 2014 | B2 |
8744894 | Christiansen et al. | Jun 2014 | B2 |
8751285 | Deb et al. | Jun 2014 | B2 |
8762406 | Ho et al. | Jun 2014 | B2 |
8762413 | Graham, Jr. et al. | Jun 2014 | B2 |
8763071 | Sinha et al. | Jun 2014 | B2 |
8763082 | Huber et al. | Jun 2014 | B2 |
8763131 | Archer et al. | Jun 2014 | B2 |
8767947 | Ristock et al. | Jul 2014 | B1 |
8769242 | Tkac et al. | Jul 2014 | B2 |
8769412 | Gill et al. | Jul 2014 | B2 |
8769671 | Shraim et al. | Jul 2014 | B2 |
8776241 | Zaitsev | Jul 2014 | B2 |
8788935 | Hirsch et al. | Jul 2014 | B1 |
8793614 | Wilson et al. | Jul 2014 | B2 |
8793650 | Hilerio et al. | Jul 2014 | B2 |
8793781 | Grossi et al. | Jul 2014 | B2 |
8793809 | Falkenburg et al. | Jul 2014 | B2 |
8799984 | Ahn | Aug 2014 | B2 |
8805707 | Schumann, Jr. et al. | Aug 2014 | B2 |
8805806 | Amarendran et al. | Aug 2014 | B2 |
8805925 | Price et al. | Aug 2014 | B2 |
8812342 | Barcelo et al. | Aug 2014 | B2 |
8812752 | Shih et al. | Aug 2014 | B1 |
8812766 | Kranendonk et al. | Aug 2014 | B2 |
8813028 | Farooqi | Aug 2014 | B2 |
8819253 | Simeloff et al. | Aug 2014 | B2 |
8819617 | Koenig et al. | Aug 2014 | B1 |
8819800 | Gao et al. | Aug 2014 | B2 |
8826446 | Liu et al. | Sep 2014 | B1 |
8832649 | Bishop et al. | Sep 2014 | B2 |
8832854 | Staddon et al. | Sep 2014 | B1 |
8839232 | Taylor et al. | Sep 2014 | B2 |
8843487 | McGraw et al. | Sep 2014 | B2 |
8843745 | Roberts, Jr. | Sep 2014 | B2 |
8849757 | Kruglick | Sep 2014 | B2 |
8856534 | Khosravi et al. | Oct 2014 | B2 |
8856936 | Datta Ray et al. | Oct 2014 | B2 |
8862507 | Sandhu et al. | Oct 2014 | B2 |
8863261 | Yang | Oct 2014 | B2 |
8875232 | Blom et al. | Oct 2014 | B2 |
8893078 | Schaude et al. | Nov 2014 | B2 |
8893286 | Oliver | Nov 2014 | B1 |
8893297 | Eversoll et al. | Nov 2014 | B2 |
8904494 | Kindler et al. | Dec 2014 | B2 |
8914263 | Shimada et al. | Dec 2014 | B2 |
8914299 | Pesci-Anderson et al. | Dec 2014 | B2 |
8914342 | Kalaboukis et al. | Dec 2014 | B2 |
8914902 | Moritz et al. | Dec 2014 | B2 |
8918306 | Cashman et al. | Dec 2014 | B2 |
8918392 | Brooker et al. | Dec 2014 | B1 |
8918632 | Sartor | Dec 2014 | B1 |
8930896 | Wiggins | Jan 2015 | B1 |
8930897 | Nassar | Jan 2015 | B2 |
8935198 | Phillips et al. | Jan 2015 | B1 |
8935266 | Wu | Jan 2015 | B2 |
8935342 | Patel | Jan 2015 | B2 |
8935804 | Clark et al. | Jan 2015 | B1 |
8938221 | Brazier et al. | Jan 2015 | B2 |
8943076 | Stewart et al. | Jan 2015 | B2 |
8943548 | Drokov et al. | Jan 2015 | B2 |
8949137 | Crapo et al. | Feb 2015 | B2 |
8955038 | Nicodemus et al. | Feb 2015 | B2 |
8959568 | Hudis et al. | Feb 2015 | B2 |
8959584 | Piliouras | Feb 2015 | B2 |
8966575 | McQuay et al. | Feb 2015 | B2 |
8966597 | Saylor et al. | Feb 2015 | B1 |
8973108 | Roth et al. | Mar 2015 | B1 |
8977234 | Chava | Mar 2015 | B2 |
8977643 | Schindlauer et al. | Mar 2015 | B2 |
8978158 | Rajkumar et al. | Mar 2015 | B2 |
8983972 | Kriebel et al. | Mar 2015 | B2 |
8984031 | Todd | Mar 2015 | B1 |
8990933 | Magdalin | Mar 2015 | B1 |
8996417 | Channakeshava | Mar 2015 | B1 |
8996480 | Agarwala et al. | Mar 2015 | B2 |
8997213 | Papakipos et al. | Mar 2015 | B2 |
9003295 | Baschy | Apr 2015 | B2 |
9003552 | Goodwin et al. | Apr 2015 | B2 |
9009851 | Droste et al. | Apr 2015 | B2 |
9014661 | Decharms | Apr 2015 | B2 |
9015796 | Fujioka | Apr 2015 | B1 |
9021469 | Hilerio et al. | Apr 2015 | B2 |
9026526 | Bau et al. | May 2015 | B1 |
9030987 | Bianchetti et al. | May 2015 | B2 |
9032067 | Prasad et al. | May 2015 | B2 |
9043217 | Cashman et al. | May 2015 | B2 |
9043480 | Barton et al. | May 2015 | B2 |
9047463 | Porras | Jun 2015 | B2 |
9047582 | Hutchinson et al. | Jun 2015 | B2 |
9047583 | Patton et al. | Jun 2015 | B2 |
9047639 | Ouintiliani et al. | Jun 2015 | B1 |
9049244 | Prince et al. | Jun 2015 | B2 |
9049314 | Pugh et al. | Jun 2015 | B2 |
9055071 | Gates et al. | Jun 2015 | B1 |
9058590 | Criddle et al. | Jun 2015 | B2 |
9064033 | Jin et al. | Jun 2015 | B2 |
9069940 | Hars | Jun 2015 | B2 |
9076231 | Hill et al. | Jul 2015 | B1 |
9077736 | Werth et al. | Jul 2015 | B2 |
9081952 | Sagi et al. | Jul 2015 | B2 |
9087090 | Cormier et al. | Jul 2015 | B1 |
9092796 | Eversoll et al. | Jul 2015 | B2 |
9094434 | Williams et al. | Jul 2015 | B2 |
9098515 | Richter et al. | Aug 2015 | B2 |
9100778 | Stogaitis et al. | Aug 2015 | B2 |
9106691 | Burger et al. | Aug 2015 | B1 |
9106710 | Feimster | Aug 2015 | B1 |
9110918 | Rajaa et al. | Aug 2015 | B1 |
9111105 | Barton et al. | Aug 2015 | B2 |
9111295 | Tietzen et al. | Aug 2015 | B2 |
9123339 | Shaw et al. | Sep 2015 | B1 |
9129311 | Schoen et al. | Sep 2015 | B2 |
9135261 | Maunder et al. | Sep 2015 | B2 |
9135444 | Carter et al. | Sep 2015 | B2 |
9141823 | Dawson | Sep 2015 | B2 |
9141911 | Zhao et al. | Sep 2015 | B2 |
9152818 | Hathaway et al. | Oct 2015 | B1 |
9152820 | Pauley, Jr. et al. | Oct 2015 | B1 |
9154514 | Prakash | Oct 2015 | B1 |
9154556 | Dotan et al. | Oct 2015 | B1 |
9158655 | Wadhwani et al. | Oct 2015 | B2 |
9165036 | Mehra | Oct 2015 | B2 |
9170996 | Lovric et al. | Oct 2015 | B2 |
9172706 | Krishnamurthy et al. | Oct 2015 | B2 |
9177293 | Gagnon et al. | Nov 2015 | B1 |
9178901 | Xue et al. | Nov 2015 | B2 |
9183100 | Gventer et al. | Nov 2015 | B2 |
9189642 | Perlman | Nov 2015 | B2 |
9201572 | Lyon et al. | Dec 2015 | B2 |
9201770 | Duerk | Dec 2015 | B1 |
9202026 | Reeves | Dec 2015 | B1 |
9202085 | Mawdsley et al. | Dec 2015 | B2 |
9215076 | Roth et al. | Dec 2015 | B1 |
9215252 | Smith et al. | Dec 2015 | B2 |
9218596 | Ronca et al. | Dec 2015 | B2 |
9224009 | Liu et al. | Dec 2015 | B1 |
9230036 | Davis | Jan 2016 | B2 |
9231935 | Bridge et al. | Jan 2016 | B1 |
9232040 | Barash et al. | Jan 2016 | B2 |
9235476 | McHugh et al. | Jan 2016 | B2 |
9240987 | Barrett-Bowen et al. | Jan 2016 | B2 |
9241259 | Daniela et al. | Jan 2016 | B2 |
9245126 | Christodorescu et al. | Jan 2016 | B2 |
9245266 | Hardt | Jan 2016 | B2 |
9253609 | Hosier, Jr. | Feb 2016 | B2 |
9264443 | Weisman | Feb 2016 | B2 |
9274858 | Milliron et al. | Mar 2016 | B2 |
9280581 | Grimes et al. | Mar 2016 | B1 |
9286149 | Sampson et al. | Mar 2016 | B2 |
9286282 | Ling, III et al. | Mar 2016 | B2 |
9288118 | Pattan | Mar 2016 | B1 |
9288556 | Kim et al. | Mar 2016 | B2 |
9294498 | Yampolskiy et al. | Mar 2016 | B1 |
9299050 | Stiffler et al. | Mar 2016 | B2 |
9306939 | Chan et al. | Apr 2016 | B2 |
9317697 | Maier et al. | Apr 2016 | B2 |
9317715 | Schuette et al. | Apr 2016 | B2 |
9325731 | McGeehan | Apr 2016 | B2 |
9336184 | Mital et al. | May 2016 | B2 |
9336220 | Li et al. | May 2016 | B2 |
9336324 | Lomme et al. | May 2016 | B2 |
9336332 | Davis et al. | May 2016 | B2 |
9336400 | Milman et al. | May 2016 | B2 |
9338188 | Ahn | May 2016 | B1 |
9342706 | Chawla et al. | May 2016 | B2 |
9344297 | Shah et al. | May 2016 | B2 |
9344424 | Tenenboym et al. | May 2016 | B2 |
9344484 | Ferris | May 2016 | B2 |
9348802 | Massand | May 2016 | B2 |
9348862 | Kawecki, III | May 2016 | B2 |
9348929 | Eberlein | May 2016 | B2 |
9349016 | Brisebois et al. | May 2016 | B1 |
9350718 | Sondhi et al. | May 2016 | B2 |
9355157 | Mohammed et al. | May 2016 | B2 |
9356961 | Todd et al. | May 2016 | B1 |
9361446 | Demirjian | Jun 2016 | B1 |
9369488 | Woods et al. | Jun 2016 | B2 |
9374693 | Olincy | Jun 2016 | B1 |
9384199 | Thereska et al. | Jul 2016 | B2 |
9384357 | Patil et al. | Jul 2016 | B2 |
9386078 | Reno et al. | Jul 2016 | B2 |
9386104 | Adams et al. | Jul 2016 | B2 |
9395959 | Hatfield et al. | Jul 2016 | B2 |
9396332 | Abrams et al. | Jul 2016 | B2 |
9401900 | Levasseur et al. | Jul 2016 | B2 |
9411967 | Parecki et al. | Aug 2016 | B2 |
9411982 | Dippenaar et al. | Aug 2016 | B1 |
9417859 | Gounares et al. | Aug 2016 | B2 |
9424021 | Zamir | Aug 2016 | B2 |
9424414 | Demirjian | Aug 2016 | B1 |
9426177 | Wang et al. | Aug 2016 | B2 |
9450940 | Belov et al. | Sep 2016 | B2 |
9460136 | Todd et al. | Oct 2016 | B1 |
9460171 | Marrelli et al. | Oct 2016 | B2 |
9460307 | Breslau et al. | Oct 2016 | B2 |
9461876 | Van Dusen et al. | Oct 2016 | B2 |
9462009 | Kolman et al. | Oct 2016 | B1 |
9465702 | Gventer et al. | Oct 2016 | B2 |
9465800 | Lacey | Oct 2016 | B2 |
9473446 | Vijay et al. | Oct 2016 | B2 |
9473505 | Asano et al. | Oct 2016 | B1 |
9473535 | Sartor | Oct 2016 | B2 |
9477523 | Warman et al. | Oct 2016 | B1 |
9477660 | Scott et al. | Oct 2016 | B2 |
9477685 | Leung et al. | Oct 2016 | B1 |
9477942 | Adachi et al. | Oct 2016 | B2 |
9483659 | Bao et al. | Nov 2016 | B2 |
9489366 | Scott et al. | Nov 2016 | B2 |
9495547 | Schepis et al. | Nov 2016 | B1 |
9501523 | Hyatt et al. | Nov 2016 | B2 |
9507960 | Bell et al. | Nov 2016 | B2 |
9509674 | Nasserbakht et al. | Nov 2016 | B1 |
9509702 | Grigg et al. | Nov 2016 | B2 |
9514231 | Eden | Dec 2016 | B2 |
9516012 | Chochois et al. | Dec 2016 | B2 |
9521166 | Wilson | Dec 2016 | B2 |
9524500 | Dave et al. | Dec 2016 | B2 |
9529989 | Kling et al. | Dec 2016 | B2 |
9536108 | Powell et al. | Jan 2017 | B2 |
9537546 | Cordeiro et al. | Jan 2017 | B2 |
9542568 | Francis et al. | Jan 2017 | B2 |
9549047 | Fredinburg et al. | Jan 2017 | B1 |
9552395 | Bayer et al. | Jan 2017 | B2 |
9552470 | Turgeman et al. | Jan 2017 | B2 |
9553918 | Manion et al. | Jan 2017 | B1 |
9558497 | Carvalho | Jan 2017 | B2 |
9569752 | Deering et al. | Feb 2017 | B2 |
9571509 | Satish et al. | Feb 2017 | B1 |
9571526 | Sartor | Feb 2017 | B2 |
9571559 | Raleigh et al. | Feb 2017 | B2 |
9571991 | Brizendine et al. | Feb 2017 | B1 |
9576289 | Henderson et al. | Feb 2017 | B2 |
9578060 | Brisebois et al. | Feb 2017 | B1 |
9578173 | Sanghavi et al. | Feb 2017 | B2 |
9582681 | Mishra | Feb 2017 | B2 |
9584964 | Pelkey | Feb 2017 | B2 |
9589110 | Carey et al. | Mar 2017 | B2 |
9600181 | Patel et al. | Mar 2017 | B2 |
9602529 | Jones et al. | Mar 2017 | B2 |
9606971 | Seolas et al. | Mar 2017 | B2 |
9607041 | Himmelstein | Mar 2017 | B2 |
9619652 | Slater | Apr 2017 | B2 |
9619661 | Finkelstein | Apr 2017 | B1 |
9621357 | Williams et al. | Apr 2017 | B2 |
9621566 | Gupta et al. | Apr 2017 | B2 |
9626124 | Lipinski et al. | Apr 2017 | B2 |
9626680 | Ryan et al. | Apr 2017 | B1 |
9629064 | Graves et al. | Apr 2017 | B2 |
9642008 | Wyatt et al. | May 2017 | B2 |
9646095 | Gottlieb et al. | May 2017 | B1 |
9647949 | Varki et al. | May 2017 | B2 |
9648036 | Seiver et al. | May 2017 | B2 |
9652314 | Mahiddini | May 2017 | B2 |
9654506 | Barrett | May 2017 | B2 |
9654541 | Kapczynski et al. | May 2017 | B1 |
9665722 | Nagasu et al. | May 2017 | B2 |
9665733 | Sills et al. | May 2017 | B1 |
9665883 | Roullier et al. | May 2017 | B2 |
9672053 | Tang et al. | Jun 2017 | B2 |
9672355 | Titonis et al. | Jun 2017 | B2 |
9678794 | Barrett et al. | Jun 2017 | B1 |
9691090 | Barday | Jun 2017 | B1 |
9699209 | Ng et al. | Jul 2017 | B2 |
9703549 | Dufresne | Jul 2017 | B2 |
9704103 | Suskind et al. | Jul 2017 | B2 |
9705840 | Pujare et al. | Jul 2017 | B2 |
9705880 | Siris | Jul 2017 | B2 |
9721078 | Cornick et al. | Aug 2017 | B2 |
9721108 | Krishnamurthy et al. | Aug 2017 | B2 |
9727751 | Oliver et al. | Aug 2017 | B2 |
9729583 | Barday | Aug 2017 | B1 |
9734148 | Bendersky et al. | Aug 2017 | B2 |
9734255 | Jiang | Aug 2017 | B2 |
9736004 | Jung et al. | Aug 2017 | B2 |
9740985 | Byron et al. | Aug 2017 | B2 |
9740987 | Dolan | Aug 2017 | B2 |
9749408 | Subramani et al. | Aug 2017 | B2 |
9754091 | Kode et al. | Sep 2017 | B2 |
9760620 | Nachnani et al. | Sep 2017 | B2 |
9760635 | Bliss et al. | Sep 2017 | B2 |
9760697 | Walker | Sep 2017 | B1 |
9760849 | Vinnakota et al. | Sep 2017 | B2 |
9762553 | Ford et al. | Sep 2017 | B2 |
9767202 | Darby et al. | Sep 2017 | B2 |
9767309 | Patel et al. | Sep 2017 | B1 |
9769124 | Yan | Sep 2017 | B2 |
9773269 | Lazarus | Sep 2017 | B1 |
9785795 | Grondin et al. | Oct 2017 | B2 |
9787671 | Bogrett | Oct 2017 | B1 |
9798749 | Saner | Oct 2017 | B2 |
9798826 | Wilson et al. | Oct 2017 | B2 |
9798896 | Jakobsson | Oct 2017 | B2 |
9800605 | Baikalov et al. | Oct 2017 | B2 |
9800606 | Yumer | Oct 2017 | B1 |
9804649 | Cohen et al. | Oct 2017 | B2 |
9804928 | Davis et al. | Oct 2017 | B2 |
9805381 | Frank et al. | Oct 2017 | B2 |
9811532 | Parkison et al. | Nov 2017 | B2 |
9817850 | Dubbels et al. | Nov 2017 | B2 |
9817978 | Marsh et al. | Nov 2017 | B2 |
9819684 | Cernoch et al. | Nov 2017 | B2 |
9825928 | Lelcuk et al. | Nov 2017 | B2 |
9830563 | Paknad | Nov 2017 | B2 |
9832633 | Gerber, Jr. et al. | Nov 2017 | B2 |
9836598 | Iyer et al. | Dec 2017 | B2 |
9838407 | Oprea et al. | Dec 2017 | B1 |
9838839 | Vudali et al. | Dec 2017 | B2 |
9841969 | Seibert, Jr. et al. | Dec 2017 | B2 |
9842042 | Chhatwal et al. | Dec 2017 | B2 |
9842349 | Sawczuk et al. | Dec 2017 | B2 |
9848005 | Ardeli et al. | Dec 2017 | B2 |
9848061 | Jain et al. | Dec 2017 | B1 |
9852150 | Sharpe et al. | Dec 2017 | B2 |
9853959 | Kapczynski et al. | Dec 2017 | B1 |
9860226 | Thormaehlen | Jan 2018 | B2 |
9864735 | Lamprecht | Jan 2018 | B1 |
9876825 | Amar et al. | Jan 2018 | B2 |
9877138 | Franklin | Jan 2018 | B1 |
9882935 | Barday | Jan 2018 | B2 |
9887965 | Kay et al. | Feb 2018 | B2 |
9888377 | McCorkendale et al. | Feb 2018 | B1 |
9892441 | Barday | Feb 2018 | B2 |
9892442 | Barday | Feb 2018 | B2 |
9892443 | Barday | Feb 2018 | B2 |
9892444 | Barday | Feb 2018 | B2 |
9894076 | Li et al. | Feb 2018 | B2 |
9898613 | Swerdlow et al. | Feb 2018 | B1 |
9898739 | Monastyrsky et al. | Feb 2018 | B2 |
9898769 | Barday | Feb 2018 | B2 |
9912625 | Muth et al. | Mar 2018 | B2 |
9912677 | Chien | Mar 2018 | B2 |
9912810 | Segre et al. | Mar 2018 | B2 |
9916703 | Levinson et al. | Mar 2018 | B2 |
9922124 | Rathod | Mar 2018 | B2 |
9923927 | McClintock et al. | Mar 2018 | B1 |
9928379 | Hoffer | Mar 2018 | B1 |
9934493 | Castinado et al. | Apr 2018 | B2 |
9934544 | Whitfield et al. | Apr 2018 | B1 |
9936127 | Todasco | Apr 2018 | B2 |
9942214 | Burciu | Apr 2018 | B1 |
9942244 | Lahoz et al. | Apr 2018 | B2 |
9942276 | Sartor | Apr 2018 | B2 |
9946897 | Lovin | Apr 2018 | B2 |
9948652 | Yu et al. | Apr 2018 | B2 |
9948663 | Wang et al. | Apr 2018 | B1 |
9953189 | Cook et al. | Apr 2018 | B2 |
9954879 | Sadaghiani et al. | Apr 2018 | B1 |
9954883 | Ahuja et al. | Apr 2018 | B2 |
9959551 | Schermerhorn et al. | May 2018 | B1 |
9959582 | Sukman et al. | May 2018 | B2 |
9961070 | Tang | May 2018 | B2 |
9973518 | Lee et al. | May 2018 | B2 |
9973585 | Ruback et al. | May 2018 | B2 |
9977904 | Khan et al. | May 2018 | B2 |
9977920 | Danielson et al. | May 2018 | B2 |
9983936 | Dornemann et al. | May 2018 | B2 |
9984252 | Pollard | May 2018 | B2 |
9990499 | Chan et al. | Jun 2018 | B2 |
9992213 | Sinnema | Jun 2018 | B2 |
10001975 | Bharthulwar | Jun 2018 | B2 |
10002064 | Muske | Jun 2018 | B2 |
10007895 | Vanasco | Jun 2018 | B2 |
10013577 | Beaumont et al. | Jul 2018 | B1 |
10015164 | Hamburg et al. | Jul 2018 | B2 |
10019339 | Von Hanxleden et al. | Jul 2018 | B2 |
10019588 | Garcia et al. | Jul 2018 | B2 |
10019591 | Beguin | Jul 2018 | B1 |
10019741 | Hesselink | Jul 2018 | B2 |
10021143 | Cabrera et al. | Jul 2018 | B2 |
10025804 | Vranyes et al. | Jul 2018 | B2 |
10028226 | Ayyagari et al. | Jul 2018 | B2 |
10032172 | Barday | Jul 2018 | B2 |
10044761 | Ducatel et al. | Aug 2018 | B2 |
10055426 | Arasan et al. | Aug 2018 | B2 |
10055869 | Borrelli et al. | Aug 2018 | B2 |
10061847 | Mohammed et al. | Aug 2018 | B2 |
10069858 | Robinson et al. | Sep 2018 | B2 |
10069914 | Smith | Sep 2018 | B1 |
10073924 | Karp et al. | Sep 2018 | B2 |
10075437 | Costigan et al. | Sep 2018 | B1 |
10075451 | Hall et al. | Sep 2018 | B1 |
10084817 | Saher et al. | Sep 2018 | B2 |
10091214 | Godlewski et al. | Oct 2018 | B2 |
10091312 | Khanwalkar et al. | Oct 2018 | B1 |
10102533 | Barday | Oct 2018 | B2 |
10108409 | Pirzadeh et al. | Oct 2018 | B2 |
10122663 | Hu et al. | Nov 2018 | B2 |
10122760 | Terrill et al. | Nov 2018 | B2 |
10127403 | Kong et al. | Nov 2018 | B2 |
10129211 | Heath | Nov 2018 | B2 |
10140666 | Wang et al. | Nov 2018 | B1 |
10142113 | Zaidi et al. | Nov 2018 | B2 |
10152560 | Potiagalov et al. | Dec 2018 | B2 |
10158676 | Barday | Dec 2018 | B2 |
10165011 | Barday | Dec 2018 | B2 |
10169762 | Ogawa | Jan 2019 | B2 |
10176503 | Barday et al. | Jan 2019 | B2 |
10181043 | Pauley, Jr. et al. | Jan 2019 | B1 |
10181051 | Barday et al. | Jan 2019 | B2 |
10187363 | Smirnoff et al. | Jan 2019 | B2 |
10187394 | Bar et al. | Jan 2019 | B2 |
10204154 | Barday et al. | Feb 2019 | B2 |
10205994 | Splaine et al. | Feb 2019 | B2 |
10212134 | Rai | Feb 2019 | B2 |
10212175 | Seul et al. | Feb 2019 | B2 |
10223533 | Dawson | Mar 2019 | B2 |
10230571 | Rangasamy et al. | Mar 2019 | B2 |
10250594 | Chathoth et al. | Apr 2019 | B2 |
10255602 | Wang | Apr 2019 | B2 |
10257127 | Dotan-Cohen et al. | Apr 2019 | B2 |
10257181 | Sherif et al. | Apr 2019 | B1 |
10268838 | Yadgiri et al. | Apr 2019 | B2 |
10275221 | Thattai et al. | Apr 2019 | B2 |
10275614 | Barday et al. | Apr 2019 | B2 |
10282370 | Barday et al. | May 2019 | B1 |
10282559 | Barday et al. | May 2019 | B2 |
10284604 | Barday et al. | May 2019 | B2 |
10289584 | Chiba | May 2019 | B2 |
10289857 | Brinskelle | May 2019 | B1 |
10289866 | Barday et al. | May 2019 | B2 |
10289867 | Barday et al. | May 2019 | B2 |
10289870 | Barday et al. | May 2019 | B2 |
10296504 | Hock et al. | May 2019 | B2 |
10304442 | Rudden et al. | May 2019 | B1 |
10310723 | Rathod | Jun 2019 | B2 |
10311042 | Kumar | Jun 2019 | B1 |
10311475 | Yuasa | Jun 2019 | B2 |
10311492 | Gelfenbeyn et al. | Jun 2019 | B2 |
10318761 | Barday et al. | Jun 2019 | B2 |
10320940 | Brennan et al. | Jun 2019 | B1 |
10324960 | Skvortsov et al. | Jun 2019 | B1 |
10326768 | Verweyst et al. | Jun 2019 | B2 |
10326798 | Lambert | Jun 2019 | B2 |
10326841 | Bradley et al. | Jun 2019 | B2 |
10331689 | Sorrentino et al. | Jun 2019 | B2 |
10331904 | Sher-Jan et al. | Jun 2019 | B2 |
10333975 | Soman et al. | Jun 2019 | B2 |
10346186 | Kalyanpur | Jul 2019 | B2 |
10346635 | Kumar et al. | Jul 2019 | B2 |
10346637 | Barday et al. | Jul 2019 | B2 |
10346638 | Barday et al. | Jul 2019 | B2 |
10346849 | Ionescu et al. | Jul 2019 | B2 |
10348726 | Caluwaert | Jul 2019 | B2 |
10348775 | Barday | Jul 2019 | B2 |
10353673 | Barday et al. | Jul 2019 | B2 |
10361857 | Woo | Jul 2019 | B2 |
10366241 | Sartor | Jul 2019 | B2 |
10373119 | Driscoll et al. | Aug 2019 | B2 |
10373409 | White et al. | Aug 2019 | B2 |
10375115 | Mallya | Aug 2019 | B2 |
10387559 | Wendt et al. | Aug 2019 | B1 |
10387577 | Hill et al. | Aug 2019 | B2 |
10387657 | Belfiore, Jr. et al. | Aug 2019 | B2 |
10387952 | Sandhu et al. | Aug 2019 | B1 |
10395201 | Vescio | Aug 2019 | B2 |
10402545 | Gorfein et al. | Sep 2019 | B2 |
10404729 | Turgeman | Sep 2019 | B2 |
10417401 | Votaw et al. | Sep 2019 | B2 |
10417621 | Cassel et al. | Sep 2019 | B2 |
10419476 | Parekh | Sep 2019 | B2 |
10423985 | Dutta et al. | Sep 2019 | B1 |
10425492 | Comstock et al. | Sep 2019 | B2 |
10430608 | Peri et al. | Oct 2019 | B2 |
10435350 | Ito et al. | Oct 2019 | B2 |
10437412 | Barday et al. | Oct 2019 | B2 |
10437860 | Barday et al. | Oct 2019 | B2 |
10438016 | Barday et al. | Oct 2019 | B2 |
10438273 | Burns et al. | Oct 2019 | B2 |
10440062 | Barday et al. | Oct 2019 | B2 |
10445508 | Sher-Jan et al. | Oct 2019 | B2 |
10445526 | Barday et al. | Oct 2019 | B2 |
10452864 | Barday et al. | Oct 2019 | B2 |
10452866 | Barday et al. | Oct 2019 | B2 |
10453076 | Parekh et al. | Oct 2019 | B2 |
10453092 | Wang et al. | Oct 2019 | B1 |
10454934 | Parimi et al. | Oct 2019 | B2 |
10481763 | Bartkiewicz et al. | Nov 2019 | B2 |
10489454 | Chen | Nov 2019 | B1 |
10503926 | Barday et al. | Dec 2019 | B2 |
10510031 | Barday et al. | Dec 2019 | B2 |
10521623 | Rodriguez et al. | Dec 2019 | B2 |
10534851 | Chan et al. | Jan 2020 | B1 |
10535081 | Ferreira et al. | Jan 2020 | B2 |
10536475 | McCorkle, Jr. et al. | Jan 2020 | B1 |
10536478 | Kirti et al. | Jan 2020 | B2 |
10541938 | Timmerman et al. | Jan 2020 | B1 |
10546135 | Kassoumeh et al. | Jan 2020 | B1 |
10552462 | Hart | Feb 2020 | B1 |
10558809 | Joyce et al. | Feb 2020 | B1 |
10558821 | Barday et al. | Feb 2020 | B2 |
10564815 | Soon-Shiong | Feb 2020 | B2 |
10564935 | Barday et al. | Feb 2020 | B2 |
10564936 | Barday et al. | Feb 2020 | B2 |
10565161 | Barday et al. | Feb 2020 | B2 |
10565236 | Barday et al. | Feb 2020 | B1 |
10567439 | Barday | Feb 2020 | B2 |
10567517 | Weinig et al. | Feb 2020 | B2 |
10572684 | Lafever et al. | Feb 2020 | B2 |
10572686 | Barday et al. | Feb 2020 | B2 |
10574705 | Barday et al. | Feb 2020 | B2 |
10581825 | Poschel et al. | Mar 2020 | B2 |
10592648 | Barday et al. | Mar 2020 | B2 |
10592692 | Brannon et al. | Mar 2020 | B2 |
10606916 | Brannon et al. | Mar 2020 | B2 |
10613971 | Vasikarla | Apr 2020 | B1 |
10628553 | Murrish et al. | Apr 2020 | B1 |
10645102 | Hamdi | May 2020 | B2 |
10645548 | Reynolds et al. | May 2020 | B2 |
10649630 | Vora et al. | May 2020 | B1 |
10650408 | Andersen et al. | May 2020 | B1 |
10657469 | Bade et al. | May 2020 | B2 |
10657504 | Zimmerman et al. | May 2020 | B1 |
10659566 | Luah et al. | May 2020 | B1 |
10671749 | Felice-Steele et al. | Jun 2020 | B2 |
10671760 | Esmailzadeh et al. | Jun 2020 | B2 |
10678945 | Barday et al. | Jun 2020 | B2 |
10685140 | Barday et al. | Jun 2020 | B2 |
10706176 | Brannon et al. | Jul 2020 | B2 |
10706226 | Byun et al. | Jul 2020 | B2 |
10708305 | Barday et al. | Jul 2020 | B2 |
10713387 | Brannon et al. | Jul 2020 | B2 |
10726145 | Duminy et al. | Jul 2020 | B2 |
10726153 | Nerurkar et al. | Jul 2020 | B2 |
10726158 | Brannon et al. | Jul 2020 | B2 |
10732865 | Jain et al. | Aug 2020 | B2 |
10735388 | Rose et al. | Aug 2020 | B2 |
10740487 | Barday et al. | Aug 2020 | B2 |
10747893 | Kiriyama et al. | Aug 2020 | B2 |
10747897 | Cook | Aug 2020 | B2 |
10749870 | Brouillette et al. | Aug 2020 | B2 |
10762213 | Rudek et al. | Sep 2020 | B2 |
10762236 | Brannon et al. | Sep 2020 | B2 |
10769302 | Barday et al. | Sep 2020 | B2 |
10769303 | Brannon et al. | Sep 2020 | B2 |
10776510 | Antonelli et al. | Sep 2020 | B2 |
10776518 | Barday et al. | Sep 2020 | B2 |
10778792 | Handy Bosma et al. | Sep 2020 | B1 |
10785173 | Willett et al. | Sep 2020 | B2 |
10785299 | Gupta et al. | Sep 2020 | B2 |
10791150 | Barday et al. | Sep 2020 | B2 |
10795527 | Legge et al. | Oct 2020 | B1 |
10796020 | Barday et al. | Oct 2020 | B2 |
10796260 | Brannon et al. | Oct 2020 | B2 |
10798133 | Barday et al. | Oct 2020 | B2 |
10803196 | Bodegas Martinez et al. | Oct 2020 | B2 |
10805331 | Boyer et al. | Oct 2020 | B2 |
10831831 | Greene | Nov 2020 | B2 |
10834590 | Turgeman et al. | Nov 2020 | B2 |
10846433 | Brannon et al. | Nov 2020 | B2 |
10853501 | Brannon | Dec 2020 | B2 |
10860721 | Gentile | Dec 2020 | B1 |
10860742 | Joseph et al. | Dec 2020 | B2 |
10860979 | Geffen et al. | Dec 2020 | B2 |
10878127 | Brannon et al. | Dec 2020 | B2 |
10885485 | Brannon et al. | Jan 2021 | B2 |
10891393 | Currier et al. | Jan 2021 | B2 |
10893074 | Sartor | Jan 2021 | B2 |
10896394 | Brannon et al. | Jan 2021 | B2 |
10902490 | He et al. | Jan 2021 | B2 |
10909488 | Hecht et al. | Feb 2021 | B2 |
10924514 | Altman et al. | Feb 2021 | B1 |
10929557 | Chavez | Feb 2021 | B2 |
10949555 | Rattan et al. | Mar 2021 | B2 |
10949565 | Barday et al. | Mar 2021 | B2 |
10957326 | Bhaya et al. | Mar 2021 | B2 |
10963571 | Bar Joseph et al. | Mar 2021 | B2 |
10963572 | Belfiore, Jr. et al. | Mar 2021 | B2 |
10965547 | Esposito et al. | Mar 2021 | B1 |
10970418 | Durvasula et al. | Apr 2021 | B2 |
10972509 | Barday et al. | Apr 2021 | B2 |
10976950 | Trezzo et al. | Apr 2021 | B1 |
10983963 | Venkatasubramanian et al. | Apr 2021 | B1 |
10984458 | Gutierrez | Apr 2021 | B1 |
10997318 | Barday et al. | May 2021 | B2 |
11012475 | Patnala et al. | May 2021 | B2 |
11023528 | Lee et al. | Jun 2021 | B1 |
11037168 | Lee et al. | Jun 2021 | B1 |
11057356 | Malhotra et al. | Jul 2021 | B2 |
11057427 | Wright et al. | Jul 2021 | B2 |
11062051 | Barday et al. | Jul 2021 | B2 |
11068318 | Kuesel et al. | Jul 2021 | B2 |
11068584 | Burriesci et al. | Jul 2021 | B2 |
11068618 | Brannon et al. | Jul 2021 | B2 |
11068797 | Bhide et al. | Jul 2021 | B2 |
11068847 | Boutros et al. | Jul 2021 | B2 |
11093950 | Hersh et al. | Aug 2021 | B2 |
11138299 | Brannon et al. | Oct 2021 | B2 |
11144622 | Brannon et al. | Oct 2021 | B2 |
11144678 | Dondini et al. | Oct 2021 | B2 |
11144862 | Jackson et al. | Oct 2021 | B1 |
11195134 | Brannon et al. | Dec 2021 | B2 |
11201929 | Dudmesh et al. | Dec 2021 | B2 |
11238390 | Brannon et al. | Feb 2022 | B2 |
11240273 | Barday et al. | Feb 2022 | B2 |
11252159 | Kannan et al. | Feb 2022 | B2 |
11256777 | Brannon et al. | Feb 2022 | B2 |
11263262 | Chen | Mar 2022 | B2 |
11327996 | Reynolds et al. | May 2022 | B2 |
20020004736 | Roundtree et al. | Jan 2002 | A1 |
20020049907 | Woods et al. | Apr 2002 | A1 |
20020055932 | Wheeler et al. | May 2002 | A1 |
20020077941 | Halligan et al. | Jun 2002 | A1 |
20020103854 | Okita | Aug 2002 | A1 |
20020129216 | Collins | Sep 2002 | A1 |
20020161594 | Bryan et al. | Oct 2002 | A1 |
20020161733 | Grainger | Oct 2002 | A1 |
20030041250 | Proudler | Feb 2003 | A1 |
20030065641 | Chaloux | Apr 2003 | A1 |
20030093680 | Astley et al. | May 2003 | A1 |
20030097451 | Bjorksten et al. | May 2003 | A1 |
20030097661 | Li et al. | May 2003 | A1 |
20030115142 | Brickell et al. | Jun 2003 | A1 |
20030130893 | Farmer | Jul 2003 | A1 |
20030131001 | Matsuo | Jul 2003 | A1 |
20030131093 | Aschen et al. | Jul 2003 | A1 |
20030140150 | Kemp et al. | Jul 2003 | A1 |
20030167216 | Brown et al. | Sep 2003 | A1 |
20030212604 | Cullen | Nov 2003 | A1 |
20040002818 | Kulp et al. | Jan 2004 | A1 |
20040025053 | Hayward | Feb 2004 | A1 |
20040088235 | Ziekle et al. | May 2004 | A1 |
20040098366 | Sinclair et al. | May 2004 | A1 |
20040098493 | Rees | May 2004 | A1 |
20040111359 | Hudock | Jun 2004 | A1 |
20040186912 | Harlow et al. | Sep 2004 | A1 |
20040193907 | Patanella | Sep 2004 | A1 |
20050022198 | Olapurath et al. | Jan 2005 | A1 |
20050033616 | Vavul et al. | Feb 2005 | A1 |
20050076294 | Dehamer et al. | Apr 2005 | A1 |
20050114343 | Wesinger, Jr. et al. | May 2005 | A1 |
20050144066 | Cope et al. | Jun 2005 | A1 |
20050197884 | Mullen, Jr. | Sep 2005 | A1 |
20050198177 | Black | Sep 2005 | A1 |
20050198646 | Kortela | Sep 2005 | A1 |
20050246292 | Sarcanin | Nov 2005 | A1 |
20050278538 | Fowler | Dec 2005 | A1 |
20060031078 | Pizzinger et al. | Feb 2006 | A1 |
20060035204 | Lamarche et al. | Feb 2006 | A1 |
20060075122 | Lindskog et al. | Apr 2006 | A1 |
20060149730 | Curtis | Jul 2006 | A1 |
20060156052 | Bodnar et al. | Jul 2006 | A1 |
20060190280 | Hoebel et al. | Aug 2006 | A1 |
20060206375 | Scott et al. | Sep 2006 | A1 |
20060224422 | Cohen | Oct 2006 | A1 |
20060253597 | Mujica | Nov 2006 | A1 |
20060256945 | Noble, Jr. | Nov 2006 | A1 |
20060259416 | Johnson | Nov 2006 | A1 |
20070011058 | Dev | Jan 2007 | A1 |
20070027715 | Gropper et al. | Feb 2007 | A1 |
20070061125 | Bhatt et al. | Mar 2007 | A1 |
20070061393 | Moore | Mar 2007 | A1 |
20070130101 | Anderson et al. | Jun 2007 | A1 |
20070130323 | Landsman et al. | Jun 2007 | A1 |
20070157311 | Meier et al. | Jul 2007 | A1 |
20070173355 | Klein | Jul 2007 | A1 |
20070179793 | Bagchi et al. | Aug 2007 | A1 |
20070180490 | Renzi et al. | Aug 2007 | A1 |
20070192438 | Goei | Aug 2007 | A1 |
20070266420 | Hawkins et al. | Nov 2007 | A1 |
20070283171 | Breslin et al. | Dec 2007 | A1 |
20080015927 | Ramirez | Jan 2008 | A1 |
20080028065 | Caso et al. | Jan 2008 | A1 |
20080028435 | Strickland et al. | Jan 2008 | A1 |
20080047016 | Spoonamore | Feb 2008 | A1 |
20080120699 | Spear | May 2008 | A1 |
20080140696 | Mathuria | Jun 2008 | A1 |
20080189306 | Hewett et al. | Aug 2008 | A1 |
20080195436 | Whyte | Aug 2008 | A1 |
20080222271 | Spires | Sep 2008 | A1 |
20080235177 | Kim et al. | Sep 2008 | A1 |
20080270203 | Holmes et al. | Oct 2008 | A1 |
20080270351 | Thomsen | Oct 2008 | A1 |
20080270381 | Thomsen | Oct 2008 | A1 |
20080270382 | Thomsen et al. | Oct 2008 | A1 |
20080270451 | Thomsen et al. | Oct 2008 | A1 |
20080270462 | Thomsen | Oct 2008 | A1 |
20080281649 | Morris | Nov 2008 | A1 |
20080282320 | Denovo et al. | Nov 2008 | A1 |
20080288271 | Faust | Nov 2008 | A1 |
20080288299 | Schultz | Nov 2008 | A1 |
20090012896 | Arnold | Jan 2009 | A1 |
20090022301 | Mudaliar | Jan 2009 | A1 |
20090037975 | Ishikawa et al. | Feb 2009 | A1 |
20090119500 | Roth et al. | May 2009 | A1 |
20090132419 | Grammer et al. | May 2009 | A1 |
20090138276 | Hayashida et al. | May 2009 | A1 |
20090140035 | Miller | Jun 2009 | A1 |
20090144702 | Atkin et al. | Jun 2009 | A1 |
20090158249 | Tomkins et al. | Jun 2009 | A1 |
20090172705 | Cheong | Jul 2009 | A1 |
20090182818 | Krywaniuk | Jul 2009 | A1 |
20090187764 | Astakhov et al. | Jul 2009 | A1 |
20090204452 | Iskandar et al. | Aug 2009 | A1 |
20090204820 | Brandenburg et al. | Aug 2009 | A1 |
20090210347 | Sarcanin | Aug 2009 | A1 |
20090216610 | Chorny | Aug 2009 | A1 |
20090249076 | Reed et al. | Oct 2009 | A1 |
20090303237 | Liu et al. | Dec 2009 | A1 |
20100010912 | Jones et al. | Jan 2010 | A1 |
20100010968 | Redlich et al. | Jan 2010 | A1 |
20100077484 | Paretti et al. | Mar 2010 | A1 |
20100082533 | Nakamura et al. | Apr 2010 | A1 |
20100094650 | Tran et al. | Apr 2010 | A1 |
20100100398 | Auker et al. | Apr 2010 | A1 |
20100121773 | Currier et al. | May 2010 | A1 |
20100192201 | Shimoni et al. | Jul 2010 | A1 |
20100205057 | Hook et al. | Aug 2010 | A1 |
20100223349 | Thorson | Sep 2010 | A1 |
20100228786 | Török | Sep 2010 | A1 |
20100234987 | Benschop et al. | Sep 2010 | A1 |
20100235297 | Mamorsky | Sep 2010 | A1 |
20100235915 | Memon et al. | Sep 2010 | A1 |
20100262624 | Pullikottil | Oct 2010 | A1 |
20100268628 | Pitkow et al. | Oct 2010 | A1 |
20100268932 | Bhattacharjee | Oct 2010 | A1 |
20100281313 | White et al. | Nov 2010 | A1 |
20100287114 | Bartko et al. | Nov 2010 | A1 |
20100333012 | Adachi et al. | Dec 2010 | A1 |
20110006996 | Smith et al. | Jan 2011 | A1 |
20110010202 | Neale | Jan 2011 | A1 |
20110082794 | Blechman | Apr 2011 | A1 |
20110137696 | Meyer et al. | Jun 2011 | A1 |
20110145154 | Rivers et al. | Jun 2011 | A1 |
20110153396 | Marcuvitz et al. | Jun 2011 | A1 |
20110191664 | Sheleheda et al. | Aug 2011 | A1 |
20110208850 | Sheleheda et al. | Aug 2011 | A1 |
20110209067 | Bogess et al. | Aug 2011 | A1 |
20110218866 | Wilson | Sep 2011 | A1 |
20110231896 | Tovar | Sep 2011 | A1 |
20110238573 | Varadarajan | Sep 2011 | A1 |
20110252456 | Hatakeyama | Oct 2011 | A1 |
20110302643 | Pichna et al. | Dec 2011 | A1 |
20120041939 | Amsterdamski | Feb 2012 | A1 |
20120084151 | Kozak et al. | Apr 2012 | A1 |
20120084349 | Lee et al. | Apr 2012 | A1 |
20120102411 | Sathish | Apr 2012 | A1 |
20120102543 | Kohli et al. | Apr 2012 | A1 |
20120110674 | Belani et al. | May 2012 | A1 |
20120116923 | Irving et al. | May 2012 | A1 |
20120131438 | Li et al. | May 2012 | A1 |
20120143650 | Crowley et al. | Jun 2012 | A1 |
20120144499 | Tan et al. | Jun 2012 | A1 |
20120191596 | Kremen et al. | Jul 2012 | A1 |
20120226621 | Petran et al. | Sep 2012 | A1 |
20120239557 | Weinflash et al. | Sep 2012 | A1 |
20120254320 | Dove et al. | Oct 2012 | A1 |
20120259752 | Agee | Oct 2012 | A1 |
20120323700 | Aleksandrovich et al. | Dec 2012 | A1 |
20120330769 | Arceo | Dec 2012 | A1 |
20120330869 | Durham | Dec 2012 | A1 |
20130004933 | Bhaskaran | Jan 2013 | A1 |
20130018954 | Cheng | Jan 2013 | A1 |
20130085801 | Sharpe et al. | Apr 2013 | A1 |
20130091156 | Raiche et al. | Apr 2013 | A1 |
20130103485 | Postrel | Apr 2013 | A1 |
20130111323 | Taghaddos et al. | May 2013 | A1 |
20130124257 | Schubert | May 2013 | A1 |
20130159351 | Hamann et al. | Jun 2013 | A1 |
20130171968 | Wang | Jul 2013 | A1 |
20130179982 | Bridges et al. | Jul 2013 | A1 |
20130179988 | Bekker et al. | Jul 2013 | A1 |
20130185806 | Hatakeyama | Jul 2013 | A1 |
20130211872 | Cherry et al. | Aug 2013 | A1 |
20130218829 | Martinez | Aug 2013 | A1 |
20130219459 | Bradley | Aug 2013 | A1 |
20130254649 | ONeill | Sep 2013 | A1 |
20130254699 | Bashir et al. | Sep 2013 | A1 |
20130262328 | Federgreen | Oct 2013 | A1 |
20130282466 | Hampton | Oct 2013 | A1 |
20130290169 | Bathula et al. | Oct 2013 | A1 |
20130298071 | Wine | Nov 2013 | A1 |
20130311224 | Heroux et al. | Nov 2013 | A1 |
20130318207 | Dotter | Nov 2013 | A1 |
20130326112 | Park et al. | Dec 2013 | A1 |
20130332362 | Ciurea | Dec 2013 | A1 |
20130340086 | Blom | Dec 2013 | A1 |
20140006355 | Kirihata | Jan 2014 | A1 |
20140006616 | Aad et al. | Jan 2014 | A1 |
20140012833 | Humprecht | Jan 2014 | A1 |
20140019561 | Belity et al. | Jan 2014 | A1 |
20140032259 | Lafever et al. | Jan 2014 | A1 |
20140032265 | Paprocki | Jan 2014 | A1 |
20140040134 | Peter | Feb 2014 | A1 |
20140040161 | Jason | Feb 2014 | A1 |
20140040979 | Barton et al. | Feb 2014 | A1 |
20140041048 | Goodwin et al. | Feb 2014 | A1 |
20140047551 | Nagasundaram et al. | Feb 2014 | A1 |
20140052463 | Cashman et al. | Feb 2014 | A1 |
20140067973 | Eden | Mar 2014 | A1 |
20140074645 | Ingram | Mar 2014 | A1 |
20140089027 | Brown | Mar 2014 | A1 |
20140089039 | McClellan | Mar 2014 | A1 |
20140108173 | Cooper et al. | Apr 2014 | A1 |
20140108968 | Vishria | Apr 2014 | A1 |
20140137257 | Martinez et al. | May 2014 | A1 |
20140142988 | Grosso et al. | May 2014 | A1 |
20140143011 | Mudugu et al. | May 2014 | A1 |
20140143844 | Goertzen | May 2014 | A1 |
20140164476 | Thomson | Jun 2014 | A1 |
20140188956 | Subba et al. | Jul 2014 | A1 |
20140196143 | Fliderman et al. | Jul 2014 | A1 |
20140208418 | Libin | Jul 2014 | A1 |
20140222468 | Araya et al. | Aug 2014 | A1 |
20140244309 | Francois | Aug 2014 | A1 |
20140244325 | Cartwright | Aug 2014 | A1 |
20140244375 | Kim | Aug 2014 | A1 |
20140244399 | Orduna et al. | Aug 2014 | A1 |
20140257917 | Spencer et al. | Sep 2014 | A1 |
20140258093 | Gardiner et al. | Sep 2014 | A1 |
20140278539 | Edwards | Sep 2014 | A1 |
20140278663 | Samuel et al. | Sep 2014 | A1 |
20140278730 | Muhart et al. | Sep 2014 | A1 |
20140283027 | Orona et al. | Sep 2014 | A1 |
20140283106 | Stahura et al. | Sep 2014 | A1 |
20140288971 | Whibbs, III | Sep 2014 | A1 |
20140289681 | Wielgosz | Sep 2014 | A1 |
20140289862 | Gorfein et al. | Sep 2014 | A1 |
20140317171 | Fox et al. | Oct 2014 | A1 |
20140324480 | Dufel et al. | Oct 2014 | A1 |
20140337041 | Madden et al. | Nov 2014 | A1 |
20140337466 | Li et al. | Nov 2014 | A1 |
20140344015 | Puértolas-Montañés et al. | Nov 2014 | A1 |
20150006514 | Hung | Jan 2015 | A1 |
20150012363 | Grant et al. | Jan 2015 | A1 |
20150019530 | Felch | Jan 2015 | A1 |
20150026056 | Calman et al. | Jan 2015 | A1 |
20150026260 | Worthley | Jan 2015 | A1 |
20150033112 | Norwood et al. | Jan 2015 | A1 |
20150066577 | Christiansen et al. | Mar 2015 | A1 |
20150066865 | Yara et al. | Mar 2015 | A1 |
20150088598 | Acharyya et al. | Mar 2015 | A1 |
20150106264 | Johnson | Apr 2015 | A1 |
20150106867 | Liang | Apr 2015 | A1 |
20150106948 | Holman et al. | Apr 2015 | A1 |
20150106949 | Holman et al. | Apr 2015 | A1 |
20150121462 | Courage et al. | Apr 2015 | A1 |
20150143258 | Carolan et al. | May 2015 | A1 |
20150149362 | Baum et al. | May 2015 | A1 |
20150154520 | Federgreen et al. | Jun 2015 | A1 |
20150169318 | Nash | Jun 2015 | A1 |
20150172296 | Fujioka | Jun 2015 | A1 |
20150178740 | Borawski et al. | Jun 2015 | A1 |
20150199534 | Francis et al. | Jul 2015 | A1 |
20150199541 | Koch et al. | Jul 2015 | A1 |
20150199702 | Singh | Jul 2015 | A1 |
20150229664 | Hawthorn et al. | Aug 2015 | A1 |
20150235049 | Cohen et al. | Aug 2015 | A1 |
20150235050 | Wouhaybi et al. | Aug 2015 | A1 |
20150235283 | Nishikawa | Aug 2015 | A1 |
20150242778 | Wilcox et al. | Aug 2015 | A1 |
20150242858 | Smith et al. | Aug 2015 | A1 |
20150248391 | Watanabe | Sep 2015 | A1 |
20150254597 | Jahagirdar | Sep 2015 | A1 |
20150261887 | Joukov | Sep 2015 | A1 |
20150262189 | Vergeer | Sep 2015 | A1 |
20150264417 | Spitz et al. | Sep 2015 | A1 |
20150269384 | Holman et al. | Sep 2015 | A1 |
20150271167 | Kalai | Sep 2015 | A1 |
20150309813 | Patel | Oct 2015 | A1 |
20150310227 | Ishida et al. | Oct 2015 | A1 |
20150310575 | Shelton | Oct 2015 | A1 |
20150348200 | Fair et al. | Dec 2015 | A1 |
20150356362 | Demos | Dec 2015 | A1 |
20150379430 | Dirac et al. | Dec 2015 | A1 |
20160006760 | Lala et al. | Jan 2016 | A1 |
20160012465 | Sharp | Jan 2016 | A1 |
20160026394 | Goto | Jan 2016 | A1 |
20160034918 | Bjelajac et al. | Feb 2016 | A1 |
20160048700 | Stransky-Heilkron | Feb 2016 | A1 |
20160050213 | Storr | Feb 2016 | A1 |
20160063523 | Nistor et al. | Mar 2016 | A1 |
20160063567 | Srivastava | Mar 2016 | A1 |
20160071112 | Unser | Mar 2016 | A1 |
20160080405 | Schler et al. | Mar 2016 | A1 |
20160099963 | Mahaffey et al. | Apr 2016 | A1 |
20160103963 | Mishra | Apr 2016 | A1 |
20160125550 | Joao et al. | May 2016 | A1 |
20160125749 | Delacroix et al. | May 2016 | A1 |
20160125751 | Barker et al. | May 2016 | A1 |
20160140466 | Sidebottom et al. | May 2016 | A1 |
20160143570 | Valacich et al. | May 2016 | A1 |
20160148143 | Anderson et al. | May 2016 | A1 |
20160162269 | Pogorelik et al. | Jun 2016 | A1 |
20160164915 | Cook | Jun 2016 | A1 |
20160180386 | Konig | Jun 2016 | A1 |
20160188450 | Appusamy et al. | Jun 2016 | A1 |
20160189156 | Kim et al. | Jun 2016 | A1 |
20160196189 | Miyagi et al. | Jul 2016 | A1 |
20160225000 | Glasgow | Aug 2016 | A1 |
20160232465 | Kurtz et al. | Aug 2016 | A1 |
20160232534 | Lacey et al. | Aug 2016 | A1 |
20160234319 | Griffin | Aug 2016 | A1 |
20160253497 | Christodorescu et al. | Sep 2016 | A1 |
20160255139 | Rathod | Sep 2016 | A1 |
20160261631 | Vissamsetty et al. | Sep 2016 | A1 |
20160262163 | Gonzalez Garrido et al. | Sep 2016 | A1 |
20160277429 | Demirjian | Sep 2016 | A1 |
20160292453 | Patterson et al. | Oct 2016 | A1 |
20160292621 | Ciccone et al. | Oct 2016 | A1 |
20160321582 | Broudou et al. | Nov 2016 | A1 |
20160321748 | Mahatma et al. | Nov 2016 | A1 |
20160330237 | Edlabadkar | Nov 2016 | A1 |
20160335531 | Mullen et al. | Nov 2016 | A1 |
20160342811 | Whitcomb et al. | Nov 2016 | A1 |
20160364736 | Maugans, III | Dec 2016 | A1 |
20160370954 | Burningham et al. | Dec 2016 | A1 |
20160378762 | Rohter | Dec 2016 | A1 |
20160381064 | Chan et al. | Dec 2016 | A1 |
20160381560 | Margaliot | Dec 2016 | A1 |
20170004055 | Horan et al. | Jan 2017 | A1 |
20170032395 | Kaufman et al. | Feb 2017 | A1 |
20170032408 | Kumar et al. | Feb 2017 | A1 |
20170034101 | Kumar et al. | Feb 2017 | A1 |
20170041324 | Ionutescu et al. | Feb 2017 | A1 |
20170046399 | Sankaranarasimhan et al. | Feb 2017 | A1 |
20170046753 | Deupree, IV | Feb 2017 | A1 |
20170061501 | Horwich | Mar 2017 | A1 |
20170068785 | Experton et al. | Mar 2017 | A1 |
20170070495 | Cherry et al. | Mar 2017 | A1 |
20170093917 | Chandra et al. | Mar 2017 | A1 |
20170115864 | Thomas et al. | Apr 2017 | A1 |
20170124570 | Nidamanuri et al. | May 2017 | A1 |
20170140174 | Lacey et al. | May 2017 | A1 |
20170140467 | Neag et al. | May 2017 | A1 |
20170142158 | Laoutaris et al. | May 2017 | A1 |
20170142177 | Hu | May 2017 | A1 |
20170154188 | Meier et al. | Jun 2017 | A1 |
20170161520 | Lockhart, III et al. | Jun 2017 | A1 |
20170171235 | Mulchandani et al. | Jun 2017 | A1 |
20170171325 | Perez | Jun 2017 | A1 |
20170177324 | Frank et al. | Jun 2017 | A1 |
20170180378 | Tyler et al. | Jun 2017 | A1 |
20170180505 | Shaw et al. | Jun 2017 | A1 |
20170185758 | Oliker | Jun 2017 | A1 |
20170193017 | Migliori | Jul 2017 | A1 |
20170193624 | Tsai | Jul 2017 | A1 |
20170201518 | Holmqvist et al. | Jul 2017 | A1 |
20170206707 | Guay et al. | Jul 2017 | A1 |
20170208084 | Steelman et al. | Jul 2017 | A1 |
20170220685 | Yan et al. | Aug 2017 | A1 |
20170220964 | Datta Ray | Aug 2017 | A1 |
20170249710 | Guillama et al. | Aug 2017 | A1 |
20170269791 | Meyerzon et al. | Sep 2017 | A1 |
20170270318 | Ritchie | Sep 2017 | A1 |
20170273050 | Levak | Sep 2017 | A1 |
20170278004 | McElhinney et al. | Sep 2017 | A1 |
20170278117 | Wallace et al. | Sep 2017 | A1 |
20170286719 | Krishnamurthy et al. | Oct 2017 | A1 |
20170287031 | Barday | Oct 2017 | A1 |
20170289199 | Barday | Oct 2017 | A1 |
20170308875 | O'Regan et al. | Oct 2017 | A1 |
20170316400 | Venkatakrishnan et al. | Nov 2017 | A1 |
20170330197 | DiMaggio et al. | Nov 2017 | A1 |
20170353404 | Hodge | Dec 2017 | A1 |
20180032757 | Michael | Feb 2018 | A1 |
20180039975 | Hefetz | Feb 2018 | A1 |
20180041498 | Kikuchi | Feb 2018 | A1 |
20180046753 | Shelton | Feb 2018 | A1 |
20180046939 | Meron et al. | Feb 2018 | A1 |
20180063174 | Grill et al. | Mar 2018 | A1 |
20180063190 | Wright et al. | Mar 2018 | A1 |
20180082368 | Weinflash et al. | Mar 2018 | A1 |
20180083843 | Sambandam | Mar 2018 | A1 |
20180091476 | Jakobsson et al. | Mar 2018 | A1 |
20180131574 | Jacobs et al. | May 2018 | A1 |
20180131658 | Bhagwan et al. | May 2018 | A1 |
20180165637 | Romero et al. | Jun 2018 | A1 |
20180198614 | Neumann | Jul 2018 | A1 |
20180204281 | Painter et al. | Jul 2018 | A1 |
20180219917 | Chiang | Aug 2018 | A1 |
20180239500 | Allen et al. | Aug 2018 | A1 |
20180248914 | Sartor | Aug 2018 | A1 |
20180285887 | Crispen | Oct 2018 | A1 |
20180301222 | Dew, Sr. et al. | Oct 2018 | A1 |
20180307859 | Lafever et al. | Oct 2018 | A1 |
20180336509 | Guttmann | Nov 2018 | A1 |
20180349583 | Turgeman et al. | Dec 2018 | A1 |
20180351888 | Howard | Dec 2018 | A1 |
20180352003 | Winn et al. | Dec 2018 | A1 |
20180357243 | Yoon | Dec 2018 | A1 |
20180365720 | Goldman et al. | Dec 2018 | A1 |
20180374030 | Barday et al. | Dec 2018 | A1 |
20180375814 | Hart | Dec 2018 | A1 |
20190005210 | Wiederspohn et al. | Jan 2019 | A1 |
20190012211 | Selvaraj | Jan 2019 | A1 |
20190012672 | Francesco | Jan 2019 | A1 |
20190019184 | Lacey et al. | Jan 2019 | A1 |
20190050547 | Welsh et al. | Feb 2019 | A1 |
20190087570 | Sloane | Mar 2019 | A1 |
20190096020 | Barday et al. | Mar 2019 | A1 |
20190108353 | Sadeh et al. | Apr 2019 | A1 |
20190130132 | Barbas et al. | May 2019 | A1 |
20190138496 | Yamaguchi | May 2019 | A1 |
20190139087 | Dabbs et al. | May 2019 | A1 |
20190148003 | Van Hoe | May 2019 | A1 |
20190156053 | Vogel et al. | May 2019 | A1 |
20190156058 | Van Dyne et al. | May 2019 | A1 |
20190171801 | Barday et al. | Jun 2019 | A1 |
20190179652 | Hesener et al. | Jun 2019 | A1 |
20190180051 | Barday et al. | Jun 2019 | A1 |
20190182294 | Rieke et al. | Jun 2019 | A1 |
20190188402 | Wang et al. | Jun 2019 | A1 |
20190266200 | Francolla | Aug 2019 | A1 |
20190266201 | Barday et al. | Aug 2019 | A1 |
20190266350 | Barday et al. | Aug 2019 | A1 |
20190268343 | Barday et al. | Aug 2019 | A1 |
20190268344 | Barday et al. | Aug 2019 | A1 |
20190272492 | Elledge et al. | Sep 2019 | A1 |
20190294818 | Barday et al. | Sep 2019 | A1 |
20190332802 | Barday et al. | Oct 2019 | A1 |
20190332807 | Lafever et al. | Oct 2019 | A1 |
20190333118 | Crimmins et al. | Oct 2019 | A1 |
20190354709 | Brinskelle | Nov 2019 | A1 |
20190356684 | Sinha | Nov 2019 | A1 |
20190362169 | Lin et al. | Nov 2019 | A1 |
20190362268 | Fogarty et al. | Nov 2019 | A1 |
20190377901 | Balzer et al. | Dec 2019 | A1 |
20190378073 | Lopez et al. | Dec 2019 | A1 |
20190384934 | Kim | Dec 2019 | A1 |
20190392162 | Stern et al. | Dec 2019 | A1 |
20190392170 | Barday et al. | Dec 2019 | A1 |
20190392171 | Barday et al. | Dec 2019 | A1 |
20200020454 | McGarvey et al. | Jan 2020 | A1 |
20200050966 | Enuka et al. | Feb 2020 | A1 |
20200051117 | Mitchell | Feb 2020 | A1 |
20200057781 | McCormick | Feb 2020 | A1 |
20200074471 | Adjaoute | Mar 2020 | A1 |
20200081865 | Farrar et al. | Mar 2020 | A1 |
20200082270 | Gu et al. | Mar 2020 | A1 |
20200090197 | Rodriguez et al. | Mar 2020 | A1 |
20200092179 | Chieu et al. | Mar 2020 | A1 |
20200110589 | Bequet et al. | Apr 2020 | A1 |
20200110904 | Shinde | Apr 2020 | A1 |
20200117737 | Gopalakrishnan et al. | Apr 2020 | A1 |
20200137097 | Zimmermann et al. | Apr 2020 | A1 |
20200143301 | Bowers | May 2020 | A1 |
20200143797 | Manoharan et al. | May 2020 | A1 |
20200159952 | Dain et al. | May 2020 | A1 |
20200159955 | Barlik et al. | May 2020 | A1 |
20200167653 | Manjunath et al. | May 2020 | A1 |
20200175424 | Kursun | Jun 2020 | A1 |
20200183655 | Barday et al. | Jun 2020 | A1 |
20200186355 | Davies | Jun 2020 | A1 |
20200193018 | Van Dyke | Jun 2020 | A1 |
20200193022 | Lunsford et al. | Jun 2020 | A1 |
20200210558 | Barday et al. | Jul 2020 | A1 |
20200210620 | Haletky | Jul 2020 | A1 |
20200211002 | Steinberg | Jul 2020 | A1 |
20200220901 | Barday et al. | Jul 2020 | A1 |
20200226156 | Borra et al. | Jul 2020 | A1 |
20200226196 | Brannon et al. | Jul 2020 | A1 |
20200242259 | Chirravuri et al. | Jul 2020 | A1 |
20200242719 | Lee | Jul 2020 | A1 |
20200250342 | Miller et al. | Aug 2020 | A1 |
20200252413 | Buzbee et al. | Aug 2020 | A1 |
20200252817 | Brouillette et al. | Aug 2020 | A1 |
20200272764 | Brannon et al. | Aug 2020 | A1 |
20200285755 | Kassoumeh et al. | Sep 2020 | A1 |
20200293679 | Handy Bosma et al. | Sep 2020 | A1 |
20200296171 | Mocanu et al. | Sep 2020 | A1 |
20200302089 | Barday et al. | Sep 2020 | A1 |
20200310917 | Tkachev et al. | Oct 2020 | A1 |
20200311310 | Barday et al. | Oct 2020 | A1 |
20200344243 | Brannon et al. | Oct 2020 | A1 |
20200356695 | Brannon et al. | Nov 2020 | A1 |
20200364369 | Brannon et al. | Nov 2020 | A1 |
20200372178 | Barday et al. | Nov 2020 | A1 |
20200394327 | Childress et al. | Dec 2020 | A1 |
20200401380 | Jacobs et al. | Dec 2020 | A1 |
20200401962 | Gottemukkala et al. | Dec 2020 | A1 |
20200410117 | Barday et al. | Dec 2020 | A1 |
20200410131 | Barday et al. | Dec 2020 | A1 |
20200410132 | Brannon et al. | Dec 2020 | A1 |
20210012341 | Garg et al. | Jan 2021 | A1 |
20210056569 | Silberman et al. | Feb 2021 | A1 |
20210081567 | Park et al. | Mar 2021 | A1 |
20210099449 | Frederick et al. | Apr 2021 | A1 |
20210110047 | Fang | Apr 2021 | A1 |
20210125089 | Nickl et al. | Apr 2021 | A1 |
20210152496 | Kim | May 2021 | A1 |
20210233157 | Crutchfield, Jr. | Jul 2021 | A1 |
20210243595 | Buck et al. | Aug 2021 | A1 |
20210248247 | Poothokaran et al. | Aug 2021 | A1 |
20210256163 | Fleming et al. | Aug 2021 | A1 |
20210279360 | Gimenez Palop et al. | Sep 2021 | A1 |
20210297441 | Olalere | Sep 2021 | A1 |
20210303828 | Lafreniere et al. | Sep 2021 | A1 |
20210312061 | Schroeder et al. | Oct 2021 | A1 |
20210326786 | Sun et al. | Oct 2021 | A1 |
20210328969 | Gaddam et al. | Oct 2021 | A1 |
20210382949 | Yastrebenetsky et al. | Dec 2021 | A1 |
20210397735 | Samatov et al. | Dec 2021 | A1 |
20210400018 | Vettaikaran et al. | Dec 2021 | A1 |
20210406712 | Bhide et al. | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
111496802 | Aug 2020 | CN |
112115859 | Dec 2020 | CN |
1394698 | Mar 2004 | EP |
2031540 | Mar 2009 | EP |
20130062500 | Jun 2013 | KR |
2001033430 | May 2001 | WO |
20020067158 | Aug 2002 | WO |
20030050773 | Jun 2003 | WO |
2005008411 | Jan 2005 | WO |
2007002412 | Jan 2007 | WO |
2008134203 | Nov 2008 | WO |
2012174659 | Dec 2012 | WO |
2015116905 | Aug 2015 | WO |
2020146028 | Jul 2020 | WO |
2022006421 | Jan 2022 | WO |
Entry |
---|
Nouwens et al., “Dark Patterns after the GDPR: Scraping Consent Pop-ups and Demonstrating their Influence”, 2020 (Year: 2020). |
Bjorn Greif, “Cookie Pop-up Blocker: Cliqz Automatically Denies Consent Requests”, Aug. 11, 2019 (Year: 2019). |
Jones et al., “Al and the Ethics of Automating Consent”, 2018 (Year: 2018). |
Office Action, dated Jan. 4, 2019, from corresponding U.S. Appl. No. 16/159,566. |
Office Action, dated Jan. 4, 2019, from corresponding U.S. Appl. No. 16/159,628. |
Office Action, dated Jan. 4, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Office Action, dated Jan. 7, 2020, from corresponding U.S. Appl. No. 16/572,182. |
Office Action, dated Jul. 13, 2021, from corresponding U.S. Appl. No. 17/306,496. |
Office Action, dated Jul. 15, 2021, from corresponding U.S. Appl. No. 17/020,275. |
Office Action, dated Jul. 18, 2019, from corresponding U.S. Appl. No. 16/410,762. |
Office Action, dated Jul. 19, 2021, from corresponding U.S. Appl. No. 17/316,179. |
Office Action, dated Jul. 21, 2017, from corresponding U.S. Appl. No. 15/256,430. |
Office Action, dated Jul. 21, 2021, from corresponding U.S. Appl. No. 16/901,654. |
Office Action, dated Jul. 23, 2019, from corresponding U.S. Appl. No. 16/436,616. |
Office Action, dated Jul. 24, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Office Action, dated Jul. 27, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Office Action, dated Jun. 1, 2020, from corresponding U.S. Appl. No. 16/862,952. |
Office Action, dated Jun. 24, 2019, from corresponding U.S. Appl. No. 16/410,336. |
Office Action, dated Jun. 24, 2021, from corresponding U.S. Appl. No. 17/234,205. |
Office Action, dated Jun. 27, 2019, from corresponding U.S. Appl. No. 16/404,405. |
Office Action, dated Jun. 7, 2021, from corresponding U.S. Appl. No. 17/200,698. |
Office Action, dated Jun. 9, 2021, from corresponding U.S. Appl. No. 17/222,523. |
Office Action, dated Mar. 11, 2019, from corresponding U.S. Appl. No. 16/220,978. |
Office Action, dated Mar. 12, 2019, from corresponding U.S. Appl. No. 16/221,153. |
Office Action, dated Mar. 15, 2021, from corresponding U.S. Appl. No. 17/149,421. |
Office Action, dated Mar. 16, 2020, from corresponding U.S. Appl. No. 16/719,488. |
Office Action, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/565,395. |
Office Action, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Office Action, dated Mar. 20, 2020, from corresponding U.S. Appl. No. 16/778,709. |
Office Action, dated Mar. 23, 2020, from corresponding U.S. Appl. No. 16/671,444. |
Office Action, dated Mar. 25, 2019, from corresponding U.S. Appl. No. 16/278,121. |
Office Action, dated Mar. 25, 2020, from corresponding U.S. Appl. No. 16/701,043. |
Office Action, dated Mar. 25, 2020, from corresponding U.S. Appl. No. 16/791,006. |
Office Action, dated Mar. 27, 2019, from corresponding U.S. Appl. No. 16/278,120. |
Office Action, dated Mar. 30, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Office Action, dated Mar. 30, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Office Action, dated Mar. 30, 2021, from corresponding U.S. Appl. No. 17/151,399. |
Office Action, dated Mar. 4, 2019, from corresponding U.S. Appl. No. 16/237,083. |
Office Action, dated May 14, 2020, from corresponding U.S. Appl. No. 16/808,497. |
Office Action, dated May 14, 2020, from corresponding U.S. Appl. No. 16/808,503. |
Office Action, dated May 15, 2020, from corresponding U.S. Appl. No. 16/808,493. |
Office Action, dated May 16, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Office Action, dated May 17, 2019, from corresponding U.S. Appl. No. 16/277,539. |
Office Action, dated May 18, 2021, from corresponding U.S. Appl. No. 17/196,570. |
Office Action, dated May 2, 2018, from corresponding U.S. Appl. No. 15/894,809. |
Office Action, dated May 2, 2019, from corresponding U.S. Appl. No. 16/104,628. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/862,944. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/862,948. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/863,226. |
Office Action, dated May 5, 2020, from corresponding U.S. Appl. No. 16/410,336. |
Office Action, dated Nov. 1, 2017, from corresponding U.S. Appl. No. 15/169,658. |
Office Action, dated Nov. 12, 2020, from corresponding U.S. Appl. No. 17/034,355. |
Office Action, dated Nov. 12, 2020, from corresponding U.S. Appl. No. 17/034,772. |
Notice of Allowance, dated Nov. 23, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Notice of Allowance, dated Nov. 24, 2020, from corresponding U.S. Appl. No. 17/027,019. |
Notice of Allowance, dated Nov. 25, 2020, from corresponding U.S. Appl. No. 17/019,771. |
Notice of Allowance, dated Nov. 26, 2019, from corresponding U.S. Appl. No. 16/563,735. |
Notice of Allowance, dated Nov. 27, 2019, from corresponding U.S. Appl. No. 16/570,712. |
Notice of Allowance, dated Nov. 27, 2019, from corresponding U.S. Appl. No. 16/577,634. |
Notice of Allowance, dated Nov. 3, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Notice of Allowance, dated Nov. 5, 2019, from corresponding U.S. Appl. No. 16/560,965. |
Notice of Allowance, dated Nov. 7, 2017, from corresponding U.S. Appl. No. 15/671,073. |
Notice of Allowance, dated Nov. 8, 2018, from corresponding U.S. Appl. No. 16/042,642. |
Notice of Allowance, dated Nov. 9, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Notice of Allowance, dated Oct. 10, 2019, from corresponding U.S. Appl. No. 16/277,539. |
Notice of Allowance, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Notice of Allowance, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 16/054,672. |
Notice of Allowance, dated Oct. 17, 2019, from corresponding U.S. Appl. No. 16/563,741. |
Notice of Allowance, dated Oct. 21, 2019, from corresponding U.S. Appl. No. 16/404,405. |
Notice of Allowance, dated Oct. 21, 2020, from corresponding U.S. Appl. No. 16/834,812. |
Notice of Allowance, dated Oct. 3, 2019, from corresponding U.S. Appl. No. 16/511,700. |
Notice of Allowance, dated Sep. 1, 2021, from corresponding U.S. Appl. No. 17/196,570. |
Notice of Allowance, dated Sep. 1, 2021, from corresponding U.S. Appl. No. 17/222,556. |
Notice of Allowance, dated Sep. 12, 2019, from corresponding U.S. Appl. No. 16/512,011. |
Notice of Allowance, dated Sep. 13, 2018, from corresponding U.S. Appl. No. 15/894,809. |
Notice of Allowance, dated Sep. 13, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Notice of Allowance, dated Sep. 14, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Notice of Allowance, dated Sep. 16, 2020, from corresponding U.S. Appl. No. 16/915,097. |
Notice of Allowance, dated Sep. 17, 2020, from corresponding U.S. Appl. No. 16/863,226. |
Notice of Allowance, dated Sep. 18, 2018, from corresponding U.S. Appl. No. 15/894,819. |
Notice of Allowance, dated Sep. 18, 2018, from corresponding U.S. Appl. No. 16/041,545. |
Notice of Allowance, dated Sep. 18, 2020, from corresponding U.S. Appl. No. 16/812,795. |
Notice of Allowance, dated Sep. 23, 2020, from corresponding U.S. Appl. No. 16/811,793. |
Notice of Allowance, dated Sep. 23, 2021, from corresponding U.S. Appl. No. 17/068,454. |
Notice of Allowance, dated Sep. 24, 2021, from corresponding U.S. Appl. No. 17/334,939. |
Notice of Allowance, dated Sep. 25, 2020, from corresponding U.S. Appl. No. 16/983,536. |
Notice of Allowance, dated Sep. 27, 2017, from corresponding U.S. Appl. No. 15/626,052. |
Notice of Allowance, dated Sep. 27, 2021, from corresponding U.S. Appl. No. 17/222,523. |
Notice of Allowance, dated Sep. 28, 2018, from corresponding U.S. Appl. No. 16/041,520. |
Notice of Allowance, dated Sep. 29, 2021, from corresponding U.S. Appl. No. 17/316,179. |
Notice of Allowance, dated Sep. 4, 2018, from corresponding U.S. Appl. No. 15/883,041. |
Notice of Allowance, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/808,500. |
Notice of Allowance, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/901,662. |
Notice of Allowance, dated Sep. 9, 2021, from corresponding U.S. Appl. No. 17/334,909. |
Restriction Requirement, dated Apr. 10, 2019, from corresponding U.S. Appl. No. 16/277,715. |
Restriction Requirement, dated Apr. 13, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Restriction Requirement, dated Apr. 24, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Restriction Requirement, dated Aug. 7, 2019, from corresponding U.S. Appl. No. 16/410,866. |
Restriction Requirement, dated Aug. 9, 2019, from corresponding U.S. Appl. No. 16/404,399. |
Restriction Requirement, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 15/169,668. |
Restriction Requirement, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/565,395. |
Restriction Requirement, dated Jan. 18, 2017, from corresponding U.S. Appl. No. 15/256,430. |
Restriction Requirement, dated Jul. 28, 2017, from corresponding U.S. Appl. No. 15/169,658. |
Notice of Filing Date for Petition for Post-Grant Review of related U.S. Pat. No. 9,691,090 dated Apr. 12, 2018. |
O'Keefe et al., “Privacy-Preserving Data Linkage Protocols,” Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, 2004, pp. 94-102 (Year: 2004). |
Olenski, Steve, For Consumers, Data Is A Matter Of Trust, CMO Network, Apr. 18, 2016, https://www.forbes.com/sites/steveolenski/2016/04/18/for-consumers-data-is-a-matter-of-trust/#2e48496278b3. |
Pearson, et al., “A Model-Based Privacy Compliance Checker,” IJEBR, vol. 5, No. 2, pp. 63-83, 2009, Nov. 21, 2008. [Online]. Available: http://dx.doi.org/10.4018/jebr.2009040104 (Year: 2008). |
Pechenizkiy et al., “Process Mining Online Assessment Data,” Educational Data Mining, pp. 279-288 (Year: 2009). |
Petition for Post-Grant Review of related U.S. Pat. No. 9,691,090 dated Mar. 27, 2018. |
Petrie et al., “The Relationship between Accessibility and Usability of Websites”, ACM, pp. 397-406 (Year: 2007). |
Pfeifle, Sam, The Privacy Advisor, IAPP and AvePoint Launch New Free APIA Tool, International Association of Privacy Professionals, Mar. 5, 2014. |
Pfeifle, Sam, The Privacy Advisor, IAPP Heads to Singapore with APIA Template in Tow, International Association of Privacy Professionals, https://iapp.org/news/a/iapp-heads-to-singapore-with-apia-template_in_tow/, Mar. 28, 2014, p. 1-3. |
Ping et al., “Wide Area Placement of Data Replicas for Fast and Highly Available Data Access,” ACM, pp. 1-8 (Year 2011). |
Popescu-Zeletin, “The Data Access and Transfer Support in a Local Heterogeneous Network (HMINET)”, IEEE, pp. 147-152 (Year: 1979). |
Porter, “De-Identified Data and Third Party Data Mining: The Risk of Re-Identification of Personal Information,” Shidler JL Com. & Tech. 5, 2008, pp. 1-9 (Year: 2008). |
Pretorius, et al, “Attributing Users Based on Web Browser History,” 2017 IEEE Conference on Application, Information and Network Security (AINS), 2017, pp. 69-74 (Year: 2017). |
Qing-Jiang et al, “The (P, a, K) Anonymity Model for Privacy Protection of Personal Information in the Social Networks,” 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, vol. 2 IEEE, 2011, pp. 420-423 (Year: 2011). |
Qiu, et al, “Design and Application of Data Integration Platform Based on Web Services and XML,” IEEE, pp. 253-256 (Year: 2016). |
Radu, et al, “Analyzing Risk Evaluation Frameworks and Risk Assessment Methods,” IEEE, Dec. 12, 2020, pp. 1-6 (Year: 2020). |
Reardon et al., User-Level Secure Deletion on Log-Structured File Systems, ACM, 2012, retrieved online on Apr. 22, 2021, pp. 1-11. Retrieved from the Internet: URL: http://citeseerx.ist.psu.edu/viewdoc/download; sessionid=450713515DC7F19F8ED09AE961D4B60E. (Year: 2012). |
Regulation (EU) 2016/679, “On the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation),” Official Journal of the European Union, May 4, 2016, pp. L 119/1-L 119/88 (Year: 2016). |
Rozepz, “What is Google Privacy Checkup? Everything You Need to Know,” Tom's Guide web post, Apr. 26, 2018, pp. 1-11 (Year: 2018). |
Salim et al, “Data Retrieval and Security using Lightweight Directory Access Protocol”, IEEE, pp. 685-688 (Year: 2009). |
Santhisree, et al, “Web Usage Data Clustering Using Dbscan Algorithm and Set Similarities,” IEEE, pp. 220-224 (Year: 2010). |
Sanzo et al, “Analytical Modeling of Lock-Based Concurrency Control with Arbitrary Transaction Data Access Patterns,” ACM, pp. 69-78 (Year: 2010). |
Schwartz, Edward J., et al, 2010 IEEE Symposium on Security and Privacy: All You Ever Wanted to Know About Dynamic Analysis and forward Symbolic Execution (but might have been afraid to ask), Carnegie Mellon University, IEEE Computer Society, 2010, p. 317-331. |
Sedinic et al, “Security Risk Management in Complex Organization,” May 29, 2015, IEEE, pp. 1331-1337 (Year: 2015). |
Singh, et al, “A Metadata Catalog Service for Data Intensive Applications,” ACM, pp. 1-17 (Year: 2003). |
Slezak, et al, “Brighthouse: An Analytic Data Warehouse for Ad-hoc Queries,” ACM, pp. 1337-1345 (Year: 2008). |
Soceanu, et al, “Managing the Privacy and Security of eHealth Data,” May 29, 2015, IEEE, pp. 1-8 (Year: 2015). |
Srinivasan et al, “Descriptive Data Analysis of File Transfer Data,” ACM, pp. 1-8 (Year: 2014). |
Srivastava, Agrima, et al, Measuring Privacy Leaks in Online Social Networks, International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2013. |
Stack Overflow, “Is there a way to force a user to scroll to the bottom of a div?,” Stack Overflow, pp. 1-11, Nov. 2013. [Online], Available: https://stackoverflow.com/questions/2745935/is-there-a-way-to-force-a-user-to-scroll-to-the-bottom-of-a-div (Year: 2013). |
Stern, Joanna, “iPhone Privacy Is Broken . . . and Apps Are to Blame”, The Wall Street Journal, wsj.com, May 31, 2019. |
Strodl, et al, “Personal & SOHO Archiving,” Vienna University of Technology, Vienna, Austria, JCDL '08, Jun. 16-20, 2008, Pittsburgh, Pennsylvania, USA, pp. 115-123 (Year: 2008). |
Sukumar et al, “Review on Modern Data Preprocessing Techniques in Web Usage Mining (WUM),” IEEE, 2016, pp. 64-69 (Year: 2016). |
Symantec, Symantex Data Loss Prevention—Discover, monitor, and protect confidential data; 2008; Symantec Corporation; http://www.mssuk.com/images/Symantec%2014552315_IRC_BR_DLP_03.09_sngl.pdf. |
Tanasa et al, “Advanced Data Preprocessing for Intersites Web Usage Mining,” IEEE, Mar. 2004, pp. 59-65 (Year: 2004). |
Tanwar, et al., “Live Forensics Analysis: Violations of Business Security Policy,” 2014 International Conference on Contemporary Computing and Informatics (IC31), 2014, pp. 971-976 (Year: 2014). |
The Cookie Collective, Optanon Cookie Policy Generator, The Cookie Collective, Year 2016, http://web.archive.org/web/20160324062743/https:/optanon.com/. |
Thuraisingham, “Security Issues for the Semantic Web,” Proceedings 27th Annual International Computer Software and Applications Conference, COMPSAC 2003, Dallas, TX, USA, 2003, pp. 633-638 (Year: 2003). |
TRUSTe Announces General Availability of Assessment Manager for Enterprises to Streamline Data Privacy Management with Automation, PRNewswire, Mar. 4, 2015. |
Tsai et al, “Determinants of Intangible Assets Value: The Data Mining Approach,” Knowledge Based System, pp. 67-77 http://www.elsevier.com/locate/knosys (Year: 2012). |
Tuomas Aura et al., Scanning Electronic Documents for Personally Identifiable Information, ACM, Oct. 30, 2006, retrieved online on Jun. 13, 2019, pp. 41-49. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/1180000/1179608/p41-aura.pdf? (Year: 2006). |
Wang et al, “Revealing Key Non-Financial Factors for Online Credit-Scoring in E-Financing,” 2013, IEEE, pp. 1-6 (Year: 2013). |
Wang et al., “Secure and Efficient Access to Outsourced Data,” ACM, pp. 55-65 (Year: 2009). |
Weaver et al., “Understanding Information Preview in Mobile Email Processing”, ACM, pp. 303-312, 2011 (Year: 2011). |
Wu et al., “Data Mining with Big Data,” IEEE, Jan. 2014, pp. 97-107, vol. 26, No. 1, (Year: 2014). |
www.truste.com (1), 20015207, Internet Archive Wayback Machine, www.archive.org,2_7_2015. |
Xu, et al., “GatorShare: A File System Framework for High-Throughput Data Management,” ACM, pp. 776-786 (Year: 2010). |
Yang et al., “DAC-MACS: Effective Data Access Control for Multiauthority Cloud Storage Systems,” IEEE, pp. 1790-1801 (Year: 2013). |
Yang et al., “Mining Web Access Sequence with Improved Apriori Algorithm,” IEEE, 2017, pp. 780-784 (Year: 2017). |
Ye et al., “An Evolution-Based Cache Scheme for Scalable Mobile Data Access,” ACM, pp. 1-7 (Year: 2007). |
Gowadia et al., “RDF Metadata for XML Access Control,” ACM, pp. 31-48 (Year: 2003). |
Grolinger, et al., “Data Management in Cloud Environments: NoSQL and NewSQL Data Stores,” Journal of Cloud Computing: Advances, Systems and Applications, pp. 1-24 (Year: 2013). |
Guo, et al., “OPAL: A Passe-partout for Web Forms,” ACM, pp. 353-356 (Year: 2012). |
Gustarini, et al., “Evaluation of Challenges in Human Subject Studies ”In-the-Wild“ Using Subjects' Personal Smartphones,” ACM, pp. 1447-1456 (Year: 2013). |
Hacigümüs, Hakan, et al, Executing SQL over Encrypted Data in the Database-Service-Provider Model, ACM, Jun. 4, 2002, pp. 216-227. |
Halevy, et al., “Schema Mediation in Peer Data Management Systems,” IEEE, Proceedings of the 19th International Conference on Data Engineering, 2003, pp. 505-516 (Year: 2003). |
Hauch, et al., “Information Intelligence: Metadata for Information Discovery, Access, and Integration,” ACM, pp. 793-798 (Year: 2005). |
Hernandez, et al., “Data Exchange with Data-Metadata Translations,” ACM, pp. 260-273 (Year: 2008). |
Hinde, “A Model to Assess Organisational Information Privacy Maturity Against the Protection of Personal Information Act” Dissertation University of Cape Town 2014, pp. 1-121 (Year: 2014). |
Hodge, et al., “Managing Virtual Data Marts with Metapointer Tables,” pp. 1-7 (Year: 2002). |
Horrall et al., “Evaluating Risk: IBM's Country Financial Risk and Treasury Risk Scorecards,” Jul. 21, 2014, IBM, vol. 58, issue 4, p. 2:1-2:9 (Year: 2014). |
Hu, et al, “Attribute Considerations for Access Control Systems,” NIST Special Publication 800-205, Jun. 2019, pp. 1-42 (Year: 2019). |
Hu, et al., “Guide to Attribute Based Access Control (ABAC) Definition and Considerations (Draft),” NIST Special Publication 800-162, pp. 1-54 (Year: 2013). |
Huang, et al, “A Study on Information Security Management with Personal Data Protection,” IEEE, Dec. 9, 2011, pp. 624-630 (Year: 2011). |
Huner et al, “Towards a Maturity Model for Corporate Data Quality Management”, ACM, pp. 231-238, 2009 (Year: 2009). |
Hunton & Williams LLP, The Role of Risk Management in Data Protection, Privacy Risk Framework and the Risk-based Approach to Privacy, Centre for Information Policy Leadership, Workshop II, Nov. 23, 2014. |
Huo et al., “A Cloud Storage Architecture Model for Data-lntensive Applications,” IEEE, pp. 1-4 (Year: 2011). |
IAPP, Daily Dashboard, PIA Tool Stocked With New Templates for DPI, Infosec, International Association of Privacy Professionals, Apr. 22, 2014. |
IAPP, ISO/IEC 27001 Information Security Management Template, Resource Center, International Association of Privacy Professionals. |
Imran et al., “Searching in Cloud Object Storage by Using a Metadata Model”, IEEE, 2014, retrieved online on Apr. 1, 2020, pp. 121 128. Retrieved from the Internet: URL: https://ieeeexplore.ieee.org/stamp/stamp.jsp? (Year: 2014). |
Islam, et al., “Mixture Model Based Label Association Techniques for Web Accessibility,” ACM, pp. 67-76 (Year: 2010). |
Jensen, et al., “Temporal Data Management,” IEEE Transactions on Knowledge and Data Engineering, vol. 11, No. 1, Jan./Feb. 1999, pp. 36-44 (Year: 1999). |
Joel Reardon et al., Secure Data Deletion from Persistent Media, ACM, Nov. 4, 2013, retrieved online on Jun. 13, 2019, pp. 271-283. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/2520000/2516699/p271-reardon.pdf? (Year: 2013). |
Joonbakhsh et al, “Mining and Extraction of Personal Software Process measures through IDE Interaction logs,” ACM/IEEE, 2018, retrieved online on Dec. 2, 2019, pp. 78-81. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/3200000/3196462/p78-joonbakhsh.pdf? (Year: 2018). |
Jun et al, “Scalable Multi-Access Flash Store for Big Data Analytics,” ACM, pp. 55-64 (Year: 2014). |
Kirkham, et al, “A Personal Data Store for an Internet of Subjects,” IEEE, pp. 92-97 (Year: 2011). |
Korba, Larry et al.; “Private Data Discovery for Privacy Compliance in Collaborative Environments”; Cooperative Design, Visualization, and Engineering; Springer Berlin Heidelberg; Sep. 21, 2008; pp. 142-150. |
Krol, Kat, et al, Control versus Effort in Privacy Warnings for Webforms, ACM, Oct. 24, 2016, pp. 13-23. |
Lamb et al, “Role-Based Access Control for Data Service Integration”, ACM, pp. 3-11 (Year: 2006). |
Leadbetter, et al, “Where Big Data Meets Linked Data: Applying Standard Data Models to Environmental Data Streams,” IEEE, pp. 2929-2937 (Year: 2016). |
Lebeau, Franck, et al, “Model-Based Vulnerability Testing for Web Applications,” 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops, pp. 445-452, IEEE, 2013 (Year: 2013). |
Li, Ninghui, et al, t-Closeness: Privacy Beyond k-Anonymity and l-Diversity, IEEE, 2014, p. 106-115. |
Liu et al, “Cross-Geography Scientific Data Transferring Trends and Behavior,” ACM, pp. 267-278 (Year: 2018). |
Liu, Kun, et al, A Framework for Computing the Privacy Scores of Users in Online Social Networks, ACM Transactions on Knowledge Discovery from Data, vol. 5, No. 1, Article 6, Dec. 2010, 30 pages. |
Liu, Yandong, et al, “Finding the Right Consumer: Optimizing for Conversion in Display Advertising Campaigns,” Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, Feb. 2, 2012, pp. 473-428 (Year: 2012). |
Lizar et al, “Usable Consents: Tracking and Managing Use of Personal Data with a Consent Transaction Receipt,” Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, 2014, pp. 647-652 (Year: 2014). |
Luu, et al, “Combined Local and Holistic Facial Features for Age-Determination,” 2010 11th Int. Conf. Control, Automation, Robotics and Vision, Singapore, Dec. 7, 2010, IEEE, pp. 900-904 (Year: 2010). |
Ma Ziang, et al, “LibRadar: Fast and Accurate Detection of Third-Party Libraries in Android Apps,” 2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion (ICSE-C), ACM, May 14, 2016, pp. 653-656, DOI: http://dx.doi.org/10.1145/2889160.2889178, p. 653, r.col, par. 1-3; figure 3 (Year: 2016). |
Mandal, et al, “Automated Age Prediction Using Wrinkles Features of Facial Images and Neural Network,” International Journal of Emerging Engineering Research and Technology, vol. 5, Issue 2, Feb. 2017, pp. 12-20 (Year: 2017). |
Maret et al, “Multimedia Information Interchange: Web Forms Meet Data Servers”, IEEE, pp. 499-505 (Year: 1999). |
Martin, et al, “Hidden Surveillance by Web Sites: Web Bugs in Contemporary Use,” Communications of the ACM, vol. 46, No. 12, Dec. 2003, pp. 258-264. Internet source https://doi.org/10.1145/953460.953509 (Year: 2003). |
McGarth et al, “Digital Library Technology for Locating and Accessing Scientific Data”, ACM, pp. 188-194 (Year: 1999). |
Mesbah et al, “Crawling Ajax-Based Web Applications Through Dynamic Analysis of User Interface State Changes,” ACM Transactions on the Web (TWEB) vol. 6, No. 1, Article 3, Mar. 2012, pp. 1-30 (Year: 2012). |
Moiso et al, “Towards a User-Centric Personal Data Ecosystem The Role of the Bank of Individual's Data,” 2012 16th International Conference on Intelligence in Next Generation Networks, Berlin, 2012, pp. 202-209 (Year: 2012). |
Moscoso-Zea et al, “Datawarehouse Design for Educational Data Mining,” IEEE, pp. 1-6 (Year: 2016). |
Mudepalli et al, “An efficient data retrieval approach using blowfish encryption on cloud CipherText Retrieval in Cloud Computing” IEEE, pp. 267-271 (Year: 2017). |
Mundada et al, “Half-Baked Cookies: Hardening Cookie-Based Authentication for the Modern Web,” Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, 2016, pp. 675-685 (Year: 2016). |
Newman et al, “High Speed Scientific Data Transfers using Software Defined Networking,” ACM, pp. 1-9 (Year: 2015). |
Newman, “Email Archive Overviews using Subject Indexes”, ACM, pp. 652-653, 2002 (Year: 2002). |
Nishikawa, Taiji, English Translation of JP 2019154505, Aug. 27, 2019 (Year: 2019). |
Notice of Allowance, dated Feb. 25, 2021, from corresponding U.S. Appl. No. 17/106,469. |
Notice of Allowance, dated Feb. 26, 2021, from corresponding U.S. Appl. No. 17/139,650. |
Notice of Allowance, dated Feb. 27, 2019, from corresponding U.S. Appl. No. 16/041,468. |
Notice of Allowance, dated Feb. 27, 2019, from corresponding U.S. Appl. No. 16/226,290. |
Notice of Allowance, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 16/827,039. |
Notice of Allowance, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 17/068,558. |
Notice of Allowance, dated Jan. 1, 2021, from corresponding U.S. Appl. No. 17/026,727. |
Notice of Allowance, dated Jan. 14, 2020, from corresponding U.S. Appl. No. 16/277,715. |
Notice of Allowance, dated Jan. 15, 2021, from corresponding U.S. Appl. No. 17/030,714. |
Notice of Allowance, dated Jan. 18, 2018, from corresponding U.S. Appl. No. 15/619,478. |
Notice of Allowance, dated Jan. 18, 2019 from corresponding U.S. Appl. No. 16/159,635. |
Notice of Allowance, dated Jan. 2, 2020, from corresponding U.S. Appl. No. 16/410,296. |
Notice of Allowance, dated Jan. 23, 2018, from corresponding U.S. Appl. No. 15/619,251. |
Notice of Allowance, dated Jan. 25, 2021, from corresponding U.S. Appl. No. 16/410,336. |
Notice of Allowance, dated Jan. 26, 2018, from corresponding U.S. Appl. No. 15/619,469. |
Notice of Allowance, dated Jan. 29, 2020, from corresponding U.S. Appl. No. 16/278,119. |
Notice of Allowance, dated Jan. 6, 2021, from corresponding U.S. Appl. No. 16/595,327. |
Notice of Allowance, dated Jan. 8, 2020, from corresponding U.S. Appl. No. 16/600,879. |
Notice of Allowance, dated Jul. 10, 2019, from corresponding U.S. Appl. No. 16/237,083. |
Notice of Allowance, dated Jul. 10, 2019, from corresponding U.S. Appl. No. 16/403,358. |
Notice of Allowance, dated Jul. 12, 2019, from corresponding U.S. Appl. No. 16/278,121. |
Notice of Allowance, dated Jul. 14, 2020, from corresponding U.S. Appl. No. 16/701,043. |
Notice of Allowance, dated Jul. 15, 2020, from corresponding U.S. Appl. No. 16/791,006. |
Notice of Allowance, dated Jul. 16, 2020, from corresponding U.S. Appl. No. 16/901,979. |
Notice of Allowance, dated Jul. 17, 2019, from corresponding U.S. Appl. No. 16/055,961. |
Notice of Allowance, dated Jul. 17, 2020, from corresponding U.S. Appl. No. 16/778,709. |
Notice of Allowance, dated Jul. 19, 2021, from corresponding U.S. Appl. No. 17/306,252. |
Notice of Allowance, dated Jul. 21, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Notice of Allowance, dated Jul. 23, 2019, from corresponding U.S. Appl. No. 16/220,978. |
Notice of Allowance, dated Jul. 26, 2019, from corresponding U.S. Appl. No. 16/409,673. |
Notice of Allowance, dated Jul. 26, 2021, from corresponding U.S. Appl. No. 17/151,399. |
Notice of Allowance, dated Jul. 26, 2021, from corresponding U.S. Appl. No. 17/207,316. |
Notice of Allowance, dated Jul. 31, 2019, from corresponding U.S. Appl. No. 16/221,153. |
Notice of Allowance, dated Jul. 8, 2021, from corresponding U.S. Appl. No. 17/201,040. |
Notice of Allowance, dated Jun. 1, 2020, from corresponding U.S. Appl. No. 16/813,321. |
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 17/216,436. |
Notice of Allowance, dated Jun. 12, 2019, from corresponding U.S. Appl. No. 16/278,123. |
Notice of Allowance, dated Jun. 12, 2019, from corresponding U.S. Appl. No. 16/363,454. |
Notice of Allowance, dated Jun. 16, 2020, from corresponding U.S. Appl. No. 16/798,818. |
Notice of Allowance, dated Jun. 17, 2020, from corresponding U.S. Appl. No. 16/656,895. |
Notice of Allowance, dated Jun. 18, 2019, from corresponding U.S. Appl. No. 16/410,566. |
Notice of Allowance, dated Jun. 19, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Notice of Allowance, dated Jun. 19, 2019, from corresponding U.S. Appl. No. 16/042,673. |
Notice of Allowance, dated Jun. 19, 2019, from corresponding U.S. Appl. No. 16/055,984. |
Notice of Allowance, dated Jun. 2, 2021, from corresponding U.S. Appl. No. 17/198,581. |
Notice of Allowance, dated Jun. 21, 2019, from corresponding U.S. Appl. No. 16/404,439. |
Notice of Allowance, dated Jun. 22, 2020, from corresponding U.S. Appl. No. 16/791,337. |
Notice of Allowance, dated Jun. 27, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Office Action, dated Aug. 18, 2021, from corresponding U.S. Appl. No. 17/222,725. |
Office Action, dated Aug. 19, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Office Action, dated Aug. 20, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Office Action, dated Aug. 23, 2017, from corresponding U.S. Appl. No. 15/626,052. |
Office Action, dated Aug. 24, 2017, from corresponding U.S. Appl. No. 15/169,643. |
Office Action, dated Aug. 24, 2017, from corresponding U.S. Appl. No. 15/619,451. |
Office Action, dated Aug. 24, 2020, from corresponding U.S. Appl. No. 16/595,327. |
Office Action, dated Aug. 27, 2019, from corresponding U.S. Appl. No. 16/410,296. |
Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/187,329. |
Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/334,948. |
Office Action, dated Aug. 29, 2017, from corresponding U.S. Appl. No. 15/619,237. |
Office Action, dated Aug. 30, 2017, from corresponding U.S. Appl. No. 15/619,212. |
Office Action, dated Aug. 30, 2017, from corresponding U.S. Appl. No. 15/619,382. |
Office Action, dated Aug. 30, 2021, from corresponding U.S. Appl. No. 16/938,520. |
Office Action, dated Aug. 6, 2019, from corresponding U.S. Appl. No. 16/404,491. |
Office Action, dated Aug. 6, 2020, from corresponding U.S. Appl. No. 16/862,956. |
Office Action, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/578,712. |
Office Action, dated Dec. 14, 2018, from corresponding U.S. Appl. No. 16/104,393. |
Office Action, dated Dec. 15, 2016, from corresponding U.S. Appl. No. 15/256,419. |
Office Action, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/563,754. |
Office Action, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/565,265. |
Office Action, dated Dec. 16, 2020, from corresponding U.S. Appl. No. 17/020,275. |
Office Action, dated Dec. 18, 2020, from corresponding U.S. Appl. No. 17/030,714. |
Office Action, dated Dec. 19, 2019, from corresponding U.S. Appl. No. 16/410,866. |
Office Action, dated Dec. 2, 2019, from corresponding U.S. Appl. No. 16/560,963. |
Office Action, dated Dec. 23, 2019, from corresponding U.S. Appl. No. 16/593,639. |
Office Action, dated Dec. 24, 2020, from corresponding U.S. Appl. No. 17/068,454. |
Office Action, dated Dec. 3, 2018, from corresponding U.S. Appl. No. 16/055,998. |
Office Action, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 16/160,577. |
Office Action, dated Dec. 8, 2020, from corresponding U.S. Appl. No. 17/013,758. |
Office Action, dated Dec. 8, 2020, from corresponding U.S. Appl. No. 17/068,198. |
Office Action, dated Feb. 10, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Office Action, dated Feb. 10, 2021, from corresponding U.S. Appl. No. 17/106,469. |
Office Action, dated Feb. 15, 2019, from corresponding U.S. Appl. No. 16/220,899. |
Office Action, dated Feb. 17, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Office Action, dated Feb. 18, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Office Action, dated Feb. 2, 2021, from corresponding U.S. Appl. No. 17/101,915. |
Office Action, dated Feb. 26, 2019, from corresponding U.S. Appl. No. 16/228,250. |
Office Action, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 17/013,757. |
Office Action, dated Feb. 5, 2020, from corresponding U.S. Appl. No. 16/586,202. |
Office Action, dated Feb. 6, 2020, from corresponding U.S. Appl. No. 16/707,762. |
Office Action, dated Feb. 8, 2021, from corresponding U.S. Appl. No. 17/139,650. |
Office Action, dated Feb. 9, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Office Action, dated Jan. 18, 2019, from corresponding U.S. Appl. No. 16/055,984. |
Office Action, dated Jan. 22, 2021, from corresponding U.S. Appl. No. 17/099,270. |
Office Action, dated Jan. 24, 2020, from corresponding U.S. Appl. No. 16/505,426. |
Office Action, dated Jan. 24, 2020, from corresponding U.S. Appl. No. 16/700,049. |
Office Action, dated Jan. 27, 2020, from corresponding U.S. Appl. No. 16/656,895. |
Office Action, dated Jan. 28, 2020, from corresponding U.S. Appl. No. 16/712,104. |
Office Action, dated Jan. 29, 2021, from corresponding U.S. Appl. No. 17/101,106. |
Restriction Requirement, dated Jun. 15, 2021, from corresponding U.S. Appl. No. 17/187,329. |
Restriction Requirement, dated Jun. 15, 2021, from corresponding U.S. Appl. No. 17/222,556. |
Restriction Requirement, dated Jun. 9, 2021, from corresponding U.S. Appl. No. 17/222,725. |
Restriction Requirement, dated May 5, 2020, from corresponding U.S. Appl. No. 16/808,489. |
Restriction Requirement, dated Nov. 15, 2019, from corresponding U.S. Appl. No. 16/586,202. |
Restriction Requirement, dated Nov. 21, 2016, from corresponding U.S. Appl. No. 15/254,901. |
Restriction Requirement, dated Nov. 5, 2019, from corresponding U.S. Appl. No. 16/563,744. |
Restriction Requirement, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 16/055,984. |
Restriction Requirement, dated Sep. 15, 2020, from corresponding U.S. Appl. No. 16/925,628. |
Restriction Requirement, dated Sep. 9, 2019, from corresponding U.S. Appl. No. 16/505,426. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Advisory Action, dated Jan. 6, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Advisory Action, dated Jun. 19, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Advisory Action, dated Jun. 2, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Advisory Action, dated May 21, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Aman et al., “Detecting Data Tampering Attacks in Synchrophasor Networks using Time Hopping,” IEEE, pp. 1-6 (Year: 2016). |
Bujlow et al., “Web Tracking: Mechanisms, Implications, and Defenses,” Proceedings of the IEEE, Aug. 1, 2017, vol. 5, No. 8, pp. 1476-1510 (Year: 2017). |
Fan et al., “Intrusion Investigations with Data-hiding for Computer Log-file Forensics,” IEEE, pp. 1-6 (Year: 2010). |
Final Office Action, dated Oct. 26, 2021, from corresponding U.S. Appl. No. 17/306,496. |
Final Office Action, dated Oct. 28, 2021, from corresponding U.S. Appl. No. 17/234,205. |
Final Office Action, dated Oct. 29, 2021, from corresponding U.S. Appl. No. 17/020,275. |
Gonåalves et al, “The XML Log Standard for Digital Libraries: Analysis, Evolution, and Deployment,” IEEE, pp. 312-314 (Year: 2003). |
Iordanou et al, “Tracing Cross Border Web Tracking,” Oct. 31, 2018, pp. 329-342, ACM (Year: 2018). |
Notice of Allowance, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/491,871. |
Notice of Allowance, dated Nov. 22, 2021, from corresponding U.S. Appl. No. 17/383,889. |
Notice of Allowance, dated Oct. 22, 2021, from corresponding U.S. Appl. No. 17/346,847. |
Office Action, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/380,485. |
Office Action, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/409,999. |
Office Action, dated Nov. 12, 2021, from corresponding U.S. Appl. No. 17/346,586. |
Office Action, dated Nov. 12, 2021, from corresponding U.S. Appl. No. 17/373,444. |
Office Action, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/370,650. |
Office Action, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/486,350. |
Office Action, dated Nov. 23, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Office Action, dated Nov. 26, 2021, from corresponding U.S. Appl. No. 16/925,550. |
Office Action, dated Nov. 4, 2021, from corresponding U.S. Appl. No. 17/491,906. |
Office Action, dated Nov. 8, 2021, from corresponding U.S. Appl. No. 16/872,130. |
Office Action, dated Oct. 15, 2021, from corresponding U.S. Appl. No. 16/908,081. |
Restriction Requirement, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/366,754. |
Roesner et al, “Detecting and Defending Against Third-Party Tracking on the Web,” 9th USENIX Symposium on Networked Systems Design and Implementation, Apr. 11, 2013, pp. 1-14, ACM (Year: 2013). |
Van Eijk et al, “The Impact of User Location on Cookie Notices (Inside and Outside of the European Union,” IEEE Security & Privacy Workshop on Technology and Consumer Protection (CONPRO '19), Jan. 1, 2019 (Year: 2019). |
Written Opinion of the International Searching Authority, dated Nov. 12, 2021, from corresponding International Application No. PCT/US2021/043481. |
Written Opinion of the International Searching Authority, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/040893. |
Written Opinion of the International Searching Authority, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/044910. |
Ardagna, et al, “A Privacy-Aware Access Control System,” Journal of Computer Security, 16:4, pp. 369-397 (Year: 2008). |
Avepoint, Automating Privacy Impact Assessments, AvePoint, Inc. |
Avepoint, AvePoint Privacy Impact Assessment 1: User Guide, Cumulative Update 2, Revision E, Feb. 2015, AvePoint, Inc. |
Avepoint, Installing and Configuring the APIA System, International Association of Privacy Professionals, AvePoint, Inc. |
Ball, et al, “Aspects of the Computer-Based Patient Record,” Computers in Healthcare, Springer-Verlag New York Inc., pp. 1-23 (Year: 1992). |
Bang et al, “Building an Effective and Efficient Continuous Web Application Security Program,” 2016 International Conference on Cyber Security Situational Awareness, Data Analytics and Assessment (CyberSA), London, 2016, pp. 1-4 (Year: 2016). |
Barker, “Personalizing Access Control by Generalizing Access Control,” ACM, pp. 149-158 (Year: 2010). |
Barr, “Amazon Rekognition Update—Estimated Age Range for Faces,” AWS News Blog, Feb. 10, 2017, pp. 1-5 (Year: 2017). |
Bayardo et al, “Technological Solutions for Protecting Privacy,” Computer 36.9 (2003), pp. 115-118, (Year: 2003). |
Berezovskiy et al, “A framework for dynamic data source identification and orchestration on the Web”, ACM, pp. 1-8 (Year: 2010). |
Bertino et al, “On Specifying Security Policies for Web Documents with an XML-based Language,” ACM, pp. 57-65 (Year: 2001). |
Bhargav-Spantzel et al, Receipt Management—Transaction History based Trust Establishment, 2007, ACM, p. 82-91. |
Bhuvaneswaran et al, “Redundant Parallel Data Transfer Schemes for the Grid Environment”, ACM, pp. 18 (Year: 2006). |
Bieker, et al, “Privacy-Preserving Authentication Solutions—Best Practices for Implementation and EU Regulatory Perspectives,” Oct. 29, 2014, IEEE, pp. 1-10 (Year: 2014). |
Bin, et al, “Research on Data Mining Models for the Internet of Things,” IEEE, pp. 1-6 (Year: 2010). |
Binns, et al, “Data Havens, or Privacy Sans Frontieres? A Study of International Personal Data Transfers,” ACM, pp. 273-274 (Year: 2002). |
Borgida, “Description Logics in Data Management,” IEEE Transactions on Knowledge and Data Engineering, vol. 7, No. 5, Oct. 1995, pp. 671-682 (Year: 1995). |
Brandt et al, “Efficient Metadata Management in Large Distributed Storage Systems,” IEEE, pp. 1-9 (Year: 2003). |
Byun, Ji-Won, Elisa Bertino, and Ninghui Li. “Purpose based access control of complex data for privacy protection.” Proceedings of the tenth ACM symposium on Access control models and technologies. ACM, 2005. (Year: 2005). |
Carminati et al, “Enforcing Access Control Over Data Streams,” ACM, pp. 21-30 (Year: 2007). |
Carpineto et al, “Automatic Assessment of Website Compliance to the European Cookie Law with CooLCheck,” Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society, 2016, pp. 135-138 (Year: 2016). |
Cerpzone, “How to Access Data on Data Archival Storage and Recovery System”, https://www.saj.usace.army.mil/Portals/44/docs/Environmental/Lake%20O%20Watershed/15February2017/How%20To%20Access%20Model%20Data%20on%20DASR.pdf?ver=2017-02-16-095535-633, Feb. 16, 2017. |
Cha et al, “A Data-Driven Security Risk Assessment Scheme for Personal Data Protection,” IEEE, pp. 50510-50517 (Year: 2018). |
Cha, et al, “Process-Oriented Approach for Validating Asset Value for Evaluating Information Security Risk,” IEEE, Aug. 31, 2009, pp. 379-385 (Year: 2009). |
Chapados et al, “Scoring Models for Insurance Risk Sharing Pool Optimization,” 2008, IEEE, pp. 97-105 (Year: 2008). |
Cheng, Raymond, et al, “Radiatus: A Shared-Nothing Server-Side Web Architecture,” Proceedings of the Seventh ACM Symposium on Cloud Computing, Oct. 5, 2016, pp. 237-250 (Year: 2016). |
Choi et al, “Retrieval Effectiveness of Table of Contents and Subject Headings,” ACM, pp. 103-104 (Year: 2007). |
Chowdhury et al, “A System Architecture for Subject-Centric Data Sharing”, ACM, pp. 1-10 (Year: 2018). |
Chowdhury et al, “Managing Data Transfers in Computer Clusters with Orchestra,” ACM, pp. 98-109 (Year: 2011). |
Decision Regarding Institution of Post-Grant Review in Case PGR2018-00056 for U.S. Pat. No. 9,691,090 B1, Oct. 11, 2018. |
Dimou et al, “Machine-Interpretable Dataset and Service Descriptions for Heterogeneous Data Access and Retrieval”, ACM, pp. 145-152 (Year: 2015). |
Dokholyan et al, “Regulatory and Ethical Considerations for Linking Clinical and Administrative Databases,” American Heart Journal 157.6 (2009), pp. 971-982 (Year: 2009). |
Dunkel et al, “Data Organization and Access for Efficient Data Mining”, IEEE, pp. 522-529 (Year: 1999). |
Dwork, Cynthia, Differential Privacy, Microsoft Research, p. 1-12. |
Final Written Decision Regarding Post-Grant Review in Case PGR2018-00056 for U.S. Pat. No. 9,691,090 B1, Oct. 10, 2019. |
Fung et al., “Discover Information and Knowledge from Websites using an Integrated Summarization and Visualization Framework”, IEEE, pp. 232-235 (Year: 2010). |
Gajare et al, “Improved Automatic Feature Selection Approach for Health Risk Prediction,” Feb. 16, 2018, IEEE, pp. 816-819 (Year: 2018). |
Ghiglieri, Marco et al.; Personal DLP for Facebook, 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (Percom Workshops); IEEE; Mar. 24, 2014; pp. 629-634. |
Gilda, et al, “Blockchain for Student Data Privacy and Consent,” 2018 International Conference on Computer Communication and Informatics, Jan. 4-6, 2018, IEEE, pp. 1-5 (Year: 2018). |
Golab, et al, “Issues in Data Stream Management,” ACM, SIGMOD Record, vol. 32, No. 2, Jun. 2003, pp. 5-14 (Year: 2003). |
Golfarelli et al, “Beyond Data Warehousing: What's Next in Business Intelligence?,” ACM, pp. 1-6 (Year: 2004). |
Goni, Kyriaki, “Deletion Process_Only you can see my history: Investigating Digital Privacy, Digital Oblivion, and Control on Personal Data Through an Interactive Art Installation,” ACM, 2016, retrieved online on Oct. 3, 2019, pp. 324-333. Retrieved from the Internet URL: http://delivery.acm.org/10.1145/2920000/291. |
Notice of Allowance, dated Aug. 12, 2020, from corresponding U.S. Appl. No. 16/719,488. |
Notice of Allowance, dated Aug. 12, 2021, from corresponding U.S. Appl. No. 16/881,832. |
Notice of Allowance, dated Aug. 14, 2018, from corresponding U.S. Appl. No. 15/989,416. |
Notice of Allowance, dated Aug. 18, 2017, from corresponding U.S. Appl. No. 15/619,455. |
Notice of Allowance, dated Aug. 20, 2019, from corresponding U.S. Appl. No. 16/241,710. |
Notice of Allowance, dated Aug. 24, 2018, from corresponding U.S. Appl. No. 15/619,479. |
Notice of Allowance, dated Aug. 26, 2019, from corresponding U.S. Appl. No. 16/443,374. |
Notice of Allowance, dated Aug. 26, 2020, from corresponding U.S. Appl. No. 16/808,503. |
Notice of Allowance, dated Aug. 28, 2019, from corresponding U.S. Appl. No. 16/278,120. |
Notice of Allowance, dated Aug. 30, 2018, from corresponding U.S. Appl. No. 15/996,208. |
Notice of Allowance, dated Aug. 31, 2021, from corresponding U.S. Appl. No. 17/326,901. |
Notice of Allowance, dated Aug. 4, 2021, from corresponding U.S. Appl. No. 16/895,278. |
Notice of Allowance, dated Aug. 7, 2020, from corresponding U.S. Appl. No. 16/901,973. |
Notice of Allowance, dated Aug. 9, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Notice of Allowance, dated Aug. 9, 2021, from corresponding U.S. Appl. No. 16/881,699. |
Notice of Allowance, dated Dec. 10, 2018, from corresponding U.S. Appl. No. 16/105,602. |
Notice of Allowance, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Notice of Allowance, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/593,634. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/169,643. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/619,212. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/619,382. |
Notice of Allowance, dated Dec. 13, 2019, from corresponding U.S. Appl. No. 16/512,033. |
Notice of Allowance, dated Dec. 15, 2020, from corresponding U.S. Appl. No. 16/989,086. |
Notice of Allowance, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/505,461. |
Notice of Allowance, dated Dec. 17, 2020, from corresponding U.S. Appl. No. 17/034,772. |
Notice of Allowance, dated Dec. 18, 2019, from corresponding U.S. Appl. No. 16/659,437. |
Notice of Allowance, dated Dec. 23, 2019, from corresponding U.S. Appl. No. 16/656,835. |
Notice of Allowance, dated Dec. 23, 2020, from corresponding U.S. Appl. No. 17/068,557. |
Notice of Allowance, dated Dec. 3, 2019, from corresponding U.S. Appl. No. 16/563,749. |
Notice of Allowance, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 16/159,634. |
Notice of Allowance, dated Dec. 31, 2019, from corresponding U.S. Appl. No. 16/404,399. |
Notice of Allowance, dated Dec. 4, 2019, from corresponding U.S. Appl. No. 16/594,670. |
Notice of Allowance, dated Dec. 5, 2017, from corresponding U.S. Appl. No. 15/633,703. |
Notice of Allowance, dated Dec. 6, 2017, from corresponding U.S. Appl. No. 15/619,451. |
Notice of Allowance, dated Dec. 6, 2017, from corresponding U.S. Appl. No. 15/619,459. |
Notice of Allowance, dated Dec. 7, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Notice of Allowance, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/565,261. |
Notice of Allowance, dated Dec. 9, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Notice of Allowance, dated Feb. 10, 2020, from corresponding U.S. Appl. No. 16/552,765. |
Notice of Allowance, dated Feb. 11, 2021, from corresponding U.S. Appl. No. 17/086,732. |
Notice of Allowance, dated Feb. 12, 2020, from corresponding U.S. Appl. No. 16/572,182. |
Notice of Allowance, dated Feb. 13, 2019, from corresponding U.S. Appl. No. 16/041,563. |
Notice of Allowance, dated Feb. 14, 2019, from corresponding U.S. Appl. No. 16/226,272. |
Notice of Allowance, dated Feb. 19, 2019, from corresponding U.S. Appl. No. 16/159,632. |
Notice of Allowance, dated Feb. 19, 2021, from corresponding U.S. Appl. No. 16/832,451. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/034,355. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/068,198. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/101,106. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/101,253. |
Notice of Allowance, dated Feb. 25, 2020, from corresponding U.S. Appl. No. 16/714,355. |
Office Action, dated Nov. 15, 2018, from corresponding U.S. Appl. No. 16/059,911. |
Office Action, dated Nov. 15, 2019, from corresponding U.S. Appl. No. 16/552,758. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/560,885. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/560,889. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/572,347. |
Office Action, dated Nov. 19, 2019, from corresponding U.S. Appl. No. 16/595,342. |
Office Action, dated Nov. 20, 2019, from corresponding U.S. Appl. No. 16/595,327. |
Office Action, dated Nov. 23, 2018, from corresponding U.S. Appl. No. 16/042,673. |
Office Action, dated Nov. 24, 2020, from corresponding U.S. Appl. No. 16/925,628. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/041,563. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/055,083. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/055,944. |
Office Action, dated Oct. 14, 2020, from corresponding U.S. Appl. No. 16/927,658. |
Office Action, dated Oct. 15, 2018, from corresponding U.S. Appl. No. 16/054,780. |
Office Action, dated Oct. 16, 2019, from corresponding U.S. Appl. No. 16/557,392. |
Office Action, dated Oct. 16, 2020, from corresponding U.S. Appl. No. 16/808,489. |
Office Action, dated Oct. 23, 2018, from corresponding U.S. Appl. No. 16/055,961. |
Office Action, dated Oct. 26, 2018, from corresponding U.S. Appl. No. 16/041,468. |
Office Action, dated Oct. 8, 2019, from corresponding U.S. Appl. No. 16/552,765. |
Office Action, dated Sep. 1, 2017, from corresponding U.S. Appl. No. 15/619,459. |
Office Action, dated Sep. 11, 2017, from corresponding U.S. Appl. No. 15/619,375. |
Office Action, dated Sep. 11, 2017, from corresponding U.S. Appl. No. 15/619,478. |
Office Action, dated Sep. 15, 2021, from corresponding U.S. Appl. No. 16/623,157. |
Office Action, dated Sep. 16, 2019, from corresponding U.S. Appl. No. 16/277,715. |
Office Action, dated Sep. 19, 2017, from corresponding U.S. Appl. No. 15/671,073. |
Office Action, dated Sep. 22, 2017, from corresponding U.S. Appl. No. 15/619,278. |
Office Action, dated Sep. 24, 2021, from corresponding U.S. Appl. No. 17/342,153. |
Office Action, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/989,086. |
Office Action, dated Sep. 5, 2017, from corresponding U.S. Appl. No. 15/619,469. |
Office Action, dated Sep. 6, 2017, from corresponding U.S. Appl. No. 15/619,479. |
Office Action, dated Sep. 7, 2017, from corresponding U.S. Appl. No. 15/633,703. |
Office Action, dated Sep. 8, 2017, from corresponding U.S. Appl. No. 15/619,251. |
Notice of Allowance, dated Apr. 12, 2017, from corresponding U.S. Appl. No. 15/256,419. |
Notice of Allowance, dated Apr. 17, 2020, from corresponding U.S. Appl. No. 16/593,639. |
Notice of Allowance, dated Apr. 19, 2021, from corresponding U.S. Appl. No. 17/164,029. |
Notice of Allowance, dated Apr. 2, 2019, from corresponding U.S. Appl. No. 16/160,577. |
Notice of Allowance, dated Apr. 2, 2021, from corresponding U.S. Appl. No. 17/162,006. |
Notice of Allowance, dated Apr. 22, 2021, from corresponding U.S. Appl. No. 17/163,701. |
Notice of Allowance, dated Apr. 25, 2018, from corresponding U.S. Appl. No. 15/883,041. |
Notice of Allowance, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 17/135,445. |
Notice of Allowance, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 17/181,828. |
Notice of Allowance, dated Apr. 29, 2020, from corresponding U.S. Appl. No. 16/700,049. |
Notice of Allowance, dated Apr. 30, 2020, from corresponding U.S. Appl. No. 16/565,265. |
Notice of Allowance, dated Apr. 30, 2020, from corresponding U.S. Appl. No. 16/820,346. |
Notice of Allowance, dated Apr. 30, 2021, from corresponding U.S. Appl. No. 16/410,762. |
Notice of Allowance, dated Apr. 8, 2019, from corresponding U.S. Appl. No. 16/228,250. |
Notice of Allowance, dated Apr. 8, 2020, from corresponding U.S. Appl. No. 16/791,348. |
Notice of Allowance, dated Apr. 9, 2020, from corresponding U.S. Appl. No. 16/791,075. |
Notice of Allowance, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/671,444. |
Notice of Allowance, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/788,633. |
Final Office Action, dated Apr. 23, 2020, from corresponding U.S. Appl. No. 16/572,347. |
Final Office Action, dated Apr. 27, 2021, from corresponding U.S. Appl. No. 17/068,454. |
Final Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/595,327. |
Final Office Action, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Final Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/161,159. |
Final Office Action, dated Aug. 28, 2020, from corresponding U.S. Appl. No. 16/410,336. |
Final Office Action, dated Aug. 5, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Final Office Action, dated Aug. 9, 2021, from corresponding U.S. Appl. No. 17/119,080. |
Final Office Action, dated Dec. 7, 2020, from corresponding U.S. Appl. No. 16/862,956. |
Final Office Action, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/410,336. |
Final Office Action, dated Feb. 19, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Final Office Action, dated Feb. 3, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Final Office Action, dated Feb. 8, 2021, from corresponding U.S. Appl. No. 16/927,658. |
Final Office Action, dated Jan. 17, 2018, from corresponding U.S. Appl. No. 15/619,278. |
Final Office Action, dated Jan. 21, 2020, from corresponding U.S. Appl. No. 16/410,762. |
Final Office Action, dated Jan. 23, 2018, from corresponding U.S. Appl. No. 15/619,479. |
Final Office Action, dated Jan. 23, 2020, from corresponding U.S. Appl. No. 16/505,430. |
Final Office Action, dated Jul. 21, 2021, from corresponding U.S. Appl. No. 17/151,334. |
Final Office Action, dated Jul. 7, 2021, from corresponding U.S. Appl. No. 17/149,421. |
Final Office Action, dated Mar. 26, 2021, from corresponding U.S. Appl. No. 17/020,275. |
Final Office Action, dated Mar. 5, 2019, from corresponding U.S. Appl. No. 16/055,961. |
Final Office Action, dated Mar. 6, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Final Office Action, dated May 14, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Final Office Action, dated Nov. 29, 2017, from corresponding U.S. Appl. No. 15/619,237. |
Final Office Action, dated Sep. 17, 2021, from corresponding U.S. Appl. No. 17/200,698. |
Final Office Action, dated Sep. 21, 2020, from corresponding U.S. Appl. No. 16/808,493. |
Final Office Action, dated Sep. 21, 2020, from corresponding U.S. Appl. No. 16/862,944. |
Final Office Action, dated Sep. 22, 2020, from corresponding U.S. Appl. No. 16/808,497. |
Final Office Action, dated Sep. 23, 2020, from corresponding U.S. Appl. No. 16/862,948. |
Final Office Action, dated Sep. 24, 2020, from corresponding U.S. Appl. No. 16/862,952. |
Final Office Action, dated Sep. 25, 2019, from corresponding U.S. Appl. No. 16/278,119. |
Final Office Action, dated Sep. 28, 2020, from corresponding U.S. Appl. No. 16/565,395. |
Final Office Action, dated Sep. 8, 2020, from corresponding U.S. Appl. No. 16/410,866. |
Office Action, dated Apr. 1, 2021, from corresponding U.S. Appl. No. 17/119,080. |
Office Action, dated Apr. 15, 2021, from corresponding U.S. Appl. No. 17/161,159. |
Office Action, dated Apr. 18, 2018, from corresponding U.S. Appl. No. 15/894,819. |
Office Action, dated Apr. 2, 2021, from corresponding U.S. Appl. No. 17/151,334. |
Office Action, dated Apr. 20, 2020, from corresponding U.S. Appl. No. 16/812,795. |
Office Action, dated Apr. 22, 2019, from corresponding U.S. Appl. No. 16/241,710. |
Office Action, dated Apr. 22, 2020, from corresponding U.S. Appl. No. 16/811,793. |
Office Action, dated Apr. 28, 2020, from corresponding U.S. Appl. No. 16/798,818. |
Office Action, dated Apr. 28, 2020, from corresponding U.S. Appl. No. 16/808,500. |
Office Action, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Office Action, dated Apr. 29, 2020, from corresponding U.S. Appl. No. 16/791,337. |
Office Action, dated Apr. 5, 2019, from corresponding U.S. Appl. No. 16/278,119. |
Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/788,633. |
Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Office Action, dated Aug. 13, 2019, from corresponding U.S. Appl. No. 16/505,430. |
Office Action, dated Aug. 13, 2019, from corresponding U.S. Appl. No. 16/512,033. |
Office Action, dated Aug. 15, 2019, from corresponding U.S. Appl. No. 16/505,461. |
Notice of Allowance, dated Jun. 4, 2019, from corresponding U.S. Appl. No. 16/159,566. |
Notice of Allowance, dated Jun. 5, 2019, from corresponding U.S. Appl. No. 16/220,899. |
Notice of Allowance, dated Jun. 5, 2019, from corresponding U.S. Appl. No. 16/357,260. |
Notice of Allowance, dated Jun. 6, 2018, from corresponding U.S. Appl. No. 15/875,570. |
Notice of Allowance, dated Jun. 6, 2019, from corresponding U.S. Appl. No. 16/159,628. |
Notice of Allowance, dated Jun. 7, 2021, from corresponding U.S. Appl. No. 17/099,270. |
Notice of Allowance, dated Jun. 8, 2020, from corresponding U.S. Appl. No. 16/712,104. |
Notice of Allowance, dated Mar. 1, 2018, from corresponding U.S. Appl. No. 15/853,674. |
Notice of Allowance, dated Mar. 1, 2019, from corresponding U.S. Appl. No. 16/059,911. |
Notice of Allowance, dated Mar. 10, 2021, from corresponding U.S. Appl. No. 16/925,628. |
Notice of Allowance, dated Mar. 10, 2021, from corresponding U.S. Appl. No. 17/128,666. |
Notice of Allowance, dated Mar. 13, 2019, from corresponding U.S. Appl. No. 16/055,083. |
Notice of Allowance, dated Mar. 14, 2019, from corresponding U.S. Appl. No. 16/055,944. |
Notice of Allowance, dated Mar. 16, 2020, from corresponding U.S. Appl. No. 16/778,704. |
Notice of Allowance, dated Mar. 16, 2021, from corresponding U.S. Appl. No. 17/149,380. |
Notice of Allowance, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/560,885. |
Notice of Allowance, dated Mar. 18, 2020, from corresponding U.S. Appl. No. 16/560,963. |
Notice of Allowance, dated Mar. 19, 2021, from corresponding U.S. Appl. No. 17/013,757. |
Notice of Allowance, dated Mar. 2, 2018, from corresponding U.S. Appl. No. 15/858,802. |
Notice of Allowance, dated Mar. 24, 2020, from corresponding U.S. Appl. No. 16/552,758. |
Notice of Allowance, dated Mar. 25, 2019, from corresponding U.S. Appl. No. 16/054,780. |
Notice of Allowance, dated Mar. 26, 2020, from corresponding U.S. Appl. No. 16/560,889. |
Notice of Allowance, dated Mar. 26, 2020, from corresponding U.S. Appl. No. 16/578,712. |
Notice of Allowance, dated Mar. 27, 2019, from corresponding U.S. Appl. No. 16/226,280. |
Notice of Allowance, dated Mar. 29, 2019, from corresponding U.S. Appl. No. 16/055,998. |
Notice of Allowance, dated Mar. 31, 2020, from corresponding U.S. Appl. No. 16/563,744. |
Notice of Allowance, dated Mar. 31, 2021, from corresponding U.S. Appl. No. 17/013,758. |
Notice of Allowance, dated Mar. 31, 2021, from corresponding U.S. Appl. No. 17/162,205. |
Notice of Allowance, dated May 1, 2020, from corresponding U.S. Appl. No. 16/586,202. |
Notice of Allowance, dated May 11, 2020, from corresponding U.S. Appl. No. 16/786,196. |
Notice of Allowance, dated May 13, 2021, from corresponding U.S. Appl. No. 17/101,915. |
Notice of Allowance, dated May 19, 2020, from corresponding U.S. Appl. No. 16/505,430. |
Notice of Allowance, dated May 19, 2020, from corresponding U.S. Appl. No. 16/808,496. |
Notice of Allowance, dated May 20, 2020, from corresponding U.S. Appl. No. 16/707,762. |
Notice of Allowance, dated May 21, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 16/865,874. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 17/199,514. |
Notice of Allowance, dated May 27, 2020, from corresponding U.S. Appl. No. 16/820,208. |
Notice of Allowance, dated May 27, 2021, from corresponding U.S. Appl. No. 16/927,658. |
Notice of Allowance, dated May 27, 2021, from corresponding U.S. Appl. No. 17/198,757. |
Notice of Allowance, dated May 28, 2019, from corresponding U.S. Appl. No. 16/277,568. |
Notice of Allowance, dated May 28, 2020, from corresponding U.S. Appl. No. 16/799,279. |
Notice of Allowance, dated May 28, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Notice of Allowance, dated May 5, 2017, from corresponding U.S. Appl. No. 15/254,901. |
Notice of Allowance, dated May 5, 2020, from corresponding U.S. Appl. No. 16/563,754. |
Notice of Allowance, dated May 7, 2020, from corresponding U.S. Appl. No. 16/505,426. |
Notice of Allowance, dated May 7, 2021, from corresponding U.S. Appl. No. 17/194,662. |
Notice of Allowance, dated Nov. 14, 2019, from corresponding U.S. Appl. No. 16/436,616. |
Notice of Allowance, dated Nov. 2, 2018, from corresponding U.S. Appl. No. 16/054,762. |
Yin et al, “Multibank Memory Optimization for Parallel Data Access in Multiple Data Arrays”, ACM, pp. 1-8 (Year: 2016). |
Yiu et al, “Outsourced Similarity Search on Metric Data Assets”, IEEE, pp. 338-352 (Year: 2012). |
Yu, “Using Data from Social Media Websites to Inspire the Design of Assistive Technology”, ACM, pp. 1-2 (Year: 2016). |
Yu, et al, “Performance and Fairness Issues in Big Data Transfers,” ACM, pp. 9-11 (Year: 2014). |
Zannone, et al, “Maintaining Privacy on Derived Objects,” ACM, pp. 10-19 (Year: 2005). |
Zeldovich, Nickolai, et al, Making Information Flow Explicit in HiStar, OSDI '06: 7th USENIX Symposium on Operating Systems Design and Implementation, USENIX Association, p. 263-278. |
Zhang et al, “Data Transfer Performance Issues for a Web Services Interface to Synchrotron Experiments”, ACM, pp. 59-65 (Year: 2007). |
Zhang et al, “Dynamic Topic Modeling for Monitoring Market Competition from Online Text and Image Data”, ACM, pp. 1425-1434 (Year: 2015). |
Zheng, et al, “Methodologies for Cross-Domain Data Fusion: An Overview,” IEEE, pp. 16-34 (Year: 2015). |
Zheng, et al, “Toward Assured Data Deletion in Cloud Storage,” IEEE, vol. 34, No. 3, pp. 101-107 May/Jun. 2020 (Year: 2020). |
Zhu, et al, “Dynamic Data Integration Using Web Services,” IEEE, pp. 1-8 (Year: 2004). |
Notice of Allowance, dated Oct. 1, 2021, from corresponding U.S. Appl. No. 17/340,395. |
Office Action, dated Oct. 12, 2021, from corresponding U.S. Appl. No. 17/346,509. |
Restriction Requirement, dated Oct. 6, 2021, from corresponding U.S. Appl. No. 17/340,699. |
Final Office Action, dated Dec. 10, 2021, from corresponding U.S. Appl. No. 17/187,329. |
He et al, “A Crowdsourcing Framework for Detecting of Cross-Browser Issues in Web Application,” ACM, pp. 1-4, Nov. 6, 2015 (Year: 2015). |
International Search Report, dated Dec. 22, 2021, from corresponding International Application No. PCT/US2021/051217. |
Liu et al., “A Novel Approach for Detecting Browser-based Silent Miner,” IEEE, pp. 490-497 (Year: 2018). |
Lu et al., “An HTTP Flooding Detection Method Based on Browser Behavior,” IEEE, pp. 1151-1154 (Year: 2006). |
Notice of Allowance, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 16/908,081. |
Notice of Allowance, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 17/347,853. |
Notice of Allowance, dated Dec. 2, 2021, from corresponding U.S. Appl. No. 16/901,654. |
Notice of Allowance, dated Dec. 8, 2021, from corresponding U.S. Appl. No. 17/397,472. |
Office Action, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/395,759. |
Office Action, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/499,582. |
Office Action, dated Dec. 2, 2021, from corresponding U.S. Appl. No. 17/504,102. |
Office Action, dated Dec. 27, 2021, from corresponding U.S. Appl. No. 17/493,332. |
Office Action, dated Dec. 29, 2021, from corresponding U.S. Appl. No. 17/479,807. |
Office Action, dated Dec. 7, 2021, from corresponding U.S. Appl. No. 17/499,609. |
Paes, “Student Research Abstract: Automatic Detection of Cross-Browser Incompatibilities using Machine Learning and Screenshot Similarity,” ACM, pp. 697-698, Apr. 3, 2017 (Year: 2017). |
Restriction Requirement, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/475,244. |
Shahriar et al., “A Model-Based Detection of Vulnerable and Malicious Browser Extensions,” IEEE, pp. 198-207 (Year: 2013). |
Sjosten et al., “Discovering Browser Extensions via Web Accessible Resources,” ACM, pp. 329-336, Mar. 22, 2017 (Year: 2017). |
Written Opinion of the International Searching Authority, dated Dec. 22, 2021, from corresponding International Application No. PCT/US2021/051217. |
Amar et al, “Privacy-Aware Infrastructure for Managing Personal Data,” ACM, pp. 571-572, Aug. 22-26, 2016 (Year: 2016). |
Banerjee et al, “Link Before You Share: Managing Privacy Policies through Blockchain,” IEEE, pp. 4438-4447 (Year: 2017). |
Civili et al., “Mastro Studio: Managing Ontology-Based Data Access Applications,” ACM, pp. 1314-1317, Aug. 26-30, 2013 (Year: 2013). |
Degeling et al., “We Value Your Privacy . . . Now Take Some Cookies: Measuring the GDPRs Impact on Web Privacy,” ARXIV.ORG, Cornell University Library, 201 Olin Library Cornell University, Ithaca, NY 14853, Aug. 15, 2018, pp. 1-15 (Year: 2019). |
Geko et al., “An Ontology Capturing the Interdependence of the General Data Protection Regulation (GDPR) and Information Security,” ACM, pp. 1-6, Nov. 15-16, 2018 (Year: 2018). |
International Search Report, dated Jan. 5, 2022, from corresponding International Application No. PCT/US2021/050497. |
Lu, “How Machine Learning Mitigates Racial Bias in the US Housing Market,” Available as SSRN 3489519, pp. 1-73, Nov. 2019 (Year: 2019). |
Notice of Allowance, dated Dec. 30, 2021, from corresponding U.S. Appl. No. 16/938,520. |
Notice of Allowance, dated Jan. 11, 2022, from corresponding U.S. Appl. No. 17/371,350. |
Notice of Allowance, dated Jan. 12, 2022, from corresponding U.S. Appl. No. 17/334,948. |
Notice of Allowance, dated Jan. 12, 2022, from corresponding U.S. Appl. No. 17/463,775. |
Notice of Allowance, dated Jan. 24, 2022, from corresponding U.S. Appl. No. 17/340,699. |
Notice of Allowance, dated Jan. 26, 2022, from corresponding U.S. Appl. No. 17/491,906. |
Notice of Allowance, dated Jan. 5, 2022, from corresponding U.S. Appl. No. 17/475,241. |
Notice of Allowance, dated Jan. 6, 2022, from corresponding U.S. Appl. No. 17/407,765. |
Notice of Allowance, dated Jan. 7, 2022, from corresponding U.S. Appl. No. 17/222,725. |
Office Action, dated Dec. 30, 2021, from corresponding U.S. Appl. No. 17/149,421. |
Office Action, dated Jan. 14, 2022, from corresponding U.S. Appl. No. 17/499,595. |
Office Action, dated Jan. 21, 2022, from corresponding U.S. Appl. No. 17/499,624. |
Office Action, dated Jan. 25, 2022, from corresponding U.S. Appl. No. 17/494,220. |
Office Action, dated Jan. 4, 2022, from corresponding U.S. Appl. No. 17/480,377. |
Office Action, dated Jan. 7, 2022, from corresponding U.S. Appl. No. 17/387,421. |
Rakers, “Managing Professional and Personal Sensitive Information,” ACM, pp. 9-13, Oct. 24-27, 2010 (Year: 2010). |
Sachinopoulou et al, “Ontology-Based Approach for Managing Personal Health and Wellness Information,” IEEE, pp. 1802-1805 (Year: 2007). |
Shankar et al., “Doppleganger: Better Browser Privacy Without the Bother,” Proceedings of the 13th ACM Conference on Computer and Communications Security; [ACM Conference on Computer and Communications Security], New York, NY: ACM, US, Oct. 30, 2006, pp. 154-167 (Year: 2006). |
Written Opinion of the International Searching Authority, dated Jan. 5, 2022, from corresponding International Application No. PCT/US2021/050497. |
Yue et al, “An Automatic HTTP Cookie Management System,” Computer Networks, Elsevier, Amsterdam, NL, vol. 54, No. 13, Sep. 15, 2010, pp. 2182-2198 (Year: 2010). |
International Search Report, dated Feb. 11, 2022, from corresponding International Application No. PCT/US2021/053518. |
Jiahao Chen et al. “Fairness Under Unawareness: Assessing Disparity when Protected Class is Unobserved,” ARXIV.ORG, Cornell University Library, 201 Olin Library Cornell University, Ithaca, NY 14853, Nov. 27, 2018 (Nov. 27, 2018), Section 2, Figure 2. (Year 2018). |
Notice of Allowance, dated Feb. 1, 2022, from corresponding U.S. Appl. No. 17/346,509. |
Notice of Allowance, dated Feb. 14, 2022, from corresponding U.S. Appl. No. 16/623,157. |
Notice of Allowance, dated Feb. 22, 2022, from corresponding U.S. Appl. No. 17/535,065. |
Notice of Allowance, dated Feb. 4, 2022, from corresponding U.S. Appl. No. 17/520,272. |
Notice of Allowance, dated Feb. 8, 2022, from corresponding U.S. Appl. No. 17/342,153. |
Notice of Allowance, dated Jan. 31, 2022, from corresponding U.S. Appl. No. 17/472,948. |
Office Action, dated Feb. 16, 2022, from corresponding U.S. Appl. No. 16/872,031. |
Office Action, dated Feb. 9, 2022, from corresponding U.S. Appl. No. 17/543,546. |
Office Action, dated Jan. 31, 2022, from corresponding U.S. Appl. No. 17/493,290. |
Sarkar et al., “Towards Enforcement of the EU GDPR: Enabling Data Erasure,” 2018 IEEE Confs on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and Information Technology, Congress on Cybermatics, 2018, pp. 222-229, IEEE (Year: 2018). |
Written Opinion of the International Searching Authority, dated Feb. 11, 2022, from corresponding International Application No. PCT/US2021/053518. |
Agosti et al, “Access and Exchange of Hierarchically Structured Resources on the Web with the NESTOR Framework”, IEEE, pp. 659-662 (Year: 2009). |
Agrawal et al, “Securing Electronic Health Records Without Impeding the Flow of Information,” International Journal of Medical Informatics 76, 2007, pp. 471-479 (Year: 2007). |
Ahmad et al, “Task-Oriented Access Model for Secure Data Sharing Over Cloud,” ACM, pp. 1-7 (Year: 2015). |
Ahmad, et al, “Performance of Resource Management Algorithms for Processable Bulk Data Transfer Tasks in Grid Environments,” ACM, pp. 177-188 (Year: 2008). |
Alaa et al, “Personalized Risk Scoring for Critical Care Prognosis Using Mixtures of Gaussian Processes,” Apr. 27, 2017, IEEE, vol. 65, issue 1, pp. 207-217 (Year: 2017). |
Antunes et al, “Preserving Digital Data in Heterogeneous Environments”, ACM, pp. 345-348, 2009 (Year: 2009). |
Czeskis et al, “Lightweight Server Support for Browser-based CSRF Protection,” Proceedings of the 22nd International Conference on World Wide Web, 2013, pp. 273-284 (Year: 2013). |
Final Office Action, dated Feb. 25, 2022, from corresponding U.S. Appl. No. 17/346,586. |
Final Office Action, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/373,444. |
Final Office Action, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/380,485. |
Matte et al, “Do Cookie Banners Respect my Choice?: Measuring Legal Compliance of Banners from IAB Europe's Transparency and Consent Framework,” 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 791-809 (Year: 2020). |
Notice of Allowance, dated Feb. 24, 2022, from corresponding U.S. Appl. No. 17/234,205. |
Notice of Allowance, dated Feb. 24, 2022, from corresponding U.S. Appl. No. 17/549,170. |
Notice of Allowance, dated Mar. 16, 2022, from corresponding U.S. Appl. No. 17/486,350. |
Notice of Allowance, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 16/872,130. |
Notice of Allowance, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/535,098. |
Notice of Allowance, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/366,754. |
Notice of Allowance, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/475,244. |
Notice of Allowance, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/504,102. |
Notice of Allowance, dated Mar. 28, 2022, from corresponding U.S. Appl. No. 17/499,609. |
Notice of Allowance, dated Mar. 4, 2022, from corresponding U.S. Appl. No. 17/409,999. |
Office Action, dated Mar. 1, 2022, from corresponding U.S. Appl. No. 17/119,080. |
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/020,275. |
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/161,159. |
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/200,698. |
Office Action, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/571,871. |
Office Action, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/187,329. |
Sanchez-Rola et al, “Can I Opt Out Yet?: GDPR and the Global Illusion of Cookie Control,” Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security, 2019, pp. 340-351 (Year: 2019). |
Abdullah et al, “The Mapping Process of Unstructured Data to the Structured Data”, ACM, pp. 151-155 (Year: 2013). |
Acar, Gunes, et al, The Web Never Forgets, Computer and Communications Security, ACM, Nov. 3, 2014, pp. 674-689. |
Aghasian, Erfan, et al, Scoring Users' Privacy Disclosure Across Multiple Online Social Networks,IEEE Access, Multidisciplinary Rapid Review Open Access Journal, Jul. 31, 2017, vol. 5, 2017. |
Niu, et al, “Achieving Data Truthfulness and Privacy Preservation in Data Markets”, IEEE Transactions on Knowledge and Data Engineering, IEEE Service Centre, Los Alamitos, CA, US, vol. 31, No. 1, Jan. 1, 2019, pp. 105-119 (Year 2019). |
Notice of Allowance, dated May 11, 2022, from corresponding U.S. Appl. No. 17/395,759. |
Notice of Allowance, dated May 18, 2022, from corresponding U.S. Appl. No. 17/670,354. |
Notice of Allowance, dated May 25, 2022, from corresponding U.S. Appl. No. 16/872,031. |
Notice of Allowance, dated May 6, 2022, from corresponding U.S. Appl. No. 17/666,886. |
Office Action, dated May 12, 2022, from corresponding U.S. Appl. No. 17/509,974. |
Office Action, dated May 16, 2022, from corresponding U.S. Appl. No. 17/679,750. |
Office Action, dated May 24, 2022, from corresponding U.S. Appl. No. 17/674,187. |
Office Action, dated May 9, 2022, from corresponding U.S. Appl. No. 16/840,943. |
Preuveneers et al, “Access Control with Delegated Authorization Policy Evaluation for Data-Driven Microservice Workflows,” Future Internet 2017, MDPI, pp. 1-21 (Year: 2017). |
Thomas et al, “MooM—A Prototype Framework for Management of Ontology Mappings,” IEEE, pp. 548-555 (Year: 2011). |
Written Opinion of the International Searching Authority, dated May 12, 2022, from corresponding International Application No. PCT/US2022/015929. |
Written Opinion of the International Searching Authority, dated May 17, 2022, from corresponding International Application No. PCT/US2022/015241. |
Written Opinion of the International Searching Authority, dated May 19, 2022, from corresponding International Application No. PCT/US2022/015637. |
Ali et al, “Age Estimation from Facial Images Using Biometric Ratios and Wrinkle Analysis,” IEEE, 2015, pp. 1-5 (Year: 2015). |
Chang et al, “A Ranking Approach for Human Age Estimation Based on Face Images,” IEEE, 2010, pp. 3396-3399 (Year: 2010). |
Edinger et al, “Age and Gender Estimation of Unfiltered Faces,” IEEE, 2014, pp. 2170-2179 (Year: 2014). |
Final Office Action, dated Apr. 1, 2022, from corresponding U.S. Appl. No. 17/370,650. |
Final Office Action, dated Apr. 25, 2022, from corresponding U.S. Appl. No. 17/149,421. |
Final Office Action, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 16/925,550. |
Final Office Action, dated Apr. 5, 2022, from corresponding U.S. Appl. No. 17/013,756. |
Han et al, “Demographic Estimation from Face Images: Human vs. Machine Performance,” IEEE, 2015, pp. 1148-1161 (Year: 2015). |
Huettner, “Digital Risk Management: Protecting Your Privacy, Improving Security, and Preparing for Emergencies,” IEEE, pp. 136-138 (Year: 2006). |
International Search Report, dated Apr. 12, 2022, from corresponding International Application No. PCT/US2022/016735. |
International Search Report, dated Mar. 18, 2022, from corresponding International Application No. PCT/US2022/013733. |
Jayasinghe et al, “Matching Facial Images Using Age Related Morphing Changes,” ISSRI, 2009, pp. 2901-2907 (Year: 2009). |
Khan et al, “Wrinkles Energy Based Age Estimation Using Discrete Cosine Transform,” IEEE, 2015, pp. 1-4 (Year: 2015). |
Kristian et al, “Human Facial Age Classification Using Active Shape Module, Geometrical Feature, and Support Vendor Machine on Early Growth Stage,” ISICO, 2015, pp. 1-8 (Year: 2015). |
Lewis, James et al, “Microservices,” Mar. 25, 2014 (Mar. 25, 2014),XP055907494, Retrieved from the Internet: https://martinfowler.com/articles/micr oservices.html [retrieved on Mar. 31, 2022]. |
Liu et al, “Overview on Ontology Mapping and Approach,” IEEE, pp. 592-595 (Year: 2011). |
Milic et al, “Comparative Analysis of Metadata Models on e-Government Open Data Platforms,” IEEE, pp. 119-130 (Year: 2021). |
Notice of Allowance, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/479,807. |
Notice of Allowance, dated Apr. 14, 2022, from corresponding U.S. Appl. No. 17/572,276. |
Notice of Allowance, dated Apr. 20, 2022, from corresponding U.S. Appl. No. 17/573,808. |
Notice of Allowance, dated Apr. 27, 2022, from corresponding U.S. Appl. No. 17/573,999. |
Notice of Allowance, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 17/592,922. |
Notice of Allowance, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 17/670,352. |
Notice of Allowance, dated Apr. 29, 2022, from corresponding U.S. Appl. No. 17/387,421. |
Notice of Allowance, dated Apr. 4, 2022, from corresponding U.S. Appl. No. 17/493,332. |
Notice of Allowance, dated Apr. 4, 2022, from corresponding U.S. Appl. No. 17/572,298. |
Office Action, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/670,341. |
Office Action, dated Apr. 18, 2022, from corresponding U.S. Appl. No. 17/670,349. |
Office Action, dated Apr. 25, 2022, from corresponding U.S. Appl. No. 17/588,645. |
Office Action, dated Apr. 26, 2022, from corresponding U.S. Appl. No. 17/151,334. |
Office Action, dated Apr. 8, 2022, from corresponding U.S. Appl. No. 16/938,509. |
Qu et al, “Metadata Type System: Integrate Presentation, Data Models and Extraction to Enable Exploratory Browsing Interfaces,” ACM, pp. 107-116 (Year: 2014). |
Restriction Requirement, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/584,187. |
Shulz et al, “Generative Data Models for Validation and Evaluation of Visualization Techniques,” ACM, pp. 1-13 (Year: 2016). |
Written Opinion of the International Searching Authority, dated Apr. 12, 2022, from corresponding International Application No. PCT/US2022/016735. |
Written Opinion of the International Searching Authority, dated Mar. 18, 2022, from corresponding International Application No. PCT/US2022/013733. |
Bansal et al, “Integrating Big Data: A Semantic Extract-Transform-Load Framework,” IEEE, pp. 42-50 (Year: 2015). |
Bao et al, “Performance Modeling and Workflow Scheduling of Microservice-Based Applications in Clouds,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, No. 9, Sep. 2019, pp. 2101-2116 (Year: 2019). |
Bindschaedler et al, “Privacy Through Fake Yet Semantically Real Traces,” ARXIV.ORG, Cornell University Library, 201 Olin Library Cornell University Ithaca, NY 14853, May 27, 2015 (Year: 2015). |
Castro et al, “Creating Lightweight Ontologies for Dataset Description,” IEEE, pp. 1-4 (Year: 2014). |
Ex Parte Quayle Action, dated May 10, 2022, from corresponding U.S. Appl. No. 17/668,714. |
Final Office Action, dated May 12, 2022, from corresponding U.S. Appl. No. 17/499,624. |
Final Office Action, dated May 16, 2022, from corresponding U.S. Appl. No. 17/480,377. |
Final Office Action, dated May 2, 2022, from corresponding U.S. Appl. No. 17/499,595. |
Final Office Action, dated May 24, 2022, from corresponding U.S. Appl. No. 17/499,582. |
International Search Report, dated May 12, 2022, from corresponding International Application No. PCT/US2022/015929. |
International Search Report, dated May 17, 2022, from corresponding International Application No. PCT/US2022/015241. |
International Search Report, dated May 19, 2022, from corresponding International Application No. PCT/US2022/015637. |
Lasierra et al, “Data Management in Home Scenarios Using an Autonomic Ontology-Based Approach,” IEEE, pp. 94-99 (Year: 2012). |
Lenzerini et al, “Ontology-based Data Management,” ACM, pp. 5-6 (Year: 2011). |
Choi et al, “A Survey on Ontology Mapping,” ACM, pp. 34-41 (Year: 2006). |
Cui et al, “Domain Ontology Management Environment,” IEEE, pp. 1-9 (Year: 2000). |
Falbo et al, “An Ontological Approach to Domain Engineering,” ACM, pp. 351-358 (Year: 2002). |
Final Office Action, dated Jun. 10, 2022, from corresponding U.S. Appl. No. 17/161,159. |
Final Office Action, dated Jun. 9, 2022, from corresponding U.S. Appl. No. 17/494,220. |
International Search Report, dated Jun. 1, 2022, from corresponding International Application No. PCT/US2022/016930. |
International Search Report, dated Jun. 22, 2022, from corresponding International Application No. PCT/US2022/019358. |
International Search Report, dated Jun. 24, 2022, from corresponding International Application No. PCT/US2022/019882. |
Nemec et al, “Assessment of Query Execution Performance Using Selected Business Intelligence Tools and Experimental Agile Oriented Data Modeling Approach,” Sep. 16, 2015, IEEE, pp. 1327-1333. (Year: 2015). |
Notice of Allowance, dated Jun. 14, 2022, from corresponding U.S. Appl. No. 17/679,734. |
Notice of Allowance, dated Jun. 16, 2022, from corresponding U.S. Appl. No. 17/119,080. |
Notice of Allowance, dated Jun. 2, 2022, from corresponding U.S. Appl. No. 17/493,290. |
Notice of Allowance, dated Jun. 23, 2022, from corresponding U.S. Appl. No. 17/588,645. |
Notice of Allowance, dated Jun. 8, 2022, from corresponding U.S. Appl. No. 17/722,551. |
Notice of Allowance, dated May 27, 2022, from corresponding U.S. Appl. No. 17/543,546. |
Notice of Allowance, dated May 31, 2022, from corresponding U.S. Appl. No. 17/679,715. |
Office Action, dated Jun. 1, 2022, from corresponding U.S. Appl. No. 17/306,496. |
Office Action, dated Jun. 14, 2022, from corresponding U.S. Appl. No. 17/346,586. |
Office Action, dated Jun. 16, 2022, from corresponding U.S. Appl. No. 17/689,683. |
Ozdikis et al., “Tool Support for Transformation from an OWL Ontology to an HLA Object Model,” ACM, pp. 1-6 (Year: 2010). |
Vukovic et al, “Managing Enterprise IT Systems Using Online Communities,” Jul. 9, 2011, IEEE, pp. 552-559. (Year: 2011). |
Wong et al, “Ontology Mapping for the Interoperability Problem in Network Management,” IEEE, pp. 2058-2068 (Year: 2005). |
Written Opinion of the International Searching Authority, dated Jun. 1, 2022, from corresponding International Application No. PCT/US2072/016930. |
Written Opinion of the International Searching Authority, dated Jun. 22, 2022, from corresponding International Application No. PCT/US2022/019358. |
Written Opinion of the International Searching Authority, dated Jun. 24, 2022, from corresponding International Application No. PCT/US2022/019882. |
Number | Date | Country | |
---|---|---|---|
20220083691 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
63078560 | Sep 2020 | US |