Financial account data can be protected from unauthorized access through measures such as encryption of data within devices having hardware-based security controls. However, existing security measures, such as encrypting a personal identification number (PIN), may leave sensitive data, such as a primary account number (PAN) exposed. Existing solutions for protecting sensitive data may require application of key management schemes that differ from those used to encrypt PIN data, increasing the burden to merchants of providing security for financial data.
Merchants may protect financial account data by routing all transactions to a single destination for payment processing. However, when routing an authorization request for a transaction, a merchant may be able to select a payment processing network among multiple available payment processing networks. It may be necessary for the merchant to provide for decryption of information in the authorization request message and re-encryption of information based on the routing destination of the authorization request message. Some payment processing networks may lack an encryption solution for sensitive data. A merchant may wish to utilize the encryption measures provided by a first payment processing network while continuing to have the ability to route authorization requests to alternative payment processing networks.
Embodiments described herein solve these and other problems.
Techniques are provided for protecting sensitive data when an authorization request for a transaction is routed in an environment comprising a plurality of payment processing network options.
In one embodiment, a method is described. The method includes encrypting a personal identification number (PIN) by an access device. The PIN encryption uses a first encryption key variant based on an initial key. The access device encrypts sensitive data using a second encryption key variant based on the initial key. An authorization request message including the encrypted PIN and encrypted sensitive data are transmitted to a host server.
In another embodiment, a method includes receiving an authorization request message at a host server. A secure module communicatively connected to the host server decrypts the encrypted sensitive data. The secure module re-encrypts the decrypted sensitive data with a first sensitive data zone encryption key associated with the first payment processing network. A first translated authorization request message including the re-encrypted sensitive data is transmitted by the host server to the first payment processing network. In a further embodiment, the authorization request message received at the host server includes a PIN. The secure module decrypts the encrypted PIN and re-encrypts the decrypted PIN with a first PIN zone encryption key associated with the first payment processing network. The first translated authorization request message includes the re-encrypted PIN. In an additional embodiment, the secure module is configured to transmit a second translated authorization request message to a second payment processing network. A second PIN zone encryption key is used for re-encryption of a PIN for the second translated authorization request message and a second sensitive data zone encryption key is used for re-encryption of sensitive data for the second authorization request message.
Another embodiment of the technology is directed to a system. The system includes a processor and a computer readable medium coupled to the processor. The computer readable medium comprises code executable by the processor for implementing a method comprising encrypting a personal identification number (PIN) by an access device. The PIN encryption uses a first encryption key variant based on an initial key. The access device encrypts sensitive data using a second encryption key variant based on the initial key. An authorization request message including the encrypted PIN and encrypted sensitive data are transmitted to a host server.
A further embodiment of the technology is directed to a system. The system includes a processor and a computer readable medium coupled to the processor. The computer readable medium comprises code executable by the processor for implementing a method comprising receiving an authorization request message at a host server. The authorization request message includes encrypted sensitive data. A secure module communicatively connected to the host server decrypts the encrypted sensitive data. The secure module re-encrypts the decrypted sensitive data with a first sensitive data zone encryption key associated with the first payment processing network. A first translated authorization request message including the re-encrypted sensitive data is transmitted by the host server to the first payment processing network.
In a further embodiment, a method includes receiving data associated with a personal account identifier (PAI). An access device can encrypt the PAI. The encrypted PAI can have the same format as the PAI. The encrypted PAI is written to a field of an authorization request message. The field of the authorization request message is a field that is designated to receive a PAI. An authorization request message data element is used as a signal to identify the presence of the encrypted PAI in the authorization request message. The access device transmits the authorization request message.
These and other embodiments are described in further detail below.
Embodiments disclosed herein are directed to techniques for protecting financial data in an authorization request message. Terms used to describe embodiments herein can be understood with reference to the descriptions provided below.
An “authorization request message” can be a request to authorize a transaction. The authorization request message can be sent to an issuer of a payment account to request authorization of a transaction performed with the payment account. A merchant may generate the authorization request message. The authorization request message may be transmitted to the issuer via an acquirer.
The authorization request message may have a defined format to facilitate requests and responses between points in a financial network. For example, an authorization request message may be a standardized interchange message such as a message that complies with International Organization for Standardisation (ISO) 8583, which is a standard for systems that exchange electronic transactions. An ISO 8583 message can include a message type indicator, one or more bitmaps indicating which data elements are present in the message, and data elements of the message. The data included in the authorization request message may include data obtained from a payment device as well as other data related to the transaction, the payment account holder, and the merchant. For example, the authorization request message can include a personal identification number (PIN), and sensitive data such as a primary account number (PAN), cardholder name, and discretionary data. Additionally, the authorization request message can include payment device expiration date, currency code, transaction amount, a merchant transaction stamp, acceptor city, acceptor state/country, routing transit number, terminal identification, network identification, etc. An authorization request message may be protected using encryption in order to prevent data from being compromised.
The authorization request message may include a payment account identifier. The payment account identifier may be associated with a portable consumer device, such as a credit card or debit card. For example, a payment account identifier may be a primary account number (PAN). The PAN may be a unique payment card number, such as a credit card account number associated with a credit card or a debit account number associated with a debit account. The PAN may identify the issuer as well as the cardholder account. Where the term PAN is employed herein, it will be understood that any payment account identifier could be used.
A personal identification number (PIN) can be a numeric password shared between a user and a system and used to authenticate the user to the system. A PIN block can be an encrypted block of data used to encapsulate a PIN. The PIN block may be composed of the PIN, the PIN length, and a subset of the PAN.
Issuer discretionary data (IDD), also referred to as “discretionary data,” can be data residing in Track 1 and/or Track 2 of a magnetic strip or a chip of a payment device or otherwise associated with a payment account. The IDD may be variable in length and may contain customer and/or card verification data such as a PIN offset value, PIN verification value (PVV), card verification value (CW), etc. The IDD may also include other data defined by card brands and/or issuers, such as information used in a loyalty program, fleet data, etc.
An “acquirer” is typically a business entity (e.g., a commercial bank) that has a business relationship with a particular merchant. For example, the acquirer may deposit funds into a merchant bank account and recoup those funds from issuers.
An “issuer” is typically a business entity (e.g., a bank or credit union) which issues a payment device to an account owner and provides administrative and management functions for the payment account. Some entities may perform both issuer and acquirer functions. A payment account may be any account usable in a transaction, such as a credit, debit or prepaid account.
A “payment device” may refer to a device used to initiate a transaction, such as a portable consumer device or a portable communication device. The payment device may interface with an access device such as a point of sale device to initiate the transaction. Typically, a portable consumer device is hand-held and compact so that it can fit into a consumer's wallet or pocket (e.g., pocket sized). Specific examples of portable consumer devices include payment cards such as smartcards, debit devices (e.g., a debit card), credit devices (e.g., a credit card), or stored value devices (e.g., a stored value card or “prepaid” card). A portable communication device, also referred to as a “mobile device,” may be, for example, a cellular or wireless telephone (e.g., a smartphone), personal digital assistant (PDA), portable computer (e.g., tablet or laptop computer), pager, or other portable device carried by the payment account holder.
An “access device” may refer to a device that receives information from a payment device to initiate a transaction. For example, an access device may be a point of sale device configured to read account data encoded in a magnetic stripe or chip of a card-format portable consumer device. Other examples of access devices include cellular phones, PDAs, personal computers, server computers, tablets, handheld specialized readers, set-top boxes, electronic cash registers, automated teller machines (ATMs), virtual cash registers, kiosks, security systems, access systems, and the like. Access devices may use means such as radio frequency (RF) and magnetic stripe readers to interact with a payment device. The access device may be a device located at a merchant's physical location or may be a virtual point of sale such as a web-site that is part of an eCommerce (electronic commerce) transaction. In an eCommerce transaction, the account owner may enter payment account data into a portable communication device, personal computer, or other device capable of communicating with a merchant computer. In other card not present transactions, such as mail-order or telephone-order transactions, information may be entered into a merchant computer serving as an access device. In a further example, communication may occur between a contactless element of a portable communication device and an access device, such as a merchant device reader or point of sale terminal, by using a wireless communications mechanism, such as near field communications (NFC), RF, infra-red, optical communications, etc.
A “payment processing network” may include a system that receives an authorization request message. The payment processing network may obtain information from the authorization request message to use in determining whether to approve a transaction associated with the authorization request message. The payment processing network may send an authorization response message to the merchant indicating whether a transaction is approved. In some embodiments, the payment processing network may perform a settlement process, which can involve posting the transactions to the accounts associated with the payment devices used for the transactions and calculating the net debit or credit position of each user of the payment devices. A payment processing network may be operated by an acquirer and/or an issuer.
A “host” may be one or more systems, such as a server, responsible for performing merchant transaction processing, routing decision and/or capture. The host may be resident at a merchant, gateway, processor or other entity. In some embodiments, a host may be associated with a merchant direct exchange (MDEX), value added reseller (VAR), or other connectivity model. Where the term “merchant host server” is used herein, it will be recognized that any server, such as a payment processor server, could be used.
A “tamper-resistant security module” (TRSM) is a device that incorporates physical protections to prevent compromise of cryptographic security parameters contained by the device. TRSMs are available with varying levels of protection. A TRSM that is tamper-resistant may employ physical measures such as hardened casing to make intrusion into the device difficult. A tamper-evident TRSM may have hardware features to make intrusion attempts evident to subsequent viewers, such as a seal that would be broken during intrusion into the device. A tamper-responsive TRSM may be configured to detect an intrusion attempt and destroy sensitive information, such as cryptographic security parameters, should an intrusion attempt occur.
A “hardware security module” (HSM) is a TRSM with a secure cryptoprocessor that can manage digital keys, accelerate cryptoprocesses and/or provide strong authentication for accessing critical keys for server applications. An HSM may provide both logical and physical protection of sensitive information from non-authorized access. The HSM may be a physical device in the form of a plug-in card or external security device. The HSM may be communicatively coupled to a host.
Payment card industry data security standards (PCI DSS) are a set of requirements applicable to entities involved with transaction processing. The purpose of the requirements is to maintain the security of financial data.
Derived Unique Key Per Transaction (DUKPT) is a key management scheme that can derive a unique transaction key for each transaction. DUKPT uses a base derivation key (BDK) that is typically known only to the party that initializes a TRSM and recipient of a message encrypted by the TRSM. The TRSM is typically injected with an initial key that is derived from the BDK. A transaction key may be derived from the initial key. If a derived key is compromised, future and past transaction data remain protected because the next or prior keys cannot be easily determined from the derived key. DUKPT can be used for the encryption of data associated with electronic commerce transactions, such as a PIN and/or sensitive data.
For example, a PIN pad may include a TRSM injected with a unique initial key and a key serial number. The PIN pad may generate a unique key for each transaction. An authorization request message generated by the PIN pad may include an encrypted PIN block and the key serial number. The authorization request message may be transmitted from the PIN pad to a merchant host server having its own TRSM. The merchant host server TRSM can use a key serial number (KSN) to retrieve the base derivation key (BDK) used in the generation of the unique initial PIN pad key. The TRSM can use the BDK and the KSN to decrypt the encrypted data.
Triple Data Encryption Algorithm (TDEA), also referred to as “Triple Data Encryption Standard”, “3DES,” “Triple DES” and “TDES,” is a block cipher that applies the Data Encryption Standard (DES) cipher algorithm three times to each block of data being encrypted.
A “Zone Encryption Key” (ZEK) can indicate one or more keys used to encrypt data between two specific points (e.g., between a host and a payment processing network). Separate ZEKs may be used for PIN and for sensitive data. In a preferred embodiment, ZEKs are used only for sensitive data encryption between parties, and is preferably not the same as PIN, MAC or other specific encryption keys
A “server” can include one or more computers. Multiple computers of a server may be communicatively coupled via network connections, such as wired, wireless, and/or internet network connections. One or more of the computers of a server may store databases.
Encryption and Zone Translation of Pin and Sensitive Data
When a payment device is used for a transaction, an authorization request message may be generated for the transaction. The authorization request message may include a personal identification number (PIN) and sensitive data such as a primary account number (PAN), cardholder name, cardholder address, issuer discretionary data, or other sensitive data. Sensitive data may be data that is stored with a payment device, such as in the magnetic stripe or in a chip of the payment device. Alternatively, storage data may be data provided by a user to an access device, such as cardholder address information provided by a user in the course of an e-commerce or other card not present transaction. The PIN and sensitive data may be encrypted by an access device that receives information from the payment device. The PIN and sensitive data may be encrypted using encryption key variants based on an initial key injected into the access device.
In a typical transaction, a payment device 102 interfaces with an access device 104 to initiate a transaction. Access device 104 may include access device tamper resistant security module (TRSM) 106. Access device TRSM 106 may be physically and/or communicatively coupled to (or may be an integral component of) access device 104. Access information can receive information associated with payment device 102, including sensitive data, when payment device 102 interfaces with access device 104. In some embodiments, access device 104 receives sensitive data and/or a PIN from a device storing account information, such as a portable communication device.
In an illustrative example, payment device 102 may be a credit card and access device 104 may be a PIN pad housed in a TRSM. The PIN pad may have a user interface for receiving numerical input indicating PIN passwords and a magnetic stripe reader for obtaining track data from the magnetic stripe of a payment device.
In other embodiments, payment device information may be user input that is received by access device 104. PIN data may be received from payment device 102 or from user input received by access device 106.
When access device 104 receives data such as PIN and payment device information, TRSM 106 may encrypt the data. In some cases, it may be necessary to obtain a PAN prior to encrypting the PIN. Sensitive data such as PAN, cardholder name, cardholder address, and discretionary data may be determined from the information received from payment device 102. The sensitive data may be parsed from track data obtained by access device 104 from payment device 102. In some embodiments, access device 106 encrypts the PIN by generating a PIN block based on the PIN, PIN length, and a subset of the PAN. Access device 104 may encrypt sensitive data including one or more of PAN, cardholder name, cardholder address, discretionary data, and any other information to be treated as sensitive data.
Access device TRSM 106 may store an initial key used for encrypting data. For each transaction, one or more transaction keys may be derived from the initial key. It may be necessary for different transaction keys to be applied to PIN and sensitive data for compliance with regulations such as PCI DSS. The PIN may be encrypted using a first transaction key derived from the initial key and sensitive data may be encrypted using a second transaction key derived from the initial key. In this manner, both the PIN and the sensitive data can be encrypted using the same key management scheme (such as DUKPT) and the same encryption algorithm (such as TDEA).
An authorization request message including encrypted PIN data and encrypted sensitive data may be generated by access device 104 and transmitted to merchant host server 108. The authorization request message may include designated fields for various types of data. When encryption is applied to data in an authorization request message, the encryption may change parameters (such as data type, data length, etc.) of a field associated with the encrypted data. Due to the changed parameters, the encrypted data may be placed in a new field. For example, an authorization request message may include a field sized to accommodate a PAN. When the encryption is applied, the PAN and other sensitive data may be placed in one or more alternative fields of the authorization request message. A field may be added to an authorization request message to signal that the encrypted PAN is located in an encrypted PAN field. Sensitive data such as a PAN, a cardholder name, and discretionary data may be encrypted at access device 104 and placed in individual elements within a field of an authorization request message, such as field 53 of an ISO formatted authorization request message.
In some embodiments, format preserving encryption is applied to sensitive data in the authorization request message. For example, when format preserving encryption is used, a subset of the digits of the PAN may be replaced with encrypted values while particular digits of the PAN remain unchanged. In a preferred embodiment, the first six digits and the last four digits of the PAN remain unchanged and the middle digits are replaced with encrypted values. In this manner, the authorization request message can be handled by payment processing networks that are not configured to handle authorization request messages having alternative fields for storing encrypted data. To signal the presence of encrypted data within the PAN field of the authorization request message, an altered expiration date may be included in the expiration date field of the authorization request message. For example, the authorization request message may contain an expiration date that is 40 years after the expiration date associated with the payment device used for a transaction.
Merchant host server 108 may include merchant host TRSM 110. Merchant host TRSM 110 may be communicatively and/or physically coupled to or an integral component of merchant host server 108. In some embodiments, merchant host TRSM 110 may be located remotely from the premises of merchant server 108. In order to route transactions to multiple payment processing networks, a merchant may need to have a merchant host TRSM 110 to translate encrypted data in the authorization request message. For example, it may be necessary to translate keys at a merchant host TRSM 110 for compliance with PCI DSS standards limiting the exposure of keys associated with access device TRSM 106. When merchant host server 108 is configured to route authorization request messages to multiple payment processing networks 112-116, merchant host server 108 may translate encrypted data into a Zone Encryption Key (ZEK) associated with a particular payment processing network. Merchant host server 108 may determine how to route an authorization request message based on information contained in the authorization request message. For example, the first six digits of a PAN field containing a PAN encrypted according to a format preserving encryption method may be used by merchant host server 108 to determine how to route the authorization request message.
Translation by merchant host TRSM 110 can include decryption of PIN and sensitive data in the authorization request message received from access device 104 and re-encryption of the PIN and sensitive data using one or more Zone Encryption Keys (ZEK). A ZEK may be associated with a particular payment processing network. The ZEK is typically a shared key between a payment processing network and merchant host server 108. It may be necessary to apply different ZEKs to PIN and to sensitive data, e.g., for compliance with PCI DSS. The translation may be performed by Merchant Host TRSM 110 such that decrypted PIN and sensitive data are never exposed to merchant host server 108. Merchant host server 108 may transmit an authorization request message including the translated PIN and sensitive data to the one of payment processing networks 112-116 to which the authorization request message is to be routed.
In some embodiments, merchant host server 108 may route an authorization request message to a payment processing network that is not configured to handle encrypted data. In such embodiments, encrypted sensitive data may be decrypted and an authorization request message including the decrypted sensitive data may be transmitted from merchant host server 108 to the payment processing network.
The payment processing network that receives the authorization request message may decrypt the PAN or other sensitive data and may also verify the PIN. The payment processing network may determine whether the transaction is authorized. In some cases, the authorization request message can be transmitted to an issuer server which may determine whether the transaction is authorized. An authorization response message indicating whether the transaction was authorized may be routed back to merchant host server 108 from the issuer and/or payment processing network that received the authorization request message. The authorization response may be displayed by the access device 104, printed on a receipt, or otherwise conveyed to the payment account holder.
It will be understood that a server associated with a payment processing network or other entity and associated TRSM can be used in lieu of merchant host server 108 and merchant host TRSM 110.
A clearing and settlement process is typically conducted by each of the payment processing networks at a fixed time. The fixed time may vary from one network to another. A clearing process is a process of exchanging financial details between an acquirer and an issuer to facilitate posting to the payment account holder's account and reconciliation of the consumer's settlement position.
Within a TRSM, data may be encrypted and/or decrypted using DUKPT and TDES. It will be recognized that other key management systems (such as master/sesion and fixed key) and/or other encryption algorithms (such as RSA, DEA, ECIES, AES, or other encryption algorithms) could be applied.
At operation 208, access device 104 can encrypt the PIN using a first key. The first key may be a first transaction specific key derived from a key injected into access device 104. At operation 210, access device 104 can encrypt sensitive data using a second key. Sensitive data may include one or more of a PAN, cardholder name, discretionary data, cardholder address, and any other sensitive data received by acess device 104. The second key may be a second transaction specific key derived from a key injected into access device 104. At operation 212, access device 104 can generate an authorization request message including the encrypted PIN and encrypted sensitive data and transmit the authorization request message to a host server, such as merchant host server 108.
In some embodiments, an host device may receive an authorization request message including encrypted sensitive data from an access device. The authorization request may or may not include an encrypted PIN. For example, an access device may receive sensitive data from a credit card or other payment device for a transaction that does not require a PIN number. In such embodiments, a host device may translate sensitive data.
In some embodiments, a host may receive an authorization request message including an encrypted PIN and encrypted sensitive data. The host may translate the PIN and the sensitive data.
In some embodiments, separate zone encryption keys may be used to encrypt the PIN and the sensitive data. For example, a PIN-specific zone encryption key may be used or generated for use in encrypting PIN numbers, and a sensitive-data-specific zone encryption key may be used or generated for use in encrypting sensitive data. Furthermore, each payment processing network 112-116 may use one or more zone encryption keys that are specific to the particular payment processing network. Thus, a first PIN-specific zone encryption key and a first sensitive-data-specific zone encryption key can be used for translation when an authorization request message will be routed to a first payment processing network 112, and a second PIN-specific zone encryption key and a second sensitive-data-specific zone encryption key can be used for translation when an authorization request message will be routed to a second payment processing network 114.
Merchant host server 108 may determine which payment processing network of payment processing networks 112-116 is to receive the authorization request message. At operation 412, the merchant host server 108 may transmit an authorization request message including the translated (re-encrypted) PIN and translated (re-encrypted) sensitive data to the determined payment processing network.
In some embodiments, merchant host server 108 includes “white list” support for allowing specific card ranges defined by the merchant or payment processing network to be excluded from protection. When sensitive data is encrypted at access device 104, a part of the sensitive data may be may be maintained in cleartext for use at access device 104. For example, some or all of the data in the discretionary data field or other field of the track data on the magnetic stripe of payment device 102 may remain unencrypted in the authorization request message. Merchants that use data in the discretionary data field for loyalty programs, fleet programs, or the like may require that this data remain unencrypted for data gathering or other purposes.
In some embodiments, a cardholder name and/or data in the discretionary data field may be made available to the access device prior to encryption. For example, if an application executed by the access device or another merchant device uses this sensitive data (e.g., displaying a cardholder name at a cash register communicatively connected to a PIN pad device), the sensitive data may be exposed to the merchant device prior to encryption.
As discussed above, a chip or magnetic stripe in a payment device may have one or more tracks (typically three tracks, referred to as “track one,” “track two,” and “track three”) that hold data. The data may be formatted in accordance to a standardized structure.
A format code (such as “B,” indicating a financial institution) is typically the next character in track 1.
The Primary Account Number (PAN) can be comprised of a six digit Issuer Identification Number (IIN), a variable length (maximum 12 digits) individual account number and a check digit. The end of the data associated with the PAN can be indicated with a separator character, such as a caret (^).
The name field may include a single alpha character (as surname) and the surname separator. The space character may be required to separate the logical elements of the name field other than the surname. The separator terminating the name field may be encoded following the last logical element of the name field. If only the surname is encoded, the Field Separator (FS), such as “^” can follow the surname. In some embodiments, the name field includes a surname, followed by a surname separator (e.g., the “/” character), followed by a first name or initial, followed by a space, followed by a middle name or initial. The name can additionally include a period after the middle name or initial, followed by a title. The name is typically ended with a separator (the character “^”). For example, the name John C. Smith may be encoded as “SMITH/JOHN C”.
The expiration field of track one may have the format YYMM, where ‘YY’ represents the last two digits of the year and ‘MM’ is the numeric representation of the month.
The service code may be a numeric field with three sub-fields represented by individual digits. Typically, the service code is used to indicate the issuer's acceptance criteria for magnetic stripe transactions and whether a related integrated circuit supporting the equivalent application as identified by the magnetic stripe or embossing is present on the card. Each sub-field of the service code can be identified by its position (position 1, 2 and 3) and can operate independently, allowing judgments on its separate functions.
Issuer discretionary data may follow the service code. The end of the track is indicated by an end sentinel, such as a question mark character (“?”). Following the end sentinel, a longitudinal redundancy check character (LRC) may be included.
In some embodiments, PIN data may be stored on and read from track three of a payment device.
Encryption with Obfuscation
After encryption is performed on data fields associated with payment device 102, encrypted information may be stored in one or more alternate fields of the authorization request message and obfuscated data may be stored in the original fields of the authorization request message. For example, data may be read from the PAN, cardholder name, and discretionary data fields associated with payment device 102. Obfuscated data may be written to the fields of the authorization request message designated for the PAN, cardholder name, and discretionary data and encrypted versions of the PAN, cardholder name and discretionary data may be written to one or more alternate fields of the authorization request message.
In an illustrative example, for an authorization request message that complies with ISO standards, an alternate field such as ISO field 53 may be defined to receive encrypted data and associated encryption attributes. The new definition of ISO field 53 may conform to the “composite” field type as defined in the ISO standard. The new field 53 may receive encrypted PIN block data and encrypted sensitive data. When zone encryption is applied to an authorization request message, zone encryption may be applied to field 53.
When obfuscated data is written to a PAN field of an authorization request message, some digits of the PAN in the retained PAN field can be maintained and other digits of the PAN can be obfuscated. For example, a subset of digits of the PAN, e.g. digits 7-12 (the “middle six” digits) of the PAN, can be obfuscated, while other digits, such as the first six and last four digits of the PAN, remain as plain text. Obfuscation may be performed, for example, by replacing digits 7-11 of the PAN with the number 9 and replacing digit 12 of the PAN with a number calculated to insure that the last digit of the PAN is a valid check digit. Because the remaining digits of the PAN, such as the first six digits and the final four digits, are not obfuscated, the remaining digits can be used for functions such as routing and receipt determination. In this manner, systems that are designed to handle data contained in the PAN field can function normally although the PAN is protected through obfuscation of the middle six digits. The encrypted PAN stored in an encrypted PAN field can be decrypted, allowing the decrypted (original) PAN to be written into the PAN field.
Format Preserving Encryption
It may be desirable to encrypt data contained in the authorization request message without altering the format of the authorization request message. For example, some systems may not be designed to handle an authorization request message having an added encrypted PAN field. Format preserving encryption may be applied to sensitive data such as PAN, cardholder name and discretionary data from track 1 and track 2 of the track data associated with payment device 102.
A PAN may be encrypted such that the resulting encrypted PAN has the same size as the original PAN. In this manner, the encrypted PAN can be written to the original PAN field of the authorization request message, and no alternate field of the authorization request message is required to receive an encrypted PAN. Some digits of the PAN may remain unencrypted when format preserving encryption is applied to the PAN. For example, the first six and last four digits of the PAN may remain unencrypted to allow for routing and other functions dependent on data contained in these digits.
Format preserving encryption may function differently for PANs that contain valid check digits. An algorithm for determination of valid check digits may be as defined in ISO standards. The check digit, which is typically the final digit of the PAN, may be a digit computed from the other digits in the message that can be used to determine whether all digits of the PAN were correctly received. The check digit may be used to detect transmission errors. In some embodiments, the last digit of digits 7-12 (the “middle six” digits) of the PAN is calculated such that the original last digit of the unencrypted PAN is still a valid check digit for the PAN encrypted with format preserving encryption. When a PAN does not contain a valid check digit, all middle digits may be encrypted with a format preserving encryption algorithm.
Sensitive data may be converted into the a base-10 alphabet prior to encryption. After the format preserving encryption algorithm has been applied, the resulting encrypted characters in base-10 alphabet form may be converted to the original code set and format of the original sensitive data. The converted encryption result may be used to replace the original fields for sensitive data such as PAN, cardholder name, discretionary data, etc. in the authorization request message.
Typically, it will not be apparent from the data in the fields to which format preserving encryption has been applied that the data has been encrypted. A signal may be used in an existing data field of the authorization request message to indicate that a field of an authorization request message contains encrypted data. To implement the signal, a field of the authorization request message that does not contain encrypted data can be overwritten with new contents that are a modified version of the original contents of the field. For example, an expiration date in an expiration date field of the authorization request message can be replaced with an altered expiration date. In one embodiment, the altered expiration date is obtained by adding a number to the expiration date or a portion of the expiration date. For example, a number such as 40 may be added to the year portion of the expiration date. If an expiration date field of an authorization request message contained an expiration date of “01/13,” indicating an expiration date of January 2013, the number 40 can be added to year portion 13 and the resulting altered expiration date “01/53” can be written to the expiration date field. If a transaction takes place in 2013, a device reading the expiration date portion of the authorization request message may be able to determine that the expiration date is an altered expiration date because payment devices are typically issued with an expiration date that is under 20 years (e.g., 1-10 years) from the date the card issues. On this basis, it can be determined that an expiration date that is over twenty years past the present date is an altered expiration date.
In some embodiments, the last digit of the PAN may not contain a valid check digit. For example, the last digit of the PAN may not have a check digit as specified by ISO/IEC standard 7812-1. In cases where the last digit of the PAN is not a valid check digit, the number 20 may be added to the month of the expiration data before the altered expiration date is written to the expiration date field of the authorization request message.
In some embodiments, the expiration date field may be missing from the information received by access device 104. For example, a card read or key entry may have errors or otherwise lack the expiration date. The number 40 may be added to the month of the expiration date created in the format preserving encryption process before the altered expiration date is written to the expiration date field of the authorization request message.
Below, an exemplary algorithm for format preserving encryption is described. The format preserving encryption algorithm may operate as a stream cipher that is format preserving. For example, the format preserving encryption may be similar to the Counter Mode (CTR) from the National Institute Standards and Technology (NIST) standard SP800-38A, generalized to modulo-n addition instead of modulo-2 addition.
In the format preserving algorithm, A may be an alphabet with n different characters, where n is a natural number greater than 1. A* may be denoted as the set of strings with elements from A, including the empty string. In this description it is assumed that the alphabet A is the set {0, . . . , n−1}. If this is not the case, a translation is needed, based on the number of different characters in the alphabet A. The translation may happen prior to encryption, and again, after decryption, so that encryption and decryption will always work on alphabets of the form {0, . . . , n−1} for some positive integer n, greater than 1.
The format preserving encryption algorithm may use Counter (CTR) mode as defined in SP800-38A with a block cipher CIPH (AES or IDEA) with block size b bits, and encryption key K for CIPH, and a sequence of counter blocks (called counters in SP800-38A) T1, T2, . . . , to produce a sequence of output blocks, one for each counter block. Each output block consists of k base-n digits, where k is a configurable parameter which must be chosen from the interval {1, . . . , └ logn 2b┘}. For reasons explained below, each counter block is b-7 bits, rather than b bits as in SP800-38A. The mechanism for how to produce the output blocks is also described below.
To encipher a plaintext P of length L, with 1≤L, as many output blocks as necessary (but no more) are generated, so that the total number of base n digits in the output blocks is at least L, that is, we calculate the unique integers p and r such that
and 0≤r<k, such that L=pk−r, and generate output blocks G1, . . . , Gp. Then each plaintext base-n digit P[i] is added, modulo-n, to the ith base-n digit from the concatenation of the output blocks, G1∥G2∥ . . . ∥Gp, to form the ith digit of the ciphertext:
C[i]=(P[i]+(G1∥ . . . ∥Gp)[i])mod n.
Since k may not divide L, some digits of the last output block, Gp may be ignored. The last r base-n digits of Gr are not used.
To decipher a ciphertext C of length L, with 151, as many output blocks as necessary (but no more) are generated, so that the total number of base-n digits in the output blocks exceed L, which is done in the same way as for encryption. Then from each ciphertext base-n digit C[i] is subtracted, modulo-n, the ith base-n digit from the concatenation of the output blocks, G1∥ . . . ∥Gp, to form the ith digit of the plaintext:
C[i]=(P[i]+(G1∥ . . . ∥Gp)[i])mod n.
For format preserving encryption, as for Counter mode itself, the sequence of counter blocks must have the property that each block in the sequence is different from every other block. This condition is not restricted to a single encryption: across all of the messages that are encrypted under a given key K, all counters must be distinct. SP800-38A describes methods for generating counters.
Given a block cipher CIPH with block length b, a key K for CIPH, a b-7 bit counter T, a natural number n>1, which is the base of the plaintext to be enciphered, and an integer k with 0<k≤└ logn(2b)┘, an output block consisting of k base-n digits is produced in the following way:
A 7-bit counter, S, is initialized to 0. Then CIPHK is applied to S∥T to produce a block B of b bits. B is interpreted as an integer in the interval {0, . . . , 2b−1}, and if
then it is accepted, otherwise S is incremented and CIPHK is applied again to S∥T, etc., until B is accepted or S equals 127. If S=127, an error is raised, otherwise B is converted to base-n and is the k-digit base-n output block, possibly with leading zeros. Under the assumption that CIPHK is a pseudorandom permutation, the probability in each iteration that B is accepted is at least 0.5, and the probability that an error is raised is at most 2−128. The pseudocode below describes this algorithm:
Here it is assumed that S0, S1, . . . , S127 enumerate the 128 different 7-bit combinations, that “AsInteger” takes a string of b bits B[1], B[b] and converts it to the integer Σi=1b(B[i]·2b-i), and that “Convert” converts B to k base-n digits, with leading zeros if necessary:
The maximum value for L, that is, the bit length of the longest plaintext that can be enciphered is 2b/2.
The upper bound
for B interpreted as an integer is chosen as the largest possible whole multiple of nk, that makes it possible to extract a k-digit base-n number uniformly from it, assuming the distribution of B is uniform.
At operation 704, at least a part of the PAN is encrypted such that the length of the encrypted PAN is equal to the length of the original PAN. The PAN may be encrypted by access device 104 or merchant host server 108. At operation 706, the encrypted PAN may be written to the PAN field of the authorization request. At operation 708, the expiration date can be read from the expiration date field of the authorization request message (or from the payment device). At operation 710, an altered expiration date can be written to the authorization request message. An altered expiration date may be generated by, for example, adding a number to the year portion of the original expiration date. The number added to the original expiration date may be a number between 5-99, such as a number between 10 and 50, e.g., 40. It will be recognized that alternative algorithms, such as subtraction of a number from the original expiration date, may be used.
Computer System
As described, the inventive service may involve implementing one or more functions, processes, operations or method steps. In some embodiments, the functions, processes, operations or method steps may be implemented as a result of the execution of a set of instructions or software code by a suitably programmed computing device, microprocessor, data processor, or the like. The set of instructions or software code may be stored in a memory or other form of data storage element which is accessed by the computing device, microprocessor, etc. In other embodiments, the functions, processes, operations or method steps may be implemented by firmware or a dedicated processor, integrated circuit, etc.
It should be understood that the present invention as described above can be implemented in the form of control logic using computer software in a modular or integrated manner. Based on the disclosure and teachings provided herein, a person of ordinary skill in the art will know and appreciate other ways and/or methods to implement the present invention using hardware and a combination of hardware and software.
Any of the software components or functions described in this application may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, Java, C++ or Perl using, for example, conventional or object-oriented techniques. The software code may be stored as a series of instructions, or commands on a computer-readable medium, such as a random access memory (RAM), a read only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk, or an optical medium such as a CD-ROM. Any such computer-readable medium may reside on or within a single computational apparatus, and may be present on or within different computational apparatuses within a system or network.
While certain exemplary embodiments have been described in detail and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not intended to be restrictive of the broad invention, and that this invention is not to be limited to the specific arrangements and constructions shown and described, since various other modifications may occur to those with ordinary skill in the art.
As used herein, the use of “a”, “an” or “the” is intended to mean “at least one”, unless specifically indicated to the contrary.
The present application is a non-provisional application of and claims priority to U.S. Provisional Application No. 61/583,550, filed on Jan. 5, 2012, the entire contents of which are herein incorporated by reference for all purposes. The present application also claims priority to U.S. Provisional Application No. 61/607,546, filed on Mar. 6, 2012, the entire contents of which are herein incorporated by reference for all purposes. The present application also claims priority to U.S. Provisional Application No. 61/704,428, filed on Sep. 21, 2012, the entire contents of which are herein incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4423287 | Zeidler | Dec 1983 | A |
5228084 | Johnson | Jul 1993 | A |
5613012 | Hoffman | Mar 1997 | A |
5671279 | Elgamal | Sep 1997 | A |
5745576 | Abraham et al. | Apr 1998 | A |
5781438 | Lee | Jul 1998 | A |
5850446 | Berger et al. | Dec 1998 | A |
5883810 | Franklin | Mar 1999 | A |
5931917 | Nguyen et al. | Aug 1999 | A |
5953710 | Fleming | Sep 1999 | A |
5956699 | Wong | Sep 1999 | A |
5978840 | Nguyen et al. | Nov 1999 | A |
5987132 | Rowney | Nov 1999 | A |
5987140 | Rowney et al. | Nov 1999 | A |
6000832 | Franklin | Dec 1999 | A |
6014635 | Harris | Jan 2000 | A |
6044360 | Picciallo | Mar 2000 | A |
6061665 | Bahreman | May 2000 | A |
6098053 | Slater | Aug 2000 | A |
6119105 | Williams | Sep 2000 | A |
6128391 | Denno et al. | Oct 2000 | A |
6163771 | Walker | Dec 2000 | A |
6175922 | Wang | Jan 2001 | B1 |
6227447 | Campisano | May 2001 | B1 |
6236981 | Hill | May 2001 | B1 |
6253027 | Weber et al. | Jun 2001 | B1 |
6267292 | Walker | Jul 2001 | B1 |
6282656 | Wang | Aug 2001 | B1 |
6304915 | Nguyen et al. | Oct 2001 | B1 |
6327578 | Linehan | Dec 2001 | B1 |
6341724 | Campisano | Jan 2002 | B2 |
6366682 | Hoffman | Apr 2002 | B1 |
6373950 | Rowney | Apr 2002 | B1 |
6385596 | Wiser | May 2002 | B1 |
6422462 | Cohen | Jul 2002 | B1 |
6425523 | Shem Ur | Jul 2002 | B1 |
6592044 | Wong | Jul 2003 | B1 |
6594759 | Wang | Jul 2003 | B1 |
6636833 | Flitcroft | Oct 2003 | B1 |
6748367 | Lee | Jun 2004 | B1 |
6805287 | Bishop | Oct 2004 | B2 |
6850916 | Wang | Feb 2005 | B1 |
6879965 | Fung | Apr 2005 | B2 |
6891953 | DeMello | May 2005 | B1 |
6901387 | Wells | May 2005 | B2 |
6931382 | Laage | Aug 2005 | B2 |
6938019 | Uzo | Aug 2005 | B1 |
6941285 | Sarcanin | Sep 2005 | B2 |
6947908 | Slater | Sep 2005 | B1 |
6980670 | Hoffman | Dec 2005 | B1 |
6990470 | Hogan | Jan 2006 | B2 |
6991157 | Bishop | Jan 2006 | B2 |
7051001 | Slater | May 2006 | B1 |
7051929 | Li | May 2006 | B2 |
7069249 | Stolfo | Jun 2006 | B2 |
7103576 | Mann, III | Sep 2006 | B2 |
7107246 | Wang | Sep 2006 | B2 |
7113930 | Eccles | Sep 2006 | B2 |
7136835 | Flitcroft | Nov 2006 | B1 |
7136840 | Pinkas et al. | Nov 2006 | B2 |
7177835 | Walker | Feb 2007 | B1 |
7177848 | Hogan | Feb 2007 | B2 |
7194437 | Britto | Mar 2007 | B1 |
7195154 | Routhenstein | Mar 2007 | B2 |
7209561 | Shankar et al. | Apr 2007 | B1 |
7233920 | Rodriguez, Jr. | Jun 2007 | B1 |
7237255 | Fransdonk | Jun 2007 | B2 |
7264154 | Harris | Sep 2007 | B2 |
7287692 | Patel | Oct 2007 | B1 |
7292999 | Hobson | Nov 2007 | B2 |
7350230 | Forrest | Mar 2008 | B2 |
7353382 | Labrou | Apr 2008 | B2 |
7376629 | McIsaac et al. | May 2008 | B1 |
7379919 | Hogan | May 2008 | B2 |
7382637 | Rathnavelu | Jun 2008 | B1 |
RE40444 | Linehan | Jul 2008 | E |
7415443 | Hobson | Aug 2008 | B2 |
7433845 | Flitcroft | Oct 2008 | B1 |
7444676 | Asghari-Kamrani | Oct 2008 | B1 |
7469151 | Khan | Dec 2008 | B2 |
7490069 | Camenisch | Feb 2009 | B2 |
7548621 | Smith | Jun 2009 | B1 |
7548889 | Bhambri | Jun 2009 | B2 |
7562041 | Chehade et al. | Jul 2009 | B2 |
7567934 | Flitcroft | Jul 2009 | B2 |
7567936 | Peckover | Jul 2009 | B1 |
7571139 | Giordano | Aug 2009 | B1 |
7571142 | Flitcroft | Aug 2009 | B1 |
7580898 | Brown | Aug 2009 | B2 |
7584153 | Brown | Sep 2009 | B2 |
7593896 | Flitcroft | Sep 2009 | B1 |
7606560 | Labrou | Oct 2009 | B2 |
7627531 | Breck | Dec 2009 | B2 |
7627895 | Gifford | Dec 2009 | B2 |
7635084 | Wang et al. | Dec 2009 | B2 |
7650314 | Saunders | Jan 2010 | B1 |
7685037 | Reiners | Mar 2010 | B2 |
7702578 | Fung | Apr 2010 | B2 |
7702916 | Seaton, Jr. et al. | Apr 2010 | B2 |
7707120 | Dominguez | Apr 2010 | B2 |
7712655 | Wong | May 2010 | B2 |
7734527 | Uzo | Jun 2010 | B2 |
7753265 | Harris | Jul 2010 | B2 |
7770789 | Oder, II | Aug 2010 | B2 |
7784685 | Hopkins, III | Aug 2010 | B1 |
7793851 | Mullen | Sep 2010 | B2 |
7801826 | Labrou | Sep 2010 | B2 |
7805376 | Smith | Sep 2010 | B2 |
7805378 | Berardi | Sep 2010 | B2 |
7818264 | Hammad | Oct 2010 | B2 |
7827114 | Pinkas et al. | Nov 2010 | B2 |
7828220 | Mullen | Nov 2010 | B2 |
7835960 | Breck | Nov 2010 | B2 |
7841523 | Oder, II | Nov 2010 | B2 |
7841539 | Hewton | Nov 2010 | B2 |
7844550 | Walker | Nov 2010 | B2 |
7848980 | Carlson | Dec 2010 | B2 |
7849020 | Johnson | Dec 2010 | B2 |
7853529 | Walker | Dec 2010 | B1 |
7853995 | Chow | Dec 2010 | B2 |
7865414 | Fung | Jan 2011 | B2 |
7873579 | Hobson | Jan 2011 | B2 |
7873580 | Hobson | Jan 2011 | B2 |
7890393 | Talbert | Feb 2011 | B2 |
7891563 | Oder, II | Feb 2011 | B2 |
7896238 | Fein | Mar 2011 | B2 |
7908216 | Davis et al. | Mar 2011 | B1 |
7922082 | Muscato | Apr 2011 | B2 |
7931195 | Mullen | Apr 2011 | B2 |
7937324 | Patterson | May 2011 | B2 |
7938318 | Fein | May 2011 | B2 |
7954705 | Mullen | Jun 2011 | B2 |
7959076 | Hopkins, III | Jun 2011 | B1 |
7996288 | Stolfo | Aug 2011 | B1 |
8016189 | Wang et al. | Sep 2011 | B2 |
8025223 | Saunders | Sep 2011 | B2 |
8046256 | Chien | Oct 2011 | B2 |
8046305 | Barnett | Oct 2011 | B1 |
8060448 | Jones | Nov 2011 | B2 |
8060449 | Zhu | Nov 2011 | B1 |
8074877 | Mullen | Dec 2011 | B2 |
8074879 | Harris | Dec 2011 | B2 |
8082210 | Hansen | Dec 2011 | B2 |
8095113 | Kean | Jan 2012 | B2 |
8104679 | Brown | Jan 2012 | B2 |
RE43157 | Bishop | Feb 2012 | E |
8109436 | Hopkins, III | Feb 2012 | B1 |
8121942 | Carlson | Feb 2012 | B2 |
8121956 | Carlson | Feb 2012 | B2 |
8126449 | Beenau | Feb 2012 | B2 |
8145569 | Gong | Mar 2012 | B2 |
8171525 | Pelly | May 2012 | B1 |
8175973 | Davis et al. | May 2012 | B2 |
8185478 | Pinkas et al. | May 2012 | B2 |
8190523 | Patterson | May 2012 | B2 |
8190530 | Redmond et al. | May 2012 | B2 |
8195565 | Bishop | Jun 2012 | B2 |
8196813 | Vadhri | Jun 2012 | B2 |
8205791 | Randazza | Jun 2012 | B2 |
8219489 | Patterson | Jul 2012 | B2 |
8224702 | Mengerink | Jul 2012 | B2 |
8225089 | Wang et al. | Jul 2012 | B2 |
8225385 | Chow | Jul 2012 | B2 |
8229852 | Carlson | Jul 2012 | B2 |
8265993 | Chien | Sep 2012 | B2 |
8280777 | Mengerink | Oct 2012 | B2 |
8281991 | Wentker et al. | Oct 2012 | B2 |
8328095 | Oder, II | Dec 2012 | B2 |
8336088 | Raj et al. | Dec 2012 | B2 |
8346666 | Lindelsee et al. | Jan 2013 | B2 |
8376225 | Hopkins, III | Feb 2013 | B1 |
8380177 | Laracey | Feb 2013 | B2 |
8387873 | Saunders | Mar 2013 | B2 |
8401539 | Beenau | Mar 2013 | B2 |
8401898 | Chien | Mar 2013 | B2 |
8402555 | Grecia | Mar 2013 | B2 |
8403211 | Brooks | Mar 2013 | B2 |
8412623 | Moon | Apr 2013 | B2 |
8412837 | Emigh | Apr 2013 | B1 |
8417642 | Oren | Apr 2013 | B2 |
8447699 | Batada | May 2013 | B2 |
8453223 | Svigals | May 2013 | B2 |
8453925 | Fisher | Jun 2013 | B2 |
8458487 | Palgon | Jun 2013 | B1 |
8484134 | Hobson | Jul 2013 | B2 |
8485437 | Mullen | Jul 2013 | B2 |
8494959 | Hathaway | Jul 2013 | B2 |
8498908 | Mengerink | Jul 2013 | B2 |
8504475 | Brand et al. | Aug 2013 | B2 |
8504478 | Saunders | Aug 2013 | B2 |
8510816 | Quach | Aug 2013 | B2 |
8433116 | Davis et al. | Sep 2013 | B2 |
8533860 | Grecia | Sep 2013 | B1 |
8538845 | Liberty | Sep 2013 | B2 |
8555079 | Shablygin | Oct 2013 | B2 |
8566168 | Bierbaum | Oct 2013 | B1 |
8567670 | Stanfield | Oct 2013 | B2 |
8571939 | Lindsey | Oct 2013 | B2 |
8577336 | Mechaley, Jr. | Nov 2013 | B2 |
8577803 | Chatterjee | Nov 2013 | B2 |
8577813 | Weiss | Nov 2013 | B2 |
8578176 | Mattsson | Nov 2013 | B2 |
8583494 | Fisher | Nov 2013 | B2 |
8584251 | Mcguire | Nov 2013 | B2 |
8589237 | Fisher | Nov 2013 | B2 |
8589271 | Evans | Nov 2013 | B2 |
8589291 | Carlson | Nov 2013 | B2 |
8595098 | Starai | Nov 2013 | B2 |
8595812 | Bomar | Nov 2013 | B2 |
8595850 | Spies | Nov 2013 | B2 |
8606638 | Dragt | Dec 2013 | B2 |
8606700 | Carlson | Dec 2013 | B2 |
8606720 | Baker | Dec 2013 | B1 |
8615468 | Varadarajan | Dec 2013 | B2 |
8620754 | Fisher | Dec 2013 | B2 |
8635157 | Smith | Jan 2014 | B2 |
8646059 | Von Behren | Feb 2014 | B1 |
8651374 | Brabson | Feb 2014 | B2 |
8656180 | Shablygin | Feb 2014 | B2 |
8751391 | Freund | Jun 2014 | B2 |
8762263 | Gauthier et al. | Jun 2014 | B2 |
8793186 | Patterson | Jul 2014 | B2 |
8838982 | Carlson et al. | Sep 2014 | B2 |
8856539 | Weiss | Oct 2014 | B2 |
8887308 | Grecia | Nov 2014 | B2 |
9065643 | Hurry et al. | Jun 2015 | B2 |
9070129 | Sheets et al. | Jun 2015 | B2 |
9100826 | Weiss | Aug 2015 | B2 |
9160741 | Wentker et al. | Oct 2015 | B2 |
9229964 | Stevelinck | Jan 2016 | B2 |
9245267 | Singh | Jan 2016 | B2 |
9249241 | Dai et al. | Feb 2016 | B2 |
9256871 | Anderson et al. | Feb 2016 | B2 |
9280765 | Hammad | Mar 2016 | B2 |
9530137 | Weiss | Dec 2016 | B2 |
20010029485 | Brody | Oct 2001 | A1 |
20010034720 | Armes | Oct 2001 | A1 |
20010054003 | Chien | Dec 2001 | A1 |
20020007320 | Hogan | Jan 2002 | A1 |
20020016749 | Borecki | Feb 2002 | A1 |
20020029193 | Ranjan | Mar 2002 | A1 |
20020035548 | Hogan | Mar 2002 | A1 |
20020073045 | Rubin | Jun 2002 | A1 |
20020116341 | Hogan | Aug 2002 | A1 |
20020123972 | Hodgson et al. | Sep 2002 | A1 |
20020133467 | Hobson | Sep 2002 | A1 |
20020147913 | Lun Yip | Oct 2002 | A1 |
20030028481 | Flitcroft | Feb 2003 | A1 |
20030130955 | Hawthorne | Jul 2003 | A1 |
20030191709 | Elston | Oct 2003 | A1 |
20030191945 | Keech | Oct 2003 | A1 |
20040010462 | Moon | Jan 2004 | A1 |
20040050928 | Bishop | Mar 2004 | A1 |
20040059682 | Hasumi | Mar 2004 | A1 |
20040093281 | Silverstein | May 2004 | A1 |
20040139008 | Mascavage | Jul 2004 | A1 |
20040143532 | Lee | Jul 2004 | A1 |
20040158532 | Breck | Aug 2004 | A1 |
20040182921 | Dickson | Sep 2004 | A1 |
20040210449 | Breck | Oct 2004 | A1 |
20040210498 | Freund | Oct 2004 | A1 |
20040210759 | Fitch | Oct 2004 | A1 |
20040232225 | Bishop | Nov 2004 | A1 |
20040260646 | Berardi | Dec 2004 | A1 |
20050037735 | Coutts | Feb 2005 | A1 |
20050080730 | Sorrentino | Apr 2005 | A1 |
20050108178 | York | May 2005 | A1 |
20050199709 | Linlor | Sep 2005 | A1 |
20050246293 | Ong | Nov 2005 | A1 |
20050269401 | Spitzer | Dec 2005 | A1 |
20050269402 | Spitzer | Dec 2005 | A1 |
20060049256 | von Mueller | Mar 2006 | A1 |
20060235795 | Johnson | Oct 2006 | A1 |
20060237528 | Bishop | Oct 2006 | A1 |
20060278704 | Saunders | Dec 2006 | A1 |
20070094085 | Redmond et al. | Apr 2007 | A1 |
20070107044 | Yuen | May 2007 | A1 |
20070129955 | Dalmia | Jun 2007 | A1 |
20070136193 | Starr | Jun 2007 | A1 |
20070136211 | Brown | Jun 2007 | A1 |
20070165625 | Eisner et al. | Jul 2007 | A1 |
20070170247 | Friedman | Jul 2007 | A1 |
20070179885 | Bird | Aug 2007 | A1 |
20070208671 | Brown | Sep 2007 | A1 |
20070245414 | Chan | Oct 2007 | A1 |
20070288377 | Shaked | Dec 2007 | A1 |
20070291995 | Rivera | Dec 2007 | A1 |
20070299781 | Rodriguez, Jr. | Dec 2007 | A1 |
20080015988 | Brown | Jan 2008 | A1 |
20080029593 | Hammad | Feb 2008 | A1 |
20080029607 | Mullen | Feb 2008 | A1 |
20080035738 | Mullen | Feb 2008 | A1 |
20080052226 | Agarwal | Feb 2008 | A1 |
20080054068 | Mullen | Mar 2008 | A1 |
20080054079 | Mullen | Mar 2008 | A1 |
20080054081 | Mullen | Mar 2008 | A1 |
20080065554 | Hogan | Mar 2008 | A1 |
20080065555 | Mullen | Mar 2008 | A1 |
20080189214 | Mueller | Aug 2008 | A1 |
20080195551 | McIsaac et al. | Aug 2008 | A1 |
20080201264 | Brown | Aug 2008 | A1 |
20080201265 | Hewton | Aug 2008 | A1 |
20080208759 | Royyuru | Aug 2008 | A1 |
20080222046 | McIsaac et al. | Sep 2008 | A1 |
20080228646 | Myers | Sep 2008 | A1 |
20080243702 | Hart | Oct 2008 | A1 |
20080245855 | Fein | Oct 2008 | A1 |
20080245861 | Fein | Oct 2008 | A1 |
20080283591 | Oder, II | Nov 2008 | A1 |
20080302869 | Mullen | Dec 2008 | A1 |
20080302876 | Mullen | Dec 2008 | A1 |
20080313264 | Pestoni | Dec 2008 | A1 |
20090006262 | Brown | Jan 2009 | A1 |
20090010488 | Matsuoka | Jan 2009 | A1 |
20090030845 | Hurry | Jan 2009 | A1 |
20090037333 | Flitcroft | Feb 2009 | A1 |
20090037388 | Cooper | Feb 2009 | A1 |
20090043702 | Bennett | Feb 2009 | A1 |
20090048971 | Hathaway | Feb 2009 | A1 |
20090055323 | Rebidue | Feb 2009 | A1 |
20090106112 | Dalmia | Apr 2009 | A1 |
20090106160 | Skowronek | Apr 2009 | A1 |
20090134217 | Flitcroft | May 2009 | A1 |
20090154696 | Robertson et al. | Jun 2009 | A1 |
20090157555 | Biffle | Jun 2009 | A1 |
20090159673 | Mullen | Jun 2009 | A1 |
20090159700 | Mullen | Jun 2009 | A1 |
20090159707 | Mullen | Jun 2009 | A1 |
20090173782 | Muscato | Jul 2009 | A1 |
20090200371 | Kean | Aug 2009 | A1 |
20090248583 | Chhabra | Oct 2009 | A1 |
20090276347 | Kargman | Nov 2009 | A1 |
20090281948 | Carlson | Nov 2009 | A1 |
20090294527 | Brabson | Dec 2009 | A1 |
20090307139 | Mardikar | Dec 2009 | A1 |
20090308921 | Mullen | Dec 2009 | A1 |
20090327131 | Beenau | Dec 2009 | A1 |
20100008535 | Abulafia | Jan 2010 | A1 |
20100049658 | Sanchez et al. | Feb 2010 | A1 |
20100057621 | Faith et al. | Mar 2010 | A1 |
20100088227 | Belamant et al. | Apr 2010 | A1 |
20100088237 | Wankmueller | Apr 2010 | A1 |
20100094755 | Kloster | Apr 2010 | A1 |
20100106644 | Annan | Apr 2010 | A1 |
20100120408 | Beenau | May 2010 | A1 |
20100133334 | Vadhri | Jun 2010 | A1 |
20100138347 | Chen | Jun 2010 | A1 |
20100145860 | Pelegero | Jun 2010 | A1 |
20100161433 | White | Jun 2010 | A1 |
20100161494 | Slater | Jun 2010 | A1 |
20100185545 | Royyuru | Jul 2010 | A1 |
20100211505 | Saunders | Aug 2010 | A1 |
20100217999 | Seaton, Jr. et al. | Aug 2010 | A1 |
20100223186 | Hogan | Sep 2010 | A1 |
20100228668 | Hogan | Sep 2010 | A1 |
20100235284 | Moore | Sep 2010 | A1 |
20100258620 | Torreyson | Oct 2010 | A1 |
20100291904 | Musfeldt | Nov 2010 | A1 |
20100293099 | Pauker et al. | Nov 2010 | A1 |
20100299267 | Faith et al. | Nov 2010 | A1 |
20100306076 | Taveau | Dec 2010 | A1 |
20100318468 | Carr | Dec 2010 | A1 |
20100325041 | Berardi | Dec 2010 | A1 |
20110010292 | Giordano | Jan 2011 | A1 |
20110016047 | Wu | Jan 2011 | A1 |
20110016320 | Bergsten | Jan 2011 | A1 |
20110040640 | Erikson | Feb 2011 | A1 |
20110047076 | Carlson et al. | Feb 2011 | A1 |
20110083018 | Kesanupalli | Apr 2011 | A1 |
20110087596 | Dorsey | Apr 2011 | A1 |
20110093397 | Carlson | Apr 2011 | A1 |
20110125597 | Oder, II | May 2011 | A1 |
20110137802 | Spies | Jun 2011 | A1 |
20110153437 | Archer | Jun 2011 | A1 |
20110153498 | Makhotin et al. | Jun 2011 | A1 |
20110154466 | Harper | Jun 2011 | A1 |
20110161233 | Tieken | Jun 2011 | A1 |
20110178925 | Lindelsee et al. | Jul 2011 | A1 |
20110178926 | Lindelsee et al. | Jul 2011 | A1 |
20110191244 | Dai | Aug 2011 | A1 |
20110238511 | Park | Sep 2011 | A1 |
20110238573 | Varadarajan | Sep 2011 | A1 |
20110246315 | Spies | Oct 2011 | A1 |
20110246317 | Coppinger | Oct 2011 | A1 |
20110258111 | Raj et al. | Oct 2011 | A1 |
20110272471 | Mullen | Nov 2011 | A1 |
20110272478 | Mullen | Nov 2011 | A1 |
20110276380 | Mullen | Nov 2011 | A1 |
20110276381 | Mullen | Nov 2011 | A1 |
20110276424 | Mullen | Nov 2011 | A1 |
20110276425 | Mullen | Nov 2011 | A1 |
20110295745 | White | Dec 2011 | A1 |
20110302081 | Saunders | Dec 2011 | A1 |
20120014376 | Shore et al. | Jan 2012 | A1 |
20120023567 | Hammad | Jan 2012 | A1 |
20120028609 | Hruska | Feb 2012 | A1 |
20120030047 | Fuentes et al. | Feb 2012 | A1 |
20120035998 | Chien | Feb 2012 | A1 |
20120039469 | Mueller | Feb 2012 | A1 |
20120041881 | Basu | Feb 2012 | A1 |
20120047237 | Arvidsson | Feb 2012 | A1 |
20120066078 | Kingston | Mar 2012 | A1 |
20120072350 | Goldthwaite | Mar 2012 | A1 |
20120078735 | Bauer | Mar 2012 | A1 |
20120078798 | Downing | Mar 2012 | A1 |
20120078799 | Jackson | Mar 2012 | A1 |
20120089835 | Peckover | Apr 2012 | A1 |
20120095852 | Bauer | Apr 2012 | A1 |
20120095865 | Doherty | Apr 2012 | A1 |
20120116902 | Cardina | May 2012 | A1 |
20120123882 | Carlson | May 2012 | A1 |
20120123940 | Killian | May 2012 | A1 |
20120129514 | Beenau | May 2012 | A1 |
20120130903 | Dorsey | May 2012 | A1 |
20120143767 | Abadir | Jun 2012 | A1 |
20120143772 | Abadir | Jun 2012 | A1 |
20120158580 | Eram | Jun 2012 | A1 |
20120158593 | Garfinkle | Jun 2012 | A1 |
20120166343 | Carapelli et al. | Jun 2012 | A1 |
20120173431 | Ritchie | Jul 2012 | A1 |
20120185386 | Salama | Jul 2012 | A1 |
20120197807 | Schlesser | Aug 2012 | A1 |
20120203664 | Torossian | Aug 2012 | A1 |
20120203666 | Torossian | Aug 2012 | A1 |
20120215688 | Musser | Aug 2012 | A1 |
20120215696 | Salonen | Aug 2012 | A1 |
20120221421 | Hammad | Aug 2012 | A1 |
20120226582 | Hammad | Sep 2012 | A1 |
20120231844 | Coppinger | Sep 2012 | A1 |
20120233004 | Bercaw | Sep 2012 | A1 |
20120246070 | Vadhri | Sep 2012 | A1 |
20120246071 | Jain | Sep 2012 | A1 |
20120246079 | Wilson et al. | Sep 2012 | A1 |
20120265631 | Cronic | Oct 2012 | A1 |
20120271770 | Harris | Oct 2012 | A1 |
20120297446 | Webb | Nov 2012 | A1 |
20120300932 | Cambridge | Nov 2012 | A1 |
20120303503 | Cambridge | Nov 2012 | A1 |
20120303961 | Kean | Nov 2012 | A1 |
20120304273 | Bailey | Nov 2012 | A1 |
20120310725 | Chien | Dec 2012 | A1 |
20120310831 | Harris | Dec 2012 | A1 |
20120316992 | Oborne | Dec 2012 | A1 |
20120317035 | Royyuru | Dec 2012 | A1 |
20120317036 | Bower | Dec 2012 | A1 |
20130017784 | Fisher | Jan 2013 | A1 |
20130018757 | Anderson et al. | Jan 2013 | A1 |
20130019098 | Gupta | Jan 2013 | A1 |
20130031006 | Mccullagh et al. | Jan 2013 | A1 |
20130054337 | Brendell | Feb 2013 | A1 |
20130054466 | Muscato | Feb 2013 | A1 |
20130054474 | Yeager | Feb 2013 | A1 |
20130081122 | Svigals | Mar 2013 | A1 |
20130091028 | Oder, II | Apr 2013 | A1 |
20130110658 | Lyman | May 2013 | A1 |
20130111599 | Gargiulo | May 2013 | A1 |
20130117185 | Collison | May 2013 | A1 |
20130124290 | Fisher | May 2013 | A1 |
20130124291 | Fisher | May 2013 | A1 |
20130124364 | Mittal | May 2013 | A1 |
20130138525 | Bercaw | May 2013 | A1 |
20130144888 | Faith | Jun 2013 | A1 |
20130145148 | Shablygin | Jun 2013 | A1 |
20130145172 | Shablygin | Jun 2013 | A1 |
20130159178 | Colon | Jun 2013 | A1 |
20130159184 | Thaw | Jun 2013 | A1 |
20130166402 | Parento | Jun 2013 | A1 |
20130166456 | Zhang | Jun 2013 | A1 |
20130173736 | Krzeminski | Jul 2013 | A1 |
20130185202 | Goldthwaite | Jul 2013 | A1 |
20130191286 | Cronic | Jul 2013 | A1 |
20130191289 | Cronic | Jul 2013 | A1 |
20130198071 | Jurss | Aug 2013 | A1 |
20130198080 | Anderson et al. | Aug 2013 | A1 |
20130200146 | Moghadam | Aug 2013 | A1 |
20130204787 | Dubois | Aug 2013 | A1 |
20130204793 | Kerridge | Aug 2013 | A1 |
20130212007 | Mattsson | Aug 2013 | A1 |
20130212017 | Bangia | Aug 2013 | A1 |
20130212019 | Mattsson | Aug 2013 | A1 |
20130212024 | Mattsson | Aug 2013 | A1 |
20130212026 | Powell | Aug 2013 | A1 |
20130212666 | Mattsson | Aug 2013 | A1 |
20130218698 | Moon | Aug 2013 | A1 |
20130218769 | Pourfallah et al. | Aug 2013 | A1 |
20130226799 | Raj | Aug 2013 | A1 |
20130226813 | Voltz | Aug 2013 | A1 |
20130246199 | Carlson | Sep 2013 | A1 |
20130246202 | Tobin | Sep 2013 | A1 |
20130246203 | Laracey | Sep 2013 | A1 |
20130246258 | Dessert | Sep 2013 | A1 |
20130246259 | Dessert | Sep 2013 | A1 |
20130246261 | Purves et al. | Sep 2013 | A1 |
20130246267 | Tobin | Sep 2013 | A1 |
20130254028 | Salci | Sep 2013 | A1 |
20130254052 | Royyuru | Sep 2013 | A1 |
20130254102 | Royyuru | Sep 2013 | A1 |
20130254117 | Von Mueller | Sep 2013 | A1 |
20130262296 | Thomas | Oct 2013 | A1 |
20130262302 | Lettow | Oct 2013 | A1 |
20130262315 | Hruska | Oct 2013 | A1 |
20130262316 | Hruska | Oct 2013 | A1 |
20130262317 | Collinge | Oct 2013 | A1 |
20130275300 | Killian | Oct 2013 | A1 |
20130275307 | Khan | Oct 2013 | A1 |
20130275308 | Paraskeva | Oct 2013 | A1 |
20130282502 | Jooste | Oct 2013 | A1 |
20130282575 | Mullen | Oct 2013 | A1 |
20130282588 | Hruska | Oct 2013 | A1 |
20130297501 | Monk et al. | Nov 2013 | A1 |
20130297504 | Nwokolo | Nov 2013 | A1 |
20130297508 | Belamant | Nov 2013 | A1 |
20130304649 | Cronic | Nov 2013 | A1 |
20130308778 | Fosmark | Nov 2013 | A1 |
20130311382 | Fosmark | Nov 2013 | A1 |
20130317982 | Mengerink | Nov 2013 | A1 |
20130332344 | Weber | Dec 2013 | A1 |
20130339253 | Sincai | Dec 2013 | A1 |
20130346314 | Mogollon | Dec 2013 | A1 |
20140007213 | Sanin | Jan 2014 | A1 |
20140013106 | Redpath | Jan 2014 | A1 |
20140013114 | Redpath | Jan 2014 | A1 |
20140013452 | Aissi et al. | Jan 2014 | A1 |
20140019352 | Shrivastava | Jan 2014 | A1 |
20140025581 | Calman | Jan 2014 | A1 |
20140025585 | Calman | Jan 2014 | A1 |
20140025958 | Calman | Jan 2014 | A1 |
20140032417 | Mattsson | Jan 2014 | A1 |
20140032418 | Weber | Jan 2014 | A1 |
20140040137 | Carlson | Feb 2014 | A1 |
20140040139 | Brudnicki | Feb 2014 | A1 |
20140040144 | Plomske | Feb 2014 | A1 |
20140040145 | Ozvat | Feb 2014 | A1 |
20140040148 | Ozvat | Feb 2014 | A1 |
20140040628 | Fort | Feb 2014 | A1 |
20140041018 | Bomar | Feb 2014 | A1 |
20140046853 | Spies | Feb 2014 | A1 |
20140047551 | Nagasundaram et al. | Feb 2014 | A1 |
20140052532 | Tsai | Feb 2014 | A1 |
20140052620 | Rogers | Feb 2014 | A1 |
20140052637 | Jooste | Feb 2014 | A1 |
20140068706 | Aissi | Mar 2014 | A1 |
20140074637 | Hammad | Mar 2014 | A1 |
20140108172 | Weber et al. | Apr 2014 | A1 |
20140114857 | Griggs et al. | Apr 2014 | A1 |
20140143137 | Carlson | May 2014 | A1 |
20140164243 | Aabye et al. | Jun 2014 | A1 |
20140188586 | Carpenter et al. | Jul 2014 | A1 |
20140294701 | Dai et al. | Oct 2014 | A1 |
20140297534 | Patterson | Oct 2014 | A1 |
20140310183 | Weber | Oct 2014 | A1 |
20140330721 | Wang | Nov 2014 | A1 |
20140330722 | Laxminarayanan et al. | Nov 2014 | A1 |
20140331265 | Mozell et al. | Nov 2014 | A1 |
20140337236 | Wong et al. | Nov 2014 | A1 |
20140344153 | Raj et al. | Nov 2014 | A1 |
20140372308 | Sheets | Dec 2014 | A1 |
20150019443 | Sheets et al. | Jan 2015 | A1 |
20150032625 | Dill | Jan 2015 | A1 |
20150032626 | Dill | Jan 2015 | A1 |
20150032627 | Dill | Jan 2015 | A1 |
20150046338 | Laxminarayanan | Feb 2015 | A1 |
20150046339 | Wong et al. | Feb 2015 | A1 |
20150052064 | Karpenko et al. | Feb 2015 | A1 |
20150088756 | Makhotin et al. | Mar 2015 | A1 |
20150106239 | Gaddam et al. | Apr 2015 | A1 |
20150112870 | Nagasundaram et al. | Apr 2015 | A1 |
20150112871 | Kumnick | Apr 2015 | A1 |
20150120472 | Aabye et al. | Apr 2015 | A1 |
20150127529 | Makhotin et al. | May 2015 | A1 |
20150127547 | Powell et al. | May 2015 | A1 |
20150140960 | Powell et al. | May 2015 | A1 |
20150142673 | Nelsen et al. | May 2015 | A1 |
20150161597 | Subramanian et al. | Jun 2015 | A1 |
20150178724 | Ngo et al. | Jun 2015 | A1 |
20150180836 | Wong et al. | Jun 2015 | A1 |
20150186864 | Jones et al. | Jul 2015 | A1 |
20150193222 | Pirzadeh et al. | Jul 2015 | A1 |
20150195133 | Sheets et al. | Jul 2015 | A1 |
20150199679 | Palanisamy et al. | Jul 2015 | A1 |
20150199689 | Kumnick et al. | Jul 2015 | A1 |
20150220917 | Aabye et al. | Aug 2015 | A1 |
20150269566 | Gaddam et al. | Sep 2015 | A1 |
20150312038 | Palanisamy | Oct 2015 | A1 |
20150319158 | Kumnick | Nov 2015 | A1 |
20150332262 | Lingappa | Nov 2015 | A1 |
20150356560 | Shastry et al. | Dec 2015 | A1 |
20160028550 | Gaddam et al. | Jan 2016 | A1 |
20160042263 | Gaddam et al. | Feb 2016 | A1 |
20160065370 | Le Saint et al. | Mar 2016 | A1 |
20160092696 | Guglani et al. | Mar 2016 | A1 |
20160092872 | Prakash et al. | Mar 2016 | A1 |
20160103675 | Aabye et al. | Apr 2016 | A1 |
20160119296 | Laxminarayanan et al. | Apr 2016 | A1 |
20160224976 | Basu | Aug 2016 | A1 |
20170046696 | Powell et al. | Feb 2017 | A1 |
20170103387 | Weber | Apr 2017 | A1 |
20170220818 | Nagasundaram et al. | Aug 2017 | A1 |
20170228723 | Taylor | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
2156397 | Feb 2010 | EP |
10-2003-0074853 | Sep 2003 | KR |
1997049054 | Jun 1997 | WO |
1997049069 | Jun 1997 | WO |
1997041539 | Nov 1997 | WO |
1997049053 | Dec 1997 | WO |
1997049055 | Dec 1997 | WO |
1998005011 | Feb 1998 | WO |
1998013796 | Apr 1998 | WO |
1998013797 | Apr 1998 | WO |
1998025371 | Jun 1998 | WO |
2000022559 | Apr 2000 | WO |
2000052866 | Sep 2000 | WO |
2001001316 | Jan 2001 | WO |
2001035304 | May 2001 | WO |
2001035304 | May 2001 | WO |
2001069388 | Sep 2001 | WO |
2001075744 | Oct 2001 | WO |
2002063580 | Aug 2002 | WO |
2002069291 | Sep 2002 | WO |
2003065178 | Aug 2003 | WO |
2004042536 | May 2004 | WO |
2004091170 | Oct 2004 | WO |
2006113834 | Oct 2006 | WO |
2008021581 | Feb 2008 | WO |
2008059465 | May 2008 | WO |
2008095198 | Aug 2008 | WO |
2008150801 | Dec 2008 | WO |
2009018683 | Feb 2009 | WO |
2009032523 | Mar 2009 | WO |
2009061788 | May 2009 | WO |
2010002858 | Jan 2010 | WO |
2010074962 | Jul 2010 | WO |
2010078522 | Jul 2010 | WO |
2010141501 | Dec 2010 | WO |
2012088135 | Feb 2012 | WO |
2012068078 | May 2012 | WO |
2012074820 | Jun 2012 | WO |
2012098556 | Jul 2012 | WO |
2012142370 | Oct 2012 | WO |
2012167941 | Dec 2012 | WO |
2013048538 | Apr 2013 | WO |
2013056104 | Apr 2013 | WO |
2013119914 | Aug 2013 | WO |
2013179271 | Dec 2013 | WO |
Entry |
---|
International Search Report and Written Opinion dated Jun. 12, 2013 in PCT/2013/020580, 16 pages. |
Extended European Search Report dated May 6, 2015 for EP Patent Application No. 13733792.9, 5 pages. |
Examination Report dated Oct. 7, 2015 for Singapore Patent Application No. 11201403861X, 12 pages. |
Rangarajan et al., U.S. Appl. No. 61/751,763 (unpublished), Payments Bridge filed Jan. 11, 2013. |
Li, U.S. Appl. No. 61/894,749 (unpublished), Methods and Systems for Authentication and Issuance of Tokens in a Secure Environment filed Oct. 23, 2013. |
Aissi et al., U.S. Appl. No. 61/738,832 (unpublished), Management of Sensitive Data filed Dec. 18, 2012. |
Wong et al., U.S. Appl. No. 61/879,362 (unpublished), Systems and Methods for Managing Mobile Cardholder Verification Methods filed Sep. 18, 2013. |
Powell, U.S. Appl. No. 61/892,407 (unpublished), Issuer Over-The-Air Update Method and System filed Oct. 17, 2013. |
Chipman, et al., U.S. Appl. No. 15/265,282 (Unpublished), Self-Cleaning Token Vault, filed Sep. 14, 2016. |
Lopez, et al., U.S. Appl. No. 15/462,658 (Unpublished), Replacing Token on a Multi-Token User Device, filed Mar. 17, 2017. |
Petition for Inter Partes Review of U.S. Pat. No. 8,533,860 Challenging Claims 1-30 Under 35 U.S.C. § 312 and 37 C.F.R. § 42.104, filed Feb. 17, 2016, Before the USPTO Patent Trial and Appeal Board, IPR 2016-00600, 65 pages. |
Wang, Provisional U.S. Appl. No. 62/000,288 (unpublished), Payment System Canonical Address Format filed May 19, 2014. |
Sharma et al., Provisional U.S. Appl. No. 62/003,717 (unpublished), Mobile Merchant Application filed May 28, 2014. |
Kalgi et al., Provisional U.S. Appl. No. 62/024,426, (unpublished) Secure Transactions Using Mobile Devices filed Jul. 14, 2014. |
Prakash et al., Provisional U.S. Appl. No. 62/037,033 (unpublished), Sharing Payment Token filed Aug. 13, 2014. |
Hoverson et al., Provisional U.S. Appl. No. 62/038,174 (unpublished), Customized Payment Gateway filed Aug. 15, 2014. |
Wang, Provisional U.S. Appl. No. 62/042,050 (unpublished), Payment Device Authentication and Authorization System filed Aug. 26, 2014. |
Gaddam et al., Provisional U.S. Appl. No. 62/053,736 (unpublished), Completing Transactions Without a User Payment Device filed Sep. 22, 2014. |
Patterson, Provisional U.S. Appl. No. 62/054,346 (unpublished), Mirrored Token Vault filed Sep. 23, 2014. |
Dimmick, U.S. Appl. No. 14/952,514 (unpublished), Systems Communications With Non-Sensitive Identifiers filed Nov. 25, 2015. |
Dimmick, U.S. Appl. No. 14/952,444 (unpublished), Tokenization Request Via Access Device filed Nov. 25, 2015. |
Prakash et al., U.S. Appl. No. 14/955,716 (unpublished), Provisioning Platform for Machine-To-Machine Devices filed Dec. 1, 2015. |
Wong et al., U.S. Appl. No. 14/966,948 (unpublished), Automated Access Data Provisioning filed Dec. 11, 2015. |
Stubbs et al., Provisional U.S. Appl. No. 62/103,522 (unpublished), Methods and Systems for Wallet Provider Provisioning filed Jan. 14, 2015. |
McGuire, U.S. Appl. No. 14/600,523 (unpublished), Secure Payment Processing Using Authorization Request filed Jan. 20, 2015. |
Flurscheim et al., U.S. Appl. No. 15/004,705 (unpublished), Cloud-Based Transactions With Magnetic Secure Transmission filed Jan. 22, 2016. |
Flurscheim et al., Provisional U.S. Appl. No. 62/108,403 (unpublished), Wearables With NFC HCE filed Jan. 27, 2015. |
Sabba et al., U.S. Appl. No. 15/011,366 (unpublished), Token Check Offline filed Jan. 29, 2016. |
Patterson, U.S. Appl. No. 15/019,157 (unpublished), Token Processing Utilizing Multiple Authorizations filed Feb. 9, 2016. |
Cash et al., U.S. Appl. No. 15/041,495 (unpublished), Peer Forward Authorization of Digital Requests filed Feb. 11, 2016. |
Le Saint et al., U.S. Appl. No. 15/008,388 (unpublished), Methods for Secure Credential Provisioning filed Jan. 27, 2016. |
Kinagi, Provisional U.S. Appl. No. 62/117,291 (unpublished), Token and Cryptogram Using Transaction Specific Information filed Feb. 17, 2015. |
Galland et al. Provisional U.S. Appl. No. 62/128,709 (unpublished), Tokenizing Transaction Amounts filed Mar. 5, 2015. |
Rangarajan et al., Provisional U.S. Appl. No. 61/751,763 (unpublished), Payments Bridge filed Jan. 11, 2013. |
Li, Provisional U.S. Appl. No. 61/894,749 (unpublished), Methods and Systems for Authentication and Issuance of Tokens in a Secure Environment filed Oct. 23, 2013. |
Aissi et al., Provisional U.S. Appl. No. 61/738,832 (unpublished), Management of Sensitive Data filed Dec. 18, 2012. |
Wong et al., Provisional U.S. Appl. No. 61/879,362 (unpublished), Systems and Methods for Managing Mobile Cardholder Verification Methods filed Sep. 18, 2013. |
Powell, Provisional U.S. Appl. No. 61/892,407 (unpublished), Issuer Over-The-Air Update Method and System filed Oct. 17, 2013. |
Powell, Provisional U.S. Appl. No. 61/926,236 (unpublished), Methods and Systems for Provisioning Mobile Devices With Payment Credentials and Payment Token Identifiers filed Jan. 10, 2014. |
Number | Date | Country | |
---|---|---|---|
20130212026 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61583550 | Jan 2012 | US | |
61607546 | Mar 2012 | US | |
61704428 | Sep 2012 | US |