1. Field of the Invention
This invention relates to a data card having a substrate and a data surface region and more particularly related to a data card having non-magnetic substrate and data surface region. In the preferred embodiment, the non-magnetic substrate may be a glass substrate or a glass-ceramic substrate and the data surface region comprises a magnetic storage medium.
2. Description of Prior Art
Digital data is stored in many forms. One data storage device uses spinning disks having a magnetic surface containing the digital data. The disks typically spin at a high rate of speed with the various tracks of data accessed by a radially movable data head.
Rotating magnetic memory storage devices generally include two elements namely, a rigid substance having a coating of magnetic media formed on at least one surface thereof. Aluminum alloys have been conventionally used as a substrate material for magnetic memory disks. The present trend is towards smaller disk drives driven by drive motors having less torque as such, it has become necessary to develop thin light-weight rugged disks to replace the standard metal disks formed of an aluminum alloy having a cooling of magnetic media formed thereon.
Several alternatives are known in the art for replacing a standard aluminum alloy metal disk. These alternatives include glass substrates having specifically chemically treated surfaces. Also, glass-ceramic substrates have been developed. The glass-ceramic substrate composition in crystalline phase are controlled to develop specific characteristics of the glass-ceramic which enabling use of the glass-ceramic as a rigid substrate. Glass-ceramic substrate materials may have a polished surface to enhance the lubricity, optimized thermal expansion coefficients and be free of silica, such as quartz. The known glass-ceramic substrate materials are selected to have a bulk thermal expansion which is similar to that for known rigid metal substrates used for magnetic memory disks.
For example, U.S. Pat. No. 5,744,208 discloses a glass-ceramics containing lithium disilicate in tridymite. U.S. Pat. No. 5,789,056 discloses a thin film magnetic disk having a substrate made of glass or comparable rigid material.
Typical magnetic disks utilizing a glass substrate are disclosed in U.S. Pat. Nos. 6,048,466; 5,900,324; 5,824,427; 5,789,056; 5,766,727; 5,744,208; 5,569,518; 5,378,548; and 5,037,515.
It is also known in the art to provide texturing in a predetermined pattern on a substrate the adhesion of magnetic layers to the surface of a disk substrate. Typical texturing techniques and patterns are disclosed in U.S. Pat. Nos. 5,748,421; 5,725,625; 5,626,970; 5,496,606 and 4,996,622.
It is also known in the art to utilize materials other than aluminum alloy or glass for disk substrates. U.S. Pat. No. 5,492,745 discloses disks wherein a non-magnetic substrate can be formed of a metal substrate, glass substrate, ceramic substrate or a resin substrate. Other material such as carbon substrate and s: substrate have been used as disk substrate.
U.S. Pat. Nos. 5,736,262 and 5,352,501 also disclose use of non-magnetic substrates which are textured and/or processed to enhance performance of magnetic recording mediums in formed thereon.
Another type of data storage device is the credit card having a magnet stripe along one surface. However, such cards have limited storage capacity because of the nature of the magnetic stripe and the method of recording data onto the magnetic stripe.
The present invention is directed to a data system especially suited for use with credit card-type substrates which permits much more data to be written onto and read from the substrate than available with credit cards with conventional magnetic stripes.
The data system includes broadly a substrate, such as a credit card type substrate, and a data unit. The substrate had first and second edges and a data surface region between the edges. The data surface region is preferably plated or sputtered with nickel-cobalt as opposed to conventional credit cards which use ferrous oxide. The data unit include a base supporting several components. A substrate support, which supports the substrate, is mounted to the base for controlled movement along a first path. The first path can be straight or curved. A data head drive is mounted to he base and includes a data head reciprocally movable along a second path. The first in and second paths are generally transverse, typically perpendicular, to one another. The data head includes a data head surface which contacts the data surface region on the substrate. The data unit also includes first and second data head support surfaces positioned along the second path adjacent to the first and second edges of the substrate. The data head surface also contacts the first and second data head support surfaces as the data head moves along the second path.
The data head supports surfaces are preferably coplanar with the data surface region of the substrate. This provides a smooth transition for the data head between the data surface region and the data head support surfaces. The use of the data head support surfaces provides a region for the data head to accelerate and decelerate at each end of a pass over the data surface region so the data head can move over the data surface region at the constant surface speed.
The invention may also include a substrate handler including a substrate feeder, which delivers a substrate to and removes the substrate from the substrate support, and a substrate postioner, which automatically positions the substrate on, and secures the substrate to, the substrate support. The substrate postioner typically includes feed rollers and may also include a cleaner roller to clean the data surface region as the substrate passes through the substrate feeder.
Other features and advantages will appear from the following description in which the preferred embodiments have a been set for the in detail in conjunction with the accompanying drawings.
b are top plan and side elevational views of a portion of the substrate feeder of
b illustrate movement of the card between the third feed rollers, past a sensor and towards the card support of the card support assembly of
In the data card of the present invention, it is envisioned that an appropriate non-magnetic substrate may be used for practicing this invention. Typical of such non-magnetic substrates include, but is not limited to, glass substrates, crystallized glass substrates, aluminum substrates, ceramic substrates, carbon substrates, silicon substrates, resin substrate and the like.
In addition, it is further envisioned that in the preferred embodiment substrates formed of ceramic material or glass-ceramic material may be used in practicing this invention.
A ceramic is typically a product made by the baking or firing of a non-metallic mineral, such as tile, cement, plaster refractories and brick. Ceramic coatings comprise a non-metallic, inorganic coating made of sprayed aluminum oxide or of zirconium oxide are a cemented coating of an intermetallic compound such as aluminum disilicide, of essentially crystalline nature, applied as a protective film on metal.
It is known in the art that glass comprises a hard, amorphous, inorganic, usually transparent, brittle substance is made by fusing silicates, sometimes borates and phosphates, with certain basic oxides and then rapidly cooling to prevent crystallization. A glass-ceramic material is a non-magnetic material which is formed of a pre-determined composition of glass and ceramic.
It is also known in the art that a substrate for a magnetic disk can be formed of a resin material as disclosed in U.S. Pat. No. 5,492,745.
It is also known in the art that a non-magnetic substrate may be treated, textured or coated with a non-magnetic primer layer enhancing adhesion of the magnetic medium formed thereon.
All the above substrates are well known in the art and have been used in fabrication of magnetic disks used in disk drives.
Glass is known in the art as a hard, amorphous, inorganic, usually transparent, brittle substance made by fusing silicates, sometimes borates and phosphates, with certain basic oxides and then rapidly cooling to prevent crystallization. It is known in the art that glass materials are used as substrates for magnetic disks.
It is also known in the art to form a glass-ceramic material which is a combination of and exhibits characteristics an of both the glass material and ceramic material used to form the glass ceramic material. A glass ceramic material can be uniquely fabricated for use as a disk substrate for utilization in a magnetic memory storage device.
Resin is also known in the art. A resin is defined as any of various solids or semi-solid organic substances exuded from various plants and trees or prepared synthetically. Resins are soluble and ether, alcohol or the like and are non-conducters of electricity.
The data card of the present invention uses a non-magnetic substrate which may be formed of glass, glass ceramic, ceramic, resin, an aluminum substrate or other known material as described above. Such substrates are known in the art and have been used as substrates for disks and data storage applications including magnetic hard disk drives.
When a glass substrate is used as a magnetic recording disk substrate, the surface of the glass substrate is generally subjected to a chemically strengthening process by a low-temperature iron exchange method to improve the shock resistance and vibration resistance. One example of a chemical treatment of the glass substrate is use of a chemically strengthening treatment solution produced an alkaline ion exchange. Typically, chemically strengthening is performed after cutting and polishing of the glass substrate. Conventionally, the polishing is performed on the front and back surfaces of a glass substrate but is not performed to the outer peripheral end surface and inner peripheral end surface.
It is known in the art that glass has excellent physically and chemical durability and that it is sufficiently hard to be fabricated into substrates with a diameter and thickness that are smaller then those of current hard disks. One advantage of utilizing a glass substrate is that a highly accurate plane surface can be formed relatively easily and glass is able to provide for the realization of a higher recording density when a layer of magnetic material is formed thereon. For example, the glass substrate can be fabricated into substantially rectangular shapes and be used as a substrate for a thin film magnetic layer. The combination of a glass substrate having a thin magnetic layer formed thereon can be used for fabricating a data storage region which can be affixed to a plastic or other carrier forming a data card utilizing the teachings of the present invention.
It is also known in the art to texture at least one side of a glass substrate. The textured surface may comprise fine scratches or the like which may extend circumferentially and/or linearly formed on the surface desired to be textured.
In addition, thin glass substrates have been used for magnetic recording disks (hard disks), optical disks, liquid crystal displays and the like. Glass substrates have excellent characteristics such as higher flatness and sheet thinning capability compared with resin substrates and metal substrates. Methods of manufacturing a magnetic recording disks using a in glass substrates is disclosed in U.S. Pat. No. 5,725,625.
Numerous types of glass-ceramic materials may be used for the substrate material such as, i.e., glass ceramics containing chain silicate as the predominately crystal phase and a glass-ceramic containing a sheet silicate as the predominately crystal phase.
Aluminum substrates employed as a non-magnetic substrate for hard disks may be fabricated in several forms such as, i.e., Ni—P plated surface of an aluminum substrate. A variety of disk substrates have been used including NI—P coated aluminum-magnesium, glass, glass ceramic, and glassy carbon. Further, it is also known to use other forms of non-magnetic substrates such as a carbon substrate and a Si substrate.
Card 3 is preferably a sandwich construction 0.51 mm (0.020 inch) thick ceramic core and upper and lower surfaces made of a suitable plastic material about 0.13 mm (0.005 inch) thick.
Side 24 is also preferable includes a magnetic typically ferrous oxide, stripe 32 similar to that used with conventional credit cards. Data surface region 26 is preferably a magnetic region, and may also include ferrous oxide as a magnetic material. However, because of the use environment, to be discussed below, it is desired that region 26 be smooth and resistant to abrasion. This can be achieved in various conventional ways, such as by sputtering with carbon.
In the preferred embodiment of
One end 62 of card support 60 is open to permit the free entry of card 3 onto the card support surface 64 of the card support. Card support surface 64 has an opening 66 formed through the middle of the surface as will be described below with reference to
First edge 29 of card 3 is driven against abutment edge 80 of card support 60 by the movement of card support 60 along the first path 14 towards data head driver 6, that is from the dashed-line position to the solid-line position of FIG. 1. Such movement along first path 14 causes second edge 30 of card 3 to engage an angled card guide 82 which drives card 3 fully onto card support 60 as shown in
Card support 60 is mounted to and is carried by the carriage 86, the carriage being slidable along a pair of guide shafts 88, the guide shafts being supported on base 4 by shaft clamps 80, only one of which is shown in FIG. 1. Carriage 86, and thus card support 60 with card 3 thereon, is driven along first path 14 by a carriage motor 92.
The vertical movement or indexing of card 3 is achieved by the use of a C-shaped spring 94 mounted to the interior of carriage 86. An upper end 96 of spring 94 is aligned with and passes through opening 66 formed in card support surface 64 and illustrated in FIG. 6A. As carriage 86 moves along first path 14 from the load/unload position corresponding to he dashed-line position of
Returning again to
The position of data head 8 relative to data surface region 18 is provided by the rotary position of pulley 112 and by a sensor interrupter 118 being sensed by a pair of sensors 119. Sensors 119 are generally aligned with edges 28, 30 of card 3 when the card is in the read/write position of FIG. 1.
Second path 10 extends beyond first and second edges 2, 30 onto data head support surfaces 120, 122. Data head support surfaces 120, 122 are generally coplanar with data surface region 18 so that data head 8 moves smoothly form region 1 onto support surfaces 120, 122 are generally coplanar with data surface region 18 so that data head 8 moves smoothly from region 18 onto support surface 120, 122. The use of support surfaces 120, 122 permits data head 8 to move across data surface region 18 onto support surfaces 120, 122. The use of support surfaces 120, 122 permits data head 8 to move across data surface region 118 at full speed. Preferably, data head 8 slows down, stops, reverses direction, and then speeds up for each subsequent pass while on one of data surfaces 120, 122. During this deceleration, stopping, reversal of direction, and acceleration, carriage motor 92 has a chance to index card 3 one track width along first path 14. Therefore, by the time data head 8 is ready to reengage data surface region 18, the next track, which may or may not be the adjacent track, is aligned with second path 10 and thus can be read by or written to by data head 8. Data head support surface 120, 122 are preferably low friction, low abrasion surfaces suitable for the sliding movement of data head 8 thereover. To ensure proper alignment, each data surface 120 is preferably provided with appropriate height adjusters 124 is preferably provided with appropriate height adjusters 124. The gap between surfaces 120, 122 and card 3 is preferably small enough so that data head 8 traverses the gap smoothly. If necessary support at the gap can be provided by, for example, a small jet of air.
Data head 8 is preferably at the rest position on data head support surface 120 or data head support surface 122 when card 3 is moved form a dashed-line to the solid-line positions of FIG. 1. This keeps data head 8 from contacting side registration member 68 during such movement. At the completion of read/write operations, carriage 86 moves tot he load/unload position of
In use, a user inserts a card 3 through opening 38 in card entry 36 whereupon substrate reader 16 drives it past magnetic stripe reader 56 and to reflective sensor 59. Assuming reflective sensor 59 senses the presence of data surface region 26, rollers 46, 48 continue driving card 3 towards substrate support assembly 12. After card 3 has passed third feed rollers 48, the inertia of the card causes the card to continue moving onto support surface 64 of card support 60. To ensure first edge 28 of card 3 abuts abutment edge 80 of card support 60, a card guide 82 is used to engage second edge 30 as card 3 moves from the load/unload position of
Once in the initial read/write position of
At the end of each pass, while data head 8 is moving over data head support surface 24 during its deceleration, stopping, reversal of direction, and acceleration, card 3 is indexed tot he next track position to be accessed. If desired, the accessing of the track sequential or particular tracks can be selected, such as track 000, followed by track 023, followed by track 085, followed by track 085, followed by track 031, etc. The organization of the data recorded on data surface region 26 is dependent largely by the controller selected. The controller for unit 2 may be of a conventional type, such as one made by Realtec of San Diego, Calif. and sold as product number TCNGE09. In one embodiment, 350 tracks, each track having 56 sectors with 256 bytes per sector for a total 5,017,600 bytes, will be sued.
When it is desired to remove card 3 from the unit data head 8 is parked on one of the two support surfaces 120, 122 and then motor 92 drives carriage 86 back to the load/unload position at which point push solenoid 126 is actuated. Plunger 127, which passes through gap 128 in abutment edge 80, pushes card 3 until card 3 is engaged by third rollers 48, at this time being rotated in directions opposite of the directions of
In the preferred embodiment data head 8 physically contact data surface region 26 and support surfaces 120, 122. It may be possible to use a so-called flying head in which data head a would not contact data surface region 26. However, it is believed that the gaps at edges 28, 30 would create turbulence causing the flying head to crash onto data surface region 26. Also, the invention has been described with reference to magnetic, digitally encoded data. If desired, the data could be analog in nature and could be optical or magneto optical in character.
Other modifications and variation can be made to the disclosed embodiments without departing from the subject of the invention as defined in the following claims for example, cleaning roller 58 could be replaced by or supplemented by an air vacuum head or a pressurized air nozzle to remove debris from data surface region 26.
It is envisioned that the data card of the present invention would comprise a substrate having first and second edges in a data surface region therebetween. The substrate will include at least one layer comprising a non-magnetic material which is adapted to be relatively rigid and which is to have a magnetic media formed directly on the surface thereof. The non-magnetic material for the substrate may be selected from the group of a metal substrate, a glass substrate, a ceramic substrate, a glass-ceramic substrate and a resin substrate. The substrate may be formed of an at least one layer acting as a single layer or may have outer layers mounted thereto.
A method for reading a data card with a card reader may be used for practicing the invention. The method will include the steps of forming a substrate for a data card having first and second edges and surface region therebetween wherein the substrate includes at least one layer comprising a non-magnetic ceramic material which is adapted to interact with a data processing station when said card and said data processing station are moved relative to each other to at least one of write encoding signals in said data surface section as encoded signals and read encoded signals from said data surface section; and moving said substrate and data processing station relative to each other to interface said data surface region relative to a transducer to enable data flow therebetween.
In addition, a method for reading a data card with a card reader using the teachings of the present invention it is disclosed. The method includes the steps of forming a substrate for a data card having first and second edges and a data surface section location therebetween wherein the substrate includes at least one layer comprising a non-magnetic material selected from the group of a metal substrate, a glass substrate, a ceramic substrate a glass-ceramic substrate and a resin substrate and wherein said data surface region includes a magnetic material for storing data; and moving said data card and data processing station relative to each other to interface said data storage section relative to a transducer to enable data flow therebetween.
It is also within the teaching of the present invention that the surface of the non-magnetic substrate material can be processed, textured or otherwise treated to enhance the adhesion of a magnetic media, such as a nickel-cobalt recording layer.
The data card may be in the form of a variety of shapes such as generally rectangular, rectangular, square, circular or a rotatable circular disk member within a data card housing.
A card and card writer/reader system is disclosed which comprises a magnetically encodeable card having a body having upper and lower surfaces and side and end edges. The body includes on at least one of the upper and lower surfaces a data storage device adapted to interact with a data processing station when the card and the data processing station are moved relative to each other. The data storage device includes at least one thin film layer of high density, high coercivity magnetic material having a predetermined magnetic field orientation for storing data. A first transducer is used for reading the magnetically encoded signals from the data storage device during relative movement of the card relative to the data processing station to enable data flow between the data storage in device and the transducer. A second transducer is used for writing magnetically encoding signals in the data storage device as magnetically encoded signals during relative movement of the card relative to the data processing station to enable data flow between the data storage device and the transducer.
The transducer is may be an inductive head or a thin film magnetic head.
A method is disclosed for reading a card with a card reader comprising the steps of forming on a glass substrate of a card a data storage section a data surface region comprising a magnetic storage medium having at least one layer of high density, high coercivity magnetic material for storing magnetic signals adapted to interact with a data processing station when the card and the data processing station are moved relative to each other to at least one of write encoding signals in the data storage section as encoded signals and read encoded signals from the data storage section; and moving the card and data processing station relative to each other to interface the data storage section relative to a transducer to enable data flow therebetween.
This Application is a Continuation-in-Part of U.S. patent application Ser. No. 09/113,783 filed Jul. 10, 1998, now U.S. Pat. No. 6,131,816, issued on Oct. 17, 2000.
Number | Name | Date | Kind |
---|---|---|---|
1756547 | Hansen | Apr 1930 | A |
3677843 | Reiss | Jul 1972 | A |
3838252 | Hynes et al. | Sep 1974 | A |
3864755 | Hargis | Feb 1975 | A |
3976858 | Haun | Aug 1976 | A |
4006507 | Yoshida | Feb 1977 | A |
4040097 | Mizuno | Aug 1977 | A |
4058839 | Darjany | Nov 1977 | A |
4076125 | Ohsaki et al. | Feb 1978 | A |
4100689 | Broune | Jul 1978 | A |
4104682 | Lehner et al. | Aug 1978 | A |
4141400 | Mangan | Feb 1979 | A |
4197988 | Moss et al. | Apr 1980 | A |
4209811 | Blazevic | Jun 1980 | A |
4277809 | Fisher et al. | Jul 1981 | A |
4302523 | Audran et al. | Nov 1981 | A |
4318136 | Jeffers | Mar 1982 | A |
D264853 | Scavino et al. | Jun 1982 | S |
4403138 | Battarel et al. | Sep 1983 | A |
4450955 | Featherston | May 1984 | A |
4503125 | Nelson et al. | Mar 1985 | A |
4518627 | Foley et al. | May 1985 | A |
4529872 | Dinges | Jul 1985 | A |
4530016 | Sawazaki | Jul 1985 | A |
4535369 | Sawazaki | Aug 1985 | A |
4581523 | Okuno | Apr 1986 | A |
4585929 | Brown et al. | Apr 1986 | A |
4592042 | Lemelson et al. | May 1986 | A |
4598196 | Pierce et al. | Jul 1986 | A |
4609812 | Drexler | Sep 1986 | A |
4612436 | Okada | Sep 1986 | A |
4620727 | Stockburger et al. | Nov 1986 | A |
4659915 | Flies | Apr 1987 | A |
4672182 | Hirokawa | Jun 1987 | A |
4683371 | Drexler | Jul 1987 | A |
4687712 | Sugita et al. | Aug 1987 | A |
4701601 | Francini et al. | Oct 1987 | A |
4707593 | Murata et al. | Nov 1987 | A |
D293694 | Alden et al. | Jan 1988 | S |
4718697 | Berardus van Amelsfort | Jan 1988 | A |
4731645 | Parmentier et al. | Mar 1988 | A |
4754128 | Takeda et al. | Jun 1988 | A |
4756967 | Hashimoto et al. | Jul 1988 | A |
4774618 | Raviv | Sep 1988 | A |
4777540 | McCoy | Oct 1988 | A |
4780604 | Hasegawa et al. | Oct 1988 | A |
4786564 | Chen et al. | Nov 1988 | A |
4791283 | Burkhardt | Dec 1988 | A |
4812633 | Vogelgesang et al. | Mar 1989 | A |
4826772 | Meathrel | May 1989 | A |
4833310 | Shimamura et al. | May 1989 | A |
4851610 | LeBlanc et al. | Jul 1989 | A |
4868373 | Opheij et al. | Sep 1989 | A |
4877488 | Cody et al. | Oct 1989 | A |
4889755 | Charbonneau | Dec 1989 | A |
4897533 | Lyszczarz | Jan 1990 | A |
D305887 | Nishimura | Feb 1990 | S |
4931623 | Nakamura et al. | Jun 1990 | A |
4937438 | Warwick et al. | Jun 1990 | A |
4978401 | Bonomi | Dec 1990 | A |
4998009 | Iijima et al. | Mar 1991 | A |
5036430 | Hills | Jul 1991 | A |
5041922 | Wood et al. | Aug 1991 | A |
5049728 | Rovin | Sep 1991 | A |
5055155 | Crotty et al. | Oct 1991 | A |
5099111 | Takakura et al. | Mar 1992 | A |
5099372 | Kadokura et al. | Mar 1992 | A |
5101097 | Conant | Mar 1992 | A |
5107099 | Smith | Apr 1992 | A |
D328457 | Matsuzaka | Aug 1992 | S |
5147732 | Shiroishi et al. | Sep 1992 | A |
5172282 | Ghose | Dec 1992 | A |
5180640 | Yamashita et al. | Jan 1993 | A |
5191198 | Do | Mar 1993 | A |
5204513 | Steele | Apr 1993 | A |
5206489 | Warwick | Apr 1993 | A |
5206494 | Metzger | Apr 1993 | A |
5217056 | Ritter | Jun 1993 | A |
5221838 | Gutman et al. | Jun 1993 | A |
5227212 | Ahlert et al. | Jul 1993 | A |
5236791 | Yahisa et al. | Aug 1993 | A |
5254843 | Hynes et al. | Oct 1993 | A |
5270523 | Chang et al. | Dec 1993 | A |
5286958 | Smeets | Feb 1994 | A |
5288942 | Godfrey | Feb 1994 | A |
5309388 | Maruyama et al. | May 1994 | A |
5311003 | Saroya | May 1994 | A |
5321243 | Groves et al. | Jun 1994 | A |
5336871 | Colgate, Jr. | Aug 1994 | A |
5362952 | Nair et al. | Nov 1994 | A |
5396369 | Deland, Jr. et al. | Mar 1995 | A |
5396545 | Nair et al. | Mar 1995 | A |
5397886 | Mos et al. | Mar 1995 | A |
5408384 | Gannyo et al. | Apr 1995 | A |
5410136 | McIntire et al. | Apr 1995 | A |
5421618 | Okazaki et al. | Jun 1995 | A |
5426286 | Nair et al. | Jun 1995 | A |
5428213 | Kurihara | Jun 1995 | A |
5431746 | Manning et al. | Jul 1995 | A |
5452143 | Kamagami | Sep 1995 | A |
5466918 | Ray et al. | Nov 1995 | A |
5480685 | Suzuki et al. | Jan 1996 | A |
5492745 | Yokoyama | Feb 1996 | A |
5509083 | Abtahi et al. | Apr 1996 | A |
5521774 | Parks et al. | May 1996 | A |
5530232 | Taylor | Jun 1996 | A |
5535078 | Warwick | Jul 1996 | A |
5557089 | Hall et al. | Sep 1996 | A |
5559885 | Drexler et al. | Sep 1996 | A |
5588763 | Nubson et al. | Dec 1996 | A |
5598474 | Johnson | Jan 1997 | A |
5609253 | Goade, Sr. | Mar 1997 | A |
5612526 | Oguchi et al. | Mar 1997 | A |
5621583 | Parks et al. | Apr 1997 | A |
5626970 | Hedgcoth | May 1997 | A |
5637174 | Field et al. | Jun 1997 | A |
5638345 | Hosoya | Jun 1997 | A |
5679942 | Toyama | Oct 1997 | A |
5679945 | Renner et al. | Oct 1997 | A |
5689105 | Mizoguchi et al. | Nov 1997 | A |
5696369 | Watanabe | Dec 1997 | A |
5698839 | Jagielinski | Dec 1997 | A |
5713406 | Drury | Feb 1998 | A |
5714747 | West et al. | Feb 1998 | A |
5720500 | Okazaki et al. | Feb 1998 | A |
5723033 | Weiss | Mar 1998 | A |
5734154 | Jachimowicz et al. | Mar 1998 | A |
5738945 | Lal et al. | Apr 1998 | A |
5739975 | Parks et al. | Apr 1998 | A |
5748737 | Daggar | May 1998 | A |
5756220 | Hoshino et al. | May 1998 | A |
5763862 | Jachimowicz et al. | Jun 1998 | A |
5770942 | Taguchi et al. | Jun 1998 | A |
5777306 | Masuda | Jul 1998 | A |
5789733 | Jachimowicz et al. | Aug 1998 | A |
5801368 | Hayashi et al. | Sep 1998 | A |
5808981 | Suzuki | Sep 1998 | A |
5825393 | Kocznar et al. | Oct 1998 | A |
5828053 | Kinugasa | Oct 1998 | A |
5834756 | Gutman et al. | Nov 1998 | A |
5843565 | Davies et al. | Dec 1998 | A |
5844218 | Kawan et al. | Dec 1998 | A |
5844230 | Lalonde | Dec 1998 | A |
5851688 | Chen et al. | Dec 1998 | A |
5852289 | Masahiko | Dec 1998 | A |
5857079 | Claus et al. | Jan 1999 | A |
5859419 | Wynn | Jan 1999 | A |
5861220 | Coughlin | Jan 1999 | A |
5862174 | Yokota et al. | Jan 1999 | A |
5866891 | Fujimoto et al. | Feb 1999 | A |
5869823 | Bublitz et al. | Feb 1999 | A |
5880445 | Mori et al. | Mar 1999 | A |
5880454 | Monicault | Mar 1999 | A |
5883377 | Chapin, Jr. | Mar 1999 | A |
5884271 | Pitroda | Mar 1999 | A |
5886333 | Miyake | Mar 1999 | A |
5889273 | Goto | Mar 1999 | A |
D408377 | Ferchau et al. | Apr 1999 | S |
5895903 | Abe et al. | Apr 1999 | A |
5895909 | Yoshida | Apr 1999 | A |
5898612 | Chen et al. | Apr 1999 | A |
5901012 | Ishida et al. | May 1999 | A |
5901303 | Chew | May 1999 | A |
D410769 | Dorizas | Jun 1999 | S |
5928759 | Arita et al. | Jul 1999 | A |
5939202 | Ataka et al. | Aug 1999 | A |
5941375 | Kamens et al. | Aug 1999 | A |
5979774 | Urushibata | Nov 1999 | A |
5997042 | Blank | Dec 1999 | A |
6053406 | Litman | Apr 2000 | A |
D425876 | Maiers et al. | May 2000 | S |
6079621 | Vardanyan et al. | Jun 2000 | A |
6080476 | Kanbe et al. | Jun 2000 | A |
D429733 | Jones et al. | Aug 2000 | S |
6116655 | Thouin et al. | Sep 2000 | A |
6131816 | Smith, Sr. | Oct 2000 | A |
D436991 | Morgante | Jan 2001 | S |
6186398 | Kato et al. | Feb 2001 | B1 |
6196047 | Carnegie et al. | Mar 2001 | B1 |
6221508 | Kanbe et al. | Apr 2001 | B1 |
6238809 | Wu et al. | May 2001 | B1 |
6250552 | Hirasawa | Jun 2001 | B1 |
6254713 | Riehle | Jul 2001 | B1 |
6268919 | Meeks et al. | Jul 2001 | B1 |
D447146 | Myers | Aug 2001 | S |
D448776 | Weng et al. | Oct 2001 | S |
6301068 | Ionescu | Oct 2001 | B1 |
6311893 | Liu et al. | Nov 2001 | B1 |
6378037 | Hall | Apr 2002 | B1 |
6398114 | Nishikawa et al. | Jun 2002 | B1 |
6430114 | Wang et al. | Aug 2002 | B1 |
6677105 | Wang et al. | Jan 2004 | B2 |
Number | Date | Country |
---|---|---|
0194675 | Sep 1986 | EP |
2505523 | Dec 1982 | FR |
10041118 | Apr 1998 | JP |
10144391 | May 1998 | JP |
WO 9210485 | Dec 1992 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 09113783 | Jul 1998 | US |
Child | 09663658 | US |