The invention relates to a data storage device which can be used to establish a risk analysis procedure for prostate cancer, a method for determining a dependency of risk for prostate cancer, and to a device for indicating risk for prostate cancer to an individual. The invention further relates to a device for indicating risk for a disease of an individual. The invention further relates to a method for indicating risk for a disease of an individual.
In the art of medicine, prevention of diseases is desirable because this may reduce suffering and costs compared to curing diseases. Accordingly, screening programs, such as for breast cancer, have been established with the purpose of diagnosing and, optionally, treating a person carrying a disease before this person actually becomes ill.
A disadvantage of these screening programs is that they require performing medical tests on the individual involved. Due to the inherent shift to the diagnosis in earlier stages, the screening programs lead to overdiagnosis, i.e. persons being tested positive and hence being treated while in fact no threatening disease is present.
Although databases are known which allow a determination of the risk for diseases such as prostate cancer, these do not provide a reliable estimate of the risk for various reasons. This lack of reliability causes an unnecessary amount of medical tests and eventually treatments in individuals with in fact only a small risk of ever experiencing the symptoms or dying of the disease. Another disadvantage of the known methods to determine the risk, is that an individual cannot determine this risk of being susceptible to the disease by himself, but has to consult medical expert knowledge.
It is a goal of the invention to provide a device which can be used by a person to determine a risk of suffering from a disease by himself in a simple manner. Therefore, according to the invention, a device according to claim 1 is provided. Such a device allows determination by the individual himself in a simple manner by merely moving the at least one dialler in the correct position and perceiving the thus indicated chance of having the disease. Also, such a device can be manufactured with low costs, for example of paper or other sheet materials. Furthermore a method according to claim 18 is provided.
It is a further goal of the invention, to improve the reliability of the assessment of risk. Therefore, according to another aspect of the invention, a data storage device according to claim 20 is provided. By using the data stored in such a device, the reliability of the risk assessment is improved, because the data is collected from the general population without medical pre-screening of the selection, and because the available data also allows to determine the risk of a cancer once the diagnosis has been established. Also, the data storage device allows to establish a procedure or implement a device which balances the potential advantages of early diagnosis and the identification of indolent cases of prostate cancer. Accordingly, a dependency of risks on diagnostic parameters determined with this data will more accurately resemble reality.
Furthermore a method according to claim 23 is provided Specific embodiments of the invention are set forth in the dependent claims.
Further details, aspects and embodiments of the invention will be described, by way of example only, with reference to the drawings.
In the examples of
The device 1 includes an indicator 2 for indicating a determined value for the risk. The indicator 3 comprises a risk scale 20 representing a range of values of the risk. In this example, the risk is indicated as a percentage representing the chance on to die from prostate cancer. However, the risk may also represent another chance, such as suffering from a disease or being a carrier of the disease. The device 1 further has one or more diallers 3-6 for entering a value of a diagnostic parameter of an individual. Each of the diallers comprises a parameter scale 30-60 representing a range of values of the respective diagnostic parameter. The diallers 3-6 are each movable with respect to the indicator 2 such that, when a parameter value on the respective parameter scale 30-60 is selected, an associated risk value is indicated on the risk scale 20 according to a predetermined mathematical relationship.
The device 1 may comprise any suitable number of diallers, such as two or more diallers 3-6, of which a first dialler 3 comprises a parameter scale 30 representing a range of values of a first diagnostic parameter. A second dialler 4 comprises a parameter scale 40 representing a range of values of a further diagnostic parameter. The second dialler 4 is movable with respect to the indicator 2 such that when a parameter value on the parameter scale 40 is selected, the range of values for the risk to be indicated upon entering a value with the first dialler is reduced.
In the examples of
The parameter scale may for instance be a continuous scale representing a continuous parameter, such as the level of a compound in a body fluid. The scale may also be a binary scale, e.g. representing a ‘yes’ or ‘no’, for example to select whether or not the individual has been subjected to a certain type of examination. For instance, in the example of
In the example of
In the example of
In the example of
The device 1 shown in
For instance in the example of
The indicator 2 and the diallers 3-6 may be implemented in any manner suitable for the specific implementation. The indicator 2 may for instance, as shown in
The dialler(s) 3-6 may for example be slidable or rotatable with respect to the risk marking 20 in parallel to the plane of the sheet-like body 21, e.g. to position, as explained above, the parameter scale as desired. In the example of
The device 1 may for example be arranged to indicate the risk of prostate cancer. Also, the device 1 may be arranged to indicate the risk to a specific type of prostate cancer, such as the chance of the occurrence of an aggressive or a non-aggressive (prostate) cancer. The diagnostic parameter may be any parameter related to the risk of prostate cancer and for example comprise one or more of the group consisting of: age, family history of the disease, diet, smoking habits, skin colour (black versus Caucasian race), weight, weight change or a parameter associated with defecation and/or urination. Also, the diagnostic parameter may comprise a blood parameter such as a tumor associated antigen, e.g. PSA, concentration, the volume of the prostate determined by ultrasound, a biopsy parameter and/or manual probing parameter. However, the diagnostic parameter may also comprise a parameter of other body fluids, such as of body liquids (like urine or saliva) or gasses such as air breathed out by the respective person. Also, the diagnostic parameter may also comprise a parameter of body tissue, such as of histologic tissue.
However, it should be noted that the device may also be used to indicate the risk of another type of disease and include diallers representing suitable diagnostic parameters for the type of disease to be indicated. The disease may for example comprise bladder cancer, kidney cancer, and/or other urological malignancies. Likewise, the diagnostic parameter may be any parameter related to the risk of the respective disease.
The device 1 in the example of
The device may also be arranged to indicate the risk of prostate cancer (or another a disease) for an individual examined on the presence of a disease specific substance in the body of the individual. This may, for example, be a male who knows his serum PSA level with an interest in being informed about the chance of having prostate cancer. The diallers 3-6 may then for example represent diagnostic parameters such as age, PSA, direct rectal examination (DRE) and, optionally, one or more of the diagnostic parameters used to estimate the risk for individual not examined medically for the disease. The risk scale may then represent the probability of a positive lateralised sextant biopsy.
The device 1 may also be arranged to indicate the risk of a disease for an individual from which a tissue biopsy has been taken to determine the presence of the disease, and optionally which tissue biopsy did not reveal the disease. This may for example be a male who has undergone a prostate biopsy, without a prostate cancer being detected and interested in an estimation of the risk that, although tested negatively, he has prostate cancer. The diallers 3-6 may then for example represent diagnostic parameters such as PSA, prostatic volume, direct rectal examination (DRE), previous prostatic biopsy, or other parameters available and known to influence the risk after a tissue biopsy. The risk scale 20 may then represent the chance of having prostate cancer detected by lateralised sextant biopsy, and the chance of determination of potential parameters of cancer aggressiveness. The device 1 may also be arranged to indicate the risk of said disease being threatening for an individual diagnosed to have the disease. This may for example be a male who is diagnosed to have prostate cancer but who worries about the need of treatment, since treatment is an invasive procedure and most men die of other causes than prostate cancer. This risk analysis may for example include the general health status and parameters of tumour aggressiveness. PSA level, prostatic volume, malignancy grading of the biopsy (Gleason score), amount of tumour and amount of normal tissue in the biopsy and others. The risk scale 20 may then represent the probability of having an indolent/more aggressive prostate cancer, should treatment or active observation be indicated.
The device 1 can be used to allow assessment of the risk by an individual or by a clinician.
The screening data may be obtained from a selection of the general male population after excluding pre-existing prostate cancer, without disease specific medical pre-selection. The selection of general male population may be a sample of a sub-section of the general male population, based on for example an age threshold. For instance, the data may be obtained from a survey amongst the general male population at least 55 years age old, and/or of age younger than 75 years. The data may be gathered from the selection of the general male population by separating the selection in a first group of men which will be subjected to a prostate cancer detection method and a second group of men not subjected to a prostate cancer detection method.
By way of non-limiting experiment, screening data has been obtained from a sample of the male population in the area of Rotterdam, the Netherlands. The screening data was sub-sampled to include man in the age range of at least 55 years and below 74 years. 42,369 men have been randomized between early detection measures and no-early detection measure for prostate cancer to be taken, of which 21,206 men were subjected to early detection measures. The participants were recruited from the population registry. The participation rate was slightly above 50%. Data were collected by an extensive intake questionnaire, as shown in table A, including family history, previous illnesses and many other aspects, such as the previous diagnosis of prostate cancer, previous examination of the prostate by the general practitioner or urologist, a previous blood test for prostate cancer, prior prostatic surgery, an enlarged prostate, an infection of the prostate (prostatitis), a sterilisation operation. Further more different degrees of family involvement are registered together with other prior illnesses. Complaints relating to the prostate are registered by use of the international prostate symptom score (IPSS).
For the early-detection group, in addition to the parameters taken for the non-early detection group, among others, information on ethnicity, urinary complaints, serum sampling for prostate-specific antigen (PSA) and the results of PSA determinations, date of and details on diagnostic procedures and indications for prostatic biopsy, complications of biopsy, information on treatment, treatment results and complete follow-up data in both randomisation groups with respect to the presence and management of prostate cancer. A complete registry of causes of death was also included. Prostate cancer deaths were confirmed by an independent Causes of Death Committee. Tissue and serum repositories have also been kept. Samples were registered in the database.
More specific, in the early-detection group, blood samples were taken and a PSA determination was performed Based on the determined PSA level, the early-detection group was separated into different screening groups. In case the determined PSA level was above a lower threshold value, in the experiment 3 ng/ml, and in the experiment, below a higher threshold value, higher than the lower threshold, of 4.0 ng/ml, a direct rectal examination (DRE) and a transrectal ultrasound examination (TRUS) were performed to determine abnormalities in the prostate. In case no abnormalities were found, the respective individual in this first screening group was re-screened after 4 years. It is found that the threshold value, avoids an increase of over diagnosis of cases that are like not to warrant detection and treatment.
In the first screening group, in case the determined PSA level was above or equal to the second threshold value of 4.0 ng/ml, DRE/TRUS and sextant biopsies where performed. Biopsies where also performed for the individuals with a determined PSA level between the lower and higher threshold value in case abnormalities in the prostate were found after the DRE and the TRUS. In case the biopsies revealed a benign result, the respective individual in this second screening group was re-screened after 4 years.
In case the biopsies revealed a malignant result, the respective individual in this second screening group was referred to his general practitioner and results of the subsequent treatment were measured and stored separately in order to evaluate the comparability of pathologic characteristics and treatment and to study the disease specific mortality.
In case the determined PSA level was below the threshold value of 3 ng/ml, no further examination was performed, and the respective individual in this second screening group was re-screened after 4 years.
Based on the obtained screening data, a method for determining a dependency of the risk for prostate cancer on at least one diagnostic parameter was performed. From data in the memory of the data storage device, at least one diagnostic parameter and a relationship between a value of the diagnostic parameter and the risk were determined. were determined. Statistical models were used which consider combinations of risk factors in multivariable analyses. Examples of methods include survival analyses, regression analyses, for example logistic and Cox regression, classification and regression trees, and neural network analysis.
Using the results of such a method, a device for indicating a risk for prostate cancer may be manufactured. The device may include at least one input for entering a value of a diagnostic parameter and a risk determination unit arranged to determine the risk based on a relationship between a value of the diagnostic parameter and the risk. Such a device may for example be implemented as shown in
In the foregoing specification, the invention has been described with reference to specific examples of embodiments of the invention. It will, however, be evident that various modifications and changes may be made therein without departing from the broader spirit and scope of the invention as set forth in the appended claims. For instance, in the examples of
In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word ‘comprising’ does not exclude the presence of other elements or steps then those listed in a claim. Furthermore, the words ‘a’ and ‘an’ shall not be construed as limited to ‘only one’, but instead are used to mean ‘at least one’, and do not exclude a plurality. The mere fact that certain measures are recited in mutually different claims does not indicate that a combination of these measures cannot be used to advantage.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NL06/00031 | 1/20/2006 | WO | 00 | 11/19/2008 |