Embodiments are related to data storage devices. In particular, embodiments are related to methods for integrated protocol bridge firmware to be retrieved from a storage System on Chip (SOC), and corresponding methods.
A protocol bridge may comprise two parts; namely, a front-end that connects to initiator devices and a back-end that connects to target devices. The back-end may be configured to use a data protocol designed for target devices while the front-end may be configured to use a protocol designed for initiator devices. The front-end and back-end need to use the same protocol; rather, each system component may use whatever protocol is best suited to the attached devices. For instance, the front-send could use Fibre Channel over Ethernet (FCoE) or Universal Serial Bus (USB) while the back end could use Serial Attached SCSI (SAS) or Serial ATA (SATA).
Functionally, a bridge controller converts and transports data traffic from one protocol to another so that devices using different protocols may effectively communicate. Data storage devices such as hard disk drives (HDDs) comprising rotary storage media and hybrid disk drives comprising both rotary and solid state storage media may comprise a protocol bridge such as a USB to SATA protocol bridge.
A data storage device 200 and data storage device circuitry according to one embodiment is shown in
A first non-volatile memory 210 may be coupled to the storage SOC 206. For example, the first non-volatile memory 210 may comprise Flash memory and may be configured to store storage SOC data including, for example, storage SOC code, storage SOC configuration and other data. The data storage device 200 further may comprise one or more hard disk drives (HDDs) each comprising one or more spinning magnetic disks, as shown at 237. The data storage 200 may alternatively comprise non-volatile (e.g., Flash-based) memories 242. Alternatively still, the data storage 200 may comprise one or more hybrid storage devices, each comprising both magnetic disks 237 and non-volatile semiconductor memory 242, as suggested at 240. The data storage 200 may also comprise one or more network interfaces, enabling the data storage 200 to communicate with a network and/or other external devices through communication ports.
According to one embodiment, the first non-volatile memory (“non-volatile memory”, at times, being abbreviated as “NV MEM” in
In operation, the data storage device 200 may be configured such that, upon power-on thereof, the storage SOC 206 retrieves its storage SOC code/data from the first non-volatile memory 210 and configures itself according to the retrieved storage SOC code/data. Such configuration may include an initialization of the storage SOC 206, rendering it fully operational for its intended purpose as well as making the bus 208 active, together with protocol bridge 202. Similarly, in operation, the data storage device 200 may be configured such that, upon power-on thereof, the protocol bridge 202 also retrieves its protocol bridge code/data from the first non-volatile memory 210 and configures itself according to the retrieved protocol bridge code/data. Such configuration may include an initialization of the protocol bridge 202, rendering it fully operational for its intended purpose as well as making the bus (e.g., SATA or other protocol) 208 active, together with storage SOC 206.
According to one embodiment and as shown in
According to one embodiment and as shown in
The first non-volatile memory 210 and the non-volatile memory 242 may be separate and distinct, as suggested in
With the bus protocol 208 now active, communication between the protocol bridge 202 and the storage SOC 206 and, by extension, with the first non-volatile memory, is now possible. The protocol bridge, as shown at B34, may now request protocol bridge code/data from the storage SOC 206. The storage SOC 206 may then retrieve the requested protocol bridge code/data from the first non-volatile memory 210 and send it to the protocol bridge 202, where it is received, as shown at B35 in
Manufacturers of data storage devices are confronted with the seemingly opposed goals of increasing storage capacity and functionality and decreasing costs. These competing goals have led such manufacturers to use low cost microprocessors that operate on limited-width words and that are capable of addressing only a limited code space. For example, the controller in a protocol bridge may be configured as a 16-bit controller whose addressing space may span only about 64,000 discrete physical addresses. The totality of the code used by the protocol bridge may, however, not fit within the controller's address space, especially in infrequent and transient situations, such as the receipt of selected commands from a host. To access the required functionality in such infrequent and transient situations, so-called overlay code may be retrieved from the first non-volatile memory 210 and sent by the storage SOC 206 to the protocol bridge 202 for loading into its second volatile memory 207 for execution. The code previously stored therein may be erased or the overlay code may overwrite the protocol bridge code previously stored in the second volatile memory 207. The protocol bridge 202 may then execute the overlay protocol bridge code to address the infrequent and/or transient situation, whereupon the overlay code may be erased or overwritten by the protocol bridge code/data previously stored in the second volatile memory 207 that it had replaced.
Upon power-on the protocol bridge 202 may have similarly retrieved code/data from its internal third non-volatile memory 205 and stored in the second volatile memory 207 for execution. The code/data stored in the first volatile memory 209 and the second volatile memory 207 may also be effective to enable the bus protocol 208, to enable bi-directional communication between the protocol bridge 202 and the storage SOC 206. Then, as shown at B54, the protocol bridge 202 may retrieve bridge protocol code/data from the first non-volatile memory 210, via the storage SOC 206 and the bus 208. The protocol bridge 202 may then be configured according to the retrieved protocol bridge code/data, to render the protocol bridge 202 to its fully operational state.
According to one embodiment, the protocol bridge code/data may be stored in the first non-volatile memory 210. However, the protocol bridge code/data need not be stored therein. Indeed, the protocol data/code may be stored in the rotating media 237. However, storing the protocol bridge code/data in the rotating media may cause an unacceptably long delay upon power-on as the platters containing the recording media spin up to their nominal operating speed. Storing at least a portion of the protocol bridge code/data in the solid state memory 242 avoids such latency and spin-up issues. Indeed, the command used to retrieve this protocol bridge code/data ideally would not cause a spin-up of the HDD's platters, for both completion time and power consumption considerations. The command to retrieve the execution image may be a log page command that maps to the first non-volatile memory 210.
Implementation of an embodiment may reduce the Bill of Materials (BOM) cost by eliminating the need for a non-volatile memory dedicated to the protocol bridge 202. Storing both the storage SOC and the protocol bridge code/data in a same non-volatile memory may require a comparatively larger-size first non-volatile memory 210. However, such a larger non-volatile memory 210 is likely less costly than providing a dedicated first non-volatile memory to store the storage SOC code/data and a dedicated second non-volatile memory to store the protocol bridge code/data. Moreover, providing one non-volatile memory 210 for both the protocol bridge code/data and the storage SOC code/data also reduces space requirements, power consumption and heat dissipation and associated structures.
While certain embodiments of the disclosure have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods, devices and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the disclosure. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure. For example, those skilled in the art will appreciate that in various embodiments, the actual physical and logical structures may differ from those shown in the figures. Depending on the embodiment, certain steps described in the example above may be removed, others may be added. Also, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Although the present disclosure provides certain preferred embodiments and applications, other embodiments that are apparent to those of ordinary skill in the art, including embodiments which do not provide all of the features and advantages set forth herein, are also within the scope of this disclosure. Accordingly, the scope of the present disclosure is intended to be defined only by reference to the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5606660 | Estakhri | Feb 1997 | A |
5819087 | Le et al. | Oct 1998 | A |
6499054 | Hesselink et al. | Dec 2002 | B1 |
6711059 | Sinclair | Mar 2004 | B2 |
6732158 | Hesselink et al. | May 2004 | B1 |
6968450 | Rothberg | Nov 2005 | B1 |
7028174 | Atai-Azimi | Apr 2006 | B1 |
7120692 | Hesselink et al. | Oct 2006 | B2 |
7454443 | Ram et al. | Nov 2008 | B2 |
7467187 | Hesselink et al. | Dec 2008 | B2 |
7546353 | Hesselink et al. | Jun 2009 | B2 |
7587467 | Hesselink et al. | Sep 2009 | B2 |
7600036 | Hesselink et al. | Oct 2009 | B2 |
7788404 | Hesselink et al. | Aug 2010 | B2 |
7917628 | Hesselink et al. | Mar 2011 | B2 |
7934251 | Hesselink et al. | Apr 2011 | B2 |
7949564 | Hughes et al. | May 2011 | B1 |
8004791 | Szeremeta et al. | Aug 2011 | B2 |
8255661 | Karr et al. | Aug 2012 | B2 |
8285965 | Karr et al. | Oct 2012 | B2 |
8301822 | Pinto et al. | Oct 2012 | B2 |
8341117 | Ram et al. | Dec 2012 | B2 |
8341275 | Hesselink et al. | Dec 2012 | B1 |
8352567 | Hesselink et al. | Jan 2013 | B2 |
8526798 | Hesselink | Sep 2013 | B2 |
8631284 | Stevens | Jan 2014 | B2 |
8646054 | Karr et al. | Feb 2014 | B1 |
8661507 | Hesselink et al. | Feb 2014 | B1 |
8688797 | Hesselink et al. | Apr 2014 | B2 |
8713265 | Rutledge | Apr 2014 | B1 |
8762682 | Stevens | Jun 2014 | B1 |
8780004 | Chin | Jul 2014 | B1 |
8793374 | Hesselink et al. | Jul 2014 | B2 |
8819443 | Lin | Aug 2014 | B2 |
8909889 | Ong | Dec 2014 | B1 |
20050060478 | Wu | Mar 2005 | A1 |
20050144195 | Hesselink et al. | Jun 2005 | A1 |
20050144200 | Hesselink et al. | Jun 2005 | A1 |
20050251617 | Sinclair | Nov 2005 | A1 |
20070088940 | Conley | Apr 2007 | A1 |
20070260914 | Pogrebinsky | Nov 2007 | A1 |
20100070693 | Conley | Mar 2010 | A1 |
20110072185 | Pinto et al. | Mar 2011 | A1 |
20110154023 | Smith | Jun 2011 | A1 |
20120036041 | Hesselink | Feb 2012 | A1 |
20120166828 | Maroney | Jun 2012 | A1 |
20130212401 | Lin | Aug 2013 | A1 |
20130259062 | Henning et al. | Oct 2013 | A1 |
20130266137 | Blankenbeckler et al. | Oct 2013 | A1 |
20130268749 | Blankenbeckler et al. | Oct 2013 | A1 |
20130268759 | Blankenbeckler et al. | Oct 2013 | A1 |
20130268771 | Blankenbeckler et al. | Oct 2013 | A1 |
20140095439 | Ram | Apr 2014 | A1 |
20140095855 | Huynh et al. | Apr 2014 | A1 |
20140169921 | Carey | Jun 2014 | A1 |
20140173215 | Lin et al. | Jun 2014 | A1 |
20140189197 | Krithivas et al. | Jul 2014 | A1 |
Entry |
---|
Shanahan, D. “Tech Bits. On Chip Rom Code used in SOC Designs.” EE Times (2001). |
Arora, Mohit, and Varun Jain. “Understanding embedded-system-boot techniques.” EDN-Electronic Design News 56.3 (2011): 18. |
Number | Date | Country | |
---|---|---|---|
20160217099 A1 | Jul 2016 | US |