Data storage device screening heads by verifying defects after defect scan

Information

  • Patent Grant
  • 9117489
  • Patent Number
    9,117,489
  • Date Filed
    Tuesday, February 18, 2014
    10 years ago
  • Date Issued
    Tuesday, August 25, 2015
    8 years ago
Abstract
A data storage device is disclosed comprising a head actuated over a disk comprising a plurality of tracks. A defect scan of at least one of the tracks is executed, and a log entry is generated when a defect is detected. After the defect scan, a verify operation is executed for at least two of the detected defects. A number of times the verify operation detects a false defect is counted, and whether the head is defective is determined based at least partly on the count.
Description
BACKGROUND

Data storage devices such as disk drives comprise a disk and a head connected to a distal end of an actuator arm which is rotated about a pivot by a voice coil motor (VCM) to position the head radially over the disk. The disk comprises a plurality of radially spaced, concentric tracks for recording user data sectors and servo sectors. The servo sectors comprise head positioning information (e.g., a track address) which is read by the head and processed by a servo control system to control the actuator arm as it seeks from track to track.



FIG. 1 shows a prior art disk format 2 as comprising a number of servo tracks 4 defined by servo sectors 60-6N recorded around the circumference of each servo track. Each servo sector 6i comprises a preamble 8 for storing a periodic pattern, which allows proper gain adjustment and timing synchronization of the read signal, and a sync mark 10 for storing a special pattern used to symbol synchronize to a servo data field 12. The servo data field 12 stores coarse head positioning information, such as a servo track address, used to position the head over a target data track during a seek operation. Each servo sector 6i further comprises groups of servo bursts 14 (e.g., N and Q servo bursts), which are recorded with a predetermined phase relative to one another and relative to the servo track centerlines. The phase based servo bursts 14 provide fine head position information used for centerline tracking while accessing a data track during write/read operations.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a prior art disk format comprising a plurality of servo tracks defined by servo sectors.



FIG. 2A shows a data storage device in the form of a disk drive according to an embodiment comprising a head actuated over a disk.



FIG. 2B is a flow diagram according to an embodiment wherein defects detected during a defect scan are verified to determine whether the head is defective.



FIG. 3A shows an example drop-in defect on the disk according to an embodiment.



FIG. 3B shows an example drop-out defect on the disk according to an embodiment.



FIGS. 4A-4F show embodiments for detecting defects on the disk according to various embodiments.



FIG. 5A shows an embodiment wherein a drop-in defect detected during the defect scan is determined to be a false defect when verified after the defect scan.



FIG. 5B shows an embodiment wherein a drop-out defect detected during the defect scan is determined to be a false defect when verified after the defect scan.



FIG. 6 is a flow diagram according to an embodiment wherein if the number of drop-in defects detected during the defect scan exceeds a threshold, the head is assumed to be defective.





DETAILED DESCRIPTION


FIG. 2A shows a data storage device in the form of a disk drive comprising a head 16 actuated over a disk 18 comprising a plurality of tracks 20. The disk drive further comprises control circuitry 22 configured to execute the flow diagram of FIG. 2B wherein a defect scan is executed on at least one of the tracks and a log entry is generated when a defect is detected (block 24). After the defect scan, a verify operation is executed for at least two of the detected defects (block 26). When the verify operation detects a false defect (block 28), a counter is incremented (block 30), and whether the head is defective is determined based at least partly on the counter (block 32).


In the embodiment of FIG. 2A, servo tracks 20 are defined by servo sectors 340-34N, where data tracks may be defined at the same or different radial density than the servo tracks 20. The control circuitry 22 processes a read signal 36 emanating from the head 16 to demodulate the servo sectors 340-34N and generate a position error signal (PES) representing an error between the actual position of the head and a target position relative to a target track. A servo control system in the control circuitry 22 filters the PES using a suitable compensation filter to generate a control signal 38 applied to a voice coil motor (VCM) 40 which rotates an actuator arm 42 about a pivot in order to actuate the head 16 radially over the disk 18 in a direction that reduces the PES. The servo sectors 340-34N may comprise any suitable head position information, such as a track address for coarse positioning and servo bursts for fine positioning. The servo bursts may comprise any suitable pattern, such as an amplitude based servo pattern or a phase based servo pattern (FIG. 1).


Any suitable defect scan operation may be executed to detect defects on the disk 18. In one embodiment, the defect scan comprises writing a periodic pattern (e.g., a 2T pattern) to the disk 18, and then reading the periodic pattern to evaluate the resulting sinusoidal read signal 36. The periodic pattern may be written to any suitable segment on the disk, such as a data sector of a data track, or a “wedge” comprising the segment of a track between consecutive servo sectors. In the absence of a defect, the sinusoidal read signal 36 will exhibit an expected amplitude and phase. When the head 16 passes over a defect, the defect will induce a disturbance in the sinusoidal read signal. FIG. 3A illustrates an example disturbance in the sinusoidal read signal due to a drop-in defect, and FIG. 3B illustrates a disturbance in the sinusoidal read signal due to a drop-out defect. In one embodiment, the drop-in defect and the drop-out defect may be detected by comparing the amplitude of the read signal 36 to corresponding thresholds as described in greater detail below.



FIGS. 4A-4F show various embodiments of control circuitry 22 for detecting a defect on the disk, including various defect thresholds which may be configured to any suitable value as well as increased or decreased in order to tune the defect detection accuracy. In one embodiment, the control circuitry 22 implements a single defect detector, and in an alternative embodiment, the control circuitry 22 implements multiple defect detectors that operate in parallel.


In the embodiment of FIG. 4A, the read signal 36 is sampled 46, and the read signal samples filtered by a defect filter 48 having an impulse response matched to a defect signature. When the output 50 of the defect filter 48 exceeds a defect threshold 52 at comparator 54, the defect 56 is detected. In the embodiment of FIG. 4B, the control circuitry 22 comprises an amplitude detector 58 which processes the read signal samples to detect deviations in the amplitude of the read signal. When the output 60 of the amplitude detector 58 falls below a drop-out defect threshold 62 at comparator 64, a drop-out defect 66 is detected. When the output 60 of the amplitude detector 58 rises above a drop-in defect threshold 68 at comparator 70, a drop-in defect 72 is detected. In the embodiment of FIG. 4C, the control circuitry 22 comprises a read channel 74 including a digital data detector for detecting an estimated data sequence from the read signal samples. A number of bit errors 76 is generated relative to the estimated data sequence and the correct data sequence (e.g., by comparing the estimated data sequence to a known data sequence, or by using an error correction code). When the number of bit errors 76 (or symbol errors) exceeds a defect threshold 78 at comparator 80, a defect 82 is detected. In the embodiment of FIG. 4D, the read channel 74 comprises suitable circuitry for generating a least mean square (LMS) error 84 between the read signal samples and expected signal samples. When the LMS error 84 exceeds a defect threshold 86 at comparator 88, a defect 90 is detected. Any suitable component in the read channel 74 may be employed to detect a defect. In the embodiment of FIG. 4E, a phase error 92 is generated by timing recovery circuitry which synchronizes to the read signal samples (e.g., using a phase-locked loop). When the phase error 92 exceeds a defect threshold 94 at comparator 96, a defect 98 is detected. In the embodiment of FIG. 4F, the control circuitry 22 comprises a read channel 100 including servo demodulation circuitry for demodulating the embedded servo sectors 340-34N to generate a position error signal (PES) 102 representing a radial offset of the head 16 from a target track 20. When the PES 102 exceeds a defect threshold 104 at comparator 106, a defect 108 is detected in one or more of the servo sectors.


Regardless as to how a defect on the disk 18 is detected, in one embodiment when a defect is detected it may be due to a defect in the read element of the head 16 rather than to an actual defect on the disk. For example, in one embodiment the head 16 may comprise a magnetoresistive (MR) read element which exhibits a change in resistance in the presence of the magnetic field emanating from the disk, for example, when reading a periodic pattern from the disk during the defect scan. An MR read element may exhibit a defect referred to as baseline popping which is a form of instability (resistance change) due to structural damage, scratches on the active pole, pin layer damage, or improper application of the bias current or voltage. In one embodiment, the read element may exhibit a defective response (e.g., baseline popping) sporadically. Therefore if the control circuitry 22 executed a suitable manufacturing test of the read element to determine whether the head is defective, it may take an extensive amount of time to accurately make the determination. The read element may be stressed in order to expedite the manufacturing test, such as by increasing the bias applied to an MR read element, but stressing the read element may itself damage the read element rendering it defective.


Accordingly, in one embodiment the read element of the head 16 may be evaluated by evaluating the result of a defect scan of the disk. Since the defect scan is typically executed over substantially the entire disk surface, it increases the probability of detecting the sporadic occurrence of read element malfunctions by verifying the detected defects after the defect scan. That is, if a defect detected during the normal defect scan is not again detected during the verification scan, it may be assumed that the detected defect was due to a read element malfunction rather than due to a defect on the disk. This is illustrated in the example of FIG. 5A where during the initial defect scan, a drop-in defect may be detected when the amplitude 110A of the read signal 36 rises above a threshold Th1. During the verification scan, the same area of the disk is read again, and since the resulting amplitude of the read signal 110B does not rise above the threshold Th1, the initially detected defect is considered a false defect not caused by a drop-in defect on the disk but instead caused by a malfunctioning read element. In one embodiment, an initial defect may be scanned multiple times and/or the threshold Th1 adjusted during the verification scan to improve the accuracy in detecting false defects. FIG. 5B shows another example where a drop-out defect may be detected during the initial defect scan when the amplitude 112A of the read signal 36 falls below a threshold Th2. During the verification scan, the same area of the disk is read again, and since the resulting amplitude of the read signal 112B does not fall below the threshold Th2, the initially detected defect is considered a false defect not caused by a drop-out defect on the disk but instead caused by a malfunctioning read element. In one embodiment, when the number of false defects detected during the verification scan exceeds a threshold, the head is determined to be defective and either replaced or disabled (depopulated) in a multi-platter disk drive.


In one embodiment, during the defect scan the signature in the read signal corresponding to a malfunctioning read element may resemble a particular type of defect on the disk. For example, the signature caused by baseline popping of an MR read element may resemble the drop-in defect shown in FIG. 3A. Accordingly, in one embodiment only particular types of defects that are logged during the defect scan may be evaluated during the verification scan. An example of this embodiment is illustrated in the flow diagram of FIG. 6 wherein during a defect scan of multiple tracks on the disk (block 114), when a defect is detected (block 116) a drop-in counter is incremented (block 118) when a drop-in defect is detected (block 117), and a drop-out counter is incremented (block 122) when a drop-out defect is detected (block 120). Other types of defects may be detected with a corresponding counter incremented for each defect type. At block 124 the flow diagram is repeated from block 116 until several of the tracks (e.g., all of the tracks) have been scanned for defects.


If after the defect scan the drop-in counter exceeds a threshold (block 126), the head is determined to be defective (block 128) without performing the verification scan. That is, if there is an excessive number of drop-in defects detected during the defect scan, it is assumed that a significant number of the drop-in defects were caused by a malfunctioning read element and therefore the head is assumed to be defective without needing to perform the verification scan. If the number of drop-in defects is less than the threshold at block 126, then each drop-in defect in the defect log is processed during the verification scan (block 130). When a false drop-in defect is detected during the verification scan (block 132), a false defect counter is incremented (block 134). When all of the drop-in defects have been evaluated (block 136), the false defect counter is compared to a threshold (block 138). If the false defect counter exceeds the threshold, the head is determined to be defective (block 128); otherwise the head passes the verification scan (block 140). In one embodiment, the false defect counter may exceed the threshold during the verification scan and therefore the verification scan may terminate early since the head can be declared defective as soon as the false defect counter exceeds the threshold at block 136. Similarly, the initial defect scan may terminate early if the number of drop-in defects exceeds the threshold since the head may be declared defective as soon as the drop-in counter exceeds the threshold at block 126.


Any suitable control circuitry may be employed to implement the flow diagrams in the above embodiments, such as any suitable integrated circuit or circuits. For example, the control circuitry may be implemented within a read channel integrated circuit, or in a component separate from the read channel, such as a disk controller, or certain operations described above may be performed by a read channel and others by a disk controller. In one embodiment, the read channel and disk controller are implemented as separate integrated circuits, and in an alternative embodiment they are fabricated into a single integrated circuit or system on a chip (SOC). In addition, the control circuitry may include a suitable preamp circuit implemented as a separate integrated circuit, integrated into the read channel or disk controller circuit, or integrated into a SOC.


In one embodiment, the control circuitry comprises a microprocessor executing instructions, the instructions being operable to cause the microprocessor to perform the flow diagrams described herein. The instructions may be stored in any computer-readable medium. In one embodiment, they may be stored on a non-volatile semiconductor memory external to the microprocessor, or integrated with the microprocessor in a SOC. In another embodiment, the instructions are stored on the disk and read into a volatile semiconductor memory when the disk drive is powered on. In yet another embodiment, the control circuitry comprises suitable logic circuitry, such as state machine circuitry.


While the above examples concern a disk drive, the various embodiments are not limited to a disk drive and can be applied to other data storage devices and systems, such as magnetic tape drives, solid state drives, hybrid drives, etc. In addition, some embodiments may include electronic devices such as computing devices, data server devices, media content storage devices, etc. that comprise the storage media and/or control circuitry as described above.


The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method, event or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described tasks or events may be performed in an order other than that specifically disclosed, or multiple may be combined in a single block or state. The example tasks or events may be performed in serial, in parallel, or in some other manner. Tasks or events may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.


While certain example embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions disclosed herein. Thus, nothing in the foregoing description is intended to imply that any particular feature, characteristic, step, module, or block is necessary or indispensable. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the embodiments disclosed herein.

Claims
  • 1. A data storage device comprising: a disk comprising a plurality of tracks;a head; andcontrol circuitry configured to: defect scan at least one of the tracks and generate a log entry when a defect is detected;after the defect scan, execute a verify operation for at least two of the detected defects;count a number of times the verify operation detects a false defect; anddetermine whether the head is defective based at least partly on the count.
  • 2. The data storage device as recited in claim 1, wherein the control circuitry is further configured to generate the log entry when a target defect type is detected.
  • 3. The data storage device as recited in claim 2, wherein the count corresponds to a number of times the target defect type is falsely detected.
  • 4. The data storage device as recited in claim 3, wherein the target defect type comprises a drop-in defect.
  • 5. The data storage device as recited in claim 3, wherein the control circuitry is further configured to determine whether the head is defective based on a total number of log entries generated during the defect scan.
  • 6. The data storage device as recited in claim 5, wherein the control circuitry is further configured to determine the head is defective when the total number of log entries exceeds a threshold.
  • 7. The data storage device as recited in claim 5, wherein the control circuitry is further configured to determine the head is defective when the total number of log entries corresponding to a target defect type exceeds a threshold.
  • 8. The data storage device as recited in claim 7, wherein the target defect type comprises a drop-in defect.
  • 9. A method of operating a data storage device, the method comprising: defect scanning at least one track of a disk and generating a log entry when a defect is detected;after the defect scan, executing a verify operation for at least two of the detected defects;counting a number of times the verify operation detects a false defect; anddetermining whether a head is defective based at least partly on the count.
  • 10. The method as recited in claim 9, further comprising generating the log entry when a target defect type is detected.
  • 11. The method as recited in claim 10, wherein the count corresponds to a number of times the target defect type is falsely detected.
  • 12. The method as recited in claim 11, wherein the target defect type comprises a drop-in defect.
  • 13. The method as recited in claim 11, further comprising determining whether the head is defective based on a total number of log entries generated during the defect scan.
  • 14. The method as recited in claim 13, further comprising determining the head is defective when the total number of log entries exceeds a threshold.
  • 15. The method as recited in claim 13, further comprising determining the head is defective when the total number of log entries corresponding to a target defect type exceeds a threshold.
  • 16. The method as recited in claim 15, wherein the target defect type comprises a drop-in defect.
US Referenced Citations (463)
Number Name Date Kind
5233486 Albert Aug 1993 A
5654854 Mallary Aug 1997 A
6018789 Sokolov et al. Jan 2000 A
6065095 Sokolov et al. May 2000 A
6078452 Kittilson et al. Jun 2000 A
6081447 Lofgren et al. Jun 2000 A
6092149 Hicken et al. Jul 2000 A
6092150 Sokolov et al. Jul 2000 A
6094707 Sokolov et al. Jul 2000 A
6105104 Guttmann et al. Aug 2000 A
6111717 Cloke et al. Aug 2000 A
6145052 Howe et al. Nov 2000 A
6175893 D'Souza et al. Jan 2001 B1
6178056 Cloke et al. Jan 2001 B1
6191909 Cloke et al. Feb 2001 B1
6195218 Guttmann et al. Feb 2001 B1
6205494 Williams Mar 2001 B1
6208477 Cloke et al. Mar 2001 B1
6223303 Billings et al. Apr 2001 B1
6230233 Lofgren et al. May 2001 B1
6246346 Cloke et al. Jun 2001 B1
6249393 Billings et al. Jun 2001 B1
6256695 Williams Jul 2001 B1
6262857 Hull et al. Jul 2001 B1
6263459 Schibilla Jul 2001 B1
6272694 Weaver et al. Aug 2001 B1
6278568 Cloke et al. Aug 2001 B1
6279089 Schibilla et al. Aug 2001 B1
6289484 Rothberg et al. Sep 2001 B1
6292912 Cloke et al. Sep 2001 B1
6310739 McEwen et al. Oct 2001 B1
6310740 Dunbar et al. Oct 2001 B1
6317850 Rothberg Nov 2001 B1
6327106 Rothberg Dec 2001 B1
6337778 Gagne Jan 2002 B1
6369969 Christiansen et al. Apr 2002 B1
6384999 Schibilla May 2002 B1
6388833 Golowka et al. May 2002 B1
6405342 Lee Jun 2002 B1
6408357 Hanmann et al. Jun 2002 B1
6408406 Parris Jun 2002 B1
6411452 Cloke Jun 2002 B1
6411458 Billings et al. Jun 2002 B1
6412083 Rothberg et al. Jun 2002 B1
6415349 Hull et al. Jul 2002 B1
6425128 Krapf et al. Jul 2002 B1
6441981 Cloke et al. Aug 2002 B1
6442328 Elliott et al. Aug 2002 B1
6445524 Nazarian et al. Sep 2002 B1
6449767 Krapf et al. Sep 2002 B1
6453115 Boyle Sep 2002 B1
6470420 Hospodor Oct 2002 B1
6480020 Jung et al. Nov 2002 B1
6480349 Kim et al. Nov 2002 B1
6480932 Vallis et al. Nov 2002 B1
6483986 Krapf Nov 2002 B1
6487032 Cloke et al. Nov 2002 B1
6490635 Holmes Dec 2002 B1
6493173 Kim et al. Dec 2002 B1
6498696 Salo et al. Dec 2002 B1
6499083 Hamlin Dec 2002 B1
6519104 Cloke et al. Feb 2003 B1
6525892 Dunbar et al. Feb 2003 B1
6545830 Briggs et al. Apr 2003 B1
6546489 Frank, Jr. et al. Apr 2003 B1
6550021 Dalphy et al. Apr 2003 B1
6552880 Dunbar et al. Apr 2003 B1
6553457 Wilkins et al. Apr 2003 B1
6556933 Sacks et al. Apr 2003 B1
6578106 Price Jun 2003 B1
6580573 Hull et al. Jun 2003 B1
6594183 Lofgren et al. Jul 2003 B1
6600620 Krounbi et al. Jul 2003 B1
6601137 Castro et al. Jul 2003 B1
6603622 Christiansen et al. Aug 2003 B1
6603625 Hospodor et al. Aug 2003 B1
6604220 Lee Aug 2003 B1
6606682 Dang et al. Aug 2003 B1
6606714 Thelin Aug 2003 B1
6606717 Yu et al. Aug 2003 B1
6611393 Nguyen et al. Aug 2003 B1
6615312 Hamlin et al. Sep 2003 B1
6639748 Christiansen et al. Oct 2003 B1
6647481 Luu et al. Nov 2003 B1
6650492 Lenny et al. Nov 2003 B2
6654193 Thelin Nov 2003 B1
6657428 Kim Dec 2003 B2
6657810 Kupferman Dec 2003 B1
6661591 Rothberg Dec 2003 B1
6665772 Hamlin Dec 2003 B1
6687073 Kupferman Feb 2004 B1
6687078 Kim Feb 2004 B1
6687850 Rothberg Feb 2004 B1
6690523 Nguyen et al. Feb 2004 B1
6690882 Hanmann et al. Feb 2004 B1
6691198 Hamlin Feb 2004 B1
6691213 Luu et al. Feb 2004 B1
6691255 Rothberg et al. Feb 2004 B1
6693760 Krounbi et al. Feb 2004 B1
6694477 Lee Feb 2004 B1
6696832 Chew et al. Feb 2004 B2
6697914 Hospodor et al. Feb 2004 B1
6704153 Rothberg et al. Mar 2004 B1
6708251 Boyle et al. Mar 2004 B1
6710951 Cloke Mar 2004 B1
6711628 Thelin Mar 2004 B1
6711635 Wang Mar 2004 B1
6711660 Milne et al. Mar 2004 B1
6715044 Lofgren et al. Mar 2004 B2
6724982 Hamlin Apr 2004 B1
6725329 Ng et al. Apr 2004 B1
6735650 Rothberg May 2004 B1
6735693 Hamlin May 2004 B1
6744772 Eneboe et al. Jun 2004 B1
6745283 Dang Jun 2004 B1
6751402 Elliott et al. Jun 2004 B1
6757481 Nazarian et al. Jun 2004 B1
6772281 Hamlin Aug 2004 B2
6781826 Goldstone et al. Aug 2004 B1
6782449 Codilian et al. Aug 2004 B1
6791779 Singh et al. Sep 2004 B1
6792486 Hanan et al. Sep 2004 B1
6799274 Hamlin Sep 2004 B1
6811427 Garrett et al. Nov 2004 B2
6826003 Subrahmanyam Nov 2004 B1
6826614 Hanmann et al. Nov 2004 B1
6832041 Boyle Dec 2004 B1
6832929 Garrett et al. Dec 2004 B2
6845405 Thelin Jan 2005 B1
6845427 Atai-Azimi Jan 2005 B1
6850443 Lofgren et al. Feb 2005 B2
6851055 Boyle et al. Feb 2005 B1
6851063 Boyle et al. Feb 2005 B1
6853731 Boyle et al. Feb 2005 B1
6854022 Thelin Feb 2005 B1
6862660 Wilkins et al. Mar 2005 B1
6880043 Castro et al. Apr 2005 B1
6882486 Kupferman Apr 2005 B1
6884085 Goldstone Apr 2005 B1
6888831 Hospodor et al. May 2005 B1
6892217 Hanmann et al. May 2005 B1
6892249 Codilian et al. May 2005 B1
6892313 Codilian et al. May 2005 B1
6895455 Rothberg May 2005 B1
6895500 Rothberg May 2005 B1
6898730 Hanan May 2005 B1
6907322 Ghoshal Jun 2005 B2
6910099 Wang et al. Jun 2005 B1
6920001 Chua et al. Jul 2005 B2
6928470 Hamlin Aug 2005 B1
6931439 Hanmann et al. Aug 2005 B1
6934104 Kupferman Aug 2005 B1
6934713 Schwartz et al. Aug 2005 B2
6940873 Boyle et al. Sep 2005 B2
6943978 Lee Sep 2005 B1
6948165 Luu et al. Sep 2005 B1
6950267 Liu et al. Sep 2005 B1
6954733 Ellis et al. Oct 2005 B1
6961814 Thelin et al. Nov 2005 B1
6965489 Lee et al. Nov 2005 B1
6965563 Hospodor et al. Nov 2005 B1
6965966 Rothberg et al. Nov 2005 B1
6967799 Lee Nov 2005 B1
6968422 Codilian et al. Nov 2005 B1
6968450 Rothberg et al. Nov 2005 B1
6973495 Milne et al. Dec 2005 B1
6973570 Hamlin Dec 2005 B1
6976190 Goldstone Dec 2005 B1
6983316 Milne et al. Jan 2006 B1
6986007 Procyk et al. Jan 2006 B1
6986154 Price et al. Jan 2006 B1
6995933 Codilian et al. Feb 2006 B1
6996501 Rothberg Feb 2006 B1
6996669 Dang et al. Feb 2006 B1
7002926 Eneboe et al. Feb 2006 B1
7003674 Hamlin Feb 2006 B1
7006316 Sargenti, Jr. et al. Feb 2006 B1
7009820 Hogg Mar 2006 B1
7023639 Kupferman Apr 2006 B1
7024491 Hanmann et al. Apr 2006 B1
7024549 Luu et al. Apr 2006 B1
7024614 Thelin et al. Apr 2006 B1
7027716 Boyle et al. Apr 2006 B1
7028174 Atai-Azimi et al. Apr 2006 B1
7031902 Catiller Apr 2006 B1
7046465 Kupferman May 2006 B1
7046488 Hogg May 2006 B1
7050252 Vallis May 2006 B1
7054937 Milne et al. May 2006 B1
7055000 Severtson May 2006 B1
7055167 Masters May 2006 B1
7057836 Kupferman Jun 2006 B1
7062398 Rothberg Jun 2006 B1
7062698 Yang Jun 2006 B2
7075746 Kupferman Jul 2006 B1
7076604 Thelin Jul 2006 B1
7082494 Thelin et al. Jul 2006 B1
7088538 Codilian et al. Aug 2006 B1
7088545 Singh et al. Aug 2006 B1
7092186 Hogg Aug 2006 B1
7095577 Codilian et al. Aug 2006 B1
7099095 Subrahmanyam et al. Aug 2006 B1
7106537 Bennett Sep 2006 B1
7106947 Boyle et al. Sep 2006 B2
7110197 Cho Sep 2006 B2
7110202 Vasquez Sep 2006 B1
7111116 Boyle et al. Sep 2006 B1
7114029 Thelin Sep 2006 B1
7120737 Thelin Oct 2006 B1
7120806 Codilian et al. Oct 2006 B1
7126776 Warren, Jr. et al. Oct 2006 B1
7129763 Bennett et al. Oct 2006 B1
7133600 Boyle Nov 2006 B1
7136244 Rothberg Nov 2006 B1
7146094 Boyle Dec 2006 B1
7149046 Coker et al. Dec 2006 B1
7150036 Milne et al. Dec 2006 B1
7155616 Hamlin Dec 2006 B1
7171108 Masters et al. Jan 2007 B1
7171110 Wilshire Jan 2007 B1
7184230 Chue et al. Feb 2007 B1
7194576 Boyle Mar 2007 B1
7200698 Rothberg Apr 2007 B1
7205805 Bennett Apr 2007 B1
7206497 Boyle et al. Apr 2007 B1
7215496 Kupferman et al. May 2007 B1
7215771 Hamlin May 2007 B1
7237054 Cain et al. Jun 2007 B1
7240161 Boyle Jul 2007 B1
7249365 Price et al. Jul 2007 B1
7263709 Krapf Aug 2007 B1
7274639 Codilian et al. Sep 2007 B1
7274659 Hospodor Sep 2007 B2
7275116 Hanmann et al. Sep 2007 B1
7280302 Masiewicz Oct 2007 B1
7292774 Masters et al. Nov 2007 B1
7292775 Boyle et al. Nov 2007 B1
7296284 Price et al. Nov 2007 B1
7302501 Cain et al. Nov 2007 B1
7302579 Cain et al. Nov 2007 B1
7318088 Mann Jan 2008 B1
7319806 Willner et al. Jan 2008 B1
7325244 Boyle et al. Jan 2008 B2
7330323 Singh et al. Feb 2008 B1
7346790 Klein Mar 2008 B1
7365531 Che et al. Apr 2008 B2
7366641 Masiewicz et al. Apr 2008 B1
7369340 Dang et al. May 2008 B1
7369343 Yeo et al. May 2008 B1
7372650 Kupferman May 2008 B1
7380147 Sun May 2008 B1
7392340 Dang et al. Jun 2008 B1
7397622 Liikanen et al. Jul 2008 B1
7404013 Masiewicz Jul 2008 B1
7406545 Rothberg et al. Jul 2008 B1
7415571 Hanan Aug 2008 B1
7436610 Thelin Oct 2008 B1
7437502 Coker Oct 2008 B1
7440214 Ell et al. Oct 2008 B1
7451344 Rothberg Nov 2008 B1
7471483 Ferris et al. Dec 2008 B1
7471486 Coker et al. Dec 2008 B1
7486060 Bennett Feb 2009 B1
7496493 Stevens Feb 2009 B1
7518819 Yu et al. Apr 2009 B1
7526184 Parkinen et al. Apr 2009 B1
7539924 Vasquez et al. May 2009 B1
7543117 Hanan Jun 2009 B1
7551383 Kupferman Jun 2009 B1
7561368 Kim et al. Jul 2009 B2
7562282 Rothberg Jul 2009 B1
7577973 Kapner, III et al. Aug 2009 B1
7596797 Kapner, III et al. Sep 2009 B1
7599139 Bombet et al. Oct 2009 B1
7619841 Kupferman Nov 2009 B1
7642789 Yamasaki et al. Jan 2010 B2
7647544 Masiewicz Jan 2010 B1
7649704 Bombet et al. Jan 2010 B1
7653927 Kapner, III et al. Jan 2010 B1
7656603 Xing Feb 2010 B1
7656763 Jin et al. Feb 2010 B1
7657149 Boyle Feb 2010 B2
7672072 Boyle et al. Mar 2010 B1
7673075 Masiewicz Mar 2010 B1
7688540 Mei et al. Mar 2010 B1
7724461 McFadyen et al. May 2010 B1
7725584 Hanmann et al. May 2010 B1
7730295 Lee Jun 2010 B1
7760458 Trinh Jul 2010 B1
7768776 Szeremeta et al. Aug 2010 B1
7804657 Hogg et al. Sep 2010 B1
7813954 Price et al. Oct 2010 B1
7827320 Stevens Nov 2010 B1
7839588 Dang et al. Nov 2010 B1
7843660 Yeo Nov 2010 B1
7848037 Deng et al. Dec 2010 B2
7852596 Boyle et al. Dec 2010 B2
7859782 Lee Dec 2010 B1
7872822 Rothberg Jan 2011 B1
7898756 Wang Mar 2011 B1
7898762 Guo et al. Mar 2011 B1
7900037 Fallone et al. Mar 2011 B1
7907364 Boyle et al. Mar 2011 B2
7929234 Boyle et al. Apr 2011 B1
7933087 Tsai et al. Apr 2011 B1
7933090 Jung et al. Apr 2011 B1
7934030 Sargenti, Jr. et al. Apr 2011 B1
7940491 Szeremeta et al. May 2011 B2
7944639 Wang May 2011 B1
7945727 Rothberg et al. May 2011 B2
7949564 Hughes et al. May 2011 B1
7974029 Tsai et al. Jul 2011 B2
7974039 Xu et al. Jul 2011 B1
7982993 Tsai et al. Jul 2011 B1
7984200 Bombet et al. Jul 2011 B1
7990137 Antoku Aug 2011 B2
7990648 Wang Aug 2011 B1
7992179 Kapner, III et al. Aug 2011 B1
8004785 Tsai et al. Aug 2011 B1
8006027 Stevens et al. Aug 2011 B1
8014094 Jin Sep 2011 B1
8014977 Masiewicz et al. Sep 2011 B1
8019914 Vasquez et al. Sep 2011 B1
8040625 Boyle et al. Oct 2011 B1
8078943 Lee Dec 2011 B1
8079045 Krapf et al. Dec 2011 B2
8082433 Fallone et al. Dec 2011 B1
8085487 Jung et al. Dec 2011 B1
8089719 Dakroub Jan 2012 B1
8090902 Bennett et al. Jan 2012 B1
8090906 Blaha et al. Jan 2012 B1
8091112 Elliott et al. Jan 2012 B1
8094396 Zhang et al. Jan 2012 B1
8094401 Peng et al. Jan 2012 B1
8116020 Lee Feb 2012 B1
8116025 Chan et al. Feb 2012 B1
8134793 Vasquez et al. Mar 2012 B1
8134798 Thelin et al. Mar 2012 B1
8139301 Li et al. Mar 2012 B1
8139310 Hogg Mar 2012 B1
8144419 Liu Mar 2012 B1
8145452 Masiewicz et al. Mar 2012 B1
8149528 Suratman et al. Apr 2012 B1
8154812 Boyle et al. Apr 2012 B1
8159768 Miyamura Apr 2012 B1
8161328 Wilshire Apr 2012 B1
8164849 Szeremeta et al. Apr 2012 B1
8174780 Tsai et al. May 2012 B1
8190575 Ong et al. May 2012 B1
8194338 Zhang Jun 2012 B1
8194340 Boyle et al. Jun 2012 B1
8194341 Boyle Jun 2012 B1
8201066 Wang Jun 2012 B1
8271692 Dinh et al. Sep 2012 B1
8279550 Hogg Oct 2012 B1
8281218 Ybarra et al. Oct 2012 B1
8285923 Stevens Oct 2012 B2
8289656 Huber Oct 2012 B1
8305705 Roohr Nov 2012 B1
8307156 Codilian et al. Nov 2012 B1
8310775 Boguslawski et al. Nov 2012 B1
8315006 Chahwan et al. Nov 2012 B1
8316263 Gough et al. Nov 2012 B1
8320067 Tsai et al. Nov 2012 B1
8324974 Bennett Dec 2012 B1
8332695 Dalphy et al. Dec 2012 B2
8339919 Lee Dec 2012 B1
8341337 Ong et al. Dec 2012 B1
8350628 Bennett Jan 2013 B1
8356184 Meyer et al. Jan 2013 B1
8370683 Ryan et al. Feb 2013 B1
8375225 Ybarra Feb 2013 B1
8375274 Bonke Feb 2013 B1
8380922 DeForest et al. Feb 2013 B1
8390948 Hogg Mar 2013 B2
8390952 Szeremeta Mar 2013 B1
8392689 Lott Mar 2013 B1
8407393 Yolar et al. Mar 2013 B1
8413010 Vasquez et al. Apr 2013 B1
8417566 Price et al. Apr 2013 B2
8421663 Bennett Apr 2013 B1
8422172 Dakroub et al. Apr 2013 B1
8427770 O'Dell et al. Apr 2013 B1
8427771 Tsai Apr 2013 B1
8429343 Tsai Apr 2013 B1
8433937 Wheelock et al. Apr 2013 B1
8433977 Vasquez et al. Apr 2013 B1
8441909 Thayamballi et al. May 2013 B1
8456980 Thayamballi Jun 2013 B1
8458526 Dalphy et al. Jun 2013 B2
8462466 Huber Jun 2013 B2
8467151 Huber Jun 2013 B1
8483027 Mak et al. Jul 2013 B1
8489841 Strecke et al. Jul 2013 B1
8493679 Boguslawski et al. Jul 2013 B1
8499198 Messenger et al. Jul 2013 B1
8514506 Li et al. Aug 2013 B1
8554741 Malina Oct 2013 B1
8560759 Boyle et al. Oct 2013 B1
8576509 Hogg Nov 2013 B1
8576511 Coker et al. Nov 2013 B1
8578100 Huynh et al. Nov 2013 B1
8578242 Burton et al. Nov 2013 B1
8582223 Garani et al. Nov 2013 B1
8582231 Kermiche et al. Nov 2013 B1
8589773 Wang et al. Nov 2013 B1
8593747 Yang et al. Nov 2013 B1
8593753 Anderson Nov 2013 B1
8599512 Hogg Dec 2013 B2
8605379 Sun Dec 2013 B1
8611031 Tan et al. Dec 2013 B1
8611032 Champion et al. Dec 2013 B2
8612798 Tsai Dec 2013 B1
8619383 Jung et al. Dec 2013 B1
8619508 Krichevsky et al. Dec 2013 B1
8619529 Liew et al. Dec 2013 B1
8621115 Bombet et al. Dec 2013 B1
8621133 Boyle Dec 2013 B1
8625224 Lin et al. Jan 2014 B1
8625225 Wang Jan 2014 B1
8626463 Stevens et al. Jan 2014 B2
8630052 Jung et al. Jan 2014 B1
8631188 Heath et al. Jan 2014 B1
8635412 Wilshire Jan 2014 B1
8661193 Cobos et al. Feb 2014 B1
8665547 Yeo et al. Mar 2014 B1
8667248 Neppalli Mar 2014 B1
8670205 Malina et al. Mar 2014 B1
8671250 Lee Mar 2014 B2
8681442 Hogg Mar 2014 B2
8681445 Kermiche et al. Mar 2014 B1
8683295 Syu et al. Mar 2014 B1
8687306 Coker et al. Apr 2014 B1
8687307 Patton, III Apr 2014 B1
8687313 Selvaraj Apr 2014 B2
8693133 Lee et al. Apr 2014 B1
8698492 Mak et al. Apr 2014 B1
8699171 Boyle Apr 2014 B1
8699172 Gunderson et al. Apr 2014 B1
8711500 Fong et al. Apr 2014 B1
8711506 Giovenzana et al. Apr 2014 B1
8711665 Abdul Hamid Apr 2014 B1
8717694 Liew et al. May 2014 B1
8717695 Lin et al. May 2014 B1
8730612 Haralson May 2014 B1
8743502 Bonke et al. Jun 2014 B1
8749911 Sun et al. Jun 2014 B1
8755136 Ng et al. Jun 2014 B1
20020118473 Yong Aug 2002 A1
20030030934 Schaff et al. Feb 2003 A1
20030065992 Yang Apr 2003 A1
20040153949 Ro et al. Aug 2004 A1
20050057835 Kim et al. Mar 2005 A1
20070279788 Andersen et al. Dec 2007 A1
20080165444 Zafer Jul 2008 A1
20090113702 Hogg May 2009 A1
20100306551 Meyer et al. Dec 2010 A1
20110226729 Hogg Sep 2011 A1
20120019945 Chan et al. Jan 2012 A1
20120159042 Lott et al. Jun 2012 A1
20120275050 Wilson et al. Nov 2012 A1
20120281963 Krapf et al. Nov 2012 A1
20120324980 Nguyen et al. Dec 2012 A1
Non-Patent Literature Citations (1)
Entry
James McFadyen, U.S. Appl. No. 13/796,317, filed Mar. 13, 2013,20 pages.