Embodiments of the invention may relate generally to data storage systems and more particularly to data storage system enclosures.
A hard-disk drive (HDD) is a non-volatile storage device that is housed in a protective enclosure and stores digitally encoded data on one or more circular disks having magnetic surfaces. When an HDD is in operation, each magnetic-recording disk is rapidly rotated by a spindle system. Data is read from and written to a magnetic-recording disk using a read-write head that is positioned over a specific location of a disk by an actuator. A read-write head uses a magnetic field to read data from and write data to the surface of a magnetic-recording disk. A write head makes use of the electricity flowing through a coil, which produces a magnetic field. Electrical pulses are sent to the write head, with different patterns of positive and negative currents. The current in the coil of the write head induces a magnetic field across the gap between the head and the magnetic disk, which in turn magnetizes a small area on the recording medium.
There is a commercial demand for digital data storage systems, in which multiple hard disk drives (HDDs) are housed in a common enclosure. Data storage systems often include shelves, or “sleds”, on which one or more rows of HDDs are mounted. As such, a given HDD may have an adjacent neighbor HDD arranged in close position thereto, in either a side-by-side and/or an over-under type of arrangement. In operation, such as when an HDD is actively seeking, a voice-coil motor (VCM) generates torque in moving a head-stack assembly (HSA) over the disk stack. In turn, this VCM torque may be transferred to the structure to which the HDD is mounted, whereby force and/or motion may be transferred to neighbor HDDs. Hence, each HDD may experience positioning errors as a result of such mechanical cross-coupling.
Any approaches described in this section are approaches that could be pursued, but not necessarily approaches that have been previously conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.
Embodiments of the invention are directed toward a “decoupled” partitioning divider for a data storage system enclosure, including a first leg having proximal and distal halves and a second leg having proximal and distal halves, and where the first and second legs are coupled together at either the proximal or distal half and uncoupled from each other at the other of the proximal and distal halves. That is, the divider legs are decoupled from each other at one half, or end. Hence, when installed in a data storage system enclosure between adjacent data storage devices, such as hard disk drives, vibration transfer among the devices housed therein, such as due to mechanical cross-coupling, may be inhibited by use of such dividers.
Embodiments discussed in the Summary of Embodiments section are not meant to suggest, describe, or teach all the embodiments discussed herein. Thus, embodiments of the invention may contain additional or different features than those discussed in this section. Furthermore, no limitation, element, property, feature, advantage, attribute, or the like expressed in this section, which is not expressly recited in a claim, limits the scope of any claim in any way.
Embodiments are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
Approaches to a data storage system partitioning divider are described. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the embodiments of the invention described herein. It will be apparent, however, that the embodiments of the invention described herein may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the embodiments of the invention described herein.
The term “substantially” will be understood to describe a feature that is largely or nearly structured, configured, dimensioned, etc., but with which manufacturing tolerances and the like may in practice result in a situation in which the structure, configuration, dimension, etc. is not always or necessarily precisely as stated. For example, describing a structure as “substantially vertical” would assign that term its plain meaning, such that the sidewall is vertical for all practical purposes but may not be precisely at 90 degrees.
As discussed, data storage systems often include “sleds” on which multiple HDDs are mounted and which, in operation, transfer force and/or motion to neighbor HDDs. Consequently, each HDD may experience positioning errors as a result of such mechanical cross-coupling among neighbor HDDs mounted along each sled.
According to an embodiment, enclosure assembly 100 comprises a first panel 102 that houses one or more circuits 103, such as in the form of one or more printed circuit boards (PCBs). Enclosure assembly comprises a second panel 104 and an opposing third panel (removed), which extend normal to the first panel 102. For example, if second panel 104 is a back panel then the third panel would be an opposing front panel, or if the second panel is a top panel then the third panel would be an opposing bottom panel, depending on the positioning of the enclosure assembly 100 within a data storage system rack.
Enclosure assembly 100 further comprises a plurality of partitioning dividers 106a-106n (or “enclosure divider”, “mounting divider”, or simply “divider”; and generally, “partitioning divider 106”), where n represents a number that may vary from implementation to implementation, that partition the enclosure assembly 100 into a number of partitions 107a-107m (e.g., n−1). Each partition 107a-107m is for housing at least one data storage device 108, such as a hard disk drive (HDD). Enclosure assembly 100 is illustrated with some partitions 107a-107m loaded with a respective data storage device 108 and some partitions 107a-107m left unloaded or empty, for purposes of example and clarity to illustrate internal structure within the enclosure assembly 100.
According to an embodiment, and as depicted in
For a non-limiting example, the partitioning divider 106 may be fabricated from, and thus composed of, a thermoplastic material. Referring back to
At block 302, multiple partitioning dividers are coupled between opposing enclosure panels to form partitions between adjacent dividers. For example and as described elsewhere herein, each divider 106 (
At block 304, at least one data storage device is mounted in each of one or more of the partitions. For example, at least one data storage device 108 (
In a scenario in which two data storage devices are housed in a partition 107a-107m, such as in an over-under type of arrangement, mounting a data storage device 108 in a partition 107a-107m includes coupling the data storage device 108 to a proximal end of at least one of the first and second legs 202, 203 of the divider 106, such as at mounting feature 204 (
According to an embodiment, a further action that may be associated with the foregoing method for inhibiting mechanical cross-coupling among neighbor devices involves electrically connecting the data storage device with a circuit board coupled to the data storage system enclosure. For example, a data storage device 108 (
In the foregoing description, embodiments of the invention have been described with reference to numerous specific details that may vary from implementation to implementation. Therefore, various modifications and changes may be made thereto without departing from the broader spirit and scope of the embodiments. Thus, the sole and exclusive indicator of what is the invention, and is intended by the applicants to be the invention, is the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction. Any definitions expressly set forth herein for terms contained in such claims shall govern the meaning of such terms as used in the claims. Hence, no limitation, element, property, feature, advantage or attribute that is not expressly recited in a claim should limit the scope of such claim in any way. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
In addition, in this description certain process steps may be set forth in a particular order, and alphabetic and alphanumeric labels may be used to identify certain steps. Unless specifically stated in the description, embodiments are not necessarily limited to any particular order of carrying out such steps. In particular, the labels are used merely for convenient identification of steps, and are not intended to specify or require a particular order of carrying out such steps.
Number | Name | Date | Kind |
---|---|---|---|
5481431 | Siahpolo | Jan 1996 | A |
5524104 | Iwata | Jun 1996 | A |
6154361 | Anderson et al. | Nov 2000 | A |
6619766 | Mansueto | Sep 2003 | B1 |
7039299 | Onodera | May 2006 | B2 |
7187541 | Franke | Mar 2007 | B2 |
7193856 | Hidaka | Mar 2007 | B2 |
7200008 | Bhugra | Apr 2007 | B1 |
7304855 | Milligan | Dec 2007 | B1 |
7359186 | Honda | Apr 2008 | B2 |
7423883 | Carlson et al. | Sep 2008 | B2 |
7505264 | Hall et al. | Mar 2009 | B2 |
7983032 | Walker et al. | Jul 2011 | B2 |
8300400 | Sun | Oct 2012 | B2 |
8477496 | Zhang et al. | Jul 2013 | B2 |
8508928 | Killen et al. | Aug 2013 | B2 |
20030099094 | Coles | May 2003 | A1 |
20070230110 | Starr | Oct 2007 | A1 |
20070247802 | Imsand | Oct 2007 | A1 |
20080298014 | Franco | Dec 2008 | A1 |
20110069441 | Killen | Mar 2011 | A1 |
20110085270 | Hirano | Apr 2011 | A1 |
20110096494 | Cochrane | Apr 2011 | A1 |
20110128696 | Weng | Jun 2011 | A1 |
20110176271 | Zhang | Jul 2011 | A1 |
20110194242 | Hu | Aug 2011 | A1 |
20110222234 | Davis | Sep 2011 | A1 |
20140209548 | Lo et al. | Jul 2014 | A1 |
20150359115 | Hirano | Dec 2015 | A1 |
20150380059 | Bell et al. | Dec 2015 | A1 |
Entry |
---|
Homas M. Ruwart et al., Performance Impact of External Vibration on Consumer-grade and Enterprise-class Disk Drives, IEEE Computer Society, 2005, 9 pages, Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005), IEEE. |