Data synthesis for autonomous control systems

Information

  • Patent Grant
  • 12020476
  • Patent Number
    12,020,476
  • Date Filed
    Friday, October 28, 2022
    2 years ago
  • Date Issued
    Tuesday, June 25, 2024
    6 months ago
Abstract
An autonomous control system generates synthetic data that reflect simulated environments. Specifically, the synthetic data is a representation of sensor data of the simulated environment from the perspective of one or more sensors. The system generates synthetic data by introducing one or more simulated modifications to sensor data captured by the sensors or by simulating the sensor data for a virtual environment. The autonomous control system uses the synthetic data to train computer models for various detection and control algorithms. In general, this allows autonomous control systems to augment training data to improve performance of computer models, simulate scenarios that are not included in existing training data, and/or train computer models that remove unwanted effects or occlusions from sensor data of the environment.
Description
BACKGROUND

This invention relates generally to autonomous control systems for vehicles, and more particularly to autonomous control systems for vehicles using sensors.


Autonomous control systems are systems that guide vehicles (e.g., automobiles, trucks, vans) without direct guidance by human operators. Autonomous control systems analyze the surrounding physical environment in various ways to guide vehicles in a safe manner. For example, an autonomous control system may detect and/or track objects in the physical environment, and responsive to a detected object, guide the vehicle away from the object such that collision with the object can be avoided. As another example, an autonomous control system may detect boundaries of lanes on the road such that the vehicle can be guided within the appropriate lane with the flow of traffic.


Often times, autonomous control systems use computer models to perform algorithms for analyzing the surrounding environment and performing detection and control operations. The computer models are trained from data sets containing information that resemble potential environments the autonomous control system would encounter during operation. For example, a computer model for detecting pedestrians on the street may learn different representations of people from a data set containing various images of pedestrians. Typically, the performance of computer models improves with the amount of data available for learning. However, gathering data for training computer models is often costly and time-consuming.


SUMMARY

A system for autonomous vehicle control generates synthetic data for autonomous control systems that reflect simulated environments. Specifically, the synthetic data is a representation of sensor data of the simulated environment from the perspective of one or more sensors of the autonomous control systems. Sensor data of a sensor denotes the readings of the environment collected by the sensor that characterize how the sensor perceives the environment. For example, the representation of sensor data may be a two-dimensional “image” for an image sensor, such as a camera, a three-dimensional point cloud for a LIDAR sensor,


The system generates synthetic data by introducing one or more simulated modifications to sensor data captured by the sensors or by simulating the sensor data for a virtual environment. The sensors can be passive sensors that include a receiver that detects and measures various forms of energy that are naturally emitted from the physical environment, or active sensors that emit energy and then measure the energy that is reflected back to one or more receivers in the sensor. For example, light detection and ranging (LIDAR) sensor signals attenuate when absorbed by precipitation. An example synthetic sensor data is a LIDAR sensor image that simulates precipitation in an environment by attenuating reflectance signals from a LIDAR sensor image of the environment on a clear day to account for the precipitation.


The autonomous control systems use the synthetic data to train computer models for various detection and control algorithms. In general, this allows autonomous control systems to augment training data to improve performance of computer models, simulate scenarios that are not included in existing training data, and/or train computer models that remove unwanted effects or occlusions from sensor data of the environment. For example, a computer model that mitigates the effect of precipitation on LIDAR sensor image data may be supplemented by synthetic images that simulate precipitation to those on a clear day. During precipitation, the autonomous control system may perform more robust detection and control algorithms on sensor data generated by the computer model.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an example network environment for autonomous control, in accordance with an embodiment.



FIG. 2 illustrates an example process of introducing artifacts to original sensor data of the environment to generate synthetic images of simulated environments, and using the synthetic sensor data for training computer models.



FIG. 3 is an example block diagram of an architecture of the model training system, in accordance with an embodiment.



FIG. 4 illustrates an example process of training sensor quality models, in accordance with an embodiment.



FIG. 5 illustrates an example process of training reconstruction models, in accordance with an embodiment.



FIG. 6 is an example block diagram of an architecture of the data synthesizing module, in accordance with an embodiment.





The figures depict various embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.


DETAILED DESCRIPTION


FIG. 1 is an example network environment 100 for autonomous control, in accordance with an embodiment. The network environment 100 includes an autonomous control system 110, a sensor collection system 150, and a data synthesizing module 140 coupled to a network 120.


The autonomous control system 110 guides vehicles based on information related to the surrounding environment received from the one or more sensors attached to the vehicles. The vehicles are any means of conveyance or transport in or by which someone or something can travel from one place to another, and may include automobiles, trucks, vans, robotic transports, and the like. The autonomous control system 110 may guide a vehicle through one or more trips from one destination to another. For example, the autonomous control system 110 may guide a ride-sharing vehicle (e.g., a taxi) from a passenger's point of pick-up to their desired destination. Though described herein as an autonomous vehicle, the control decisions of the autonomous controls system may provide semi-autonomous control rather than complete control of the vehicle, for example to supplement or override user control, or as primary means of control that can be overridden by a user. In addition, although the autonomous control system 110 is described herein as a system that guides vehicles, the autonomous control system 110 may also guide other systems such as robotic arms or manufacturing equipment.


One or more sensors are attached to the vehicles to gather information used to generate the control of the vehicle. The sensors are devices that detect information related to the physical environment. The information can be captured through many forms. For example, the sensors may be imaging sensors that capture scenes of the physical environment through a series of one or more images. In such an example, other vehicles proximate to the vehicle of the autonomous control system, stationary objects such as trees, fire hydrants, lamp posts, and the like may be captured in the images. As another example, the sensors may be geo-locational sensors, and more specifically global positioning system (GPS) sensors that detect the position of the sensor (and its attached vehicle) relative to a map of the physical environment. As yet another example, the sensors may be microphones that detect sounds in the environment in the form of audio signals. As defined herein, sensor data of a sensor denotes the readings of the environment collected by the sensor that characterize how the sensor perceives the environment.


The one or more sensors may include high-capacity sensors that have certain improved characteristics over other sensors. For example, high-capacity imaging sensors may generate sensor data having improved characteristics, such as increased resolution, data collection time, sharpness, field-of-view, and the like, compared to other sensors. As another example, high-capacity geo-locational sensors may pinpoint the location of the sensor more accurately than others. As another example, some high-capacity sensors are able to detect information at a level of accuracy or precision that other sensors cannot. For example, light detection and ranging (LIDAR) sensors can measure the distance from the sensor to an object at a level of accuracy that is difficult to achieve for image sensors. Alternatively, more-sophisticated LIDAR sensors may generate greater precision data than less-sophisticated LIDAR sensors. In general, high-capacity sensors tend to be complex, expensive, and bulky. Moreover, it may be difficult for an owner (or a manufacturer) of a vehicle to purchase and install high-capacity sensors separately on his or her vehicle.


On the other hand, due to their high capacity, only a few or even a single high-capacity sensor may be needed to collect a substantial amount of information on the physical environment for accurate performance of the autonomous control system 110. For example, a single LIDAR sensor on a vehicle can capture a 360-degree field-of-view of the physical environment through high-resolution signals that may be alone sufficient for accurate performance of the autonomous control system 110.


The one or more sensors may also include replacement sensors that have smaller capacity than high-capacity sensors, but may be more readily available than high-capacity sensors in that they are portable, easier to install, and relatively inexpensive. For example, many vehicles are now manufactured with sensors at the front and/or back of the car that provide real-time sensor data of the surroundings such that the operator can detect objects to avoid collisions with the object. However, these sensors have limited field-of-view that captures only a portion of the environment at the front and/or back of the vehicle. As another example, portable radio detection and ranging (RADAR) sensors may be able to detect distance of objects better than imaging sensors, but still may not have the accuracy of a high-capacity LIDAR sensor. As another example, portable cameras are easy to install on windshield or dashboard areas of the vehicle, but may lack the resolution and field-of-view of LIDAR sensors.


In contrast to high-capacity sensors, each sensor in a set of replacement sensors may provide fragments of information on the surrounding environment in different formats of sensor data and have lower precision information. However, the combination of sensor data may contain information comparable to that generated from high-capacity sensors. For example, a vehicle may have an RGB camera with a first resolution at the back of a vehicle, a greyscale camera with a second resolution at the dashboard of the vehicle, another RGB camera with a third resolution at the left and right sides of the vehicle, and a portable RADAR sensor. Individually, each camera has a fragmented field-of-view limited to one among the front, back, and sides of the vehicle in different resolutions and color, and the portable RADAR sensor has sub-optimal distance measurements (with respect to the high-capacity sensors). Through the analysis and modeling of these sensors discussed herein, the sensors together may contain information on objects and the physical environment that is comparable to a high-capacity LIDAR sensor by simulating the high-capacity sensor output with a learned sensor mapping from the sensors to the desired high-capacity sensor data.


The autonomous control system 110 performs various detection and control algorithms based on sensor data of the physical environment to guide the vehicles in a safe and efficient manner. For example, the autonomous control system 110 may detect various objects (e.g., lamp post, cars) that are proximate to a vehicle in the captured sensor data of the environment, and guide the vehicle away from the objects to prevent collision of the vehicle with the objects. As another example, the autonomous control system 110 may detect boundaries of lanes on the road such that the vehicle can be guided within the appropriate lane with the flow of traffic.


In one embodiment, the autonomous control system 110 may perform the detection and control algorithms on sensor data generated by high-capacity sensors. In general, the detection and control systems are relatively accurate when using high-capacity sensor data, since a substantial amount of information on the surrounding environment is contained through a single type of sensor data. However, as described above, many vehicles may lack high-capacity sensors due to their complexity and cost.


In one embodiment, the autonomous control system 110 may perform the detection and control algorithms on sensor data generated by replacement sensors having different capacity than high-capacity sensors that do not natively capture the precision or quality of sensor data available from the high-capacity sensor(s). Specifically, the autonomous control system 110 simulates high-capacity sensor data from sensor data generated by a set of replacement sensors. The autonomous control system 110 receives sensor data from replacement sensors that differ from the high-capacity sensors, and may have different characteristics from one another, attached at various positions of the vehicle, or capture different fields of view. The autonomous control system 110 synthesizes the combination of sensor data with a learned sensor mapping to simulate high-capacity sensor data as though the surrounding environment was characterized by high-capacity sensors. The autonomous control system 110 detects one or more objects based on the simulated high-capacity sensor data to control the vehicle for autonomous guidance.


In general, using simulated high-capacity sensor data for detection and control allows accurate guidance of the vehicle by using replacement sensors that may be relatively inexpensive and readily available compared to high-capacity sensors. In addition, the autonomous control system 110 can use existing control and detection systems that are configured for high-capacity sensor data. Returning to the example above, the autonomous control system 110 may synthesize the sensor data from the set of cameras with different resolution, color, and field-of-view (e.g., front, back, left, and right sides), and the portable RADAR sensor to simulate sensor data from a single LIDAR sensor having a large field-of-view and high resolution. The simulated data may be used as input to existing detection and control systems that use LIDAR sensor data.


In one embodiment, various functions of the autonomous control system 110 are performed through machine-learned computer models. In one embodiment, the machine-learned models are neural network models such as feed-forward networks, convolutional neural networks (CNN), deep neural networks (DNN), recurrent neural networks (RNN), self-organizing maps (SOM), and the like, that are trained by the model training system 140 based on training data sets.


The model training system 140 constructs machine-learned models based on sensor information provided by the sensor collection system 150. The trained machine-learned models perform various functions, such as simulating sensor data, estimating sensor quality, and other detection and control algorithms for use by the autonomous control system 110. The model training system 140 constructs the models based on training data sets. The training data sets contain information resembling potential environments the autonomous control system 110 would encounter during operation. For example, a computer model for detecting pedestrians on the street may learn different representations of people from a data set containing various images of pedestrians. A sufficient amount of training data generally leads to improved performance of computer models. However, gathering training data can be costly and time-consuming. Moreover, some characteristics of environments that are important for the computer models to learn may not be included in existing training data.


Thus, in one embodiment, the model training system 140 also synthesizes sensor data, and trains various computer models based on the synthesized sensor data. Specifically, the synthetic data represents sensor data of simulated scenarios in the environment from the perspective of one or more sensors included in the autonomous control system 110. For example, synthetic data may include sensor images of the environment that are modified to introduce artifacts in the environment. Specifically, artifacts introduced into the synthetic data may virtually represent any modifications to an environment in existing sensor data, and may represent atmospheric conditions such as precipitation, iciness, snow, lighting conditions such as intense sunlight, darkness, simulated objects such as pedestrians, precipitation, puddles, and the like in the surrounding environment. As another example, synthetic data may include sensor data of the environment that simulate partial sensor malfunction.


The model training system 140 may use the synthetic sensor data to augment existing training data and generally improve the accuracy of computer models. By training the computer models on augmented training data, the computer models can perform with improved accuracy when they are applied to sensor data from a physical sensor operating in an environment having the same type of artifacts that were included in the simulated data. For example, images of simulated pedestrians may be augmented to training data for training computer models that detect pedestrians. As another example, the model training system 140 may use synthetic data to train computer models for removing unwanted effects or occlusions from an environment to improve quality of sensor image data. LIDAR sensor signals are generally attenuated during precipitation, such as rain and fog, which may cause a reduction in performance of detection and control algorithms. To reduce the effect of precipitation during operation, the model training system 140 may train a machine-learned model that outputs sensor data mimicking the environment on a clear day given sensor data corresponding to the environment during precipitation. The model may be trained by supplementing synthetic sensor data that simulate precipitation with those on a clear day. This allows the model training system 140 to construct machine-learned models that perform robust detection and control since sensor readings generated during precipitation can be refined into a higher-quality version by the computer model to mitigate the effect of precipitation on the sensor data.


The model training system 140 trains the computer models using the set of synthesized sensor data to reduce differences between predictions generated based on the set of synthesized sensor data and a corresponding set of target outputs. Specifically, a computer model may be associated with a set of parameters, and the model training system 140 generates a set of predictions by applying the computer model with an estimated set of parameters to the set of synthesized sensor data. The model training system 140 determines a loss function that indicates a difference between the set of predictions and the set of target outputs. The set of parameters are updated to reduce the loss function.



FIG. 2 illustrates an example process of introducing artifacts to original sensor data of the environment to generate synthetic images of simulated environments, and using the synthetic sensor data for training computer models.


As shown in FIG. 2, the environment includes a road, two pedestrians, and a stop sign on the side of the road. A microphone, a LIDAR sensor, and a camera attached to a vehicle each generate a respective image of the environment. One example environment is simulated by the model training system 140, in which a puddle partially occluding lane markings on the road is introduced. Specifically, synthetic data of the example simulated environment for each of the sensors are generated, as shown by synthetic data “Simulated Microphone 1,” “Simulated LIDAR 1,” “Simulated Camera 1.” Many other data pairs similar to the ones illustrated can be generated to construct training data. The model training system 140 constructs a computer model based on the pairs of original and synthetic training data that removes unwanted artifacts, such as the puddle, that occlude objects such as lane markings important for autonomous control.


Another example environment is simulated in which precipitation is introduced in the environment. Similarly, the model training system 150 generates synthetic sensor data of the example simulated environment for each of the sensors, shown by synthetic data “Simulated Microphone 2,” “Simulated LIDAR 2,” “Simulated Camera 2.” The model training system 140 constructs a computer model based on the pairs of original and synthetic training data that mitigate the effect of precipitation on the sensor data such that robust detection and control can be performed even during bad weather conditions including precipitation.


Returning to the system 100 of FIG. 1, the sensor collection system 150 is attached to one or more data collection vehicles, and includes one or more sensors including high-capacity sensors 112A and replacement sensors 112B. The sensor collection system 150 collects training information related to the physical environment using both the high-capacity sensors 112A and the replacement sensors 112B, such that relationships can be learned between sensor data from the high-capacity sensors 112A and replacement sensors 112B.


The one or more sensors of the sensor collection system 150 can include active sensors and passive sensors. A passive sensor observes the environment. Passive sensors can include cameras, or microphones, vibration sensors, and the like. Passive sensors include a receiver that detects and measures various forms of energy that are naturally emitted from the physical environment or constituents of the physical environment across various locations of the environment. As an example, when the sensor is a camera, the sensor data is a time series of pixel data indicating intensities of detected light. That is, a time series of pictures is acquired. Each picture is divided into pixels and each pixel may have one or more intensity values associated with it depending on whether the camera is a greyscale camera or a color camera. For example, when the camera is a color camera describing a color of a pixel in red, green, and blue, the intensity value for each is typically an integer, such as an 8, 10, or 12-bit integer specifying the intensity of the red, green, or blue portion of the frequency. If the resolution of the picture were 100×100 pixels (having 10,000 total pixels), for every picture, there would be 3 separate channels of 10,000 pixels.


When the sensor is a microphone, the sensor data is a time series of air pressure values. In one embodiment, the time series of air pressure values is converted into a spectrogram. A spectrogram shows a time series of components (strengths) showing a collection of frequency strengths for each time period. The spectrogram is generated from the initial sound waves by a time windowed discrete Fourier transform, also sometimes called a “Gabor Transform.” The size of the sensor data can be adjusted by adjusting the number of frequencies and/or the size of the time step, used in the windowed Fourier transform.


When the sensor is a vibration sensor, the sensor data is a time series of physical displacements of the vibration sensor in the system. The vibration sensor is typically attached or near to a particular component of the system to represent vibration of that component. Similarly to the microphone, in one embodiment, the time series of physical displacements are converted into a spectrogram, and the number of frequencies used in the Fourier transform can be adjusted.


The one or more sensors may include active sensors. Active sensors emit energy and then measure the energy that is reflected back to one or more receivers in the sensor. The reflected energy allows active sensors to probe for environmental information that may not otherwise be readily detected passively at the sensor. For example, active sensors may estimate distances of objects from the sensor better than passive sensors. Active sensors include both a transmitter and receiver of energy, in contrast to passive sensors that use receivers. Active sensors can include ultrasound sensors, RADAR sensors, active infrared (IR) sensors, LIDAR sensors, and the like. Usually, ultrasound sensors emit ultrasound waves, RADAR sensors emit microwaves, LIDAR sensors emit laser pulses in the near-IR or visible range waves, and IR sensors emit IR waves.


In one instance, the sensor data includes depth measurements that measures how far away an object is from the sensor. Specifically, the depth is measured by triggering a timer when the energy is emitted, and detecting the amount of time needed for the receiver to detect the reflected energy. The traveling speed of the energy can be used to calculate the depth of objects at various locations in the environment by emitting energy signals in the direction of the objects. In another instance, the sensor data also includes intensity measurements that measures the intensity of the reflected energy detected at the receiver of the sensor. These intensity values may be represented as 8 or 16-bit integer values.


For many types of active sensors, the sensor data is a collection of data points with reference to the sensor in a three-dimensional (3D) coordinate system (“point cloud” measurements) such as, for example, a spherical coordinate system or a Cartesian coordinate system. Each value designates the measurement of the actively-transmitted signal at the receiver (e.g., depth or reflected intensity). The number of data points in the point cloud is related to the resolution of the sensor. Further, even for a given sensor, the number of data points varies depending on factors such as what portion of the environment is within the sensor's range.


For example, when the sensor is a LIDAR sensor, the sensor data may include a point cloud of intensity measurements and a point cloud of reflectance measurements. Specifically, a narrow beam laser is pointed in a specific, known direction. This known direction can be identified as a pair of angles including a polar angle θ and an azimuth angle φ with reference to the sensor. The polar angle θ specifies from the upward direction (0 degrees) to the downward direction (180 degrees), while the azimuth angle φ specifies from the forward direction (0 degrees) to the backward direction (360 degrees).


By actively emitting energy across the entire field-of-view, a set of measurements for depth and/or intensity can be collected for different values of (r, θ, φ), where r denotes the depth measurement of an object (e.g., ground, cars, trees) to the sensor and θ, φ together denote the known direction object. Thus, a 3D view of the environment can be mapped to a point cloud representing objects in the environment by using the returned depth and intensity thereof.


In one embodiment, point cloud measurements are collected with rotational scanning. For example, multiple laser beams (e.g. 64 laser beams) can be emitted from a rotating drum, enabling multiple measurements across various values of θ. In this case, θ and φ are pre-determined by the position of the rotating drum and which of the multiple beams emitted the light, while r is measured based on the time-of-flight of the energy beam as discussed above.


In another embodiment, the point cloud measurements are collected by linear scanning in the (x,y) space. In such implementations, the light source is aimed at one or more mirrors. The mirrors, which may be microscopic mirrors (e.g. MEMS mirrors), can be manipulated programmatically, causing the energy beam to be steered. While mirror-based steering could potentially implement almost any scanning pattern, in practice these systems are usually used to implement grid-like scanning patterns that follow the Cartesian coordinate system.


In yet another embodiment, the point cloud measurements are collected through a phased array. A phased array is typically implemented with no moving parts. Instead, a phased array is made up of multiple transmitters at the same frequency but with different phase delay. A beam-like radiation pattern is achieved by the constructive and destructive interference of these multiple beams. The results of this approach can be viewed in polar coordinates or Cartesian coordinates.


Active sensors such as RADAR and LIDAR may output sparse representations of the environment. This sparsity can arise for a few reasons. For example, most active sensors have a minimum and maximum range at which they can reliably receive a returned signal. For example, a LIDAR sensor specifies a minimum usable return range of 0.9 meters and a maximum usable return range of 120 meters. When objects and the ground plane are outside of this range, no return is received, and therefore the returns comprise a sparse point cloud. As another example, even when objects are within range, occlusions such as rain or fog can lead to diffraction of a LIDAR sensor's laser beams. This can lead to fewer returns, which can cause the point cloud to be more sparse compared to the point clouds that are generated in dry weather.


In one particular embodiment, high-capacity sensors 112A refer to LIDAR sensors. The replacement sensors 112B can refer to sensors such as cameras, RADAR, lower-capacity LIDAR, and the like, that are each attached to various positions on the data collection vehicles, which may have smaller capacity than the high-capacity sensors in some aspect. The sensor collection system 150 provides collected training sensor data to the modeling system 130.



FIG. 3 is an example block diagram of an architecture of the model training system 140, in accordance with an embodiment. The model training system 140 shown in FIG. 3 includes a sensor quality module 313, a sensor simulation module 314, a reconstruction module 315, a detection module 316, a segmentation module 317, a control module 319, and a data synthesizing module 323. The model training system 140 also includes a sensor reading database 350 and a synthesized sensor readings database 355.


The sensor reading database 350 contains sensor data from high-capacity sensors and replacement sensors from the sensor collection system 150 that can be used by modules of the model training system 140 to train machine-learned models.


The data synthesizing module 325 generates synthetic data that represent sensor data of simulated environments from the perspective of sensors of the autonomous control system 110. The data synthesizing module 325 may generate synthetic sensor data in response to one or more requests from modules of the model training system 140. Specifically, the data synthesizing module 325 generates synthetic data by applying modifications to sensor data, or by simulating the sensor data itself to capture how sensor signals will interact with the environment given conditions of the simulated environments depending on the request. The sensor signals are generated based on models that capture how sensors behave in practice. For example, a synthetic LIDAR image of the simulated environment including a virtual puddle that partially occludes lane markings on the road may be generated based on an original LIDAR image of the road, in which reflectance intensities of the LIDAR sensor signals are adjusted according to the change in reflectance caused by the puddle based on behavior models of LIDAR sensors. As another example, a simulated environment of a road during precipitation may be generated based on the original image of the road, in which reflectance intensities and the depth of senor signals are attenuated depending on the degree of precipitation.


In one embodiment, the data synthesizing module 325 generates synthetic sensor data by representing the environment of a scene as a map, in which the ground plane, roads, and other landscape-related regions are identified in segments shaped, such as polygons. The environment may be represented in a set of sensor data that was captured by an actual sensor, or in a simulated virtual environment. The data synthesizing module 325 introduces objects and/or artifacts into the environment and may also animate different scenarios with the objects based on behavioral and physical models. For example, dangerous scenarios in which simulated pedestrians perform risky behavior, such as jaywalking, can be animated that are otherwise difficult to capture in the physical world. Based on the simulated scenes, the data synthesizing module 325 simulates sensor data that capture how different types of sensors would have perceived the environment if the scenes occurred in the physical world.


The sensor quality module 313 trains sensor quality models that receive sensor data and output information about the quality of data that the sensor(s) are producing. In one implementation, the sensor quality models produce a floating-point quality score in the range [0, 1] for each sensor input. If the sensor is unplugged or not installed, the quality score may be 0. If the sensor is operating with no degradation, the quality score may be 1. If the sensor is operating with degraded quality (e.g. the sensor's data acquisition ability is hampered by rain or by damaged hardware), then the quality score is a number between 0 and 1 that corresponds to the severity of the degradation. In another implementation, the sensor quality models output “no failure” if the sensor is working correctly, and it outputs the category of the problem if the sensor is not fully-functional. For example, the sensor quality models may output a category “rain” if it is raining, or “ice” if there is ice on the sensor, or “dark” if operating in low-light conditions, or “interference” if other active sensors are operating on the same wavelength, or “direct sunlight” if bright light is shining directly into the sensors. These outputs may be reported on both a per-sensor basis and/or a system-wide basis.


In one embodiment, the sensor quality module 313 trains one or more neural network models as the sensor quality models. Specifically, the sensor quality module 313 constructs a training data set that contains sensor data collected in a variety of weather and environmental conditions. Each instance of sensor data in the training data set is assigned a quality status label. For example, human annotators may assign a quality status label to each data sample, such as “rain,” “dark,” or “direct sunlight.” The sensor quality models are trained to determine the quality status of sensor data based on the relationship between sensor data and status labels in the training data set.



FIG. 4 illustrates a process of training sensor quality models, in accordance with an embodiment. As shown in FIG. 4, the sensor quality module 313 constructs training data that contain instances of sensor data and a set of target outputs corresponding to known quality scores or labels of each instance. Based on the training data, the sensor quality module 313 trains one or more neural network layers that relate sensor data with sensor quality scores.


In one embodiment, the sensor quality module 313 requests synthesized training data form the data synthesizing module 140 that synthesizes sensor data corresponding to various quality scores for the sensors. For example, the sensor quality module 313 may request synthesized sensor data that synthesize effects such as “ice” or “rain.” As another example, the sensor quality module 313 may request synthesized sensor data that simulate the sensor behavior in degraded conditions other than weather. In other embodiment, the training data for the data quality module 313 is obtained by simulation only.


The sensor simulation module 314 generates sensor simulation models that receive replacement sensor data and predict a high-capacity sensor data representation of the environment. In one embodiment, the sensor simulation module 314 trains one or more neural networks as the sensor simulation models to generate the simulated high-capacity sensor data. Specifically, the sensor simulation module 314 constructs a training data set that contains instances of replacement sensor data and corresponding instances of high-capacity sensor data such that the sensor simulation models can determine the relationship between data from a set of replacement sensors and data from high-capacity sensors. These can be obtained from the sensor collection system 150 that provides time-synchronized data samples from the high-capacity sensors 112A and the replacement sensors 112B. In one implementation, the sensor simulation module 314 trains models that use the output of the sensor quality as a cue when determining which sensors to prioritize when different sensors have conflicting results. For example, a sensor simulation model may select images from a subset of replacement sensors 112 that have a sensor quality score above a threshold to simulate high-capacity sensor data.


In one embodiment, the sensor simulation models are trained to remove environmental effects from the replacement sensors 112B. In such an instance, the sensor simulation module 314 may request synthesized sensor data from the data synthesizing module 325 that include environmental effects such as “ice” or “rain” in sensor data from replacement sensors 112B. The sensor simulation module 314 can then train the sensor simulation models based on the synthesized replacement sensor data and a set of target outputs corresponding to high-capacity sensor images such that the model can simulate high-capacity sensor data from replacement sensor data even during occurrence of environmental effects.


The reconstruction module 315 trains reconstruction models that receive missing or incomplete sensor data from a particular sensor and output reconstructed sensor data for that sensor with the help of data produced by other sensors. In certain scenarios, sensors fail to capture objects and scenery in the environment. For example, LIDAR signals are attenuated by rain or fog. Camera and LIDAR sensors are hampered by direct sunlight. Active sensors such as RADAR and LIDAR may be corrupted by other sensors that use the same wavelength, such as other vehicles using the same type of RADAR sensor that can potentially cause interference. As another example, LIDAR sensors can fail to receive returns signals from a car on the road because the car has dark-colored paint, and the dark paint absorbs many of the photons emitted by the LIDAR. In many cases, these scenarios can result in sensor data in which portions of the sensor data are incomplete or missing. The reconstruction models reconstruct portions of incomplete or missing data from a sensor based on information received from other sensors to generate a refined version of the sensor data with respect to the sensing characteristics of the sensor. For example, the reconstruction module 315 may reconstruct the incomplete information of the dark-colored car in the LIDAR point-cloud and fill in these points for the LIDAR sensor using mutual information from other sensors (e.g. camera).


In one implementation, the reconstruction module 315 trains one or more neural network models as the reconstruction models. The reconstruction module 315 constructs a training data set that contains instances of sensor data from a set of sensor data for a given scene in which sensor data from one or more sensors in the set of sensors are incomplete. Each instance in the training data also contains a set of target outputs that correspond to the instances of sensor data from the one or more sensors that are reconstructed without the incomplete portions. Based on the training data set, the reconstruction module 315 can train reconstruction models to refine incomplete sensor data based on sensor data from the set of other sensors. Specifically, the reconstruction module 315 may train one or more neural network models as the reconstruction models.


In one embodiment, the reconstruction module 315 constructs the training data set by removing portions of sensor data for one or more sensors. For example, the reconstruction module 315 may delete a random subset of data from sensor data of one or more sensors, either automatically or by human operation. For example, the reconstruction module 315 may omit random portions of images from RGB cameras for a vehicle having a LIDAR sensor, the RGB camera, and a RADAR sensor. The training data set can consist of instances of sensor data from the set of LIDAR, RGB camera, and RADAR sensors of scenes in which portions of the RGB camera images have been deleted. Each set of images may be paired with original images from the RGB camera that have no deleted portions.



FIG. 5 illustrates a process of training reconstruction models, in accordance with an embodiment. As shown in FIG. 5, the reconstruction module 315 constructs training data by deleting portions of sensor data from one or more sensors in a set of sensors. Each training data instance is paired with corresponding original sensor data without the missing portions. The reconstruction module 315 trains one or more neural network models that reconstruct missing portions in the sensor data of one or more sensors based on information provided by the other sensors.


In another embodiment, the reconstruction module 315 requests synthesized data from the data synthesizing module 325 to add artifacts into the sensor data. For example, the reconstruction module 315 may request synthesized sensor data that include data that reflect reduced image quality due to the simulated artifacts. For example, the reconstruction module 315 may request synthesized sensor data that simulate artifacts such as a dark-colored car, precipitation, and puddles on the road that generate incomplete sensor data in at least some portions of the image due to these artifacts. As another example, the synthesized sensor data may simulate snow on the road and direct sunlight shining into the sensors. In yet another embodiment, the synthesized sensor data can also reflect ideal data quality even with introduced artifacts. For example, the reconstruction module 315 may request synthesized sensor data that generate idealized LIDAR images given artifacts such as dark-colored cars, precipitation, and the like from the data synthesizing module 325. In such instances, the training data set may consist of instances of synthesized sensor data from a set of sensors that reflect the effect of artifacts on the one or more sensors, and corresponding instances of synthesized sensor data that simulate ideal sensor quality even in the presence of such artifacts.


The detection module 316 trains detection models that detect objects in the scene based on sensor data. In one embodiment, the detection models perform detection on collected or simulated high-capacity sensor data. In one instance, when the vehicle includes replacement sensors, the detection model is configured to receive simulated high-capacity sensor data from the sensor simulation module 314. In another instance, when the vehicle includes high-capacity sensors, the detection models are configured to receive the collected high-capacity sensor data, or in some cases, data that has been refined by the reconstruction module 315. Objects may include both stationary and moving items in the scenery of the physical environment. For example, stationary objects may include guard rails, road signs, or traffic cones. As another example, moving objects may include pedestrians, bicyclists, animals, or vehicles.


In one embodiment, the detection models detect objects using the following mechanism. First, the detection models identify regions of interest (ROIs) in the data which may contain objects. Next, the detection models determine which ROIs contain objects, and then it classifies the objects into categories such as guard rails, road signs, traffic cones, bicyclists, animals, or vehicles. The detection models may be convolutional neural network models to identify ROIs and classify objects. The detection models may perform further functionalities, such as tracking objects across multiple time steps of data.


In one embodiment, the detection module 316 constructs a training data set that contains instances of sensor data annotated with various objects such as cars, pedestrians, bicyclists, guard rails, and traffic signs. The detection module 316 trains the detection models that detect presence and location of specific categories of objects given an instance of sensor data. In one implementation, the objects in the training data set are labeled by human annotators. These annotations may be performed on top of the data from one or more sensors. For example, human annotators may label the objects within data collected from camera, LIDAR, RADAR, and/or other sensor types.


In another implementation, the detection module 316 may request training data in which additional objects are added and automatically annotated by the data synthesizing module 325. These objects may be rare or specialized objects (e.g. moose, alligators, traffic signs) or challenging optical illusions (e.g. pedestrians wearing silver-colored mirror-like clothing, billboards containing cars and bicycles). These objects are rendered on the sensors which have the objects in their field-of-view.


The segmentation module 317 trains segmentation models that semantically classify regions of the scene based on sensor data. In one embodiment, the segmentation models perform segmentation on the scene and, importantly, identifies regions of the sensor data that are drivable. In one implementation of this embodiment, the segmentation module 317 trains one or more neural networks to perform low-level semantic segmentation, which consists of classifying the type of object or surface that each point in the point cloud represents. Next, the segmentation models perform grouping or smoothing to create contiguous segments. The segmentation models further perform semantic analysis on the contiguous segments. For example, the road segmentation is further decomposed into lane-marking segments.


In one embodiment, the segmentation module 317 constructs a training data set that contains sensor data annotated with the precise borders of various segments such as the road surface, lane markings, cars, and off-road land. The segmentation module 317 trains the segmentation models that identify the type and precise border of each segment in the scene. In one implementation, the segments in the training data set are labeled by human annotators. These annotations may be performed on top of the data from one or more sensors. For example, human annotators may label the segments within data collected from camera, LIDAR, RADAR, and/or other sensor types.


In another implementation, the segmentation module 317 may request training data in which additional segments are added and automatically annotated by the data synthesizing module 325. These segments may be rare or specialized segments (e.g. unusual types of lane markings, debris in the road) or challenging optical illusions (e.g. a road displayed on a billboard, lane markings covered by pools of water). These segments are rendered on the sensors which have the segments in their field-of-view.


The control module 319 generates control models that determine the path that the robot or vehicle should follow, and it actuates the vehicle to follow the determined path. In one embodiment, the control models determine the path based on the objects and segments identified by the detection models and the segmentation models in the scene. The control models may be instantiated with a basic directive such as “safely make progress in the current lane, and change lanes or park on the shoulder if the current lane becomes unsafe,” or an advanced directive such as “drive to a specific street address.” The control models act on their directive by first plotting possible paths on the drivable terrain identified by the segmentation models. These paths may be identified using a motion planning algorithm such as Rapidly Exploring Random Tree (RRT) or A-Star. Next, the control models delete the paths that may conflict with objects on the road that are identified by the detection models. Then, the control models select the optimal path out of the current path set. Finally, the control models actuate the vehicle to follow the selected path. The control models may refresh its path list at a rate of once every few milliseconds.



FIG. 6 is an example block diagram of an architecture of the data synthesizing module 325, in accordance with an embodiment. The data synthesizing module 325 shown in FIG. 6 includes an environment modeling system 610, a behavior modeling system 620, and a sensor modeling system 630. The data synthesizing module 325 also includes an object database 650.


The environment modeling system 610 produces environments on which to simulate objects. Specifically, the environment modeling system 610 classifies regions of the environment, such as the ground plane, roads, sidewalks, and the like, to identify segments that objects can be placed on. The identified regions in the environment may be represented as a collection of points or as a collection of polygons. In one embodiment, when the data synthesis request is based on point-cloud sensor data of sensors that are collected by the sensor collection module 150, regions in the point-clouds are identified by segmentation models generated by the segmentation module 317. Human annotators may verify that the output of the semantic segmentation models are correct, and make edits to the segmentation output if necessary. In another embodiment, the environment modeling system 610 may simulate a virtual environment composed of different types of regions based on the received data synthesis request.


The object database 650 contains 3D models of objects, such as variants of pedestrians, vehicles, road debris, which can be placed into the scene.


The behavior modeling system 620 generates a scene by placing objects in the environment and modeling the behavioral motion of objects in the environment. The behavior modeling system 620 contains a behavior model for each object that is in the object database 650. In one implementation, the behavioral engine is parameterized such that “conservative” or “risky” behavior can be selected. For “risky” behavior (e.g. pedestrians that run into the road at random, cars that frequently run traffic lights), behaviors can be run in simulation that would be too dangerous to deliberately test in real (non-simulated) vehicles on real roads. The behavior modeling system 620 is also responsible for modeling natural forces such as gravity, as well as determining feasible movements and interactions of each object based on mass, momentum, and other properties in the environment.


The sensor modeling system 630 generates synthetic sensor data that simulate how sensors probe the scene constructed by the environment modeling system 610 and the behavior modeling system 620. In one instance, when the sensor is a camera with specific parameters such as focal length and field of view, the sensor modeling system 630 simulates the optics of the camera. A camera simulation has light sources (e.g. the position of the sun and any other lighting). In one implementation, the camera simulation is implemented by raytracing the path of the light from the light sources, through the environment, through the camera lens, and into the camera sensor.


In another instance, when the sensor is an active sensor, such as a LIDAR sensor, with specific limitations on range, resolution, and field-of-view, the sensor modeling system 630 simulates the signal intensity and range of the active sensor. The simulation can be implemented with raytracing such that the active sensor itself contains both the light source and the light detector. The sensor modeling system 630 can simulate the transmission of sensor signals in various directions, and the corresponding measurement of the reflected signals for each direction based on the interactions of the transmitted signal with objects placed in line with the signal. The limitations of the active sensor system, such as range, field-of-view, photons absorbed by dark objects, can be incorporated into the ray-tracing model.


In one embodiment, when artifacts are introduced into an already existing sensor data, the sensor modeling system 630 may choose to simulate sensor behavior for portions of the sensor data that correspond to the introduced artifacts, and modify the existing LIDAR image based on the simulated portion. For example, when a virtual puddle is simulated on an existing LIDAR image of a road, the sensor modeling system 630 may simulate sensor measurements only for LIDAR signals transmitted in a direction that would interact with the puddle. The sensor modeling system 630 can combine the simulated data with the existing LIDAR image to generate the synthesized image. For example, the sensor modeling system 630 can add the simulated data to a portion of the LIDAR image corresponding to the location of the virtual puddle, or replace the portion with the simulated data entirely.


In another implementation, the physics of the LIDAR is simulated in sufficient detail such that the limitations of the LIDAR, such as range, photons absorbed by dark objects result from the physics simulation. The sensor modeling system 630 can simulate sensor probing for other active sensors similarly to LIDAR sensors.


In another implementation, the sensor modeling system 630 refines synthetic LIDAR data that was generated using another approach. The sensor modeling system 630 performs this refinement using a convolutional neural network (CNN), deep neural network (DNN), generative adversarial network (GAN), or the like. This implementation is used when it is difficult to accurately simulate the physical characteristics of LIDAR, due to reasons such as those mentioned in the previous paragraph. As an example, the sensor modeling system 630 performs synthetic LIDAR refinement by first modeling the noise profile of a LIDAR module, using previously collected real sensor data. The sensor modeling system 630 then contributes realistic noise to synthetic LIDAR data.


In another instance, the sensor is a contemporary RADAR module. The RADAR module emits radio waves, the radio waves interact with the environment, and the RADAR module detects radio waves that return. The returns are initially represented as a raw waveform. In one implementation, the RADAR module has processing hardware that performs digital signal processing (DSP) algorithms such as a Fourier Transform to convert the raw waveform into a target list. A target list is stored as an array, where each array cell represents a quantized angular region (e.g. 125° to 126.5°) of the RADAR module's field of view. Each array cell contains information such as the range and/or trajectory of the object(s) in its quantized angular region. In one implementation, the sensor modeling system 630 simulates the physics of raw waveforms that are emitted and detected by the RADAR module. The physics of the RADAR is simulated in sufficient detail for the RADAR's behavior and limitations, such as resolution and sensitivity to clutter, emerge naturally from the simulation. This approach can model the RADAR's behavior accurately, but it can be quite computationally expensive.


In another implementation, the sensor modeling system 630 simulates the RADAR in a more computationally efficient way. If the sensor is a RADAR module with specific range, resolution, and field-of-view, then the RADAR simulation can be implemented by quantizing the output of the environment modeling system 410 and the behavior modeling system 630 into the quantized angular regions that are visible to the RADAR.


In another implementation, the sensor modeling system 630 simulates the RADAR using a learned model, which may be a CNN, DNN, GAN or the like. Given real or synthetic LIDAR as input, the learned model predicts the corresponding synthetic RADAR sensor data. This approach can simulate arbitrary RADAR modules, such as Range-Doppler maps and the like. As an example, a learned model is trained using real LIDAR and real RADAR data. To simulate synthetic RADAR data, the sensor modeling system 630 generates LIDAR data using any approach. Then, the sensor modeling system 630 uses the learned model to simulate a proprietary RADAR module from a vendor where there is no accurate physical model of the module.


The sensor modeling system 630 is also capable of simulating idealized sensors that are not limited by the constraints of current sensing technology. For example, when simulating a real-world camera, the simulated camera captures low-quality data when faced with darkness or direct sunlight. However, an idealized camera is not susceptible to these issues and provides high-quality imaging in all conditions. As another example, when simulating a real-world LIDAR sensor, the sensor experiences attenuation when faced with dark colored objects or scenery that is beyond the LIDAR sensor's range. However, the sensor modeling system 630 can simulate an idealized LIDAR sensor that is not susceptible to these issues. In one embodiment, the sensor modeling system 630 simulates an idealized LIDAR sensor as a raytracer that has infinite range and where all photons return to the detector. In another embodiment, the sensor modeling system 630 simulates a LIDAR sensor with infinite range.

Claims
  • 1. A method implemented by a system of one or more processors, the method comprising: accessing vehicle sensor data from a plurality of sensors during operation of one or more vehicles, the sensors being configured to detect information related to a real-world environment proximate to the vehicle;training a first machine learning model to output quality information assigned to input of the vehicle sensor data, wherein the quality information includes a category, of a plurality of categories, which is associated with the vehicle sensor data;generating synthesized sensor data which adjusts sensor data to simulate at least one of the categories in the sensor data; andtraining a second machine learning model based on the generated synthesized sensor data, wherein the second machine learning model is configured to provide autonomous or semi-autonomous control of a particular vehicle.
  • 2. The method of claim 1, wherein the quality information indicates a value selected from a range of values.
  • 3. The method of claim 2, wherein the synthesized data is generated to correspond with a particular value of the range of values.
  • 4. The method of claim 2, wherein based on an unplugging of the sensors, the quality information is assigned a value of zero.
  • 5. The method of claim 1, wherein interface indicates active sensors operating on a wavelength associated with at least one of the sensors.
  • 6. The method of claim 1, wherein the category indicates one or more of rain, ice, light-conditions, or interference.
  • 7. The method of claim 1, wherein the quality information is specific to individual sensors.
  • 8. A system comprising one or more processors and non-transitory computer storage media storing instructions that when executed by the one or more processors, cause the one or more processors to: access vehicle sensor data from a plurality of sensors during operation of one or more vehicles, the sensors being configured to detect information related to a real-world environment proximate to the vehicle;train a first machine learning model to output quality information assigned to input of the vehicle sensor data, wherein the quality information includes a category, of a plurality of categories, which is associated with the vehicle sensor data;generate synthesized sensor data which adjusts sensor data to simulate at least one of the categories in the sensor data; andtrain a second machine learning model based on the generated synthesized sensor data, wherein the second machine learning model is configured to provide autonomous or semi-autonomous control of a particular vehicle.
  • 9. The system of claim 8, wherein the quality information indicates a value selected from a range of values.
  • 10. The system of claim 9, wherein the synthesized data is generated to correspond with a particular value of the range of values.
  • 11. The system of claim 9, wherein based on an unplugging of the sensors, the quality information is assigned a value of zero.
  • 12. The system of claim 8, wherein interface indicates active sensors operating on a wavelength associated with at least one of the sensors.
  • 13. The system of claim 8, wherein the category indicates one or more of rain, ice, light-conditions, or interference.
  • 14. The system of claim 8, wherein the quality information is specific to individual sensors.
  • 15. Non-transitory computer storage media storing instructions that when executed by a system of one r more processors, cause the one or more processors to: access vehicle sensor data from a plurality of sensors during operation of one or more vehicles, the sensors being configured to detect information related to a real-world environment proximate to the vehicle;train a first machine learning model to output quality information assigned to input of the vehicle sensor data, wherein the quality information includes a category, of a plurality of categories, which is associated with the vehicle sensor data;generate synthesized sensor data which adjusts sensor data to simulate at least one of the categories in the sensor data; andtrain a second machine learning model based on the generated synthesized sensor data, wherein the second machine learning model is configured to provide autonomous or semi-autonomous control of a particular vehicle.
  • 16. The computer storage media of claim 15, wherein the quality information indicates a value selected from a range of values.
  • 17. The computer storage media of claim 16, wherein based on an unplugging of the sensors, the quality information is assigned a value of zero.
  • 18. The computer storage media of claim 15, wherein interface indicates active sensors operating on a wavelength associated with at least one of the sensors.
  • 19. The computer storage media of claim 15, wherein the category indicates one or more of rain, ice, light-conditions, or interference.
  • 20. The computer storage media of claim 15, wherein the quality information is specific to individual sensors.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of, and claims priority to, U.S. patent application Ser. No. 16/895,204 titled “DATA SYNTHESIS FOR AUTONOMOUS CONTROL SYSTEMS” and filed on Nov. 1, 2022. U.S. patent application Ser. No. 16/895,204 claims priority to, and is a continuation of, U.S. patent application Ser. No. 15/934,899 titled ‘DATA SYNTHESIS FOR AUTONOMOUS CONTROL SYSTEMS’ and filed on Mar. 23, 2018. U.S. patent application Ser. No. 15/934,899 claims the benefit of provisional U.S. Application No. 62/475,792, filed on Mar. 23, 2017. The above recited applications are hereby incorporated herein by reference in their entirety.

US Referenced Citations (597)
Number Name Date Kind
6882755 Silverstein et al. May 2005 B2
7209031 Nakai et al. Apr 2007 B2
7747070 Puri Jun 2010 B2
7904867 Burch et al. Mar 2011 B2
7974492 Nishijima Jul 2011 B2
8165380 Choi et al. Apr 2012 B2
8369633 Lu et al. Feb 2013 B2
8406515 Cheatle et al. Mar 2013 B2
8509478 Haas et al. Aug 2013 B2
8588470 Rodriguez et al. Nov 2013 B2
8744174 Hamada et al. Jun 2014 B2
8773498 Lindbergh Jul 2014 B2
8912476 Fogg et al. Dec 2014 B2
8913830 Sun et al. Dec 2014 B2
8928753 Han et al. Jan 2015 B2
8972095 Furuno et al. Mar 2015 B2
8976269 Duong Mar 2015 B2
9008422 Eid et al. Apr 2015 B2
9081385 Ferguson et al. Jul 2015 B1
9275289 Li et al. Mar 2016 B2
9586455 Sugai et al. Mar 2017 B2
9672437 McCarthy Jun 2017 B2
9710696 Wang et al. Jul 2017 B2
9738223 Zhang et al. Aug 2017 B2
9754154 Craig et al. Sep 2017 B2
9767369 Furman et al. Sep 2017 B2
9836895 Nygaard Dec 2017 B1
9965865 Agrawal et al. May 2018 B1
10133273 Linke Nov 2018 B2
10140252 Fowers et al. Nov 2018 B2
10140544 Zhao et al. Nov 2018 B1
10146225 Ryan Dec 2018 B2
10152655 Krishnamurthy et al. Dec 2018 B2
10167800 Chung et al. Jan 2019 B1
10169680 Sachdeva et al. Jan 2019 B1
10192016 Ng et al. Jan 2019 B2
10216189 Haynes Feb 2019 B1
10228693 Micks et al. Mar 2019 B2
10242293 Shim et al. Mar 2019 B2
10248121 VandenBerg, III Apr 2019 B2
10262218 Lee et al. Apr 2019 B2
10282623 Ziyaee et al. May 2019 B1
10296828 Viswanathan May 2019 B2
10303961 Stoffel et al. May 2019 B1
10310087 Laddha et al. Jun 2019 B2
10311312 Yu et al. Jun 2019 B2
10318848 Dijkman et al. Jun 2019 B2
10325178 Tang et al. Jun 2019 B1
10331974 Zia et al. Jun 2019 B2
10338600 Yoon et al. Jul 2019 B2
10343607 Kumon et al. Jul 2019 B2
10359783 Williams et al. Jul 2019 B2
10366290 Wang et al. Jul 2019 B2
10372130 Kaushansky et al. Aug 2019 B1
10373019 Nariyambut Murali et al. Aug 2019 B2
10373026 Kim et al. Aug 2019 B1
10380741 Yedla et al. Aug 2019 B2
10394237 Xu et al. Aug 2019 B2
10395144 Zeng et al. Aug 2019 B2
10402646 Klaus Sep 2019 B2
10402986 Ray et al. Sep 2019 B2
10414395 Sapp et al. Sep 2019 B1
10423934 Zanghi et al. Sep 2019 B1
10436615 Agarwal et al. Oct 2019 B2
10452905 Segalovitz et al. Oct 2019 B2
10460053 Olson et al. Oct 2019 B2
10467459 Chen et al. Nov 2019 B2
10468008 Beckman et al. Nov 2019 B2
10468062 Levinson et al. Nov 2019 B1
10470510 Koh et al. Nov 2019 B1
10474160 Huang et al. Nov 2019 B2
10474161 Huang et al. Nov 2019 B2
10474928 Sivakumar et al. Nov 2019 B2
10489126 Kumar et al. Nov 2019 B2
10489972 Atsmon Nov 2019 B2
10503971 Dang et al. Dec 2019 B1
10514711 Bar-Nahum et al. Dec 2019 B2
10528824 Zou Jan 2020 B2
10529078 Abreu et al. Jan 2020 B2
10529088 Fine et al. Jan 2020 B2
10534854 Sharma et al. Jan 2020 B2
10535191 Sachdeva et al. Jan 2020 B2
10542930 Sanchez et al. Jan 2020 B1
10546197 Shrestha et al. Jan 2020 B2
10546217 Albright et al. Jan 2020 B2
10552682 Jonsson et al. Feb 2020 B2
10559386 Neuman Feb 2020 B1
10565475 Lecue et al. Feb 2020 B2
10567674 Kirsch Feb 2020 B2
10568570 Sherpa et al. Feb 2020 B1
10572717 Zhu et al. Feb 2020 B1
10574905 Srikanth et al. Feb 2020 B2
10579058 Oh et al. Mar 2020 B2
10579063 Haynes et al. Mar 2020 B2
10579897 Redmon et al. Mar 2020 B2
10586280 McKenna et al. Mar 2020 B2
10591914 Palanisamy et al. Mar 2020 B2
10592785 Zhu et al. Mar 2020 B2
10599701 Liu Mar 2020 B2
10599930 Lee et al. Mar 2020 B2
10599958 He et al. Mar 2020 B2
10606990 Tuli et al. Mar 2020 B2
10609434 Singhai et al. Mar 2020 B2
10614344 Anthony et al. Apr 2020 B2
10621513 Deshpande et al. Apr 2020 B2
10627818 Sapp et al. Apr 2020 B2
10628432 Guo et al. Apr 2020 B2
10628686 Ogale et al. Apr 2020 B2
10628688 Kim et al. Apr 2020 B1
10629080 Kazemi et al. Apr 2020 B2
10636161 Uchigaito Apr 2020 B2
10636169 Estrada et al. Apr 2020 B2
10642275 Silva et al. May 2020 B2
10645344 Marman et al. May 2020 B2
10649464 Gray May 2020 B2
10650071 Asgekar et al. May 2020 B2
10652565 Zhang et al. May 2020 B1
10656657 Djuric et al. May 2020 B2
10657391 Chen et al. May 2020 B2
10657418 Marder et al. May 2020 B2
10657934 Kolen et al. May 2020 B1
10661902 Tavshikar May 2020 B1
10664750 Greene May 2020 B2
10671082 Huang et al. Jun 2020 B2
10671886 Price et al. Jun 2020 B2
10678244 Iandola et al. Jun 2020 B2
10678839 Gordon et al. Jun 2020 B2
10678997 Ahuja et al. Jun 2020 B2
10679129 Baker Jun 2020 B2
10685159 Su et al. Jun 2020 B2
10685188 Zhang et al. Jun 2020 B1
10692000 Surazhsky et al. Jun 2020 B2
10692242 Morrison et al. Jun 2020 B1
10693740 Coccia et al. Jun 2020 B2
10698868 Guggilla et al. Jun 2020 B2
10699119 Lo et al. Jun 2020 B2
10699140 Kench et al. Jun 2020 B2
10699477 Levinson et al. Jun 2020 B2
10713502 Tiziani Jul 2020 B2
10719759 Kutliroff Jul 2020 B2
10725475 Yang et al. Jul 2020 B2
10726264 Sawhney et al. Jul 2020 B2
10726279 Kim et al. Jul 2020 B1
10726374 Engineer et al. Jul 2020 B1
10732261 Wang et al. Aug 2020 B1
10733262 Miller et al. Aug 2020 B2
10733482 Lee et al. Aug 2020 B1
10733638 Jain et al. Aug 2020 B1
10733755 Liao et al. Aug 2020 B2
10733876 Moura et al. Aug 2020 B2
10740563 Dugan Aug 2020 B2
10740914 Xiao et al. Aug 2020 B2
10748062 Rippel et al. Aug 2020 B2
10748247 Paluri Aug 2020 B2
10751879 Li et al. Aug 2020 B2
10755112 Mabuchi Aug 2020 B2
10755575 Johnston et al. Aug 2020 B2
10757330 Ashrafi Aug 2020 B2
10762396 Vallespi et al. Sep 2020 B2
10768628 Martin et al. Sep 2020 B2
10768629 Song et al. Sep 2020 B2
10769446 Chang et al. Sep 2020 B2
10769483 Nirenberg et al. Sep 2020 B2
10769493 Yu et al. Sep 2020 B2
10769494 Xiao et al. Sep 2020 B2
10769525 Redding et al. Sep 2020 B2
10776626 Lin et al. Sep 2020 B1
10776673 Kim et al. Sep 2020 B2
10776939 Ma et al. Sep 2020 B2
10779760 Lee et al. Sep 2020 B2
10783381 Yu et al. Sep 2020 B2
10783454 Shoaib et al. Sep 2020 B2
10789402 Vemuri et al. Sep 2020 B1
10789544 Fiedel et al. Sep 2020 B2
10790919 Kolen et al. Sep 2020 B1
10796221 Zhang et al. Oct 2020 B2
10796355 Price et al. Oct 2020 B1
10796423 Goja Oct 2020 B2
10798368 Briggs et al. Oct 2020 B2
10803325 Bai et al. Oct 2020 B2
10803328 Bai et al. Oct 2020 B1
10803743 Abari et al. Oct 2020 B2
10805629 Liu et al. Oct 2020 B2
10809730 Chintakindi Oct 2020 B2
10810445 Kangaspunta Oct 2020 B1
10816346 Wheeler et al. Oct 2020 B2
10816992 Chen Oct 2020 B2
10817731 Vallespi et al. Oct 2020 B2
10817732 Porter et al. Oct 2020 B2
10819923 McCauley et al. Oct 2020 B1
10824122 Mummadi et al. Nov 2020 B2
10824862 Qi et al. Nov 2020 B2
10828790 Nemallan Nov 2020 B2
10832057 Chan et al. Nov 2020 B2
10832093 Taralova et al. Nov 2020 B1
10832414 Pfeiffer Nov 2020 B2
10832418 Karasev et al. Nov 2020 B1
10833785 O'Shea et al. Nov 2020 B1
10836379 Xiao et al. Nov 2020 B2
10838936 Cohen Nov 2020 B2
10839230 Charette et al. Nov 2020 B2
10839578 Coppersmith et al. Nov 2020 B2
10843628 Kawamoto et al. Nov 2020 B2
10845820 Wheeler Nov 2020 B2
10845943 Ansari et al. Nov 2020 B1
10846831 Raduta Nov 2020 B2
10846888 Kaplanyan et al. Nov 2020 B2
10853670 Sholingar et al. Dec 2020 B2
10853739 Truong et al. Dec 2020 B2
10860919 Kanazawa et al. Dec 2020 B2
10860924 Burger Dec 2020 B2
10867444 Russell et al. Dec 2020 B2
10871444 Al et al. Dec 2020 B2
10871782 Milstein et al. Dec 2020 B2
10872204 Zhu et al. Dec 2020 B2
10872254 Mangla et al. Dec 2020 B2
10872326 Garner Dec 2020 B2
10872531 Liu et al. Dec 2020 B2
10885083 Moeller-Bertram et al. Jan 2021 B2
10887433 Fu et al. Jan 2021 B2
10890898 Akella et al. Jan 2021 B2
10891715 Li Jan 2021 B2
10891735 Yang et al. Jan 2021 B2
10893070 Wang et al. Jan 2021 B2
10893107 Callari et al. Jan 2021 B1
10896763 Kempanna et al. Jan 2021 B2
10901416 Khanna et al. Jan 2021 B2
10901508 Laszlo et al. Jan 2021 B2
10902551 Mellado et al. Jan 2021 B1
10908068 Amer et al. Feb 2021 B2
10908606 Stein et al. Feb 2021 B2
10909368 Guo et al. Feb 2021 B2
10909453 Myers et al. Feb 2021 B1
10915783 Hallman et al. Feb 2021 B1
10917522 Segalis et al. Feb 2021 B2
10921817 Kangaspunta Feb 2021 B1
10922578 Banerjee et al. Feb 2021 B2
10924661 Vasconcelos et al. Feb 2021 B2
10928508 Swaminathan Feb 2021 B2
10929757 Baker et al. Feb 2021 B2
10930065 Grant et al. Feb 2021 B2
10936908 Ho et al. Mar 2021 B1
10937186 Wang et al. Mar 2021 B2
10943101 Agarwal et al. Mar 2021 B2
10943132 Wang et al. Mar 2021 B2
10943355 Fagg et al. Mar 2021 B2
11487288 Iandola et al. Nov 2022 B2
20030035481 Hahm Feb 2003 A1
20030146869 Lin et al. Aug 2003 A1
20050162445 Sheasby et al. Jul 2005 A1
20060072847 Chor et al. Apr 2006 A1
20060224533 Thaler Oct 2006 A1
20060280364 Ma et al. Dec 2006 A1
20070280528 Wellington et al. Dec 2007 A1
20090016571 Tijerina et al. Jan 2009 A1
20100106356 Trepagnier et al. Apr 2010 A1
20100118157 Kameyama May 2010 A1
20120109915 Kamekawa et al. May 2012 A1
20120110491 Cheung May 2012 A1
20120134595 Fonseca et al. May 2012 A1
20150104102 Carreira et al. Apr 2015 A1
20150317284 Takahashi Nov 2015 A1
20160132786 Balan et al. May 2016 A1
20160210382 Alaniz et al. Jul 2016 A1
20160210775 Alaniz et al. Jul 2016 A1
20160314224 Wei Oct 2016 A1
20160328856 Mannino et al. Nov 2016 A1
20170011281 Dihkman et al. Jan 2017 A1
20170123428 Levinson et al. May 2017 A1
20170158134 Shigemura Jun 2017 A1
20170206434 Nariyambut et al. Jul 2017 A1
20180012411 Richey et al. Jan 2018 A1
20180018527 Micks Jan 2018 A1
20180018590 Szeto et al. Jan 2018 A1
20180039853 Liu et al. Feb 2018 A1
20180067489 Oder et al. Mar 2018 A1
20180068459 Zhang et al. Mar 2018 A1
20180068540 Romanenko et al. Mar 2018 A1
20180074506 Branson Mar 2018 A1
20180121762 Han et al. May 2018 A1
20180150081 Gross et al. May 2018 A1
20180211403 Hotson et al. Jul 2018 A1
20180308012 Mummadi et al. Oct 2018 A1
20180314878 Lee et al. Nov 2018 A1
20180357511 Misra et al. Dec 2018 A1
20180374105 Azout et al. Dec 2018 A1
20190023277 Roger et al. Jan 2019 A1
20190025773 Yang et al. Jan 2019 A1
20190042894 Anderson Feb 2019 A1
20190042919 Peysakhovich et al. Feb 2019 A1
20190042944 Nair et al. Feb 2019 A1
20190042948 Lee et al. Feb 2019 A1
20190057314 Julian et al. Feb 2019 A1
20190065637 Bogdoll et al. Feb 2019 A1
20190072978 Levi Mar 2019 A1
20190079526 Vallespi et al. Mar 2019 A1
20190080602 Rice et al. Mar 2019 A1
20190095780 Zhong et al. Mar 2019 A1
20190095946 Azout et al. Mar 2019 A1
20190101914 Coleman et al. Apr 2019 A1
20190108417 Talagala et al. Apr 2019 A1
20190122111 Min et al. Apr 2019 A1
20190130255 Yim et al. May 2019 A1
20190145765 Luo et al. May 2019 A1
20190146497 Urtasun et al. May 2019 A1
20190147112 Gordon May 2019 A1
20190147250 Zhang et al. May 2019 A1
20190147254 Bai et al. May 2019 A1
20190147255 Homayounfar et al. May 2019 A1
20190147335 Wang et al. May 2019 A1
20190147372 Luo et al. May 2019 A1
20190158784 Ahn et al. May 2019 A1
20190180154 Orlov et al. Jun 2019 A1
20190185010 Ganguli et al. Jun 2019 A1
20190189251 Horiuchi et al. Jun 2019 A1
20190197357 Anderson et al. Jun 2019 A1
20190204842 Jafari et al. Jul 2019 A1
20190205402 Sernau et al. Jul 2019 A1
20190205667 Avidan et al. Jul 2019 A1
20190217791 Bradley et al. Jul 2019 A1
20190227562 Mohammadiha et al. Jul 2019 A1
20190228037 Nicol et al. Jul 2019 A1
20190230282 Sypitkowski et al. Jul 2019 A1
20190235499 Kazemi et al. Aug 2019 A1
20190236437 Shin et al. Aug 2019 A1
20190243371 Nister et al. Aug 2019 A1
20190244138 Bhowmick et al. Aug 2019 A1
20190250622 Nister et al. Aug 2019 A1
20190250626 Ghafarianzadeh et al. Aug 2019 A1
20190250640 O'Flaherty et al. Aug 2019 A1
20190258878 Koivisto et al. Aug 2019 A1
20190266418 Xu et al. Aug 2019 A1
20190266610 Ghatage et al. Aug 2019 A1
20190272446 Kangaspunta et al. Sep 2019 A1
20190276041 Choi et al. Sep 2019 A1
20190279004 Kwon et al. Sep 2019 A1
20190286652 Habbecke et al. Sep 2019 A1
20190286972 El Husseini et al. Sep 2019 A1
20190287028 St Amant et al. Sep 2019 A1
20190289281 Badrinarayanan et al. Sep 2019 A1
20190294177 Kwon et al. Sep 2019 A1
20190294975 Sachs Sep 2019 A1
20190311290 Huang et al. Oct 2019 A1
20190318099 Carvalho et al. Oct 2019 A1
20190325088 Dubey et al. Oct 2019 A1
20190325266 Klepper et al. Oct 2019 A1
20190325269 Bagherinezhad et al. Oct 2019 A1
20190325580 Lukac et al. Oct 2019 A1
20190325595 Stein et al. Oct 2019 A1
20190329790 Nandakumar et al. Oct 2019 A1
20190332875 Vallespi-Gonzalez et al. Oct 2019 A1
20190333232 Vallespi-Gonzalez et al. Oct 2019 A1
20190336063 Dascalu Nov 2019 A1
20190339989 Liang et al. Nov 2019 A1
20190340462 Pao et al. Nov 2019 A1
20190340492 Burger et al. Nov 2019 A1
20190340499 Burger et al. Nov 2019 A1
20190347501 Kim et al. Nov 2019 A1
20190349571 Herman et al. Nov 2019 A1
20190354782 Kee et al. Nov 2019 A1
20190354786 Lee et al. Nov 2019 A1
20190354808 Park et al. Nov 2019 A1
20190354817 Shlens et al. Nov 2019 A1
20190354850 Watson et al. Nov 2019 A1
20190370398 He et al. Dec 2019 A1
20190370575 Nandakumar et al. Dec 2019 A1
20190370935 Chang et al. Dec 2019 A1
20190373322 Rojas-Echenique et al. Dec 2019 A1
20190377345 Bachrach et al. Dec 2019 A1
20190377965 Totolos et al. Dec 2019 A1
20190378049 Widmann et al. Dec 2019 A1
20190378051 Widmann et al. Dec 2019 A1
20190382007 Casas et al. Dec 2019 A1
20190384303 Muller et al. Dec 2019 A1
20190384304 Towal et al. Dec 2019 A1
20190384309 Silva et al. Dec 2019 A1
20190384994 Frossard et al. Dec 2019 A1
20190385048 Cassidy et al. Dec 2019 A1
20190385360 Yang et al. Dec 2019 A1
20200004259 Gulino et al. Jan 2020 A1
20200004351 Marchant et al. Jan 2020 A1
20200012936 Lee et al. Jan 2020 A1
20200017117 Milton Jan 2020 A1
20200025931 Liang et al. Jan 2020 A1
20200026282 Choe et al. Jan 2020 A1
20200026283 Barnes et al. Jan 2020 A1
20200026992 Zhang et al. Jan 2020 A1
20200027210 Haemel et al. Jan 2020 A1
20200033858 Xiao Jan 2020 A1
20200033865 Mellinger et al. Jan 2020 A1
20200034665 Ghanta et al. Jan 2020 A1
20200034710 Sidhu et al. Jan 2020 A1
20200036948 Song Jan 2020 A1
20200039520 Misu et al. Feb 2020 A1
20200051550 Baker Feb 2020 A1
20200060757 Ben-Haim et al. Feb 2020 A1
20200065711 Clément et al. Feb 2020 A1
20200065879 Hu et al. Feb 2020 A1
20200069973 Lou et al. Mar 2020 A1
20200073385 Jobanputra et al. Mar 2020 A1
20200074230 Englard et al. Mar 2020 A1
20200086880 Poeppel et al. Mar 2020 A1
20200089243 Poeppel et al. Mar 2020 A1
20200089969 Lakshmi et al. Mar 2020 A1
20200090056 Singhal et al. Mar 2020 A1
20200097841 Petousis et al. Mar 2020 A1
20200098095 Borcs et al. Mar 2020 A1
20200103894 Cella et al. Apr 2020 A1
20200104705 Bhowmick et al. Apr 2020 A1
20200110416 Hong et al. Apr 2020 A1
20200117180 Cella et al. Apr 2020 A1
20200117889 Laput et al. Apr 2020 A1
20200117916 Liu Apr 2020 A1
20200117917 Yoo Apr 2020 A1
20200118035 Asawa et al. Apr 2020 A1
20200125844 She et al. Apr 2020 A1
20200125845 Hess et al. Apr 2020 A1
20200126129 Lkhamsuren et al. Apr 2020 A1
20200134427 Oh et al. Apr 2020 A1
20200134461 Chai et al. Apr 2020 A1
20200134466 Weintraub et al. Apr 2020 A1
20200134848 El-Khamy et al. Apr 2020 A1
20200143231 Fusi et al. May 2020 A1
20200143279 West et al. May 2020 A1
20200148201 King et al. May 2020 A1
20200149898 Felip et al. May 2020 A1
20200151201 Chandrasekhar et al. May 2020 A1
20200151619 Mopur et al. May 2020 A1
20200151692 Gao et al. May 2020 A1
20200158822 Owens et al. May 2020 A1
20200158869 Amirloo et al. May 2020 A1
20200159225 Zeng et al. May 2020 A1
20200160064 Wang et al. May 2020 A1
20200160104 Urtasun et al. May 2020 A1
20200160117 Urtasun et al. May 2020 A1
20200160178 Kar et al. May 2020 A1
20200160532 Urtasun et al. May 2020 A1
20200160558 Urtasun et al. May 2020 A1
20200160559 Urtasun et al. May 2020 A1
20200160598 Manivasagam et al. May 2020 A1
20200162489 Bar-Nahum et al. May 2020 A1
20200167438 Herring May 2020 A1
20200167554 Wang et al. May 2020 A1
20200174481 Van Heukelom et al. Jun 2020 A1
20200175326 Shen et al. Jun 2020 A1
20200175354 Volodarskiy et al. Jun 2020 A1
20200175371 Kursun Jun 2020 A1
20200175401 Shen Jun 2020 A1
20200183482 Sebot et al. Jun 2020 A1
20200184250 Oko Jun 2020 A1
20200184333 Oh Jun 2020 A1
20200192389 ReMine et al. Jun 2020 A1
20200193313 Ghanta et al. Jun 2020 A1
20200193328 Guestrin et al. Jun 2020 A1
20200202136 Shrestha et al. Jun 2020 A1
20200202196 Guo et al. Jun 2020 A1
20200209857 Djuric et al. Jul 2020 A1
20200209867 Valois et al. Jul 2020 A1
20200209874 Chen et al. Jul 2020 A1
20200210717 Hou et al. Jul 2020 A1
20200210769 Hou et al. Jul 2020 A1
20200210777 Valois et al. Jul 2020 A1
20200216064 du Toit et al. Jul 2020 A1
20200218722 Mai et al. Jul 2020 A1
20200218979 Kwon et al. Jul 2020 A1
20200223434 Campos et al. Jul 2020 A1
20200225758 Tang et al. Jul 2020 A1
20200226377 Campos et al. Jul 2020 A1
20200226430 Ahuja et al. Jul 2020 A1
20200238998 Dasalukunte et al. Jul 2020 A1
20200242381 Chao et al. Jul 2020 A1
20200242408 Kim et al. Jul 2020 A1
20200242511 Kale et al. Jul 2020 A1
20200245869 Sivan et al. Aug 2020 A1
20200249685 Elluswamy et al. Aug 2020 A1
20200250456 Wang et al. Aug 2020 A1
20200250515 Rifkin et al. Aug 2020 A1
20200250874 Assouline et al. Aug 2020 A1
20200257301 Weiser et al. Aug 2020 A1
20200257306 Nisenzon Aug 2020 A1
20200258057 Farahat et al. Aug 2020 A1
20200265247 Musk et al. Aug 2020 A1
20200272160 Djuric et al. Aug 2020 A1
20200272162 Hasselgren et al. Aug 2020 A1
20200272859 Lashyn et al. Aug 2020 A1
20200273231 Schied et al. Aug 2020 A1
20200279354 Klaiman Sep 2020 A1
20200279364 Sarkisian et al. Sep 2020 A1
20200279371 Wenzel et al. Sep 2020 A1
20200285464 Brebner Sep 2020 A1
20200286256 Houts et al. Sep 2020 A1
20200293786 Jia et al. Sep 2020 A1
20200293796 Sajjadi et al. Sep 2020 A1
20200293828 Wang et al. Sep 2020 A1
20200293905 Huang et al. Sep 2020 A1
20200294162 Shah Sep 2020 A1
20200294257 Yoo et al. Sep 2020 A1
20200294310 Lee et al. Sep 2020 A1
20200297237 Tamersoy et al. Sep 2020 A1
20200298891 Liang et al. Sep 2020 A1
20200301799 Manivasagam et al. Sep 2020 A1
20200302276 Yang et al. Sep 2020 A1
20200302291 Hong Sep 2020 A1
20200302627 Duggal et al. Sep 2020 A1
20200302662 Homayounfar et al. Sep 2020 A1
20200304441 Bradley et al. Sep 2020 A1
20200306640 Kolen et al. Oct 2020 A1
20200307562 Ghafarianzadeh et al. Oct 2020 A1
20200307563 Ghafarianzadeh et al. Oct 2020 A1
20200309536 Omari et al. Oct 2020 A1
20200309923 Bhaskaran et al. Oct 2020 A1
20200310442 Halder et al. Oct 2020 A1
20200311601 Robinson et al. Oct 2020 A1
20200312003 Borovikov et al. Oct 2020 A1
20200315708 Mosnier et al. Oct 2020 A1
20200320132 Neumann Oct 2020 A1
20200324073 Rajan et al. Oct 2020 A1
20200327192 Hackman et al. Oct 2020 A1
20200327443 Van et al. Oct 2020 A1
20200327449 Tiwari et al. Oct 2020 A1
20200327662 Liu et al. Oct 2020 A1
20200327667 Arbel et al. Oct 2020 A1
20200331476 Chen et al. Oct 2020 A1
20200334416 Vianu et al. Oct 2020 A1
20200334495 Al et al. Oct 2020 A1
20200334501 Lin et al. Oct 2020 A1
20200334551 Javidi et al. Oct 2020 A1
20200334574 Ishida Oct 2020 A1
20200337648 Saripalli et al. Oct 2020 A1
20200341466 Pham et al. Oct 2020 A1
20200342350 Madar et al. Oct 2020 A1
20200342548 Mazed et al. Oct 2020 A1
20200342652 Rowell et al. Oct 2020 A1
20200348909 Das Sarma et al. Nov 2020 A1
20200350063 Thornton et al. Nov 2020 A1
20200351438 Dewhurst et al. Nov 2020 A1
20200356107 Wells Nov 2020 A1
20200356790 Jaipuria et al. Nov 2020 A1
20200356864 Neumann Nov 2020 A1
20200356905 Luk et al. Nov 2020 A1
20200361083 Mousavian et al. Nov 2020 A1
20200361485 Zhu et al. Nov 2020 A1
20200364481 Kornienko et al. Nov 2020 A1
20200364508 Gurel et al. Nov 2020 A1
20200364540 Elsayed et al. Nov 2020 A1
20200364746 Longano et al. Nov 2020 A1
20200364953 Simoudis Nov 2020 A1
20200372362 Kim Nov 2020 A1
20200372402 Kursun et al. Nov 2020 A1
20200380362 Cao et al. Dec 2020 A1
20200380383 Kwong et al. Dec 2020 A1
20200393841 Frisbie et al. Dec 2020 A1
20200394421 Yu et al. Dec 2020 A1
20200394457 Brady Dec 2020 A1
20200394495 Moudgill et al. Dec 2020 A1
20200394813 Theverapperuma et al. Dec 2020 A1
20200396394 Zlokolica et al. Dec 2020 A1
20200398855 Thompson Dec 2020 A1
20200401850 Bazarsky et al. Dec 2020 A1
20200401886 Deng et al. Dec 2020 A1
20200402155 Kurian et al. Dec 2020 A1
20200402226 Peng Dec 2020 A1
20200410012 Moon et al. Dec 2020 A1
20200410224 Goel Dec 2020 A1
20200410254 Pham et al. Dec 2020 A1
20200410288 Capota et al. Dec 2020 A1
20200410751 Omari et al. Dec 2020 A1
20210004014 Sivakumar Jan 2021 A1
20210004580 Sundararaman et al. Jan 2021 A1
20210004611 Garimella et al. Jan 2021 A1
20210004663 Park et al. Jan 2021 A1
20210006835 Slattery et al. Jan 2021 A1
20210011908 Hayes et al. Jan 2021 A1
20210012116 Urtasun et al. Jan 2021 A1
20210012210 Sikka et al. Jan 2021 A1
20210012230 Hayes et al. Jan 2021 A1
20210012239 Arzani et al. Jan 2021 A1
20210015240 Elfakhri et al. Jan 2021 A1
20210019215 Neeter Jan 2021 A1
20210026360 Luo Jan 2021 A1
20210027112 Brewington et al. Jan 2021 A1
20210027117 McGavran et al. Jan 2021 A1
20210030276 Li et al. Feb 2021 A1
20210034921 Pinkovich et al. Feb 2021 A1
20210042575 Firner Feb 2021 A1
20210042928 Takeda et al. Feb 2021 A1
20210046954 Haynes Feb 2021 A1
20210049378 Gautam et al. Feb 2021 A1
20210049455 Kursun Feb 2021 A1
20210049456 Kursun Feb 2021 A1
20210049548 Grisz et al. Feb 2021 A1
20210049700 Nguyen et al. Feb 2021 A1
20210056114 Price et al. Feb 2021 A1
20210056306 Hu et al. Feb 2021 A1
20210056317 Golov Feb 2021 A1
20210056420 Konishi et al. Feb 2021 A1
20210056701 Vranceanu et al. Feb 2021 A1
Foreign Referenced Citations (244)
Number Date Country
2019261735 Jun 2020 AU
2019201716 Oct 2020 AU
110599537 Dec 2010 CN
102737236 Oct 2012 CN
103366339 Oct 2013 CN
104835114 Aug 2015 CN
103236037 May 2016 CN
103500322 Aug 2016 CN
106419893 Feb 2017 CN
106504253 Mar 2017 CN
107031600 Aug 2017 CN
107169421 Sep 2017 CN
107507134 Dec 2017 CN
107885214 Apr 2018 CN
108122234 Jun 2018 CN
107133943 Jul 2018 CN
107368926 Jul 2018 CN
105318888 Aug 2018 CN
108491889 Sep 2018 CN
108647591 Oct 2018 CN
108710865 Oct 2018 CN
105550701 Nov 2018 CN
108764185 Nov 2018 CN
108845574 Nov 2018 CN
108898177 Nov 2018 CN
109086867 Dec 2018 CN
107103113 Jan 2019 CN
109215067 Jan 2019 CN
109359731 Feb 2019 CN
109389207 Feb 2019 CN
109389552 Feb 2019 CN
106779060 Mar 2019 CN
109579856 Apr 2019 CN
109615073 Apr 2019 CN
106156754 May 2019 CN
106598226 May 2019 CN
106650922 May 2019 CN
109791626 May 2019 CN
109901595 Jun 2019 CN
109902732 Jun 2019 CN
109934163 Jun 2019 CN
109948428 Jun 2019 CN
109949257 Jun 2019 CN
109951710 Jun 2019 CN
109975308 Jul 2019 CN
109978132 Jul 2019 CN
109978161 Jul 2019 CN
110060202 Jul 2019 CN
110069071 Jul 2019 CN
110084086 Aug 2019 CN
110096937 Aug 2019 CN
110111340 Aug 2019 CN
110135485 Aug 2019 CN
110197270 Sep 2019 CN
110310264 Oct 2019 CN
110321965 Oct 2019 CN
110334801 Oct 2019 CN
110399875 Nov 2019 CN
110414362 Nov 2019 CN
110426051 Nov 2019 CN
110473173 Nov 2019 CN
110516665 Nov 2019 CN
110543837 Dec 2019 CN
110569899 Dec 2019 CN
110599864 Dec 2019 CN
110619282 Dec 2019 CN
110619283 Dec 2019 CN
110619330 Dec 2019 CN
110659628 Jan 2020 CN
110688992 Jan 2020 CN
107742311 Feb 2020 CN
110751280 Feb 2020 CN
110826566 Feb 2020 CN
107451659 Apr 2020 CN
108111873 Apr 2020 CN
110956185 Apr 2020 CN
110966991 Apr 2020 CN
111027549 Apr 2020 CN
111027575 Apr 2020 CN
111047225 Apr 2020 CN
111126453 May 2020 CN
111158355 May 2020 CN
107729998 Jun 2020 CN
108549934 Jun 2020 CN
111275129 Jun 2020 CN
111275618 Jun 2020 CN
111326023 Jun 2020 CN
111428943 Jul 2020 CN
111444821 Jul 2020 CN
111445420 Jul 2020 CN
111461052 Jul 2020 CN
111461053 Jul 2020 CN
111461110 Jul 2020 CN
110225341 Aug 2020 CN
111307162 Aug 2020 CN
111488770 Aug 2020 CN
111539514 Aug 2020 CN
111565318 Aug 2020 CN
111582216 Aug 2020 CN
111598095 Aug 2020 CN
108229526 Sep 2020 CN
111693972 Sep 2020 CN
106558058 Oct 2020 CN
107169560 Oct 2020 CN
107622258 Oct 2020 CN
111767801 Oct 2020 CN
111768002 Oct 2020 CN
111783545 Oct 2020 CN
111783971 Oct 2020 CN
111797657 Oct 2020 CN
111814623 Oct 2020 CN
111814902 Oct 2020 CN
111860499 Oct 2020 CN
111881856 Nov 2020 CN
111882579 Nov 2020 CN
111897639 Nov 2020 CN
111898507 Nov 2020 CN
111898523 Nov 2020 CN
111899227 Nov 2020 CN
112101175 Dec 2020 CN
112101562 Dec 2020 CN
112115953 Dec 2020 CN
111062973 Jan 2021 CN
111275080 Jan 2021 CN
112183739 Jan 2021 CN
112232497 Jan 2021 CN
112288658 Jan 2021 CN
112308095 Feb 2021 CN
112308799 Feb 2021 CN
112313663 Feb 2021 CN
112329552 Feb 2021 CN
112348783 Feb 2021 CN
111899245 Mar 2021 CN
202017102235 May 2017 DE
202017102238 May 2017 DE
102017116017 Jan 2019 DE
102018130821 Jun 2020 DE
102019008316 Aug 2020 DE
1215626 Sep 2008 EP
2228666 Sep 2012 EP
2420408 May 2013 EP
2723069 Apr 2014 EP
2741253 Jun 2014 EP
3115772 Jan 2017 EP
2618559 Aug 2017 EP
3285485 Feb 2018 EP
2863633 Feb 2019 EP
3113080 May 2019 EP
3525132 Aug 2019 EP
3531689 Aug 2019 EP
3537340 Sep 2019 EP
3543917 Sep 2019 EP
3608840 Feb 2020 EP
3657387 May 2020 EP
2396750 Jun 2020 EP
3664020 Jun 2020 EP
3690712 Aug 2020 EP
3690742 Aug 2020 EP
3722992 Oct 2020 EP
3690730 Nov 2020 EP
3739486 Nov 2020 EP
3501897 Dec 2020 EP
3751455 Dec 2020 EP
3783527 Feb 2021 EP
2402572 Aug 2005 GB
2548087 Sep 2017 GB
2577485 Apr 2020 GB
2517270 Jun 2020 GB
2578262 Aug 1998 JP
3941252 Jul 2007 JP
4282583 Jun 2009 JP
4300098 Jul 2009 JP
2015004922 Jan 2015 JP
5863536 Feb 2016 JP
6044134 Dec 2016 JP
6525707 Jun 2019 JP
2019101535 Jun 2019 JP
2020101927 Jul 2020 JP
2020173744 Oct 2020 JP
100326702 Feb 2002 KR
101082878 Nov 2011 KR
101738422 May 2017 KR
101969864 Apr 2019 KR
101996167 Jul 2019 KR
102022388 Aug 2019 KR
102043143 Nov 2019 KR
102095335 Mar 2020 KR
102097120 Apr 2020 KR
1020200085490 Jul 2020 KR
102189262 Dec 2020 KR
1020200142266 Dec 2020 KR
200630819 Sep 2006 TW
I294089 Mar 2008 TW
I306207 Feb 2009 TW
WO 02052835 Jul 2002 WO
WO 16032398 Mar 2016 WO
WO 16048108 Mar 2016 WO
WO 16207875 Dec 2016 WO
WO 17158622 Sep 2017 WO
WO 19005547 Jan 2019 WO
WO 19067695 Apr 2019 WO
WO 19089339 May 2019 WO
WO 19092456 May 2019 WO
WO 19099622 May 2019 WO
WO 19122952 Jun 2019 WO
WO 19125191 Jun 2019 WO
WO 19126755 Jun 2019 WO
WO 19144575 Aug 2019 WO
WO 19182782 Sep 2019 WO
WO 19191578 Oct 2019 WO
WO 19216938 Nov 2019 WO
WO 19220436 Nov 2019 WO
WO 20006154 Jan 2020 WO
WO 20012756 Jan 2020 WO
WO 20025696 Feb 2020 WO
WO 20034663 Feb 2020 WO
WO 20056157 Mar 2020 WO
WO 20076356 Apr 2020 WO
WO 20097221 May 2020 WO
WO 20101246 May 2020 WO
WO 20120050 Jun 2020 WO
WO 20121973 Jun 2020 WO
WO 20131140 Jun 2020 WO
WO 20139181 Jul 2020 WO
WO 20139355 Jul 2020 WO
WO 20139357 Jul 2020 WO
WO 20142193 Jul 2020 WO
WO 20146445 Jul 2020 WO
WO 20151329 Jul 2020 WO
WO 20157761 Aug 2020 WO
WO 20163455 Aug 2020 WO
WO 20167667 Aug 2020 WO
WO 20174262 Sep 2020 WO
WO 20177583 Sep 2020 WO
WO 20185233 Sep 2020 WO
WO 20185234 Sep 2020 WO
WO 20195658 Oct 2020 WO
WO 20198189 Oct 2020 WO
WO 20198779 Oct 2020 WO
WO 20205597 Oct 2020 WO
WO 20221200 Nov 2020 WO
WO 20240284 Dec 2020 WO
WO 20260020 Dec 2020 WO
WO 20264010 Dec 2020 WO
Non-Patent Literature Citations (3)
Entry
PCT Invitation to Pay Additional Fees, PCT Application No. PCT/US17/68567, Mar. 6, 2018, 2 pages.
PCT International Search Report and Written Opinion, PCT Application No. PCT/US17/68567, dated May 1, 2018, 19 pages.
PCT International Search Report and Written Opinion, PCT Application No. PCT/US18/24197, dated Jun. 6, 2018, 15 pages.
Related Publications (1)
Number Date Country
20230177819 A1 Jun 2023 US
Provisional Applications (1)
Number Date Country
62475792 Mar 2017 US
Continuations (2)
Number Date Country
Parent 16895204 Jun 2020 US
Child 18050859 US
Parent 15934899 Mar 2018 US
Child 16895204 US