This application relates to the field of electronic technologies, and in particular, to a data transmission cable and a related device.
A mobile industry processor interface (MIPI) bus is a data transmission interface technology used for communication between chips. Currently, applications (including communication between chips such as a camera, a display, and a memory) of the MIPI bus in a terminal field are increasingly widespread. MIPI C-PHY is a serial interface technology based on a three-wire three-level coding scheme and an embedded clock mechanism, and a current C-PHY interface rate reaches 10.26 Gbps. With a complete ecological industry chain and excellent technical features such as high bandwidth and low power consumption, a MIPI bus technology is to be widely used on a chip of a terminal device in a long time to come, and is to become a mainstream standard interface of chip manufacturers such as Sony, Samsung, and Qualcomm.
A high-speed MIPI signal has strict requirements on link loss and electromagnetic interference. If the loss is excessively high and the interference is excessively large in a transmission process, signal transmission quality and a signal transmission distance are affected, and consequently, signal decoding fails. As a MIPI C-PHY signal rate increases from 7.98 Gbps to 10.26 Gbps, a MIPI bus of a same length is increasingly affected by link loss and signal interference. Therefore, a technology is required to resolve a problem that the MIPI bus has poor transmission quality and a short transmission distance and interferes with another signal cable.
Embodiments of this application provide a data transmission cable and a related device, to resolve a problem that a MIPI bus has poor transmission quality and a short transmission distance and interferes with another signal cable.
According to a first aspect, an embodiment of this application provides a data transmission cable, and the data transmission cable includes:
Optionally, a cross section of the ground cable is annular, and cross sections of the at least three signal cables are circular.
Optionally, the at least three signal cables are disposed in parallel.
Optionally, impedance of each signal cable is greater than or equal to 45 ohms and is less than or equal to 55 ohms.
Optionally, the at least three signal cables are three signal cables, and the three signal cables are disposed on the inner side of the ground cable in rotationally symmetrical distribution.
Optionally, the filling medium is a flexible material, and the flexible material is preferably polyethylene.
Optionally, the data transmission cable further includes a first protective layer, and the first protective layer covers the ground cable.
Optionally, the first protective layer is an insulating plastic material.
According to a second aspect, an embodiment of this application provides an electronic device. The electronic device includes a camera module, a device mainboard, and a transmission cable, the device mainboard includes an image processor, the transmission cable includes a second protective layer and at least two data transmission cables according to the first aspect, and the second protective layer covers the data transmission cables; and
Optionally, the transmission cable further includes a working voltage transmission cable and a control signal transmission cable, and the working voltage transmission cable and the control signal transmission cable are disposed in the second protective layer.
The device mainboard provides a working voltage for the camera module by using the working voltage transmission cable.
The device mainboard further transmits a control signal to the camera module by using the control signal transmission cable.
Optionally, the working voltage includes at least one of the following: an analog voltage AVDD, a digital voltage DVDD, a voice coil motor voltage VCM_VDD, a drive chip voltage DRV_VDD, or an interface circuit voltage DOVDD.
Optionally, the control signal includes at least one of the following: a reset signal RST, a clock signal CLK, or an inter-integrated circuit I2C bus.
Optionally, a cross section of the transmission cable is rectangular or circular.
Optionally, the working voltage transmission cable and the control signal transmission cable are jointly disposed on one side of the data transmission cable, and the working voltage transmission cable and the control signal transmission cable are disposed side by side.
Optionally, the working voltage transmission cable and the control signal transmission cable are separately disposed on two sides of a connection line of the at least two data transmission cables.
It may be learned that, in embodiments of this application, the data transmission cable includes the signal bundle, the ground cable, and the filling medium, and the at least three signal cables included in the signal bundle are disposed at intervals and pairwise signal cables form a differential pair signal cable, so that at least three groups of differential data signals can be transmitted, long-distance MIPI C-PHY data signal transmission is implemented, and signal transmission quality is improved. The ground cable encircles and covers the signal bundle. In addition to transmitting the ground signal, the signal bundle may be isolated from a signal bundle of another data transmission cable, so that interference caused by an external signal cable to the signal cable inside the data transmission cable is reduced. The filling medium is disposed in the space on the inner side of the ground cable except the signal cable, so that mutual interference between the signal cables inside the data transmission cable is reduced.
These aspects or other aspects of this application are clearer and more comprehensible in descriptions of the following embodiments.
To describe the technical solutions in embodiments of this application or in the conventional technology more clearly, the following briefly introduces the accompanying drawings used in describing embodiments or the conventional technology. It is clear that the accompanying drawings in the following descriptions show some embodiments of this application, and a person of ordinary skill in the art may still derive other drawings from these accompanying drawings without creative efforts.
To make a person skilled in the art understand the technical solutions in this application better, the following clearly describes the technical solutions in embodiments of this application with reference to the accompanying drawings in embodiments of this application. It is clear that the described embodiments are merely a part rather than all of embodiments of this application. All other embodiments obtained by a person of ordinary skill in the art based on embodiments of this application without creative efforts shall fall within the protection scope of this application.
Details are separately described in the following.
In the specification, claims, and accompanying drawings of this application, the terms “first”, “second”, “third”, “fourth” and so on are intended to distinguish between different objects but do not indicate a particular order. In addition, terms “include”, “have”, and any other variant thereof are intended to cover non-exclusive inclusion. For example, a process, a method, a system, a product, or a device that includes a series of steps or units is not limited to the listed steps or units, but optionally further includes an unlisted step or unit, or optionally further includes another inherent step or unit of the process, the method, the product, or the device.
Mentioning an “embodiment” in the specification means that a particular characteristic, structure, or feature described with reference to the embodiment may be included in at least one embodiment of this application. The phrase shown in various locations in the specification may not necessarily refer to a same embodiment, and is not an independent or optional embodiment exclusive from another embodiment. It is explicitly and implicitly understood by a person skilled in the art that embodiments described in the specification may be combined with another embodiment.
In the following, some terms in this application are described, to help a person skilled in the art have a better understanding.
Refer to
Therefore, the foregoing solution has the following three disadvantages:
First, the MIPI signal is affected by loss of the PCB cable, and a transmission distance is usually within 30 cm, and therefore, a long-distance application scenario such as a smart screen, vehicle mounting, and security cannot be met.
Second, a MIPI high-speed signal is sensitive to the loss of the PCB cable, and consequently, signal transmission quality is poor (for example, there is a problem such as stripes in a photo).
Third, because the MIPI signal has a high transmission rate, electromagnetic interference generated by the MIPI signal is large, and the MIPI signal is also susceptible to interference from another signal, working stability of a device is affected (for example, a display screen blurs).
It can be learned that in this solution, because the signal cables P and N can form only one pair of differential signals, only one group of differential signals can be transmitted. However, during transmission of a C-PHY signal, three cables of this type need to be used for transmission, and there is a redundant cable, and consequently, a relatively large volume is occupied.
To resolve the foregoing problem, an embodiment of this application provides a data transmission cable and a related device. Refer to the following apparatus-side embodiment.
Refer to
It may be learned that, in this embodiment of this application, the data transmission cable includes the signal bundle, the ground cable, and the filling medium, and the at least three signal cables included in the signal bundle are disposed at intervals and pairwise signal cables form a differential pair signal cable, so that at least three groups of differential data signals can be transmitted, long-distance MIPI C-PHY data signal transmission is implemented, and signal transmission quality is improved. The ground cable encircles and covers the signal bundle. In addition to transmitting the ground signal, the signal bundle may be isolated from a signal bundle of another data transmission cable, so that interference caused by an external signal cable to the signal cable inside the data transmission cable is reduced. The filling medium is disposed in the space on the inner side of the ground cable except the signal cable, so that mutual interference between the signal cables inside the data transmission cable is reduced.
Optionally, a cross section of the ground cable 120 is annular, and cross sections of the at least three signal cables are circular.
Optionally, the cross sections of the at least three signal cables may alternatively be a square, a rectangle, a circular arc, or another shape. This is not limited herein.
Optionally, the at least three signal cables may be disposed in parallel.
Optionally, the at least three signal cables may alternatively be spirally wound around a same axis.
When the at least three signal cables are disposed in parallel, distances between the at least three signal cables may be equal or unequal. This is not limited herein.
The axis may be an axis in which a center of a circle is located, or may be an axis in which any point in a circle is located. This is not limited herein.
Optionally, impedance of each signal cable is greater than or equal to 45 ohms and is less than or equal to 55 ohms.
Optionally, the at least three signal cables are three signal cables, and the three signal cables are disposed on the inner side of the ground cable in rotationally symmetrical distribution.
It should be noted that, if there are three signal cables, an angle of rotational symmetry is 120°; if there are four signal cables, an angle of rotational symmetry is 90°; if there are five signal cables, an angle of rotational symmetry is 72°; and so on. No further example is provided.
Optionally, the filling medium 130 is a flexible material, and the flexible material is preferably polyethylene.
Optionally, the data transmission cable 100 further includes a first protective layer 140, and the first protective layer covers the ground cable 120.
Optionally, the first protective layer 140 is an insulating plastic material.
The camera module 210 transmits image data to the image processor 221 by using the at least two foregoing data transmission cables 100.
It may be learned that, in this embodiment of this application, a plurality of groups of signals of different types can be transmitted between the camera module and the device mainboard, interference between different signal cables is reduced through shielding protection, and link loss is reduced through transmission cable impedance matching, so that long-distance transmission of a high-speed signal is implemented.
Optionally, the transmission cable 230 further includes a working voltage transmission cable 232 and a control signal transmission cable 233, and the working voltage transmission cable 232 and the control signal transmission cable 233 are disposed in the second protective layer 231.
The device mainboard 220 provides a working voltage for the camera module 210 by using the working voltage transmission cable 232.
The device mainboard 220 further transmits a control signal to the camera module 210 by using the control signal transmission cable 233.
Optionally, the working voltage includes at least one of the following: an analog voltage AVDD, a digital voltage DVDD, a voice coil motor voltage VCM_VDD, a drive chip voltage DRV_VDD, or an interface circuit voltage DOVDD.
The AVDD is an analog voltage required by working of the camera module, the DVDD is a digital voltage required by working of the image sensor, the VCM_VDD is a voltage required by working of a voice coil motor, the DRV_VDD is a voltage required by working of a drive chip, and the DOVDD is a digital voltage required by working of a data input/output module.
Optionally, the control signal includes at least one of the following: a reset signal RST, a clock signal CLK, or an inter-integrated circuit (I2C) bus.
RST is an abbreviation of RESET. The RESET signal is usually used in a circuit with a CPU, and means resetting and initialization. During power-on, the circuit needs to be initialized by using the RESET signal. When a working status of the circuit is abnormal and is shut down, the circuit also needs to be restarted by using the RESET signal.
CLK is an abbreviation of CLOCK, and is a shift pulse provided for a shift register, and each pulse enables data to be shifted in or out by one bit. Data on a data interface needs to be coordinated with the clock signal before the data is normally transmitted. A frequency of a data signal needs to be ½ of a frequency of the clock signal.
I2C is a simple bidirectional two-wire synchronous serial bus developed by Philips. The I2C requires only two wires to transmit information between components on the bus. The I2C includes serial data (SDA) and a serial clock (SCL).
Optionally, a cross section of the transmission cable 230 is rectangular or circular.
Optionally, the working voltage transmission cable 232 and the control signal transmission cable 233 are jointly disposed on one side of the data transmission cable 100, and the working voltage transmission cable 232 and the control signal transmission cable 233 are disposed side by side.
Optionally, the working voltage transmission cable 232 and the control signal transmission cable 233 are separately disposed on two sides of a connection line of the at least two data transmission cables 100.
Embodiments of the present invention are described in detail above. The principle and implementation of the present invention are described herein through specific examples. The description about embodiments of the present invention is merely provided to help understand the method and core ideas of the present invention. In addition, a person of ordinary skill in the art can make variations and modifications to the present invention in terms of the specific implementations and application scopes according to the ideas of the present invention. Therefore, the content of specification shall not be construed as a limit to the present invention.
Number | Date | Country | Kind |
---|---|---|---|
202010409589.6 | May 2020 | CN | national |
This application is a continuation of International Application No. PCT/CN2021/093549, filed on May 13, 2021, which claims priority to Chinese Patent Application No. 202010409589.6, filed on May 14, 2020. The disclosures of the aforementioned applications are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2021/093549 | May 2021 | US |
Child | 17985333 | US |