Electromagnetic (EM) telemetry in drilling operation environments uses a drill pipe and a formation in which a well bore is drilled as two conductive paths for propagating an electromagnetic field. Owing in part to high conductivity of the formation and the drill pipe, leakage currents and the skin effect result in a usable bandwidth that is in the range of less than 50 Hz; typically 5-25 Hz.
Some disadvantages of such EM telemetry includes shunt losses back to the drill pipe from the formation, series resistance through earth formations, and field dispersion that results from lateral spreading out of conduction in the formation. These factors negatively affect signal strength and limit the distance of effective signal propagation.
Some embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings. In the drawings, like reference numerals indicate like elements. In some instances, a single reference numeral may be used in different drawings to indicate two or more distinct, non-identical embodiments or variations of a particular element or component in the drawings:
The following detailed description refers to the accompanying drawings that depict various details of examples selected to show how the present invention may be practiced. The discussion addresses various examples of the inventive subject matter at least partially in reference to these drawings, and describes the depicted embodiments in sufficient detail to enable those skilled in the art to practice the invention. Many other embodiments may be utilized for practicing the inventive subject matter other than the illustrative examples discussed herein, and structural and operational changes in addition to the alternatives specifically discussed herein may be made without departing from the scope of the inventive subject matter.
In this description, references to “one embodiment” or “an embodiment,” or to “one example” or “an example” are not intended necessarily to refer to the same embodiment or example; however, neither are such embodiments mutually exclusive, unless so stated or as will be readily apparent to those of ordinary skill in the art having the benefit of this disclosure. Thus, a variety of combinations and/or integrations of the embodiments and examples described herein may be included, as well as further embodiments and examples as defined within the scope of all claims based on this disclosure, as well as all legal equivalents of such claims.
In accordance with one embodiment, a system is provided that comprises a drill string extending along at least part of a wellbore, the drill string comprising drill pipe having a tubular wall that is of electrically conductive material and that defines an interior passage extending along the drill string to convey drilling fluid. The drill string provides a signal transmission line that comprises an outer conductive path formed by the tubular wall of the drill pipe, and an internal conductive path extending along the interior passage, the internal conductive path being substantially electrically insulated from the outer conductive path. A transmitter is coupled to the transmission line to transmit a data signal along the transmission line.
The drill pipe may thus have an insulation layer that provides a dielectric insulator on its radially inner cylindrical surface, to isolate the electrically conductive material of the drill pipe's tubular wall from the internal conductive path provided in the interior passage. Such electrical insulation between the internal conductive path and the outer conductive path allows the two paths of the transmission line to be connected together in series by the transmitter, so that application or induction of an alternating electrical current in the resulting circuit causes propagation along the transmission line of associated voltage differences (and therefore of a data transmission signal) over the conductive paths. The transmission line thus provides a hybrid signal propagation path.
As used herein, the term “interior passage” of the drill pipe or the drill string means a bore extending lengthwise through the drill pipe, so that the radially outer boundary of the interior passage is defined by a radially inner cylindrical surface of the drill pipe's tubular wall of conductive material, typically metal. The interior passage provides a fluid conduit that may, as used herein, have a smaller inner diameter than the interior passage of the drill pipe due to the provision of elements such as an insulating layer, a dielectric insulator, a conductor segment, a conductive coating, other structural conductor elements, a protection layer, a liner, or the like on the radially cylindrical inner surface of the drill pipe. Such elements are understood to be located in the interior passage of the drill pipe and to be distinct from the drill pipe's tubular wall. Such elements are further not necessarily located in the fluid conduit, even though some of these elements may be exposed to drilling fluid in the fluid conduit.
At least part of the internal conductive path may comprise drilling fluid in the interior passage. In some embodiments, the internal conductive path may comprise no structural conductors or structural conductor elements attached to the interior cylindrical surface of the drill pipe, so that the internal conductive path is primarily provided by drilling fluid in the drill string. With a structural conductor or structural conductor element is meant a component that is of solid conductive material, as opposed to a fluid or liquid material. Such structural conductors may include coated layers, metal liners, wires, or the like.
The internal conductive path may thus comprise a structural conductor that extends lengthwise along the drill string and is attached to the tubular wall of the drill pipe such that the structural conductor is located at or adjacent a radially outer boundary of the interior passage, when the drill pipe is viewed in cross-section. As used herein, attachment of a particular element to the tubular wall of the drill pipe, or to the cylindrical inner surface of the tubular wall, means that the element has a fixed location relative to the tubular wall and is located at or adjacent a radially outer edge of the fluid conduit, but it is not is not meant to be limited to a connection having direct contact between the element and the conductive material of the tubular wall. Instead, attachment of a particular element to the tubular wall of the drill pipe may include indirect attachment to another element fast with the tubular wall. For example, a conductive layer on a radially inner surface of a dielectric insulator that is, in turn, directly attached to the radially inner metal surface of the drill pipe, is considered to be attached to the tubular wall of the drill pipe.
The drill pipe may be segmented, comprising a plurality of pipe sections that are connected together end-to-end in series, each pipe section including a conductor segment that is attached to the tubular wall of the pipe section and extends along a substantial portion of the length of the pipe section. The structural conductor of the inner conductive path may in such embodiments be a segmented structural conductor that includes the conductor segments of the plurality of pipe sections arranged end-to-end in series. Note that the conductor segment is electrically insulated from the tubular wall of the pipe section even though it is structurally connected to the inner cylindrical surface of the tubular wall, so that it is fast with the tubular wall and protrudes into the interior passage by an amount approximately equal to its thickness. In some embodiments, attachment of the conductor segment to the tubular wall may be by inclusion of the conductor segment in a nonconductive cylindrical liner that abuts against the inner cylindrical surface of the tubular wall. In other embodiments, the conductor segment may be provided on an insulating coating or layer that covers the inner cylindrical surface of the tubular wall's conductive material. Note further that neighboring conductor segments may be circumferentially misaligned, while still effectively being connected in series via the drilling fluid.
The segmented structural conductor may have gaps at respective pipe section joints, at least part of each conductor segment being exposed to drilling fluid in the interior passage at the respective gaps, to propagate electrical current between adjacent conductor segments through the drilling fluid. The internal conductive path may in such instances be provided by a combination of the conductor segments and the drilling fluid, relatively long conductor segments being arranged in series with relatively short hops through the drilling fluid between them.
A protection layer may partially cover each conductor segment, to protect the covered part of the conductor segment from exposure to drilling fluid. Each conductor segment may thus comprise exposed electrodes at opposite ends of the pipe section to facilitate propagation of current between adjacent electrodes through the drilling fluid. The protection layer may be of an electrically insulating material to provide electrical insulation between the drilling fluid and the covered part of the conductor segment, to promote conduction between the conductor segment and the drilling fluid only at the electrodes.
One example embodiment of a method and system for data transmission in a drilling operation environment is illustrated with reference to
The drill string 108 includes two transceiver subassemblies in the form of a downhole transceiver sub 124 adjacent to the bottom hole assembly 118 and an uphole transceiver sub 127 adjacent to the wellhead. In the current example embodiment, the uphole transceiver sub 127 is located above ground. The downhole transceiver sub 124 and the uphole transceiver sub 127 are configured to transmit and receive electromagnetic data signals between them along a transmission line having two conductive paths provided by the drill string 108, as is described in greater detail below with reference to
Drilling fluid (e.g. drilling “mud,” or other fluids that may be in the well), is circulated from a drilling fluid reservoir 132, for example a storage pit, at the earth's surface, and coupled to the wellhead by means of a pump (not shown) that forces the drilling fluid down a drilling fluid conduit provided along an interior passage 128 defined by a hollow interior of the drill pipe 110. The drilling fluid exits under high pressure through the drill bit 116 and thereafter occupies a borehole annulus 134 defined between a radially outer cylindrical surface of the drill pipe 110 and the cylindrical wall of the wellbore 104. The drilling fluid then carries cuttings from the bottom of the wellbore 104 to the wellhead, where the cuttings are removed and the drilling fluid may be returned to the drilling fluid reservoir 132.
The internal conductive path 208 is provided, in the example embodiment of
The drill string 108 therefore effectively provides a so-called two-wire conductor comprising the outer conductive path 204 and the internal conductive path 208, although it should be noted that neither of the conductive paths in the example embodiment comprises a wire. All internal conductive elements (in this example the conductor segments 320 and the drilling fluid 220) are sufficiently electrically insulated from the outer conductive drill pipe 110 so as to remove shunt losses between the conductive paths 204, 208 as a significant factor in signal propagation. A transmitter 240 (shown only schematically in
Turning again to
In the example embodiment, the tubular wall 330 of the drill pipe 110 has an outer diameter of 4.5 inches and an inner diameter of about 3.8 inches. Each electrode 420 has a width dimension (w) in the longitudinal direction of the pipe section 112, the width of each electrode 420 in the current example being 4 cm. A ratio between the width of the electrodes 420 and an internal diameter of the interior passage 128 is thus about 0.41 in the current example, and about 0.3 to about 0.5 in some embodiments. The pipe sections 112 are manufactured such that the electrodes 420 are spaced from the adjacent end of the pipe section 112, when the pipe section 112 is new, by about 9 cm in the lengthwise direction of the pipe section 112. The width of the annular gap 305 (see
Some advantages associated with transmitting electromagnetic waves over a transmission line comprising the drill pipe 110 and a second conductive path internal to the drill string 108 may be illustrated with respect to the theoretical analysis set out below.
At the frequencies used in EM telemetry that uses Earth formations as one conductive path, EM field behavior for telemetry is actually more akin to a resistive network, since the wavelength is typically far greater than the length of the relevant well bore. Reactive components are not significant until much higher frequencies are used, where the telemetry path length starts to approach the communication wavelength.
The wave length in earth formations is a function of the velocity of the EM wave. The velocity in the earth is described by the formula:
Now that the wave velocity of the signal has been established, the wavelength is calculated as
At 25 Hz (ignoring the effects of conductivity), the wavelength is then:
3.196×107/25=1,278,400 meters (794 miles)
Even with 5000 m (3.1 miles) wells, this is well under the limits of the system approaching a wave length at 25 Hz. This demonstrates that the principle factor affecting earth formation EM telemetry signals is possibly resistance and not effects due to reflection, group delay, or other factors that come into play in the higher frequency realm where wavelength geometries are a factor.
A further consideration is skin depth for salt water. The skin depth is basically the propagation distance through a material that an electromagnetic wave can propagate until the amplitude has dropped by e−1 or about 63% of the source signal. It is well-established that the higher the frequency, the greater is the signal attenuation, and that this function is logarithmic. To get higher data rates, for example in the hundreds of thousands of hertz, it will be necessary to shorten the distance the wave has to propagate through the lossy medium. There are thus not only losses associated with the frequency due to the formation conductivity (and thus eddy currents), but there are also losses associated with static series resistance of the formation.
Data rates may be boosted significantly by a transmission mechanism such as that described in the above example embodiment, using an internal conductive path as a second conductive path instead of earth formations. This may be due, firstly, to an increase in transmission frequency that results in a substantial reduction in losses losses due to resistance and impedance, and, secondly, creation of a more favorable conductive path that helps to reduce these losses.
The example embodiment of
The transmission line 200 provided by the drill string 108 may be likened to a thin leaky hose where water spills out all the way along its length. However, so long as even a drop of water gets to the other end of the hose, a usable signal is transmitted. The example data transmission system reduces the size of the “leaks” and uses a much smaller “hose,” compared to the entire diameter of a drilling lease, as is the case with earth formation EM telemetry.
At low frequencies, the fluid conduit 328 and the drill pipe 110 may essentially become a lossy wave guide, confining the signal within. The conductivity of the drilling fluid 220 and the segmented conductor 230 placed on the radially inner side of the dielectric insulator 310, which are not electrically connected to the conductive material of the drill pipe 110, acts as one conductor (i.e. the internal conductive path 208 in the example embodiment), while the drill pipe 110 acts as another, separate conductor (i.e. the outer conductive path 204).
The transmission line 200 at relatively low frequencies can essentially be modeled with a simple resistive network. At higher frequencies, inductance and capacitance of the network transmission line 200 may become a factor and can be represented in a simplified circuit 500 shown in
For example U.S. Pat. No. 6,770,603 B1 (incorporated herein by reference in its entirety) discloses that at 500 Hz in an oil-based mud, the conductivity of the mud can be measured at 0.02 S/m or 50 ohm-m resistivity. This is without the added benefit of the conductor 230 or an inner conductive layer on the inside of a dielectric barrier such as the dielectric insulator 310. Such a resistance level would make conceivable propagation of a 1 Watt signal through the drilling fluid 220 exclusively over this lossy conductor for 1000 m with a 50 dB drop in signal. Ignoring shunt resistance for the moment, a low frequency signal could propagate under these conditions a distance of 6324+m with a 55 dB signal attenuation, or 623 m with a 45 dB signal attenuation. Detection down to the 90 dBm ranges are possible are possible with the above-described example embodiment, especially when the system operates in a spectrum where the noise is very limited at the rig site. Such surface noise is a difficulty of conventional Electromagnetic Measurement While Drilling (EMMWD) activity, since the transmission spectrum is heavily affected by surface noise from electrical equipment at the rig.
An important factor at low frequencies is shunt resistance. If the shunt resistance is significantly increased in comparison to the series resistance, then the signal attenuation is primarily controlled by the conductance of the drilling fluid. The shunt path may in some embodiments be reduced to negligible values by insulating as much as possible the metal of the drill pipe 110 from contact with the drilling fluid 220, particularly at the joints 210 (see for example
Turning now to
The upper portion of the model circuit 500 of
For the transceiver (RLU) on the bottom of the drill string 108, energy transmitted to the bottom hole assembly 118 may be wasted by robbing power from the transmitter 240.
Returning now to the model circuit 500 of
Calculating the expected electrical resistance of the inner electrical gap 305 of the internal conductive path 208 is a function of various distances, conductor surface areas and conductance of the drilling fluid 220. One study with respect to an example embodiment analogous to that described with reference to
The study comprised taking the inner diameter of 4.5″ drill pipe 110 and analyzing the effects of the gap distance (d) in the lengthwise direction of the drill string 108 (see
To derive some generalized formula, it was beneficial to determine at what gap distance (d) the resistance becomes linear as a function of gap distance, because the resistance behavior becomes more nonlinear as the gap 305 gets smaller. This allows determination as to whether the internal conductive path 208 would benefit from a joint coupling and to assess the benefits associated with very wide electrodes, even to the point of lining the entire cylindrical surface of the interior passage 128 of fluid conduit 328 with an exposed electrode. Such a construction would effectively do away with the narrow strip 430 (see
Results of the above-described FEA study are shown in Chart 1 below.
The study shows that the slope of the lines is relatively constant with an electrical gap distance (d) of about 2 cm or greater. This slope represents a static 28.16 ohms/m resistance per unit length of fluid in the drill pipe 110 regardless of the width (w) of the electrodes 420. The gap resistance is primarily a function of the cross sectional area of the drilling fluid 220 (and therefore of the interior passage 128) and the conductivity of the drilling fluid 220. Electrode width above 4 cm (which is approximately ½ the diameter of the drill pipe 110 in the current example) has little practical contribution. Notably, the cross sectional surface area of the drill pipe 110 inner diameter is the same as the cylindrical surface area of the electrode 420 when the electrode width (w) equals ½ the diameter. Also the electric field across the gap 305 is not linear in its radial profile, but the distribution of flux remains constant the further the electrodes 420 are spaced apart.
Even with an 18 cm gap 305 (which is relatively large for cut backs, and not shown in the chart) the gap resistance is about 6 ohms while the resistance that is to be expected through the drilling fluid over 9.5 m of the length of a pipe section 112 would be about 267.52 ohms (9.5 m×28.16 ohms/m).
The study thus revealed a ratio of 2.2% of gap loss verses pipe length loss. Therefore, by transmitting over the gaps 305 in a manner consistent with the above-discussed example embodiment, the series signal loss of the resistive network is greatly reduced when compared to an alternative example embodiment in which the internal conductive path is provided primarily by the drilling fluid, so that the signal is propagated entire length of the drilling fluid 220 between the transmitter 240 and the receiver 250. The latter construction is somewhat analogous (as it relates to electrical resistance) to propagation of the signal through earth formations in the conventional EM mode of signal propagation, although such a construction may still display notable advantages over the conventional EM signal propagation mode.
The study results are also significant for designing the location of end points of the transmission line 200, as it is preferable to limit short circuit effects when trying to launch or, particularly, extract a signal from the transmission line 200. Of particular interest is the implication that a properly constructed resistive network of the internal conductive path 208 should be able easily to propagate signals in the drilling fluid 220 without an inner structural conductor 230 for short distances to a few thousand meters, if desired. Some embodiments may include some pipe sections 112 of the drill string 108 with conductor segments 320, and at least some pipe sections that do not have any inner conductor elements, being provided only with a dielectric insulator 310 to separate drilling fluid 220 therein from the conductive material of the drill pipe 110. Although losses are much higher without an inner conductor (e.g., at a fluid series resistance of 28 ohms/m) a 5000 m well would have a series resistance of 140,000 ohms. Even though such a series resistance may seem large, it is well within the capabilities of electronic amplifiers to extract a signal that is attenuated by a series resistance of this magnitude, being expected to cause a signal loss of about 60-70 dB.
With reference to the system equivalent circuit 600, it can be seen that, to reduce losses, it is desirable for R1 and R3 to the much larger than R2, while L and C should be as small as feasible, preferably approaching zero.
The implications of the model circuit 600 for the efficacy of the transmitter 240 located in the downhole transceiver sub 124 near the bottom of the drill string 108 of another example embodiment will now be considered. The example embodiment with reference to which the following calculations are performed are similar or analogous in its mode of operation and signal transmission mechanics, with like reference numerals indicating like or analogous elements, a major distinction being that the conductor segments 320 of the inner structural conductor 230 is provided by a hydro-formed rubber-coated liner attached to the inner cylindrical surface 315 of the drill pipe 110. A similar construction is described in greater detail below with reference to
For R1, assume that the signal is launched at the top end of one pipe joint 210. Assume that means that an internal cylindrical surface of a pipe section below the signal launch point is not insulated and effectively becomes a dead short to the current traveling downwards.
Regarding R2, the series resistance may greatly be reduced by providing an electrical connector or coupler in each tool joint 210 (see for instance the example connectors 805 described below with reference to
The gap resistance per tool joint 210 is about 5.8 ohms. Assuming a pipe length of 9.5 m for each pipe section 112, a drill string 108 in a 5000 m well bore as an approximate series resistance (R2) of 610 Ω per 1000 m (1000/9.5*5.8). It is assumed for the moment that the part of the internal conductive path 208 provided by the segmented structural conductor 230 has a negligible resistance.
The capacitance (C) in the transmission line 200 is a function of the mutual surface area of the inner diameter or inner cylindrical surface 315 of the drill pipe 110 and the surface area of the outer diameter of the inner conductor 230, a separation distance, and the dielectric constant of the insulating material of the dielectric insulator 310 sandwiched between the materials of the inner conductor 230 and the drill pipe 110. For the currently considered example embodiment in which the inner conductor segments 320 are provided by hydroformed rubber coated liners, pipe capacitance plus an approximation for the capacitance across the electrical gap 305, in which the example embodiment includes a 0.5 mm ceramic coating over the radially inner surface of the drill pipe 110 in parallel with the liner capacitance. A generalized example may be calculated as follows. Again each pipe section 112 is 9.5 m long. The liner interval is 9.15 m (9.5 m−2×0.18 m). The radius of the inside of the drill pipe 110 is 48.6 mm (97.2/2). The radius of the outer side of the conductive portion of the liner is 45.4 mm (about a ⅛″ thick rubber layer providing the dielectric insulator 310). The thickness of the dielectric layer 310 is 3.2 mm. The dielectric constant will be a nominal 3.0 for the moment.
The capacitance Cp of a pipe section 112 between the two cylinders can be a described by the following equation:
Substituting we get:
With respect to the capacitance over the 18 cm gap is noted that this capacitance is not trivial since the charge density is dispersed in a non-linear fashion over the radius of the drilling fluid, which in effect provides a conductor forming part of the internal conductive path 208 at the joint 210. For current purposes, simplified worst-case calculations are performed to determine whether the gap capacitance is a significant factor in the transmission line 200. In the example embodiment on which these calculations are based, the gap 305 comprises a metal conductor pairing directly against a ceramic coating layer of Zirconium Oxide, which is about 0.5 mm thick. The relevant variables are thus as follows:
Substituting we get:
The two parallel capacitances may be combined as follows:
Over 1000 m of pipe the total capacitance is:
Because there is not an order of magnitude difference between the above-calculated gap capacitance and the structural conductor capacitance, further analysis of the general model may be performed without further considering the gap capacitance in greater complexity. Assuming that the above-calculate the capacitance is a worst-case scenario that may reasonably be considered, reactance may be plotted versus frequency using the formula:
X=1/(2*π*f*C*1000/9.5)
The result of such a plot shows, for example, that the reactance of the capacitor is roughly 200 Ω per 1000 m at 100 Hz, and is roughly 20 Ω at 1000 Hz. A number of different embodiments discussed herein have the result of reducing the transmission line shunt capacitance further than is the case with the currently considered example embodiment. The example embodiment of
Regarding series inductance (L), it is relevant that there is a relatively large component ferromagnetic material associated with the transmission line 200, in the form of the drill pipe 110 and, therefore less extent, the conductive material of the conductor 230. There are also limited means to restrain eddy currents given the geometry under consideration and the mechanical necessity for the drill pipe 110 and the conductor segments 320 in the example form of the conductive liner. Given the current levels the transmission line 200 is likely to employ, it is doubtful that the ferrous material of the drill pipe 110 will be driven into magnetic saturation, but the effects of on the inductance can become significant. At higher frequencies a formula for calculating the inductance of the two cylinders can be as follows and may best be understood with reference to
However, this equation does not take into account the effects of the iron, particularly in the drill pipe 110, since the liner of the conductor segment 320 is much thinner than the drill pipe 110. At very low frequencies and signal current levels where the conductor segment 320 and the drill pipe 110 thickness is much smaller than the relevant skin depth, the following formula (equation 6) may be employed to calculate the inductance per unit length of the drill pipe 110, dielectric insulator 310, and the liner providing the conductor segment 320 over the interval where the conductor segment 320 and the drill pipe 110 coincide:
Where (all lengths in meters):
This equation assumes that no current is flowing in the drilling fluid 220 over this interval, hence the self-induced magnetic field in the drilling fluid 220 is zero.
Using 4140 steel which has a resistivity of 2.2×10−7Ω·m as a base line example one can see that at 10,000 Hz the skin depth is roughly 2.5 mm and at 1,000 Hz the skin depth is about 7.8 mm. The wall thickness of 4 ½″ drill pipe 110 is generally 10.92 mm. Depending on the signal operating range of the transmission line 200, the inductance is somewhere between the result of equation 5 and the result of equation 6. If in either case the inductance of the transmission line 200 presents significant reactance and thus impacts signal attenuation significantly, skin effects may be modeled. The inductance is then be calculated as follows:
Geometry changes at the joints 210 are ignored to avoid unnecessary complexity, and the equation is modeled for a continuous long hollow core coaxial conductor provided by the transmission line 200. At high frequencies, the inductance may thus be about 21.7 μH/1000 m. The reactance per 1000 m as attributed to the inductance can then be plotted against frequency using the equation
X
L=2*π*f*L.
The results of the above theoretical analysis reveal substantial advantages of the considered example embodiment over conventional EM telemetry systems. Even at a 10,000 Hz transmit frequency the calculated overall series reactance of the exemplary transmission line 200 is about 1.5 Ω. Based in part on these calculations and experiments, the data rates achievable from this system are expected to reach 500-1000 bits per second or more.
It is a further advantage of the example embodiment of a data transmission system and method described above that it provides for propagation of an electrical signal along the drill string 108 by utilizing a first conductor (in the example form of the internal conductive path 208) and utilizing the drill pipe 110 as the second conductor, to provide a two-path transmission line. Thus, rather than using the earth as an external conductive path (as in conventional EM telemetry systems), a more favorable internal path has been found in terms of the first internal conductor. In the example embodiment, this comprises the internal hybrid path 208 of an internal conductor 230 and short hops in the drilling fluid 220 over tool joints 210. The transmission path is essentially independent of formation effects, making the propagation model easier to manage under a wide variety of drilling conditions.
Modeling and network analysis indicate that this may be superior to prior data transmission mechanisms and that it promises a significant boost in data rates, as noted above. There are also commercial advantages in comparison to wired pipe methods that are sometimes employed in drill string telemetry.
Structural elements of the internal conductive path 208, such as the conductor segments 320, are further provided along the radially outer boundary of the interior passage 128, thereby intruding minimally into the fluid conduit. The conductor segments 320 of the position at the point of the drill pipe 110, when seen in cross-section, where fluid velocity is lowest, thereby reducing in increased pressure drop associated with providing the internal conductive path 208.
Many prior electrical path telemetry systems rely on a solid electrical contact at each pipe section joint. If that connection fails at any point along the drill string, the entire telemetry path fails. In addition, such systems utilize high speed communications and power. Various embodiments described herein assume that connections at tool joints 210 are lossy, and include this assumption in the overall telemetry model to compensate. In some embodiments, degradation of signal strength over time may be addressed by placing repeaters close enough together that any degradation encountered during a job can be handled by increasing the gain of the receivers and transmitter strength as required.
Example Embodiments with Joint Couplers
In some embodiments, the internal conductive path 208 may be provided substantially exclusively by structural conductor elements forming part of the drill string 108, so that conductance via the drilling fluid 220 does not form a significant part of the internal conductive path 208. For example, under balanced foam/N2 drilling, a joint coupler or connector may be used to compensate for a relatively unreliable conductive path through foam in the interior passage 128. Such embodiments may also be used in air hammer drilling, where there is no drilling fluid used.
One such example embodiment is described with reference to
Each pipe section 112 in accordance with the example embodiment of
It is an advantage of the embodiment of
In other example embodiments, a protection layer 810 such as that described with reference to
The protection layer 810 may in some embodiments be a coating of a material that is selected to have a relatively low fluid friction factor to promote reduction in circulating pressure of the drilling fluid 220. The protection layer 810 may in such cases have a fluid friction factor with the drilling fluid 220 that is lower than a corresponding fluid friction factor of the drilling fluid with a steel or metal inner cylindrical surface of the drill pipe 110. Additives can also be made to the fluid to reduce the coefficient of friction in a pipe. U.S. Pat. No. 4,637,418 (incorporated herein by reference in its entirety), discloses that using certain compounds, including 2-acrylamido-2-methylpropanesulfonic acid or coal dust, may serve to reduce pipe friction, as is known to those of ordinary skill in the art.
Some embodiments may comprise electrical connectors 805 that are fastened to or integrated with pipe sections 112, so that end-to-end connection of neighboring pipe sections 112 automatically places adjacent electrodes 420 of the respective pipe sections 112 in electrical connection via the connectors 805.
The joint 210 of
A disadvantage of installing the connector 805 on the box end 218 is that pin ends of pipe sections 112 may suffer more abuse on the drill floor. In embodiments where a coupler is installed on the pin end 214, protruding elements of the pin formation 214 are constructed to be robust enough to withstand such abuse. Construction of the pipe sections 112 to provide tool joints 210 such as those illustrated in
In yet further embodiments, the drill pipe 110 may be customized to have the electrical jumper or connector 805 recessed from fluid flow in the interior passage 128, thereby advantageously to limit the impingement on the diameter of the interior passage 128. In embodiments that include less reliable electrical joint connectors, the system may be designed based on an assumption that at least some of the connectors will lose connection from time to time.
Coatings to provide the dielectric insulator 310 and/or the conductor segments 320 may range from several types including simple rust or other chemical conditioning like nitriding, non-conductive ceramics, thermal set plastics, PEEK (PolyEther Ether-Ketone), etc. In embodiments where only an insulating layer is used (to provide a dielectric insulator 310), and the drilling fluid 220 itself is the primary inner conductor, the dielectric layer should be thick enough to withstand erosion over the operational lifetime desired. Generally, the coating thickness of the dielectric insulator 310 will be driven more by erosion life requirements than by dielectric break-down voltage requirements, as even a very thin layer should provide adequate dielectric thickness.
Such coating operations in accordance with one example embodiment may comprise first roughening the internal cylindrical surface of the drill pipe 110 with steel grit or similar material to ensure that it is clean. One could opt to clean the surface from contamination of the grit with glass bead blasting afterwards. Next a coating of 0.001-0.003 thick NiCr bond coat (see for example the bond coat 410 in
In embodiments that include a segmented conductor 230 provided by respective conductor segments 320, an inner conductive layer may be sprayed over the ceramic layer again with the same NiCr coating. The thickness of the conductive layer, however, may advantageously be great enough to reduce the series resistance along the pipe section 112 to significantly less than 1 ohm. Optimal thickness may be determined by experimentation. In such cases, the NiCr coating may serve both as part of the inner conductor 230 and as an erosion resistant layer. Other materials may also be sprayed in this manner, such as for example carbide. Use of a spray material that is rust resistant or that can be easily polished between jobs may be beneficial.
In embodiments where of the conductor segment 320 covers only a portion of the inner cylindrical surface of the drill pipe 110, such as the example embodiment described with reference to
Further, if the thickness of the insulating layer providing the dielectric insulator 310 is increased along the length of the strip 430, then the capacitance is further reduced and bandwidth is further increased.
To enhance conductance at the electrodes, the full circumference of drill pipe's internal diameter may be coated over an interval of several inches. Such circumferential coating may be selected to be large enough to allow for adequate conductivity through the worst case mud for which the drill pipe 110 is intended. As mentioned previously, a final protection layer 810 may be provided over the majority of the pipe section length, to protect the conductive layer from erosion, while exposing the electrodes 420.
In some embodiments, the electrodes 420 comprise only an exposed end of the strip 430, instead of circumferential bands on each end. However, such a configuration may require more surface area of the strip 430 to be exposed, to effect good conductance into and out of the drilling fluid 220 to jump gap 305 at the tool joint 210.
Embodiments that utilize strips 430 may facilitate multi-conductor paths, but misalignment of such strips 430 may be caused by the rotary connection at each joint 210, thereby greatly complicating propagation of signals through the drilling fluid 220. If such an approach is desired, an inner conductive coupling or connector may be provided for the multiple paths across the tool joint 210. Multiple layering and positional banding, with a rotary connector plug may also be employed.
Exposure of uncovered conductor segments 320 to the drilling fluid 220 in the interior passage 128 may in some embodiments facilitate an increase in the overall bulk conductivity of the internal conductive path 208. In instances where erosion is not an issue, it may be useful to leave the conductive layer that provides the conductor segment 320 fully exposed to the drilling fluid 220, to boost the overall conductance of the internal conductive path 208.
The electrodes 420 may be made slightly bumpy or dimpled to create more surface area and thereby lower contact resistance between the drilling fluid 220 and the conductive layer of the conductor 230 at that point, to encourage better admittance of the signal through the inner electrical gap 305. Dimpling may be useful in instances where the conductive layer is thick enough to allow for it, as dimpling also improves fluid flow and reduces erosion. Yet more could be done to increase available surface area and reduce contact resistance with the drilling fluid 220, such as incorporating screens, meshes and other surface area increasing devices.
To reduce stored energy between the conductive layer that provides the conductor segment 320 and the drill pipe 110 when the pipe is not in use, a resistive connection may be provided to bleed off any stored charge over a few minutes based upon the capacitance of the two conductive layers.
There are numerous layering techniques known to those skilled in the art that may be employed. For example, the conductive layer of the conductor segment 320 may be made of multiple conductive materials to enhance strength and corrosion resistance. For example areas, exposed to mud could have a gold layering on top of the conductive layer, to avoid corrosion. In other cases the layer that provides the dielectric insulator 310 may also be a suitable binder to the internal diameter of the drill pipe 110.
Layering of various materials onto metal and subsequent layers can be achieved through several deposition techniques. A high velocity oxygen fuel (HVOF) type spray technique over plasma spraying due to the lower operational temperatures may be useful; a centralized conical custom spray nozzle might be used to facilitate the spraying over a the length of a pipe section 112. Other deposition techniques such as plasma and thermal sprays exist and could be adapted to this application by those of ordinary skill in the art.
Example Embodiments with Preformed Liners
In some alternative embodiments, drill pipe 110 may be provided with the segmented structural conductor 230 and the dielectric insulator 310 by permanently fixing a cylindrical liner coaxially to the inner surface of the drill pipe 110. Such liners may provide respective conductor segments 320, segments of the dielectric insulator 310, or both. Some methods for permanently attaching such liners to the drill pipe 110 may include hydro-forming, swaging, injection molding.
Hydro-forming or swaging a pre-made malleable liner may be particularly advantageous, as this allows a conductive layer forming part of the liner (or indeed the whole of the liner) to have a greater thickness and therefore to be less prone to wearing out over the life of the pipe section 112. Provision of a liner may thus be a cheaper and faster alternative to coating techniques discussed herein, and may additionally be more reliable. A further advantage of the liner attached by hydro-forming that the liner is not elongated in the process, and can be molded more accurately to the shape of the pipe section's radially inner surface. This is particularly the case when there are undercuts that could present problems at high down hole pressures owing to substantially cavities between the liner and the drill pipe 110. Similar to the example embodiment discussed with reference to
The above-discussed method of manufacture may be advantageous in that it is relatively inexpensive and promotes durability of the pipe section 112. Once the liner 1010 is attached by hydro-forming, additional coating(s) can be done to either re-dress the pipe section 112 or improve upon what is already in place. The liner 1010 may include an adhesive coating 1040 on the outside of the rubber tube 1030. In many instances, the adhesive coating 1040 may be unnecessary and may be omitted, as residual hoop stress applied by the primary conductor tube 1020 may be sufficient to prevent the liner 1010 from axial movement relative to the drill pipe 110. Also not shown in
As is the case with previously discussed example embodiments, an inner erosion protection layer 810 (see
In yet further embodiments, a prefabricated the liner such as that described with reference to
It may be useful in some instances to convert conventional drill pipe on-site at a drilling installation in order to provide the drill string with an internal conductive path 208, to permit use the above-described data signal transmission techniques in the drill string. Liners analogous to that described above with reference to
Some embodiments may provide liners that may be variable in length, for example by telescopic extension and retraction, for example to adjust the length of liners which are to be installed on the drill floor just before making up joints 210, in order to accommodate variations in pipe section length. For similar reasons, other embodiments may provide liners similar to that of
Some embodiments provide for use of the above-described data signal transmission method in a continuous string of tubing, such as coil tubing. A continuous thin strip conductor (similar in function to the segment conductor 230 described with
An advantage of such a strip conductor embodiment over, for example, E-Line coil tubing, is a significantly smaller loss in circulating capacity when compared to an insulated conductor extending centrally along the fluid conduit of E-Line coil tubing. Not only is the cross-sectional area of the fluid conduit consumed by the internal conductor smaller, but flow velocity is lowest along the radially inner wall of the tubing, so drag on the fluid is reduced relative to E-Line coil tubing. Since the internal conductor of such coil tubing string is continuous, it is not segmented and does not have to jump tool joints other than at the bottom and the top of the string. Losses may thus be low. Use of an internal conductor in the form of a thin long strip greatly reduces capacitance compared to coating the entire inner cylindrical surface of the tubing string, and therefore increases bandwidth. In applications where bandwidth is not a concern, the entire inner surface of the oil tubing string may be coated with conductive material, to provide a tubular internal conductor extending along the length of the tubing string.
Coil tubing that incorporates an internal conductor attached to the inner surface of the tubing, such as that described above, may be manufactured using a high velocity oxygen fuel (HVOF) or plasma sprayer pulled or driven inside the tubing string over the length of the tubing string.
An example method of manufacturing tubing string with an integral elongated strip conductor fast with the string's tubular wall will now be described with reference to
The method comprises providing an elongated strip or inlay 1100 that is integrated with coil tubing 1120 as the tubing 1120 is rolled from a sheet 1130 into a tubular and is welded together. The welded inlay 1100 is pre-made with the appropriate layering, which can partly be seen in the partial cut-away view of
The inlay 1100 has a central radially outwardly projecting spine 1160 in the form of a metal bar that is pinched between edges of the metal sheet 1130 as the sheet 1130 is rolled, to hold the inlay 1100 in place (see
The part cylindrical plate-like base 1140, forming wings on either side of the welded rectangular bar that provides the spine 1160 may be used in applications where more surface area for the conductor path provided by the conductive layer 1150 is desired. In other applications, the area provided on the radially inner surface of the tubing 1120 by the rectangular bar or spine 1160 itself may be sufficient for the current-carrying needs of the signal, thereby eliminating use of the wings. The rectangular bar 1160 may have other shapes and may have inlay grooves in its radially inner face, to receive the various insulators and conductors which may in some embodiments include a wire. Alternative insulators like ceramic may be used as protection from the heat in the welding process.
Yet further embodiments may be employed in applications where flow rate is maximized with available diameters, in which instances provision of a dielectrically insulated liner may be less practicable. U.S. Pat. No. 6,712,150 (incorporated herein by reference in its entirety), describes a system which has inner and outer tubing strings to facilitate vacuuming up of sand and other material in, for example, sanded-in wells, as is known to those of ordinary skill in the art. Such a system could be adapted to the telemetry methods described herein. The adaptation may comprise sealing the electric leak path between the tubing of the two coaxial coils sufficiently with a suitable dielectric, so that the tubing of the inner coil can serve as an internal conductive path 208 and the tubing of the outer coil can serve as an outer conductive path 204 in a two-path transmission line that functions similar to the example transmission line 200 examined above. A non-conductive or dielectric coating may, for example, be provided on the radially outer surface of the inner tubing.
Various further configurations for the cylindrical inner surface or bore of the drill pipe 110 may be employed in addition to those exemplified above. Some embodiments may, for example, operate without any coating for at least part of the drill string 108. Although this may result in high shunt losses, it may occur for short intervals, for example to “sneak” a signal across gaps of a few inches. Some embodiments may also provide for a structural internal conductor along parts of the length of the drill string, but using the drilling fluid as primary internal conductor for some pipe sections or significant intervals of up to 1000 m or more.
Instead, a semi-conductive coating may be provided. A rust layer on the inner surface of the drill pipe 110 semi-conductance of drilling fluid may for example provide the internal conductive path. The inner diameter of the drill pipe 110 may in another example be chemically treated to create a resistive layer, for example with hardening processes like gas or liquid nitriding.
Another embodiment provides for coating or lining the drill pipe bore with a highly resistive dielectric layer, but without a structural conductor, so that the drilling fluid 220 provides the primary internal conductor.
The efficacy of the transmission line 200 may benefit from fluid conditioning, to promote sufficient conductivity of the drilling fluid 220 for a desired signal-to-noise ratio to be developed, and for the shunt path to be of relatively high resistance. Signal propagation distances can thereby be increased.
There are several possible mud applications, including oil- and water-based muds. In relatively pure form, both fluids are poor conductors. Water and oil, of course, do not mix well. The means of conditioning mud to improve electrical conductivity may be different depending on the mud type.
Water-based muds can be made more conductive by adding dissolvable salts to the fluid. Once dissolved, free ions from the salts allow for greatly increased conductivity.
Since salt does not dissolve and form free ions in oil-based muds, other means may be utilized to promote electrical conductivity. Some methods may include adding metallic powder, carbon black or short carbon fibers to the mud, typically >⅛″ long by 8 microns in diameter. In each case an additive may pre-coats these particles such that it improves electrical contact between particles. U.S. Pat. No. 3,406,126 (incorporated herein by reference in its entirety) describes utilization of long, thin carbon yarn fibers where the diameter to length ratios range from 640:1 to 1920:1 and the length is about ¼″ to ¾″ and the diameter is 10 microns, as is known to those of ordinary skill in the art. High shear mixing tears these fibers up. U.S. Pat. No. 4,228,194 (incorporated herein by reference in its entirety) improves on this by further reducing the length and diameter of the fibers, and pre-coating the fibers with silicon oil, as is known to those of ordinary skill in the art. This causes the fibers to repel resins or paints they are in, so they are attracted more to each other making the useful concentration required much lower. The silicon oil does not easily dissolve into mineral oils not based upon silicon, such as hydrocarbon based oils.
Yet further, U.S. Pat. No. 6,770,603 B1 (incorporated herein by reference in its entirety) describes the use of carbon black and surfactants to boost the conductivity of oil-based mud, as is known to those of ordinary skill in the art. Advantages of using black carbon include its ease of mixing and non-fiber nature, as fibers could be damaged in the drill bit or pumps, for example. Similar substances such as graphite powder may also be used.
Conduction of a direct current through an oil-based mud may be highly resistive. Its fluid electrical admittance is thus a much lower than its electrical susceptance. Oil-based mud may thus have a pass band that does not include baseband content, whereas water based mud may conduct direct current and act more like a low pass filter.
Some embodiments may include, during certain operations (like pumping of a LCM pill, or viscous sweeps, etc.), performing pill pre-conditioning to promote conductivity and reduce the impact of these types of operations. Such pills can be pre-mixed in sack or other forms to accommodate the rig operations without having to make measurements and adjustments on the fly. Since wet cement is a conductor, the described signal transmission methods may be employed during cementing operations.
Some embodiments utilize a signal that sends electrons only onto the internal conductive path 208 (see
Signal reception and processing may be performed differently from conventional EM Measurement While Drilling (MWD), in which one or more conductor rods are placed into the earth well away from the wellhead. Instead, in some embodiments described herein, these operations occur on the drill floor, comparing the differential voltage across the internal conductive path 208 of the drill pipe 110 and the drill pipe 110 itself. In conventional methods, the current traveling in the drill pipe could easily jump through surface conductors/casing and thus be grounded with any contacting metal. Some example embodiments may include connecting electrically directly to the drill pipe 110 to avoid any variations in conductance created through movement of the drill pipe 110. One receiver wire may for example simply be connected to the rig ground, and the other receiver wire may be connected to the segmented conductor 230 of the drill pipe 110, or to an insertable conductor in the drilling fluid 220 inside a sub, such as the uphole transceiver sub 127.
Such a signal conductor in the mud or drilling fluid 220 could also be provided by a sub with a fluid-exposed conductor similar to the previously described conductor segments 320. In other embodiments, a receiving conductor such as a wire path may run to a swivel where the signal hops across a slip ring to a non-rotating cable that leads to a surface transceiver. Likewise, a ground conductor may be connected to the drill pipe 110 and may also run through the swivel, to ensure a clean path for both polarities of the transmission line 200. This provides two signal conductors.
In yet further embodiments, the signal may be received by a surface transceiver which is in a sub on surface that rotates with the drill string, similar to the uphole transceiver sub 127 of
Some embodiments include the use of repeater or sensor nodes throughout the drill string 108. Various signal modulation modes may be used. A signal modulation scheme that is not signal amplitude dependent, such as phase modulation or frequency modulation methods, may be employed advantageously during, for example, connection events or nitrogen pumping.
Therefore, numerous embodiments may be realized. These include the following:
One embodiment provides a system comprising a drill string that extends along at least part of a wellbore, the drill string comprising drill pipe having a tubular wall that is of electrically conductive material and that defines an interior passage extending along the drill string to convey drilling fluid, the drill string providing a signal transmission line that comprises an outer conductive path formed by the tubular wall of the drill pipe, and an internal conductive path extending along the interior passage, the internal conductive path being substantially electrically insulated from the outer conductive path; and a transmitter coupled to the transmission line to transmit a data signal along the transmission line.
At least part of the internal conductive path may comprise the drilling fluid in the interior passage.
The drill string may include a dielectric insulator located radially between the interior passage and the tubular wall of the drill pipe, to provide electrical insulation between the internal conductive path and the outer conductive path.
The internal conductive path may comprise a structural conductor that extends lengthwise along the drill string and is attached to the tubular wall of the drill pipe such that the structural conductor is located at or adjacent a radially outer boundary of the interior passage, when the drill pipe is viewed in cross-section.
The drill pipe may be segmented, comprising a plurality of pipe sections that are connected together end-to-end in series, each pipe section including a conductor segment that is attached to the tubular wall of the pipe section and extends along a substantial portion of the length of the pipe section, the conductor segments of the plurality of pipe sections be arranged end-to-end in series, together to provide a segmented structural conductor extending along multiple pipe sections and forming part of the internal conductive path.
The segmented structural conductor may further comprise a plurality of electrical connectors at respective pipe section joints, each electrical connector providing a structural electrical connection between adjacent conductor segments of neighboring pipe sections.
At least some of the plurality of pipe sections may each have a threaded pin formation at its one end and a complementary threaded box formation at its other end, a respective electrical connector being integrated with the box formation such that connection of neighboring pipe sections by threaded engagement of their respective pin- and box formations automatically connects the conductor segments of the neighboring pipe sections through the associated electrical connector.
The segmented structural conductor may have a plurality of gaps at respective pipe section joints, at least part of each conductor segment being exposed to drilling fluid in the interior passage at the respective gaps, to propagate electrical current between adjacent conductor segments through the drilling fluid.
At least some pipe sections may each include a protection layer that covers part of the associated conductor segment to protect the covered part of the conductor segment from exposure to drilling fluid in the interior passage, the conductor segment further comprising exposed electrodes at opposite ends of the pipe section to facilitate propagation of current between adjacent electrodes through the drilling fluid.
At least some of the conductor segments may each include an electrode adjacent each end of the respective pipe section, each electrode being annular and extending circumferentially around the interior passage.
A ratio between a width dimension of one of the electrodes in the longitudinal direction of the drill string and an inner diameter of the interior passage may be about 0.3 to about 0.5, and in some embodiments may be about 0.4.
A radially inner surface of each electrode may be dimpled.
Each conductor segment may comprise a conductor strip extending lengthwise between the electrodes of the conductor segment. Each conductor segment may comprise a coated layer of conductive material.
At least some of the conductor segments may each be attached to a radially inner surface of a tubular liner of dielectric material that lines the associated pipe section, the liner being removably and replaceably connected to the tubular wall of the pipe section.
The transmitter may be located in the drill string between a bottom hole assembly and a receiver above the transmitter, the system further comprising an electrical choke, an electrical short, or an electrical block located in the drill string below the transmitter to inhibit downhole propagation of the data signal.
Yet another embodiment provides a method for transmitting data in a drilling installation that comprises a drill string extending along at least part of a wellbore, the method comprising transmitting a data signal along a transmission line extending lengthwise along the drill string, the transmission line comprising an outer conductive path provided by a tubular wall of a drill pipe that extends along the drill string; and an internal conductive path extending along an interior passage that is bounded by a radially inner cylindrical surface of the drill pipe and along which drilling fluid is conveyed, the inner conductive path being substantially insulated from the outer conductive path.
The internal conductive path may comprise drilling fluid in the drill pipe, transmission of the data signal comprising propagating signal current through the drilling fluid as primary conductor of the internal conductive path.
Transmitting the data signal along the transmission line may include propagating signal current in the internal conductive path through a structural conductor that extends lengthwise along the drill string and is connected to the tubular wall of the drill pipe.
The drill pipe may be formed by connecting together a plurality of pipe sections, transmission of the data signal along the transmission line including propagating signal current along a segmented structural conductor in the internal conductive path, the segmented structural conductor comprising a plurality of conductor segments that are attached to respective pipe sections and extend in series along at least a part of the length of the drill string.
In such a case, transmitting the data signal along the transmission line may include propagating signal current between neighboring conductor segments in the internal conductive path through respective structural electrical connectors that bridge associated pipe section joints.
Instead, or in addition, transmitting the data signal along the transmission line includes propagating signal current between neighboring conductor segments in the internal conductive path through the drilling fluid, to bridge electrical gaps that separate neighboring conductor segments.
Propagating the signal current through the drilling fluid may comprise exposing only electrodes of the conductor segments to the drilling fluid, the electrodes being located adjacent opposite ends of the respective pipe sections, and portions of the conductor segments between the electrodes being covered from exposure to the drilling fluid. Each conductor segment may comprise a coated layer of conductive material.
The method may further comprise the operation of attaching tubular liners of dielectric material to respective pipe sections, the conductor segments being carried on a radially inner surface of the respective tubular liners.
Another embodiment provides segmented drill pipe that, when coupled together as two or more pipe sections, provides an outer conductive path and an inner conductive path to form a hybrid signal propagation path for an electrical signal, the outer conductive path comprising conductive material of a tubular wall of the drill pipe, and the inner conductive path comprising a combination of, on the one hand, structural conductor elements extending lengthwise along respective pipe sections and, on the other hand, drilling fluid in a fluid conduit formed by the coupled pipe sections.
The structural conductor element of a respective pipe section may comprise at least one of a conductive coating, a single solid conductor, or a conductive liner disposed lengthwise along the interior of the pipe section.
The segmented drill pipe may include dielectric insulator between the tubular wall of the drill pipe and the associated structural conductor.
The segmented drill pipe may further comprise an electrical connector fastened to the pipe section to provide an electrical connection between structural conductor elements of neighboring pipe sections when the pipe sections are coupled, to bridge an electrical gap between the structural conductor elements at a pipe section joint.
The electrical connector of the pipe section may be located at a threaded box end for engagement with a complimentary threaded pin and of a neighboring pipe section.
The segmented drill pipe may further comprise a protection layer that covers part of the structural conductor elements to protect the covered part of the structural conductor element from exposure to the drilling fluid, the structural conductor element further comprising exposed electrodes at opposite ends of the pipe section to facilitate propagation of current between adjacent electrodes through the drilling fluid. Each electrode may be annular, extending circumferentially around the interior of the drill pipe. The structural conductor element may comprise a conductive coating that includes a narrow conductor strip extending lengthwise between the annular electrodes provided by the conductive coating.
Thus, example methods and systems for data transmission in drilling operation environments, and example methods of manufacture for drill string equipment have been described. It will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of method and/or system. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
In the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
Number | Date | Country | |
---|---|---|---|
Parent | 13991590 | Jun 2013 | US |
Child | 15708457 | US |