The present disclosure generally relate to controlling lost circulation in a wellbore during drilling with a drilling fluid. More specifically, embodiments of the disclosure relate to an organic, particulate lost circulation material.
Lost circulation is one of the frequent challenges encountered during drilling operations. Lost circulation, which can be encountered during any stage of operations, occurs when drilling fluid (or drilling mud) pumped into a well returns partially or does not return to the surface. While some fluid loss is expected, fluid loss beyond acceptable norms is not desirable from a technical, an economical, or an environmental point of view. About 75% of the wells drilled per year encounter lost circulation problems to some extent. Lost circulation is associated with problems with well control, borehole instability, pipe sticking, unsuccessful production tests, poor hydrocarbon production after well completion, and formation damage due to plugging of pores and pore throats by mud particles. In extreme cases, lost circulation problems may force abandonment of a well. In addition, delays in controlling lost circulation can lead to highly complex problems, including the failure to control the lost circulation in any meaningful way.
Lost circulation can be categorized as seepage type, moderate type, severe type, and total loss, referring to the amount of fluid or mud lost. The extent of the fluid loss and the ability to control the lost circulation with an LCM depends on the type of formation in which the lost circulation occurs. Formations with low permeability zones, that is, those with microscopic cracks and fissures, usually have seepage type lost circulation. Other formations may experience lost circulation if an improper mud weight is used while drilling. Such formations include narrow mud weight window, low fracture gradient, depleted reservoir pressure, formations with soluble minerals such as halite, evaporate, and anhydrite.
Lost circulation materials (LCMs) are used to mitigate the lost circulation by blocking the path of the drilling mud into the formation. The type of LCM used in a loss circulation situation depends on the extent of lost circulation and the type of formation. Lost dollars are due to losses of drilling fluids, losses of production, and the costs of LCMs, including importation of LCMs to drilling locations, used in combating lost circulation. Additionally, lost circulation can cause environmental problems if drilling fluids or LCMs interact with the environment surrounding the reservoir. The manufacture, use, and disposal of some conventional LCMs may pose a risk to sensitive environments, such as marine environments because they are not biodegradable and can be toxic to marine life. Additionally, the purchase and importation of LCMs to drilling locations may be expensive and time-consuming.
Embodiments of the disclosure generally relate to a date palm seed lost circulation material (LCM) that includes date palm seed particles and methods to control lost circulation in a lost circulation zone in a wellbore with the date palm seed LCM. More specifically, embodiments of the disclosure relate to a date palm seed LCM that includes a plurality of untreated particles of ground date palm seeds.
In some embodiments, a method to control lost circulation in a lost circulation zone in a wellbore is provided. The method includes introducing an altered drilling fluid into the well bore such that the altered drilling fluid contacts the lost circulation zone and reduces a rate of lost circulation into the lost circulation zone. The altered drilling fluid includes a drilling fluid and a lost circulation material (LCM), and LCM includes a plurality of untreated particles including ground date palm seeds.
In some embodiments, the method includes adding the lost circulation material to the drilling fluid to create the altered drilling fluid. In some embodiments, the untreated particles consist of ground date palm seeds. In some embodiments, the LCM consists of a plurality of untreated particles consisting essentially of ground date palm seeds. In some embodiments, the altered drilling fluid consists of the drilling fluid and the LCM, where the LCM consists essentially of a plurality of untreated particles consisting essentially of ground date palm seeds. In some embodiments, the reduced rate of lost circulation is at least 80% less by volume than before introduction of the altered drilling fluid. In some embodiments, the reduced rate of lost circulation is negligible. In some embodiments, the LCM has a volumetric swelling in fresh water that is greater than a similar LCM formed from tree nuts. In some embodiments, the similar LCM formed from tree nuts is formed from walnuts. In some embodiments, the LCM has a volumetric swelling in fresh water over four hours of at least 0.3 cubic centimeters per gram. In some embodiments, each of the plurality of untreated particles have a particle size in a range of 2 millimeters to 4 millimeters. In some embodiments, the LCM has a D50 shift factor less than a similar LCM formed from calcium carbonate. In some embodiments, the LCM has a D50 shift factor of at least 0.38%. In some embodiments, the LCM has a stability index of at least 0.95.
In another embodiment, a method of forming an alerted drilling fluid is provided. The method includes drying a plurality of date palm seeds and grinding the plurality of date palm seeds to produce the plurality of untreated particles. The method further includes blending the plurality of untreated particles into a lost circulation material (LCM) composition and blending the LCM composition into a drilling fluid to create an altered drilling fluid. In some embodiments, the drilling fluid is water-based drilling fluid. In some embodiments, the LCM composition consists essentially of the plurality of untreated particles. In some embodiments, the plurality of untreated particles are not introduced to an alkali, an acid, a bleaching or an oxidation agent before blending into the LCM composition. In some embodiments, the drying occurs using the sun over a time period in atmospheric conditions. In some embodiments, the plurality of untreated parties are blended into a LCM composition including a carrier fluid and a viscosifier. In some embodiments, the LCM composition is a homogenous suspension. In some embodiment, the LCM composition is a plurality of solid pellets. In some embodiments, the plurality of untreated particles have a particle size selected to block fractures having a size of 4 millimeters in the lost circulation zone.
In another embodiment, an altered drilling fluid is provided. The altered drilling fluid includes a drilling fluid and a lost circulation material (LCM), such that the LCM includes a plurality of untreated particles including ground date palm seeds. In some embodiments, the untreated particles consist of ground date palm seeds. In some embodiments, the LCM consists of a plurality of untreated particles consisting essentially of ground date palm seeds. In some embodiments, the LCM includes a carrier fluid and a viscosifier. In some embodiments, the plurality of untreated particles, the carrier fluid, and the viscosifier form a homogenous suspension. In some embodiments, the plurality of untreated particles, the carrier fluid, and the viscosifier form a plurality of pellets. In some embodiments, each of the plurality of untreated particles as a particle size in the range of 1 millimeters to 2 millimeters.
In another embodiment, lost circulation material (LCM) composition is provided. The LCM composition includes a plurality of untreated particles including ground date palm seeds, a carrier fluid, and a viscosifier. In some embodiments, the plurality of untreated particles consist of ground date palm seeds. In some embodiment, the plurality of untreated particles consist essentially of ground date palm seeds. In some embodiments, the plurality of untreated particles, the carrier fluid, and the viscosifier form a homogenous suspension. In some embodiments, the plurality of untreated particles, the carrier fluid, and the viscosifier form a plurality of pellets. In some embodiments, the LCM composition has a volumetric swelling in fresh water that is greater than a similar LCM formed from tree nuts. In some embodiments, the LCM composition has a volumetric swelling in fresh water over four hours of at least 0.3 cubic centimeters per gram. In some embodiments, each of the plurality of untreated particles has a particle size in the range of 1 millimeters to 2 millimeters.
In another embodiment, a method of forming a lost control material (LCM) composition is provided. The method includes grinding a plurality of date palm seeds to form a plurality of date palm seed particles without treating the plurality of date palm seed particles and mixing the plurality of date palm seed particles with a carrier fluid and viscosifier to form the LCM composition. In some embodiments, the LCM composition includes a homogenous suspension. In some embodiments, grinding the plurality of date palm seeds includes grinding the plurality of date palm seeds without treating the plurality of date palm seed particles with an alkali or an acid, without bleaching and without oxidizing. In some embodiments, the method includes sun-drying the plurality of date palm seeds over a time period in atmospheric conditions before the grinding.
These and other features, aspects, and advantages of the present disclosure will become better understood with regard to the following descriptions, claims, and accompanying drawings. It is to be noted, however, that the drawings illustrate only several embodiments of the disclosure and are therefore not to be considered limiting of the disclosure's scope as it can admit to other equally effective embodiments.
The present disclosure will now be described more fully with reference to the accompanying drawings, which illustrate embodiments of the disclosure. This disclosure may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth in the disclosure. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.
As a wellbore is drilled, a drilling fluid is continuously pumped into the wellbore to clear and clean the wellbore and the filings. The drilling fluid is pumped from a mud pit into the wellbore and returns again to the surface. A lost circulation zone is encountered when the flow rate of the drilling fluid that returns to the surface is less than the flow rate of the drilling fluid pumped into the wellbore, and it is this reduction or absence of returning drilling fluid that is referred to as lost circulation.
Embodiments of the disclosure include a date palm seed LCM that includes date palm seeds (also referred to as “date tree seed” or “date palm seed”) to mitigate or prevent such lost circulation in a well, as well as provide seepage control and minimize or prevent fluid loss. In some embodiments, the date palm seed LCM may be added directly to a drilling fluid (for example, a drilling mud) as a preventative approach for lost circulation control. In some embodiments, the date palm seed LCM may be mixed with a carrier fluid and a viscosifier to form a homogenous suspension or a pill. In some embodiments, the date palm seed LCM may be combined with another LCM and mixed in a carrier fluid and a viscosifier to form a homogenous suspension or a pill. In some embodiments, the date palm seed LCM may be added as a component of a loss control slurry (LCS). In some embodiments, the date palm seed LCM may be combined with other LCMs to form an LCM blend for different loss control applications. Additionally, the LCM may also be added to a drilling fluid system to increase the fracture gradient due to an increase in load bearing capacity or hoop stress around the wellbore.
In some embodiments, the date palm seed LCM may include untreated date palm seed particles. As used in the disclosure, the term “untreated” or “without treating” refers to not treated with alkali or acid, not bleached, not chemically altered, not oxidized, and without any extraction or reaction process other than possibly drying of water. The term “untreated” or “without treatments” does not encompass grinding or heating to remove moisture but does encompass chemical or other processes that may change the characteristics or properties of the LCM. In accordance with this definition, an LCM that is treated may behave in a manner different than its original starting material. In such embodiments, the date palm seed particles may be manufactured without treating before, during, or after crushing, grinding, drying, or any other processing.
In some embodiments, the date palm seed LCM may include date palm seed particles of approximately the same size or size range. In some embodiments, the date palm seed LCM may be produced by crushing date palm seeds, grinding date palm seeds, or both. The crushed date palm seeds, ground date palm seeds, or both may be sifted using a sieve to produce a date palm seed particulate having a specific size or size range. In some embodiments, the date palm seed particles may be less than about 4 millimeters (mm). In some embodiments, the date palm seed particles may be greater than about 2 mm and less than about 4 mm. In some embodiments, the date palm seed particulate may be greater than about 1 mm and less than about 2 mm.
The date palm seed LCM described in the disclosure is chemically inert, physically granular, mechanically strong, biodegradable, environmentally-friendly and non-toxic. As described infra, the date palm seed LCM may have an attrition resistance greater than conventional calcium carbonate LCM. Additionally, the date palm seed LCM may have better volumetric swelling properties than conventional tree nut based LCMs and thus may have sealing and blocking capacity better than conventional tree nut based LCMs. Thus, in some embodiments, the date palm seed LCM described in the disclosure may to plug the permeable paths and gaps of a loss zone and strengthen a near-wellbore formation to increase the fracture gradient and widen the mud weight window.
As will be appreciated, depending on the size range or the D50 value, the date palm seed LCM may seal gaps of different sizes when used to mitigate or prevent lost circulation in a well. In some embodiments, the date palm seed LCM may be generally granular shaped with various size ranges to enable the date palm seed LCM to enter porous and permeable paths, cracks, and fractures in a formation causing mud losses in order to produce an effective seal, barrier, or other preventative to further mud losses.
As shown in
As shown in
Initially, date palm seeds may be obtained (block 602). For example, the date palm seeds may be produced as a waste by-product from date processing, and the date palm seeds may be obtained from date processing plants to provide sustainable source of date palm seeds. Moreover, local sources of date palm seed may reduce the cost of imported LCM products. In some embodiments, the date palm seeds may be obtained from the species phoenix dactylifera. It should be appreciated that, in some embodiments, the date palm seeds may be obtained from genetically modified date palms (that is, genetically modified organisms (GMOs)).
The obtained date palm seeds may be dried (block 604). In some embodiments, the date palm seeds may be dried using a sun drying process over a time period in atmospheric conditions. Next, the dried date palm seeds may be ground (block 606) using, for example a suitable grinder, such as an industrial grinder. In some embodiments, a suitable grinder may produce particle sizes from about 4 mm to less than 1 mm having a sub-angular roundness. In some embodiments, the date palm seeds may be crushed before being ground. For example, in such embodiments, the date palm seeds may be crushed to first size, and the crushed date palm seeds may be ground to a second size smaller than the first size.
The ground date palm seeds may be sifted to produce a date palm seed LCM having a desired particle size (block 608). For example, the ground date palm seeds may be sifted using sieves having a sieve opening size that produces the desired particle size. In some embodiments, the particles of the date palm seed may be less than about 5 mm, less than about 4 mm, less than about 3 mm, less than about 2 mm, less than about 1 mm, less than about 0.5 mm, less than about 0.25 mm, and less than about 0.15 mm. In some embodiments, the date palm seed LCM particulate may be greater than about 2 mm and less than about 4 mm. In some embodiments, the date palm seed LCM particulate may be greater than about 1 mm and less than about 2 mm. In some embodiments, the date palm seed LCM particulate may be about 600 microns. In some embodiments, a date palm seed LCM may have a particulate size (for example, from about 1 mm to about 4 mm) selected to mitigate or prevent release of tannins and avoid thinning of a drilling fluid or carrier fluid. As mentioned supra, in some embodiments the date palm seed particles are manufactured without treating, such that untreated date palm seed particles are produced. In such embodiments, the date palm seed particles may be manufactured without treating before, during, or after crushing, grinding, drying, or any other processing.
In some embodiments, the date palm seed LCM may be added directly to a drilling fluid (block 610), such as a drilling mud, to create an altered drilling fluid having the LCM. For example, in some embodiments, the date palm seed LCM may be added to (for example, blended with) an oil-based drilling mud or a water-based drilling mud. In some embodiments, the date palm seed LCM may be added at the mud pit of a mud system. After addition of the date palm seed LCM to a drilling fluid, the altered drilling fluid may be circulated at a pump rate effective to position the drilling fluid into contact with a lost circulation zone in a wellbore, such that the date palm seed LCM alters the lost circulation zone (for example, by entering and blocking porous and permeable paths, cracks, and fractures in a formation in the lost circulation zone). In some embodiments, the reduced rate of lost circulation may be about 80%. In some embodiments, the reduced rate of lost circulation may be negligible.
In some embodiments, the date palm seed LCM and one or more additional LCMs may be added to a drilling fluid (block 612), such as a drilling mud, to create an altered drilling fluid having the LCMs. For example, in some embodiments, the date palm seed LCM and one or more additional LCMs may be added to an oil-based drilling mud or a water-based drilling mud. In some embodiments, a date palm seed LCM may be manufactured to block fractures of less than 1 mm. In some embodiments, a date palm seed LCM may be manufactured to block fractures of about 4 mm.
As noted in the disclosure, the mechanical properties of the date palm seed LCM may prevent degradation of the date palm seed LCM while circulating downhole as a fluid loss additive or formation strengthening material. Moreover, the biodegradation properties of the date palm seed LCM may enable the date palm seed LCM to easily degrade and disappear from the environment over time and minimize or prevent any environmental impact. Further, the non-toxic properties of the date palm seed LCM may minimize or prevent any effect on ecosystems, habitats, population, crops, and plants surrounding the drilling site where the date palm seed LCM is used.
In some embodiments, the date palm seed LCM may be further processed. In some embodiments, the date palm seed may be mixed with a carrier fluid and a viscosifier (block 614). In some embodiments, date palm seed LCM pellets or a date palm seed LCM homogenous suspension may be formed (block 616). For example, a specific carrier fluid, viscosifier, or combination therefor may be selected to form a homogenous suspension having the date palm seed LCM. Similarly, a specific carrier fluid, viscosifier, or combination thereof may be selected to form pellets having the date palm seed LCM. In some embodiments, the carrier fluid may be water or an oil-based fluid. In some embodiments, the carrier fluid may be fresh water, sea water, salt water, diesel oil, mineral oil, or synthetic oil. In some embodiments, the viscosifier may be a clay or a polymer. In some embodiments, the viscosifier may be bentonite clay, XC polymer, starch, or psyllium husk. Next, the date palm seed LCM pellets or the homogenous suspension may be added to a drilling fluid (block 618), such as a drilling mud for example.
Further modifications and alternative embodiments of the disclosure will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the embodiments described in the disclosure. It is to be understood that the forms shown and described are to be taken as examples of embodiments. Elements and materials may be substituted for those illustrated and described in the disclosure, parts and processes may be reversed or omitted, and certain features may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description. Changes may be made in the elements described in the disclosure without departing from the spirit and scope of the disclosure as described in the following claims. Headings used in the disclosure are for organizational purposes only and are not meant to be used to limit the scope of the description.
This application is a continuation of and claims priority from U.S. Non-provisional application Ser. No. 15/250,301, filed Aug. 29, 2016, and titled “DATE PALM SEED-BASED LOST CIRCULATION MATERIAL (LCM), which claims priority from U.S. Provisional Application No. 62/256,540, filed Nov. 17, 2015, and titled “DATE PALM SEED-BASED LOST CIRCULATION MATERIAL (LCM),” each of which are incorporated by reference in their entirety for purposes of United States patent practice.
Number | Name | Date | Kind |
---|---|---|---|
2483936 | Roberts | Oct 1949 | A |
2600404 | Hoeppel | Jun 1952 | A |
2749308 | Beckum et al. | Jun 1956 | A |
2779417 | Clark, Jr. et al. | Jan 1957 | A |
2789948 | Tronolone | Apr 1957 | A |
2811488 | Nestle et al. | Oct 1957 | A |
2912380 | Groves | Nov 1959 | A |
2943679 | Scott, Jr. | Jul 1960 | A |
2943680 | Scott et al. | Jul 1960 | A |
3147127 | Shannon | Sep 1964 | A |
3217801 | Fast | Nov 1965 | A |
4110225 | Cagle | Aug 1978 | A |
4275788 | Sweatman | Jun 1981 | A |
4474665 | Green | Oct 1984 | A |
4619772 | Black et al. | Oct 1986 | A |
4957166 | Sydansk | Sep 1990 | A |
5004553 | House et al. | Apr 1991 | A |
5118664 | Burts, Jr. | Jun 1992 | A |
5197324 | Keys | Mar 1993 | A |
5332724 | Burts, Jr. | Jul 1994 | A |
5484028 | Rose | Jan 1996 | A |
5501275 | Card et al. | Mar 1996 | A |
5801127 | Duhon, Sr. | Sep 1998 | A |
6016879 | Burts, Jr. | Jan 2000 | A |
6098712 | Burts, Jr. | Aug 2000 | A |
6102121 | Burts, Jr. | Aug 2000 | A |
6271001 | Clarke et al. | Aug 2001 | B1 |
6350594 | Clarke et al. | Feb 2002 | B1 |
6518224 | Wood | Feb 2003 | B2 |
6716798 | Burts, Jr. | Apr 2004 | B1 |
6750179 | Burts, Jr. | Jun 2004 | B1 |
6790812 | Halliday | Sep 2004 | B2 |
6806232 | Cart | Oct 2004 | B1 |
6861392 | Shaarpour | Mar 2005 | B2 |
6932158 | Burts | Aug 2005 | B2 |
7226895 | Xiang | Jun 2007 | B2 |
7271131 | Halliday et al. | Sep 2007 | B2 |
7284611 | Reddy et al. | Oct 2007 | B2 |
7297662 | Verret | Nov 2007 | B2 |
7297663 | Kilchrist et al. | Nov 2007 | B1 |
7488705 | Reddy et al. | Feb 2009 | B2 |
7507692 | Xiang | Mar 2009 | B2 |
7537054 | Reddy et al. | May 2009 | B2 |
7541317 | Pomerleau | Jun 2009 | B2 |
7629297 | Shaarpour | Dec 2009 | B2 |
7795184 | Pomerleau | Sep 2010 | B2 |
7902126 | Burts, Jr. | Mar 2011 | B1 |
7923413 | Ghassemzadeh | Apr 2011 | B2 |
7964537 | Rayborn, Sr. et al. | Jun 2011 | B2 |
8371381 | Shindgikar et al. | Feb 2013 | B2 |
8383558 | Reddy et al. | Feb 2013 | B2 |
8404622 | Ghassemzadeh | Mar 2013 | B2 |
8673825 | Rayborn, Sr. et al. | Mar 2014 | B2 |
8739872 | Miller et al. | Jun 2014 | B1 |
8776882 | Shindgikar et al. | Jul 2014 | B2 |
8887808 | Kumar et al. | Nov 2014 | B2 |
8935957 | Kulkarni et al. | Jan 2015 | B2 |
8992670 | Vohra | Mar 2015 | B1 |
9140118 | Kulkarni et al. | Sep 2015 | B2 |
9175529 | Jamison et al. | Nov 2015 | B2 |
9410066 | Ghassemzadeh | Aug 2016 | B2 |
9416306 | Savari et al. | Aug 2016 | B2 |
9453156 | Wu | Sep 2016 | B2 |
9592488 | Yusuf et al. | Mar 2017 | B2 |
9623067 | Awad et al. | Apr 2017 | B1 |
9688901 | Fontenot | Jun 2017 | B2 |
9783727 | Lahman et al. | Oct 2017 | B2 |
9957433 | Amanullah et al. | May 2018 | B2 |
10513647 | Amanullah | Dec 2019 | B2 |
10519357 | Amanullah | Dec 2019 | B2 |
20020010100 | Wood | Jan 2002 | A1 |
20040023813 | Burts, III | Feb 2004 | A1 |
20040129460 | MacQuoid et al. | Jul 2004 | A1 |
20040244978 | Shaarpour | Dec 2004 | A1 |
20050113260 | Wood | May 2005 | A1 |
20050124502 | Shaarpour | Jun 2005 | A1 |
20050217852 | Bennett et al. | Oct 2005 | A1 |
20060106136 | Abu-Sharkh | May 2006 | A1 |
20060122069 | Burts, III | Jun 2006 | A1 |
20060157247 | Burts, III | Jul 2006 | A1 |
20060160907 | Stamp | Jul 2006 | A1 |
20090054269 | Chatterji et al. | Feb 2009 | A1 |
20090286697 | Shaarpour | Nov 2009 | A1 |
20090305911 | Pomerleau | Dec 2009 | A1 |
20100152070 | Ghassemzadeh | Jun 2010 | A1 |
20100181110 | Harr | Jul 2010 | A1 |
20100193244 | Hoskins | Aug 2010 | A1 |
20100230164 | Pomerleau | Sep 2010 | A1 |
20100230169 | Pomerleau | Sep 2010 | A1 |
20110214870 | Shaarpour | Sep 2011 | A1 |
20110278006 | Sanders | Nov 2011 | A1 |
20120157354 | Li et al. | Jun 2012 | A1 |
20120247763 | Rakitsky et al. | Oct 2012 | A1 |
20130025863 | Lin et al. | Jan 2013 | A1 |
20130206479 | Smith | Aug 2013 | A1 |
20140038857 | Miller et al. | Feb 2014 | A1 |
20140102987 | Yusuf et al. | Apr 2014 | A1 |
20140110177 | Harr | Apr 2014 | A1 |
20140135237 | Villarreal, Jr. et al. | May 2014 | A1 |
20140209290 | Jamison et al. | Jul 2014 | A1 |
20140231082 | Jamison et al. | Aug 2014 | A1 |
20140238674 | Savari | Aug 2014 | A1 |
20140262281 | Kulkarni et al. | Sep 2014 | A1 |
20140318793 | Van Petergem et al. | Oct 2014 | A1 |
20140353043 | Amanullah et al. | Dec 2014 | A1 |
20150008044 | Fontenot | Jan 2015 | A1 |
20150051120 | Hurd et al. | Feb 2015 | A1 |
20150072901 | Samuel et al. | Mar 2015 | A1 |
20150166875 | Bird et al. | Jun 2015 | A1 |
20150247081 | Dillon et al. | Sep 2015 | A1 |
20150251156 | Yusuf et al. | Sep 2015 | A1 |
20160060985 | Lin et al. | Mar 2016 | A1 |
20160096988 | Lin et al. | Apr 2016 | A1 |
20160177164 | Dillon et al. | Jun 2016 | A1 |
20160222274 | Hoskins | Aug 2016 | A1 |
20160222275 | Galindo et al. | Aug 2016 | A1 |
20160257869 | Kulkarni et al. | Sep 2016 | A1 |
20160289528 | Wagle et al. | Oct 2016 | A1 |
20160312100 | Amanullah et al. | Oct 2016 | A1 |
20170058180 | Hossain | Mar 2017 | A1 |
20170137688 | Amanullah | May 2017 | A1 |
20170166795 | Walker et al. | Jun 2017 | A1 |
20170240791 | Oliveira et al. | Aug 2017 | A1 |
20170298263 | Amanullah | Oct 2017 | A1 |
20180002588 | Amanullah | Jan 2018 | A1 |
20180002589 | Amanullah | Jan 2018 | A1 |
20180016483 | Amanullah | Jan 2018 | A1 |
20180057729 | Amanullah | Mar 2018 | A1 |
20180201819 | Amanullah | Jul 2018 | A1 |
20190177593 | Amanullah | Jun 2019 | A1 |
20190177594 | Amanullah | Jun 2019 | A1 |
20190177595 | Amanullah | Jun 2019 | A1 |
20190233705 | Amanullah et al. | Aug 2019 | A1 |
20190249061 | Alouhali et al. | Aug 2019 | A1 |
20190270924 | Amanullah | Sep 2019 | A1 |
20200079987 | Amanullah | Mar 2020 | A1 |
20200079988 | Amanullah | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
101311243 | Nov 2008 | CN |
101724383 | Jun 2010 | CN |
102127403 | Jul 2011 | CN |
203035080 | Jul 2013 | CN |
103740346 | Apr 2014 | CN |
104087274 | Oct 2014 | CN |
104419392 | Mar 2015 | CN |
2506603 | Apr 2014 | GB |
0671171 | Mar 1994 | JP |
200153429 | Jul 2001 | WO |
2004013448 | Feb 2004 | WO |
2010019535 | Feb 2010 | WO |
2010088484 | Aug 2010 | WO |
2010142370 | Dec 2010 | WO |
2012037600 | Mar 2012 | WO |
2012061187 | May 2012 | WO |
2013039938 | Mar 2013 | WO |
2014008598 | Jan 2014 | WO |
2014197417 | Dec 2014 | WO |
2015142156 | Sep 2015 | WO |
2015199652 | Dec 2015 | WO |
2016019416 | Feb 2016 | WO |
2016028470 | Feb 2016 | WO |
2016172287 | Oct 2016 | WO |
2017087434 | May 2017 | WO |
2018005575 | Jan 2018 | WO |
2018013619 | Jan 2018 | WO |
Entry |
---|
Wajheeuddin, Mohammed (2014). Development of an Environmentally-Friendly Drilling Fluid Using Date Seeds and Grass (Master's thesis). King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia. 138 p. (Year: 2014). |
“Wood Shop News, Issue #08 Hard and softwoods, a unique food bank, and more news from around the shop” available as of Oct. 8, 2018 at the website: https://www.wooden-box-maker.com/Wood_Shop_News-hardwoods-and-softwoods.html. |
Alawad, Musaed N.J., et al.; “Superior fracture-seal material using crushed date palm seeds for oil and gas well drilling operations” Journal of King Saud University—Engineering Sciences (2017); pp. 1-7. |
Al-Awad, Musaed NJ et al.; “Utilization of Shredded Waste Car Tyres as a Fracture Seal Material (FSM) in Oil and Gas Drilling Operations” Journal of Petroleum & Environmental Biotechnology, (2017) vol. 8, Issue 2; pp. 1-4. |
Alsaba, M. et al.; “Review of lost circulation materials and treatments with an updated classification.” AADE National Technical Conference and Exhibition, Houston, TX, Apr. 2014; pp. 1-9. |
Amanullah, et al.; “Application of an indigenous eco-friendly raw material as fluid loss additive”, Journal of Petroleum Science and Engineering, vol. 139, (2016); pp. 191-197. |
Amanullah; “Characteristics, behavior and performance of ARC Plug—A date seed-based sized particulate LCM.” SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. Society of Petroleum Engineers, 2016; pp. 1-9. |
BakerHughes.com “SOLUFLAKE Flaked Calcium Carbonate” (XP055401101) Jan. 8, 2016; p. 1. |
International Search Report and Written Opinion for International Application No. PCT/US2016/062130; Report dated Jan. 27, 2017; pp. 1-12. |
International Search Report and Written Opinion for International Application No. PCT/US2017/027287; report dated Sep. 13, 2017; 11 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/039614; Report dated Sep. 11, 2017; pp. 1-12. |
International Search Report and Written Opinion for International Application No. PCT/US2017/039616; Report dated Sep. 11, 2017; pp. 1-11. |
International Search Report and Written Opinion for International Application No. PCT/US2017/047877; Report dated Oct. 27, 2017; pp. 1-15. |
International Search Report and Written Opinion for International Application No. PCT/US2017/053355; International filing date Sep. 26, 2017; Report dated Jan. 17, 2018; pp. 1-14. |
International Search Report and Written Opinion for International Application No. PCT/US2017/060079; International Filing Date Nov. 6, 2017; Report dated Dec. 18, 2017; pp. 1-14. |
International Search Report and Written Opinion for International Application No. PCT/US2017/067179 International Filing Date Dec. 19, 2017; Report dated Feb. 21, 2018; pp. 1-14. |
International Search Report and Written Opinion for International Application No. PCT/US2017/041611; International Filing Date Jul. 12, 2017; Report dated Oct. 27, 2017 (pp. 1-15). |
International Search Report and Written Opinion for International Application No. PCT/US2018/034291; International Filing Date May 24, 2018; Report dated Jul. 31, 2018 (pp. 1-11). |
International Search Report and Written Opinion for International Application No. PCT/US2018/048423; International Filing Date Aug. 29, 2018; Report dated Nov. 29, 2018 (pp. 1-12). |
Saudi Aramco “Local palm trees support technical solutions” Dhahran, Aug. 4, 2015; available as of Sep. 19, 2018 at the website: www.saudiaramco.com/en/home/news-media/news/local-palm-trees-support.html. |
International Search Report and Written Opinion for International Application No. PCT/US2019/016614 report dated Jun. 3, 2019; pp. 1-12. |
International Search Report and Written Opinion for International Application No. PCT/US2019/022843 report dated Jun. 3, 2019; pp. 1-13. |
Wajheeuddin, M. et al.; “An Experimental Study on Particle Sizing of Natural Substitutes for Drilling Fluid Applications.” Journal of Nature Science and Sustainable Technology vol. 8, No. 2 (2014); pp. 1-14. |
Number | Date | Country | |
---|---|---|---|
20200002592 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62256540 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15250301 | Aug 2016 | US |
Child | 16568564 | US |