Date tree trunk and rachis-based superfine fibrous materials for seepage loss control

Information

  • Patent Grant
  • 10597575
  • Patent Number
    10,597,575
  • Date Filed
    Monday, May 20, 2019
    5 years ago
  • Date Issued
    Tuesday, March 24, 2020
    4 years ago
Abstract
A date tree trunk- and rachis-based lost circulation material (LCM) is provided. The date tree trunk and rachis LCM includes superfine date tree trunk fibers produced from date tree trunks and superfine date tree rachis fibers produced from date tree rachises. The date tree trunks and rachises may be obtained from the date tree waste produced by the processing of date trees in the production of date fruits. The date tree trunk and rachis LCM may include fibers having lengths in the range of about 20 microns to about 300 microns. Methods of lost circulation control using a date tree trunk and rachis LCM and manufacture of a date tree trunk and rachis LCM are also provided.
Description
BACKGROUND

Field of the Disclosure


The present disclosure generally relates to controlling lost circulation in a wellbore, such as during drilling with a drilling fluid. More specifically, embodiments of the disclosure relate to a lost circulation material (LCM).


Description of the Related Art


Lost circulation is one of the frequent challenges encountered during drilling operations. Lost circulation can be encountered during any stage of operations and occurs when drilling fluid (such as drilling mud) pumped into a well returns partially or does not fully return to the surface. While some fluid loss is expected, excessive fluid loss is not desirable from a safety, an economical, or an environmental point of view. Lost circulation is one of the major causes of non-productive time (NPT) and is associated with problems with well control, borehole instability, pipe sticking, unsuccessful production tests, and poor hydrocarbon production after well completion.


Lost circulation can occur in various formations, such as naturally fractured formations, cavernous formations, and high permeable formations. Lost circulation can be categorized by the amount of fluid or mud lost as seepage type, moderate type, severe type, and total loss. The extent of the fluid loss and the ability to control the lost circulation with an LCM depends on the type of formation in which the lost circulation occurs. For example, high permeable, super-K (for example, having an extremely high permeability of greater than 500 millidarcy), fractured, vugular, and cavernous formations may lost a large volume of drilling mud and experience a rapid drop of mud column in the wellbore. The rapid drop of mud column may lead to various drilling problems such as stuck pipe, wellbore instability, and kicks or blowouts that may result in side tracking or abandonment of a well.


SUMMARY

Lost circulation materials (LCMs) are used to mitigate the lost circulation by blocking the path of the drilling fluid (such as drilling mud) into the formation. The type of LCM used in a lost circulation situation depends on the extent of lost circulation and the type of formation. LCMs used to control lost circulation may be divided into six general categories: fibrous materials, flaky materials, granular materials, gel-type materials, crosslinking polymers, and loss control slurries. Some LCM products may have a range of grades referred to as extra-large, large, coarse, medium, fine, and superfine. Fine and superfine grade LCMs may be used for seepage-type lost circulation, and may be combined in a pill or a loss control slurry.


Costs incurred in loss circulation situations may be due to losses of drilling fluids, losses of production, and the costs of LCMs, including importation of LCMs to drilling locations. For example, the importation of LCMs to address seepage-type lost circulation may increase the cost of drilling and production in formations susceptible to seepage-type lost circulation. Seepage-type loss zones typically experience losses of 10-15 barrels (bbls) of whole mud. LCMs may be targeted to control different types of mud losses; however, very few existing LCMs are applicable to seepage-type loss zones. Moreover, most of the existing LCMs for use in seepage-type loss zones are chemicals and polymers that need crosslinkers to be effective and require special placement techniques to deliver into the loss zone. Such chemical and polymer LCMs, and the associated crosslinkers, are not environmentally friendly and may have a negative impact on the surrounding environment of a wellsite.


Embodiments of the disclosure include a date tree trunk- and rachis-based LCM formed from date tree trunk fibers produced from date tree trunks and date tree rachis fibers produced from date tree rachises. In one embodiment, a method to control lost circulation in a lost circulation zone in a wellbore is provided. The method includes introducing an altered drilling fluid into the wellbore such that the altered drilling fluid contacts the lost circulation zone and reduces a rate of lost circulation into the lost circulation zone, where the altered drilling fluid includes a drilling fluid and a lost circulation material (LCM). The LCM includes a plurality of date tree trunk fibers produced from date tree trunks and a plurality of date tree rachis fibers produced from date tree rachises, each of the plurality of date tree trunk fibers and the plurality of date tree rachis fibers having a length in the range of about 20 microns (μm) to about 300 μm.


In some embodiments, the altered drilling fluid consists of the drilling fluid and the LCM. In some embodiments, the LCM consists of the plurality of date tree trunk fibers and the plurality of date tree rachis fibers. In some embodiments, the plurality of date tree trunk fibers include a plurality of untreated date tree trunk fibers and the plurality of date tree rachis fibers include a plurality of untreated date tree rachis fibers. In some embodiments, the plurality of date tree trunk fibers and plurality of date tree rachis fibers are in an amount in the range of 1% to 3% by weight of the total weight (w/w %) of the altered drilling fluid. In some embodiments, the reduced rate of lost circulation of a fluid portion of the altered drilling fluid is zero. In some embodiments, the drilling fluid includes a low solid non-dispersed mud.


In another embodiment, an altered drilling fluid is provided that includes a drilling fluid and a lost circulation material (LCM) having a plurality of date tree trunk fibers produced from date tree trunks and a plurality of date tree rachis fibers produced from date tree rachises. Each of the plurality of date tree trunk fibers and the plurality of date tree rachis fibers has a length in the range of about 20 microns (μm) to about 300 μm. In some embodiments, the altered drilling fluid consists of the drilling fluid and the LCM. In some embodiments, the LCM consists of the plurality of date tree trunk fibers and the plurality of date tree rachis fibers. In some embodiments, the plurality of date tree trunk fibers include a plurality of untreated date tree trunk fibers and the plurality of date tree rachis fibers include a plurality of untreated date tree rachis fibers. In some embodiments, the plurality of date tree trunk fibers and the plurality of date tree rachis fibers are in an amount in the range of 1% to 3% by weight of the total weight of the altered drilling fluid.


In another embodiment, a method of forming a lost circulation material (LCM). The method includes chopping a plurality of date tree trunks to produce a plurality of chopped date tree trunks, chopping a plurality of date tree rachis to produce a plurality of chopped date tree rachis, and grinding the chopped date tree trunks and chopped date tree rachis to produce a plurality of fibers having a length in the range of about 20 microns (μm) to about 300 μm, such that the LCM includes the plurality of fibers. In some embodiments, the method includes washing the plurality of date tree trunks before chopping the date tree trunks and washing the plurality of date tree rachis before chopping the date tree rachis. In some embodiments, the method includes sieving the ground date tree trunks and date tree rachis using one or more sieves to produce the plurality of fibers each having a length in the range of about 20 microns (μm) to about 300 μm. In some embodiments, the plurality of date tree trunks include a plurality of untreated date tree trunks and the plurality of date tree rachis include a plurality of untreated date tree rachis.


In another embodiments, a lost circulation material (LCM) composition is provided. The LCM composition includes a plurality of fibers formed from a plurality of date tree trunks and a plurality of date tree rachis, the plurality of fibers having a length in the range of about 20 microns (μm) to about 300 μm, such that the plurality of fibers are formed by grinding the plurality of date tree trunks and the plurality of date tree rachis.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a bar graph of the spurt loss of an low solid non-dispersed mud (LSND) mud during an high pressure-high temperature (HPHT) filtration test using an example date tree trunk and rachis LCM and a commercially available LCM in accordance with embodiments of the disclosure;



FIG. 2 is a bar graph of the fluid loss of an LSND mud during an high pressure-high temperature (HPHT) filtration test using an example date tree trunk and rachis LCM and a commercially available LCM in accordance with embodiments of the disclosure;



FIG. 3 is a bar graph of the mudcake thickness formed by an LSND mud during an high pressure-high temperature (HPHT) filtration test using an example date tree trunk and rachis LCM and a commercially available LCM in accordance with embodiments of the disclosure; and



FIG. 4 is a block diagram of a process for manufacturing and using a date tree trunk and rachis LCM in accordance with embodiments of the disclosure





DETAILED DESCRIPTION

The present disclosure will now be described more fully with reference to the accompanying drawings, which illustrate embodiments of the disclosure. This disclosure may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.


As a wellbore is drilled, a drilling fluid is continuously pumped into the wellbore to clear and clean the wellbore and the filings. The drilling fluid is pumped from a mud pit into the wellbore and returns again to the surface. A lost circulation zone is encountered when the flow rate of the drilling fluid that returns to the surface is less than the flow rate of the drilling fluid pumped into the wellbore, and it is this reduction or absence of returning drilling fluid that is referred to as lost circulation.


Embodiments of the disclosure include a date tree trunk and rachis LCM that includes superfine (for example, 300 microns or less) fibers formed from the trunks and rachises of date trees. The date tree trunk and rachis LCM may be introduced into a lost circulation zone in a well to mitigate or prevent lost circulation, and to additionally provide seepage control and minimize or prevent fluid loss. The date tree trunks and rachises may be obtained from date tree waste produced by the processing of date trees (also referred to as “date palms”) in the production of date fruits (also referred to as “dates”). In some embodiments, the date tree trunk and rachis LCM includes fibers having lengths in the range of about 20 microns (μm) to about 300 microns.


As described in the disclosure, the date tree trunk and rachis LCM may be added to a drilling fluid to control (that is, mitigate or prevent) seepage type lost circulation while drilling loss zones in highly permeable and porous formations, such as formations having a permeability in the range of about 10 Darcy to about 25 Darcy. The date tree trunk and rachis fibers having the disclosed sizes and properties may enable the date tree trunk and rachis LCM to provide highly stable flow barriers to mitigate or prevent the loss of whole mud while drilling or the loss of cement slurry while cementing a well. For example, the fibers at the mouth of fractures and gaps in a loss zone, within narrow spaces of the fractures and gaps of the loss zone, or both, and may develop a seal, plug, or other structure in the fractures and gaps to prevent or reduce the loss of drilling fluid.


EXAMPLES

The following examples are included to demonstrate embodiments of the disclosure. It should be appreciated by those of skill in the art that the techniques and compositions disclosed in the example which follows represents techniques and compositions discovered to function well in the practice of the disclosure, and thus can be considered to constitute modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or a similar result without departing from the spirit and scope of the disclosure.


The following non-limiting example of a date tree trunk and rachis LCM was prepared and evaluated against a commercially available LCM using a low solid non-dispersed mud (LSND). High pressure-high temperature (HPHT) filtration tests were conducted on the date tree trunk and rachis LCM and the commercially available LCM using and an HPHT Filter Press manufactured by OFI Testing Equipment, Inc., of Houston, Tex., USA. The tests were conducted at a pressure of about 500 psi and a temperature of about 100° C. For the HPHT filtration tests, the date tree trunk and rachis LCM and commercially available LCM were incorporated into a LSND mud having the composition shown in Table 1:









TABLE 1







COMPOSITION OF LSND MUD










Mud




Components
LSND mud













Water (milliliters (ml))
332



Bentonite (grams (g))
6



XC Polymer (g)
1



Soda Ash (g)
0.3



Potassium Chloride (g)
20



Sodium Sulfite (g)
1



Sodium Hydroxide
Amount sufficient to raise pH in




the range of about 9.5 to about




10









The example date tree trunk and rachis LCM was formed from superfine fibers from processed date tree trunks and date tree rachises. Sieve analysis was performed on the fibers, and the size distribution from the sieve analysis is shown in Table 2:









TABLE 2







SIZE DISTRIBUTION OF EXAMPLE SUPERFINE DATE


TREE LCM FIBERS













Sieve
Empty
Sieve +





Size
Sieve
Sample
Sample
Amount


Sieve Size
(microns)
Weigh (g)
weigh (g)
Weigh (g)
(%)















Passed on
300
362.31
365.20
2.89
3.09


300 μm Sieve







Retained on
250
347.90
348.89
0.99
1.06


250 μm Sieve







Retained on
150
333.75
339.30
5.55
5.93


150 μm Sieve







Retained on
106
329.49
336.51
7.02
7.50


106 μm Sieve







Retained on
75
321.46
377.20
55.74
59.59


75 μm sieve







Retained on
32
314.70
334.50
19.80
21.17


32 μm sieve







Retained on
20
306.45
308.00
1.55
1.66


20 μm sieve







Retained on
>20
356.32
356.32
0.00
0.00


Blank
















Total weight before
97





sieving (g)






Total weight after
93.54





sieving (g)









A HPHT filtration test was conducted by incorporating 10 g of the example date tree trunk and rachis LCM in the LSND mud. A second HPHT filtration test was conducted by incorporating 10 g of Barofibre® SF manufactured by The Halliburton Company of Houston, Tex., USA. The HPHT filtration tests were conducted at about 212° F. and about 500 pounds per square inch (psi) differential pressure. The LSND mud was hot rolled for about 16 hours at the test conditions of about 212° F. and about 500 psi.



FIG. 1 is a bar graph 100 of the spurt loss (in ml) exhibited by the example date tree trunk and rachis LCM and the commercial LCM after hot rolling (AHR) and testing with an HPHT filter press. The bar graph 100 illustrates the spurt loss control of the two LCMs. FIG. 1 depicts a first bar 102 corresponding to the example date tree trunk and rachis LCM and a second bar 104 corresponding to the commercially available LCM Barofibre® SF. As shown in FIG. 1, the example date tree trunk and rachis LCM exhibited lower spurt loss as compared to the commercial LCM. The HPHT filtration test thus shows that the date tree trunk and rachis LCM has improved spurt loss performance relative to the commercial LCM.



FIG. 2 is a bar graph 200 of the fluid loss (in ml) exhibited by the example date tree trunk and rachis LCM and the commercial LCM and illustrates the fluid loss control performance of the two LCMs. FIG. 2 accordingly depicts a first bar 202 corresponding to the example date tree trunk and rachis LCM and a second bar 204 corresponding to the commercial LCM. As shown in FIG. 2, the example date tree trunk and rachis LCM exhibited a lower fluid loss as compared to the commercial LCM during the HPHT filtration test. The HPHT filtration test thus shows that the date tree trunk and rachis LCM has improved fluid loss performance relative to the commercial LCM.



FIG. 3 is a bar graph 300 of the mudcake thickness (in mm) formed after the HPHT filtration test for the example date tree trunk and rachis LCM and the commercial LCM. FIG. 3 accordingly depicts a first bar 302 corresponding to the example date tree trunk and rachis LCM and a second bar 304 corresponding to the commercial LCM. As shown in FIG. 3, the example date tree trunk and rachis LCM formed a thinner mudcake as compared to the mudcake formed using the commercial LCM during the HPHT filtration test. The formation of the thinner mudcake during the HPHT filtration test thus shows that the date tree trunk and rachis LCM has improved capability to mitigate or prevent fluid loss relative to the commercial LCM.


As shown in the results from the HPHT tests depicted in FIGS. 1-3, the date tree trunk and rachis LCM may provide improved control of seepage type loss of drilling mud as compared to the commercially available LCM Barofibre® SF and, consequently, other commercially available LCMs. The date tree trunk and rachis LCM may thus be a viable alternative to the tested commercially available LCM and other similar commercial LCMs used for seepage type loss control.


Date Tree Trunk and Rachis LCM Manufacture and Use


In some embodiments, a date tree trunk and rachis LCM includes date tree fibers formed from date tree trunks and date tree fibers formed from date tree rachises. The date tree trunks and rachises may be produced as a waste by-product from date processing. For example, the date tree trunks and rachises may be obtained from date processing plants to provide a sustainable source of material for the date tree trunk and rachis LCM. Moreover, local sources of date tree trunks and rachises may reduce the cost of imported LCM products, components, or both. In some embodiments, the date tree trunks and rachises are obtained from the species phoenix daciylifera. It should be appreciated that, in some embodiments, the date tree trunks and rachises may be obtained from genetically modified date trees (that is, genetically modified organisms (GMOs)). In some embodiments, the date tree trunks and rachises may be prepared by cleaning the date tree trunks before processing and use as an LCM, such as by washing the date tree trunks.


In some embodiments, the date tree trunk and rachis LCM includes fibers having lengths of 300 μm or less. In some embodiments, the date tree trunk and rachis may a combination of fibers having one or more of the following size ranges: less than 300 μm and greater than 250 μm; greater than 150 μm and less than 251 μm; greater than 106 μm and less than 151 μm; greater than 75 μm and less than 107 μm; greater than 32 μm and less than 76 μm; and greater than 20 μm and less than 33 μm.


In some embodiments, the date tree trunks may include untreated date tree trunks and the date tree rachis may include untreated date tree rachises, thus preserving the environmentally-friendly and biodegradable properties of the manufacturing process, the fibers formed from the date tree trunks and rachises, and the resulting LCM composition. As used in the disclosure, the term “untreated” or “without treating” refers to not treated with alkali or acid, not bleached, not chemically altered, not oxidized, and without any extraction or reaction process other than possibly drying of water. The term “untreated” or “without treatments” does not encompass grinding or heating to remove moisture but does encompass chemical or other processes that may change the characteristics or properties of the fibers. In such embodiments, the date tree trunk and rachis LCM may be manufactured without treating before, during, or after crushing, grinding, drying, or any other processing to form untreated fibers from the date tree trunks and rachises.


In some embodiments, the date tree trunk and rachis LCM may be added directly to a drilling fluid, such as a drilling mud, to create an altered drilling fluid having the date tree trunk and rachis LCM. For example, in some embodiments, the date tree trunk and rachis LCM may be added to (for example, blended with) an oil-based drilling mud or a water-based drilling mud. In some embodiments, the date tree trunk and rachis LCM may be added to a drilling fluid in an amount in the range of 1% by weight of the total weight (w/w %) to about 3 w/w %. In some embodiments, the date tree trunk and rachis LCM may be added at the mud pit of a mud system. After addition of the date tree trunk and rachis LCM to a drilling fluid, the altered drilling fluid may be circulated at a pump rate effective to position the altered drilling fluid into contact with a lost circulation zone in a wellbore, such that the date tree trunk and rachis LCM alters the lost circulation zone (for example, by entering and blocking porous and permeable paths, cracks, and fractures in a formation in the lost circulation zone, such as by forming a structure in a mouth or within a fracture).



FIG. 4 depicts a process 400 for the production and use of a date tree and rachis LCM in accordance with an example embodiment of the disclosure. As shown in FIG. 4, date tree trunks and rachises may be collected (block 402) from deceased date trees, such as from a date processing facility. In some embodiments, date tree trunks and rachises may be collected from a date processing facility and transported to another facility for the processing described in the disclosure. Next, the date tree trunks and rachises may be chopped into smaller pieces (block 404). For example, the date tree trunks may be chopped for subsequent ease of handling. In some embodiments, the date tree trunks may be chopped manually using a suitable chopping tool. In other embodiments, the date tree trunks may be chopped automatically via a suitable machine, such as an industrial chopper.


Next, the chopped date tree trunks and rachises may be cleaned and washed (block 406) to remove dirt, dust, and other foreign substances. In some embodiments the chopped date tree trunks and rachises may be washed using a high pressure water jet to remove dirt, dust, and other foreign substances. The chopped date tree trunks and rachises may then be ground to produce date tree trunk and rachis fibers (block 408). In some embodiments, the chopped date tree trunk and rachis may be ground using a suitable commercial grinder that produces a specific range of fiber sizes (for example, length and diameter). For example, a suitable commercial grinder may be capable of grinding the chopped date trunks and rachises into fibers having lengths of about 300 μm or less. In some embodiments, the date tree trunk and rachis fibers may be ground in stages. For example, the chopped date tree trunks and rachises may be ground using a primary grinding process or grinder to produce a first range of fiber sizes. The ground date tree trunks and rachises may then be ground using a secondary grinding process or grinder to produce a second range of fiber sizes for use in the date tree trunk and rachis LCM. The chopped date tree trunk and rachis fibers may be ground to sizes of 300 300 μm of less. For example, in some embodiments, the chopped date tree trunk and rachis fibers may be ground to produce the following sizes some embodiments, the date tree trunk and rachis LCM: less than 300 μm and greater than 250 μm; greater than 150 μm and less than 251 μm; greater than 106 μm and less than 151 μm; greater than 75 μm and less than 107 μm; greater than 32 μm and less than 76 μm; and greater than 20 μm and less than 33 μm.


The ground date tree trunk and rachis fibers may then be sieved to obtain desired fibers sizes for the date tree trunk and rachis LCM (block 410). In some embodiments, the date tree trunk fibers may be packed for transportation and use, such as in in paper bags. In some embodiments, the date tree trunk fibers may be dried using a sun drying process over a time period in atmospheric conditions. In some embodiments, a suitable amount of packed date tree trunk fibers may then be transported to an oil and gas operations site for use as a date tree trunk LCM.


As shown in FIG. 4, the date tree trunk and rachis LCM may be added directly to a drilling fluid (block 412), such as a drilling mud, to create an altered drilling fluid having the date tree trunk LCM. For example, in some embodiments, the date tree trunk and rachis LCM may be added to (for example, blended with) an oil-based drilling mud or a water-based drilling mud. In some embodiments, the date tree trunk and rachis LCM may be added at the mud pit of a mud system. After addition of the date tree trunk and rachis LCM to a drilling fluid, the altered drilling fluid may be circulated at a pump rate effective to position the drilling fluid into contact with a lost circulation zone in a wellbore, such that the date tree trunk and rachis LCM alters the lost circulation zone (for example, by entering and blocking porous and permeable paths, cracks, and fractures in a formation in the lost circulation zone). Advantageously, as discussed above, the date tree trunk and rachis LCM may be particularly suitable for mitigating or preventing seepage type lost circulation. Accordingly, the date tree trunk and rachis LCM may reduce or prevent the loss of whole mud in a lost circulation zone. As previously stated, the date tree trunk and rachis LCM may form at openings of paths, cracks, and fractures in a loss zone and within narrow spaces of the paths, cracks, and fractures.


In other embodiments, the date tree trunk and rachis LCM and one or more additional LCMs may be added to a drilling fluid, such as a drilling mud, to create an altered drilling fluid having the LCMs. For example, in some embodiments, the date tree trunk and rachis LCM and one or more additional LCMs may be added to an oil-based drilling mud or a water-based drilling mud. In other embodiments, the date tree trunk and rachis LCM may be added to a cement slurry for use in a cementing operation. In some embodiments, the date tree trunk and rachis LCM may be used as a component of an LCM blend or pill. For example, in some embodiments, the date tree trunk and rachis LCM may be mixed with a carrier fluid, a viscosifier, or both to form a homogenous suspension or pill. A specific carrier fluid, viscosifier, or combination therefor may be selected to form a homogenous suspension or pill having the date tree trunk and rachis LCM.


When added directly to a drilling fluid alone or added to a drilling fluid with one or more additional LCMs, the biodegradation properties of the superfine fibers of the date tree trunk and rachis LCM may enable the date tree trunk and rachis LCM to easily degrade and disappear from the environment over time and minimize or prevent any environmental impact. Further, the non-toxic properties and sustainable sourcing of the date tree trunk and rachis fibers may minimize or prevent any effect on ecosystems, habitats, population, crops, and plants surrounding the drilling site where the date tree trunk and rachis LCM is used. Additionally, sourcing the date tree trunk and rachis LCM from date tree waste produced from date processing may eliminate the cost associated with the importation of other LCMs.


Ranges may be expressed in the disclosure as from about one particular value, to about another particular value, or both. When such a range is expressed, it is to be understood that another embodiment is from the one particular value, to the other particular value, or both, along with all combinations within said range.


Further modifications and alternative embodiments of various aspects of the disclosure will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the embodiments described in the disclosure. It is to be understood that the forms shown and described in the disclosure are to be taken as examples of embodiments. Elements and materials may be substituted for those illustrated and described in the disclosure, parts and processes may be reversed or omitted, and certain features may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description. Changes may be made in the elements described in the disclosure without departing from the spirit and scope of the disclosure as described in the following claims. Headings used described in the disclosure are for organizational purposes only and are not meant to be used to limit the scope of the description.

Claims
  • 1. An altered drilling fluid, comprising: a drilling fluid, wherein the drilling fluid comprises a low solid non-dispersed mud; anda lost circulation material (LCM) comprising a plurality of date tree trunk fibers produced from date tree trunks and a plurality of date tree rachis fibers produced from date tree rachises, each of the plurality of date tree trunk fibers and the plurality of date tree rachis fibers having a length in the range of about 20 microns (μm) to about 300 μm.
  • 2. The altered drilling fluid of claim 1, wherein the altered drilling fluid consists of the drilling fluid and the LCM.
  • 3. The altered drilling fluid of claim 1, wherein the LCM consists of the plurality of date tree trunk fibers and the plurality of date tree rachis fibers.
  • 4. The altered drilling fluid of claim 1, wherein the plurality of date tree trunk fibers comprise a plurality of untreated date tree trunk fibers and the plurality of date tree rachis fibers comprise a plurality of untreated date tree rachis fibers.
  • 5. The altered drilling fluid of claim 1, wherein the plurality of date tree trunk fibers and the plurality of date tree rachis fibers comprise a total amount in the range of 1% to 3% by weight of the total weight of the altered drilling fluid.
  • 6. A method of forming a lost circulation material (LCM), comprising: washing a plurality of date tree trunks;chopping the plurality of date tree trunks after the washing to produce a plurality of chopped date tree trunks;washing a plurality of date tree rachises;chopping the plurality of date tree rachises after the washing to produce a plurality of chopped date tree rachis; andgrinding the chopped date tree trunks and chopped date tree rachises to produce a plurality of fibers having a length in the range of about 20 microns (μm) to about 300 μ, the LCM comprising the plurality of fibers.
  • 7. The method of claim 6, comprising sieving the ground date tree trunks and date tree rachis using one or more sieves to produce the plurality of fibers each having a length in the range of about 20 microns (μm) to about 300 μm.
  • 8. The method of claim 6, wherein the plurality of date tree trunks comprise a plurality of untreated date tree trunks and the plurality of date tree rachises comprise a plurality of untreated date tree rachis.
  • 9. A lost circulation material (LCM) composition, the composition consisting of: a plurality of untreated fibers formed from a plurality of date tree trunks and a plurality of date tree rachis, the plurality of fibers having a length in the range of about 20 microns (μm) to about 300 μm, wherein the plurality of untreated fibers are formed by:washing the plurality of date tree trunks and the plurality of date tree rachises;chopping the plurality of date tree trunks and the plurality of date tree rachises after the washing to produce a plurality of chopped date tree trunks and a plurality of chopped date tree rachises; andgrinding the plurality of chopped date tree trunks and the plurality of chopped date tree rachises.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of and claims priority from U.S. Non-provisional application Ser. No. 15/799,004 filed Oct. 31, 2017, and titled “DATE TREE TRUNK AND RACHIS-BASED SUPERFINE FIBROUS MATERIALS FOR SEEPAGE LOSS CONTROL,” which claims priority from U.S. Provisional Application No. 62/512,447 filed May 30, 2017, and titled “DATE TREE TRUNK AND RACHIS-BASED SUPERFINE FIBROUS MATERIALS FOR SEEPAGE LOSS CONTROL,” each of which are incorporated by reference in their entirety for purposes of United States patent practice.

US Referenced Citations (118)
Number Name Date Kind
2483936 Roberts Oct 1949 A
2600404 Hoeppel Jun 1952 A
2749308 Beckum et al. Jun 1956 A
2779417 Clark, Jr. et al. Jan 1957 A
2789948 Tronolone Apr 1957 A
2811488 Nestle et al. Oct 1957 A
2912380 Groves Nov 1959 A
2943679 Scott, Jr. Jul 1960 A
2943680 Scott et al. Jul 1960 A
4110225 Cagle Aug 1978 A
4275788 Sweatman Jun 1981 A
4619772 Black et al. Oct 1986 A
4957166 Sydansk Sep 1990 A
5004553 House et al. Apr 1991 A
5118664 Burts, Jr. Jun 1992 A
5197324 Keys Mar 1993 A
5332724 Burts, Jr. Jul 1994 A
5484028 Rose Jan 1996 A
5501275 Card et al. Mar 1996 A
5801127 Duhon, Sr. Sep 1998 A
6016879 Burts, Jr. Jan 2000 A
6098712 Burts, Jr. Aug 2000 A
6102121 Burts, Jr. Aug 2000 A
6271001 Clarke et al. Aug 2001 B1
6350594 Clarke et al. Feb 2002 B1
6518224 Wood Feb 2003 B2
6716798 Burts, Jr. Apr 2004 B1
6750179 Burts, Jr. Jun 2004 B1
6790812 Halliday Sep 2004 B2
6806232 Cart Oct 2004 B1
6861392 Shaarpour Mar 2005 B2
6932158 Burts Aug 2005 B2
7226895 Xiang Jun 2007 B2
7271131 Halliday et al. Sep 2007 B2
7284611 Reddy et al. Oct 2007 B2
7297662 Verret Nov 2007 B2
7297663 Kilchrist et al. Nov 2007 B1
7488705 Reddy et al. Feb 2009 B2
7507692 Xiang Mar 2009 B2
7537054 Reddy et al. May 2009 B2
7629297 Shaarpour Dec 2009 B2
7902126 Burts, Jr. Mar 2011 B1
7923413 Ghassemzadeh Apr 2011 B2
7964537 Rayborn, Sr. et al. Jun 2011 B2
8371381 Shindgikar et al. Feb 2013 B2
8383558 Reddy et al. Feb 2013 B2
8404622 Ghassemzadeh Mar 2013 B2
8673825 Rayborn, Sr. et al. Mar 2014 B2
8739872 Miller et al. Jun 2014 B1
8776882 Shindgikar et al. Jul 2014 B2
8887808 Kumar et al. Nov 2014 B2
8935957 Kulkarni et al. Jan 2015 B2
8992670 Vohra Mar 2015 B1
9140118 Kulkarni et al. Sep 2015 B2
9175529 Jamison et al. Nov 2015 B2
9410066 Ghassemzadeh Aug 2016 B2
9416306 Savari et al. Aug 2016 B2
9453156 Wu Sep 2016 B2
9592488 Yusuf et al. Mar 2017 B2
9623067 Awad et al. Apr 2017 B1
9688901 Fontenot Jun 2017 B2
9783727 Lahman et al. Oct 2017 B2
20020010100 Wood Jan 2002 A1
20040023813 Burts, III Feb 2004 A1
20040129460 MacQuoid et al. Jul 2004 A1
20040244978 Shaarpour Dec 2004 A1
20050113260 Wood May 2005 A1
20050124502 Shaarpour Jun 2005 A1
20050217852 Bennett et al. Oct 2005 A1
20060106136 Abu-Sharkh May 2006 A1
20060122069 Burts, III Jun 2006 A1
20060157247 Burts, III Jul 2006 A1
20060160907 Stamp Jul 2006 A1
20090054269 Chatterji et al. Feb 2009 A1
20090286697 Shaarpour Nov 2009 A1
20090305911 Pomerleau Dec 2009 A1
20100152070 Ghassemzadeh Jun 2010 A1
20100181110 Harr Jul 2010 A1
20100193244 Hoskins Aug 2010 A1
20100230164 Pomerleau Sep 2010 A1
20100230169 Pomerleau Sep 2010 A1
20110214870 Shaarpour Sep 2011 A1
20110278006 Sanders Nov 2011 A1
20120157354 Li et al. Jun 2012 A1
20120247763 Rakitsky et al. Oct 2012 A1
20130025863 Lin et al. Jan 2013 A1
20130206479 Smith Aug 2013 A1
20140038857 Miller et al. Feb 2014 A1
20140102987 Yusuf et al. Apr 2014 A1
20140110177 Harr Apr 2014 A1
20140135237 Villarreal, Jr. et al. May 2014 A1
20140209290 Jamison et al. Jul 2014 A1
20140231082 Jamison et al. Aug 2014 A1
20140262281 Kulkarni et al. Sep 2014 A1
20140318793 Van Petergem et al. Oct 2014 A1
20140353043 Amanullah et al. Dec 2014 A1
20150051120 Hurd et al. Feb 2015 A1
20150072901 Samuel et al. Mar 2015 A1
20150166875 Bird et al. Jun 2015 A1
20150247081 Dillon et al. Sep 2015 A1
20150251156 Yusuf et al. Sep 2015 A1
20160060985 Lin et al. Mar 2016 A1
20160096988 Lin et al. Apr 2016 A1
20160177164 Dillon et al. Jun 2016 A1
20160222274 Hoskins Aug 2016 A1
20160222275 Galindo et al. Aug 2016 A1
20160257869 Kulkarni et al. Sep 2016 A1
20160289528 Wagle et al. Oct 2016 A1
20160312100 Amanullah et al. Oct 2016 A1
20170058180 Hossain et al. Mar 2017 A1
20170137688 Amanullah May 2017 A1
20170166795 Walker et al. Jun 2017 A1
20170240791 Oliveira et al. Aug 2017 A1
20170298263 Amanullah Oct 2017 A1
20180002588 Amanullah Jan 2018 A1
20180002589 Amanullah Jan 2018 A1
20180016483 Amanullah Jan 2018 A1
20180057729 Amanullah Mar 2018 A1
Foreign Referenced Citations (25)
Number Date Country
101311243 Nov 2008 CN
101724383 Jun 2010 CN
102127403 Jul 2011 CN
203035080 Jul 2013 CN
103740346 Apr 2014 CN
104087274 Oct 2014 CN
104419392 Mar 2015 CN
2506603 Apr 2014 GB
0671171 Mar 1994 JP
2004013448 Feb 2004 WO
2010019535 Feb 2010 WO
2010088484 Aug 2010 WO
2010142370 Dec 2010 WO
2012037600 Mar 2012 WO
2012061187 May 2012 WO
2013039938 Mar 2013 WO
2014008598 Jan 2014 WO
2014197417 Dec 2014 WO
2015142156 Sep 2015 WO
2015199652 Dec 2015 WO
2016019416 Feb 2016 WO
2016028470 Feb 2016 WO
2016172287 Oct 2016 WO
2017087434 May 2017 WO
2018005575 Jan 2018 WO
Non-Patent Literature Citations (20)
Entry
“Wood Shop News, Issue #08 Hard and softwoods, a unique food bank, and more news from around the shop” available as of Oct. 8, 2018 at the website: https://www.wooden-box-maker.com/Wood_Shop_News-hardwoods-and-softwoods.html.
Alawad, Musaed N.J., et al.; “Superior fracture-seal material using crushed date palm seeds for oil and gas well drilling operations” Journal of King Saud University—Engineering Sciences (2017); pp. 1-7.
Al-Awad, Musaed NJ et al.; “Utilization of Shredded Waste Car Tyres as a Fracture Seal Material (FSM) in Oil and Gas Drilling Operations” Journal of Petroleum & Environmental Biotechnology, (2017) vol. 8, Issue 2; pp. 1-4.
Alsaba, M. et al.; “Review of lost circulation materials and treatments with an updated classification.” AADE National Technical Conference and Exhibition, Houston, TX, Apr. 2014; pp. 1-9.
Amanullah, et al.; “Application of an indigenous eco-friendly raw material as fluid loss additive”, Journal of Petroleum Science and Engineering, vol. 139, (2016); pp. 191-197.
Amanullah; “Characteristics, behavior and performance of ARC Plug-A date seed-based sized particulate LCM.” SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. Society of Petroleum Engineers, 2016; pp. 1-9.
BakerHughes.com “SOLUFLAKE Flaked Calcium Carbonate” (XP055401101) Jan. 8, 2016; p. 1.
International Search Report and Written Opinion for International Application No. PCT/US2016/062130 (SA5410/PCT); Report dated Jan. 27, 2017; pp. 1-12.
International Search Report and Written Opinion for International Application No. PCT/US2017/027287 (SA5508/PCT); Report dated Sep. 13, 2017; 11 pages.
International Search Report and Written Opinion for International Application No. PCT/US2017/039614 (SA5532/PCT); Report dated Sep. 11, 2017; pp. 1-12.
International Search Report and Written Opinion for International Application No. PCT/US2017/039616 (SA5533/PCT); Report dated Sep. 11, 2017; pp. 1-11.
International Search Report and Written Opinion for International Application No. PCT/US2017/047877 (SA5599/PCT); Report dated Oct. 27, 2017; pp. 1-15.
International Search Report and Written Opinion for International Application No. PCT/US2017/053355 (SA5580/PCT); International filed Sep. 26, 2017; Report dated Jan. 17, 2018; pp. 1-14.
International Search Report and Written Opinion for International Application No. PCT/US2017/060079 (SA5577/PCT); International Filing Date Nov. 6, 2017; Report dated Dec. 18, 2017; pp. 1-14.
International Search Report and Written Opinion for International Application No. PCT/US2017/067179 (SA5600/PCT) International Filing Date Dec. 19, 2017; Report dated Feb. 21, 2018; pp. 1-14.
International Search Report and Written Opinion for International Application No. PCT/US2017/041611 (SA5534); International Filing Date Jul. 12, 2017; Report dated Oct. 27, 2017 (pp. 1-15).
International Search Report and Written Opinion for International Application No. PCT/US2018/034291 (SA5652/PCT); International Filing Date May 24, 2018; Report dated Jul. 31, 2018 (pp. 1-11).
International Search Report and Written Opinion for International Application No. PCT/US2018/048423 (SA5757); International Filing Date Aug. 29, 2018; Report dated Nov. 29, 2018 (pp. 1-12).
Saudi Aramco “Local palm trees support technical solutions” Dhahran, Aug. 4, 2015; available as of Sep. 19, 2018 at the website: www.saudiaramco.com/en/home/news-media/news/local-palm-trees-support.html.
Wajheeuddin, M. et al.; “An Experimental Study on Particle Sizing of Natural Substitutes for Drilling Fluid Applications.” Journal of Nature Science and Sustainable Technology vol. 8, No. 2 (2014); pp. 1-14.
Related Publications (1)
Number Date Country
20190300773 A1 Oct 2019 US
Provisional Applications (1)
Number Date Country
62512447 May 2017 US
Divisions (1)
Number Date Country
Parent 15799004 Oct 2017 US
Child 16416635 US