The present disclosure relates to a daylighting system to be installed on a periphery of a daylighting opening. In particular, the present disclosure relates to a daylighting system capable of exerting an excellent daylighting function (in other words “letting-in-light function” or “improving-lighting function”), without disfiguring the periphery of the daylighting opening.
As disclosed in JP2006-222011A, for example, the use of sunlight as illumination light has been under review. In the invention disclosed in JP2006-222011A, a light shelf is disposed oppositely to an upper part of a daylighting opening, and a shade (in other words “blind”) is disposed below the light shelf. By adjusting an inclination angle of the light shelf, the light shelf throws upward sunlight entering a room from the upper part of the daylighting opening. Namely, the light shelf offers a light shielding function in terms of anti-glare effect, while simultaneously offering a daylighting function for daylighting an upper space inside the room (for letting in light to the upper space inside the room). Since the shade is disposed below the light shelf, the shade can exert a function expected to be offered by the shade, such as the light shielding function, without impairing the daylighting function of the light shelf.
In the invention disclosed in JP2006-222011A, the light shelf conspicuously extends into the room with a view to sufficiently achieving the light shielding function and the daylighting function. Thus, the light shelf brings a feeling of strangeness without going together a surrounding area, which seriously disfigures the periphery of the opening. For this reason, the light shelf is not actually in widespread use. On the other hand, if a system capable of offering an excellent daylighting function without disfiguring the periphery of the opening can be realized, the use of a lighting apparatus can be restrained through the prevalence of this system, whereby energy can be saved and CO2 can be reduced.
The present invention has been made in view of the above circumstances. One object of the present invention is to provide a daylighting system capable of exerting an excellent daylighting function, without disfiguring a periphery of an opening.
In some embodiments the daylighting system is a daylighting system comprising:
Some embodiments of the present invention will be described herebelow with reference to the drawings. The embodiments include a daylighting system, an object, a window and a method of manufacturing a daylighting system. Exemplary embodiments of the present invention are described herein. It should be noted that these exemplary embodiments are merely examples and the present invention is not limited to the detailed embodiments. In the drawings attached to the specification, a scale size, an aspect ratio and so on are changed and exaggerated from the actual ones, for the convenience of easiness in illustration and understanding.
In this specification, terms specifying shapes, geometric conditions and their degrees, e.g., “parallel”, “perpendicular”, “same”, etc., are not limited to their strict definitions, but construed to include a range capable of exerting a similar function.
Further, in this specification, the terms “sheet”, “film” and “plate” are not differentiated from one another, based only on the difference of terms. For example, the “sheet” is a concept including a member that can be referred to as film or plate.
Furthermore, the term “sheet plane (film plane, plate plane)” means a plane corresponding to a plane of a sheet-like (film-like plate-like) member as a target, when the sheet-like (film-like, plate-like) member as a target is seen as a whole in general. A normal line to the sheet-like (film-like, plate-like) member means a direction normal to the sheet plane (film plane, plate plane) of the sheet-like (film-like, plate-like) member.
Still furthermore, an “up and down direction” in this specification is a direction not in parallel with a horizontal direction in a plane in parallel with a vertical direction, and does not always correspond to the vertical direction. The term “up (upper, above, upward)” means one side (or part) in the up and down direction, i.e., a side (or part) adjacent to the “up” in the vertical direction. The term “down (lower, below, downward)” is a side opposed to the “up” in the up and down direction, i.e., a side (or part) adjacent to the “down” in the vertical direction.
The below-described daylighting system 10 is an apparatus to be installed on a periphery of a daylighting opening 1, which is a system for efficiently letting in sunlight. The daylighting system 10 includes a light control member 20 disposed on at least an upper part of the daylighting opening 1, and a shade (in other words, blind) 50 disposed oppositely to at least a part of the opening 1, the part being below the part where the light control member 20 is disposed. The light control member 20 is formed to have a sheet-like shape, as a member extending in a planar direction. As shown in
In the example described below, the daylighting system 10 is applied to a daylighting window of a building. The opening 1 is formed in a wall 2. The shade 50 is installed in a room partitioned by the wall 2, a ceiling 3 and a floor 4. The shade 50 is mounted on the wall 2 to face the daylighting opening 1 formed in the wall 2. A daylighting implement 6, which includes a transparent window member 7 made of glass or the like, is fitted in the opening 1, so that the opening 1 is closed by the daylighting implement 6. The light control member 20 is attached to the window member 7 or sandwiched and supported between a pair of window members 7, such that the light control member 20 forms, together with the window member(s) 7, the daylighting implement 6, or that the light control member 20 forms, as a part of the window member(s) 7, the daylighting implement 6.
The light control member 20 is described firstly. In the example shown in
Particularly in the illustrated example, the window member 7 extends in parallel with the vertical direction. As a result, the sheet plane of the light control member 20 is in parallel with the vertical direction. In addition, the first direction d1 and the second direction d2 are perpendicular to each other. Thus, in the illustrated example, the first direction d1 extends horizontally, while the second direction d2 extends vertically.
As shown in
On the other hand, the light control layer 30 further has, in addition to the first portions 31 and the second portions 32, a sheet-like base portion (land part) 33 that supports the first portions 31 and the second portions 32. The base portion 33 is integrally formed with the first portion 31 so as to form a light control layer body 34 together with the first portion 31. In other words, the light control layer 30 of the light control member 20 includes the light control layer body 34 having grooves 34a formed therein, and the second portions 32 respectively formed in the grooves 34a of the light control layer body 34. A portion between the adjacent grooves 34a of the light control layer body 34 defines the first portion 31.
The first side surface 36 of each second portion 32 forms an interface between the second portion 32 and the first portion 31 adjacent to the second portion 32 from the upper side in the up and down direction. On the other hand, the second side surface 37 of each second portion 32 forms an interface between the second portion 32 and the first portion 31 adjacent to the second portion 32 from the lower side in the up and down direction. From a viewpoint of deflecting and letting in incident light from a wide angular range into a narrower angular range, the interface between each second portion and the first portion 31 adjacent to the second portion 32 from above, i.e., the first side surface 36 of the second portion 32 is inclined relative to the normal direction nd to the light control member 20, such that the first side surface 36 is positioned upward in the up and down direction on the incident side, and is positioned downward in the up and down direction on the outgoing side. In addition, from the viewpoint of deflecting and letting in incident light into a narrower angular range, as in the example shown in
The fact that the angle θa “varies to decrease from the incident side toward the outgoing side” means not only that the angle θa continuously decreases, but also that the angle θa degreases stepwise, as in the example shown in
In the illustrated example, the second portions 32 are arranged at equal intervals therebetween along the second direction d2. In addition, the second portions 32 extend in the first direction d1 with sections thereof being unchanged. Further, the second portions 32 included in the light control member 20 are identical to one another in structure. Due to the aforementioned structure of the second portions 32, in the illustrated example, the first portions 31 included in the light control member 20 are arranged at equal intervals therebetween along the second direction d2, extend in the first direction d1 with sections thereof being unchanged, and are identical to one another in structure.
In the section shown in
A ratio of the height h of the second portion 32 along the normal direction nd to the sheet plane of the light control member 20 relative to the width w of the second portion 32 along the sheet plane of the light control member 20, that is to say, an aspect ratio represented as h/w is preferably greater than 1, and more preferably 5 or more, in order to sufficiently exert the daylighting function and another function such as the light shielding function and so on. In addition, the aspect ratio is preferably 10 or less, in consideration stability in manufacture.
Note that the aforementioned structures of the first portions 31 and the second portions 32 are mere examples, and their structures can be suitably modified in consideration of, e.g., a below-described function of the light control member 20. For example, the first side surface 36 of the second portion 32 may be formed as a curved surface. Also when the first side surface is a curved surface, it is preferable that the angle θa (see
Next, materials of the first portion 31 and the second portion 32 are explained.
The first portion 31 is formed to be transparent. In this specification, the term “transparent” means that a visible light transmittance is 50% or more. However, the visible light transmittance of the first portion 31 in this embodiment is preferably 70% or more, and more preferably 90% or more.
The visible light transmittance in this specification is determined as follows. A 1-μm thick film of a material forming a part to be measured is deposited on a PET film manufactured by TOYOBO Co., Ltd. (product number: Cosmo Shine A4300, thickness: 100 μm). Then, by using a spectrophotometer (manufactured by Shimadzu Corporation, “UV-2450”, compliant with JISK0115), transmittances of the part are measured with measurement wavelength range of from 380 nm to 780 nm. An average value of the transmittances at the respective wavelengths is the visible light transmittance. Similarly, a heat ray transmittance described later is determined as follows. A 1-μm thick film of a material forming a part to be measured is deposited on a PET film manufactured by TOYOBO Co., Ltd. (product number: Cosmo Shine A4300, thickness: 100 μm). Then, by using a spectrophotometer (manufactured by Shimadzu Corporation, “UV-2450”, compliant with JISK0115), transmittances of the part are measured with measurement wavelength range of from 900 nm to 2500 nm. An average value of the transmittances at the respective wavelengths is the heat ray transmittance.
In addition, in this embodiment, the base portion 33 is integrally formed with the first portion 31 by using the same material as that of the first portion 31. As a material for use in the light control layer body 34 forming the first portion 31 and the base portion 33, there may be used a resin material, in particular, a cured material of an ionizing radiation curing resin which cures by irradiation of an ionizing radiation, for example. As the ionizing radiation curing resin, an ultraviolet curing resin, an electron radiation curing resin, a visible light curing resin, a near-infrared radiation curing resin may be taken for instance. A concrete example of the resin material may be an acrylic resin.
On the other hand, the second portion 32 has a refractive index different from that of the first portion 31. In this embodiment, the second portion 32 includes a main portion 32a functioning as a binder, and an optional functional content 32b dispersed in the main portion 32a. The refractive index of the main portion 32a is different from the refractive index of the first portion 31. As a result, an interface between first portion 31 and the second portion 32 has a refractive index difference so as to function as a surface that reflects visible light. In order that the visible light coming from the side of the first portion 31 is reflected on the interface between the first portion 31 and the second portion 32, the refractive index of the second portion 32 is preferably adjusted to be smaller than the refractive index of the first portion 31.
As a material for use in the main portion 32a of the second portion 32, there may be used a resin material, in particular, a cured material of an ionizing radiation curing resin which cures by irradiation of an ionizing radiation, for example. As the ionizing radiation curing resin, an ultraviolet curing resin, an electron radiation curing resin, a visible light curing resin, a near-infrared radiation curing resin may be taken for instance. A concrete example of the resin material may be an acrylic resin having a refractive index different from that of the acrylic resin for use in the first portion 31. However, in a case where the second portion 32 includes the functional content 32b, the same acrylic resin as that of the first portion 31 may be used, if the refractive index of the second portion 32 is changed by the functional content 32b.
The functional content 32b of the second portion 32 is dispersed in the main portion 32a with a view to offering various functions. For example, the functional content 32b may be a heat absorbing agent or a coloring agent. As the heat absorbing agent, there are used particles having an absorption property for light in a near-infrared light wavelength range, and a transmission property for light in a visible light wavelength range. Specifically, as the heat absorbing agent, inorganic nanoparticles having transparency may be used. For example, there may be used antimony tin oxide (ATO), indium tin oxide (ITO), lanthanum hexaboride (LaB6), aluminum-doped zinc oxide, indium-doped zinc oxide, gallium-doped zinc oxide, tungsten oxide, cerium hexaboride, anhydrous antimony tin oxide, and copper sulfide, or mixture of these nanoparticles.
As the coloring agent, there may be used particles having a function of absorbing at least light of a certain wavelength range within the visible light wavelength band. As an example of the coloring agent, there may be used a pigment, more specifically, a black pigment such as carbon black, graphite, titanium nitride, etc., or a white pigment such as titanium oxide, etc. In addition, bluish particles such as iron blue, blue or violet particles, reddish particles and yellowish particles may be used as the coloring agent. Due to the functional content 32b as the cooling agent included in the second portion 32, the second portion 32 can be colored. At this time, a design property can be given to the light control member 20, in consideration of the color quality of the second portion 32 and so on.
The light control layer 30 as structured above may be manufactured in the following manner. The light control layer body 34 forming the first portions 31 and the base portions 33 is manufactured by using a curing material such as epoxy acrylate, which will cure by irradiation of an ionizing radiation such as an electron radiation or an ultraviolet radiation. To be specific, a mold roll having projections corresponding to the structure (position, shape or the like) of the grooves 34a of the light control layer body 34, in other words, a mold roll having recesses corresponding to the structure (position, shape or the like) of the first portions 31, is prepared. A sheet for forming the substrate layer 40 is fed between the mold roll and a nip roll. In accordance with the feeding of the sheet, the curing material is supplied between the mold roll and the substrate layer 40. Thereafter, the curing material is pressed by the mold roll and the nip roll, such that the recesses of the mold roll are filled with the uncured, liquid curing material supplied to the substrate layer 40. At this time, the curing material is supplied to the substrate layer 40 such that the curing material is thicker than a depth of each recess of the mold roll, i.e., the mold roll and the substrate layer 40 are not brought into contact with each other, so that the above-described base portion (land part) 33 is formed integrally with the first portions 31 out of the curing material. After the space between the substrate layer 40 and the mold roll is filled with the uncured, liquid curing material, the curing material is irradiated with to cure (solidify) the curing material, whereby the light control layer body 34 can be formed.
Then, the second portions 32 are manufactured by using an uncured liquid composition which includes a curing material which cures to form the main portion 32a, and the optional functional content 32b. As the curing material which cures to form the main portion 32a, there may be used a curing material such as urethane acrylate which cures by an ionizing radiation. Firstly, the composition is supplied to the light control layer body 34 that has been already formed. Thereafter, while the composition is filled into the grooves 34a formed between the adjacent first portions 31, i.e., into the portions corresponding to the projections of the mold roll, the superfluous composition overflowing from the grooves 34a is scraped by means of a doctor blade. After that, the composition between the first portions 31 is irradiated with an ionizing radiation to cure the composition, so that the second portions 32 are formed. Thus, there is manufactured the light control member 20 including the substrate layer 40, the base portion 33 disposed on the substrate layer 40, and the first portions 31 and the second portions 32 disposed on the base portion 33.
Next, the shade 50 is described.
As shown in
As shown in
The shade 50 includes: an attachment box 52 serving as an attachment tool to the wall 2; a ladder code 56 extending downward from the attachment box 52, the ladder code 56 supporting the slats 60 at vertical intervals; an elevation code 58 for drawing upward the slats 60; and an operation grip 54 connected to the ladder code 56 and the elevation code 58.
In this embodiment, the ladder code 56 controls the inclination of each slat 60 such that all the slats 60 included in the shade 50 are substantially parallel. By operating the ladder code 56 through operation grip 54, the inclination of the slat 60 can be adjusted. On the other hand, by operating the elevation code 58 through the operation grip 54, the slats 60 can be drawn upward in such a manner that the vertical intervals between the slats 60 are sequentially narrowed from below. At this time, the slats 60 are at least partially accommodated in the attachment box 52, so that the daylighting implement 6 mounted on the opening 1 is exposed to the room. Similarly, by operating the elevation code 58 through the operation grip 54, the slats 60 gathered in the upper position can be drawn downward to the position facing the daylighting implement 6. For example, a thin plate member made of an anticorrosive aluminum alloy, a thin plate made of a wooden material or a thin plate made of a resin may be used as the slat 60. Such a slat 60 is opaque and has a visible-light shielding property. The slat 60 may have a function for reflecting visible light to change a traveling direction of incident light. In addition, a surface of the slat 60 may be provided with a functional layer for imparting to the shade 50 a heat shielding function, an antifouling function, an antibacterial function, and a deodorant function. For example, a fluorine coating and/or a titanium oxide coating may be provided to the slat 60.
Note that, in the shade 50 in this embodiment, various known structures can be used as the slat 60, the attachment box 52, the operation grip 54, the ladder code 56, the elevation code 58, and the mechanism for operating the ladder code 56 and the elevation code 58 through the operation grip 54.
Next, an operation of the aforementioned daylighting system 10 is described. Only the shade 50 is disposed in the area where the light control member 20 is not disposed, i.e., in a part excluding the upper part of the opening 1. In this area, various functions that should be intrinsically offered by the shade 50 can be exerted by the shade 50.
Firstly, a sole operation of the shade 50 is explained. By operating the operation grip 54, the inclination of the slats 60, which are arranged at intervals in the up and down direction, can be adjusted at a position facing the daylighting implement 6 mounted on the opening 1. In this embodiment, the thin plate-like slats 60 are arranged such that their plate planes are in parallel with one another. By operating the operation grip 54, the inclinations of all the slats 60 included in the shade 50 can be adjusted.
For example, by operating the operation grip 54, the slat 60 can be inclined relative to both the horizontal direction and the vertical direction, such that the plate plane of each slat 60 is gradually lowered from the incident side toward the outgoing side. In this case, since the plate plane of the slat 60 is substantially in parallel with an incident direction of sunlight into the room through the opening 1, the sunlight can be introduced to the room at high efficiency. As a result, the room can be brightly illuminated by the sunlight. Simultaneously, since the slat 60 is opaque, visibility of the room through opening 1 can be somewhat impaired by the slat 60. Namely, the slat 60 can daylight the room, while making the room not easily visible from the outside.
On the other hand, as shown in
As shown in
On the other hand, the lighting system 10 employed herein has the light control member 20 on an upper part of the daylighting implement 6. As shown in
Herein, the expression “traveling direction is changed or bent upward” means that the traveling direction heretofore is changed or bent to the upper side, and does not necessarily mean that the traveling direction is changed to a traveling direction that is inclined upward relative to the normal direction nd to the light control member 20. In
As shown in
Particularly in the illustrated example, a pair of main surfaces of the light control layer 30, i.e., the incident side surface and the outgoing side surface are in parallel with each other. In addition, as described above, the interface between each second portion 32 and the first portion 31 adjacent to the second portion 32 from above, i.e., the first side surface 36 of the second portion 32 is inclined relative to the normal direction nd to the light control member 20, such that the first side surface 36 is positioned upward in the up and down direction on the incident side, and is positioned downward in the up and down direction on the outgoing side. As a result, a traveling direction of sunlight incident on the light control member 20 from a direction that is largely inclined upward is bent by the reflection on the interface between the first side surface 36 of the second portion 32 and the first portion 31, such that an outgoing angle of the sunlight going out from the light control member 20 is smaller than an incident angle of the sunlight incident on the light control member 20. For this reason, in the plane along both the normal direction nd to the light control member 20 and the second direction d2 which is the arrangement direction of the first and second portions 31, 32, i.e., in the plane as shown in
Further, in the illustrated example, the second portion 32 of the light control member 20 has a reflective index lower than that of the first portion 31. Thus, the light incident on the first portion 31 of the light control member 20 can enter the interface between the first side surface 36 of the second portion 32 and the first portion 31, such that a total reflection condition on the interface therebetween is satisfied. The light control member 20 more significantly enforces the function for narrowing down a traveling direction, on the light incident on the interface such that the total reflection condition on the interface is satisfied. Namely, in the plane along the normal direction nd to the light control member 20 and the second direction d2, it is possible to significantly narrow the angular range θ0 including the outgoing direction of the light going out from the light control member 20, the light having entered the interface between the first portion 31 and the first side surface 36 of the second portion 32 of the light control layer 30 at an incident angle larger than a total reflection threshold angle, and totally reflected on the interface to transmit through the light control member 20, as compared with the angular range θi including the incident direction of the light incident on the light control member 20. Namely, the total reflected light occupying relatively a larger part of the light transmitting the light control member 20 is narrowed down into a small angular range, whereby the light can pass through between the slats 60 of the shade 50, which achieves a more efficient daylighting function.
In addition, in this embodiment, as shown in
Namely, as typically shown in the illustrated example, in the plane along both the normal direction nd to the light control member 20 and the second direction d2 which is the arrangement direction of the first and second portions 31, 32, when an angle defined by the interface, which is between each second portion 32 and the first portion 31 adjacent to the second portion 32 from above, relative to the normal direction nd to the light control member 20 varies to decrease from the incident side toward the outgoing side, an outgoing direction of light, which has changed its traveling direction in the light control member 20 and passed therethrough, can be narrowed down into a small angular range. As a result, the light having transmitted through the light control member 20 tends to pass through between the slats 60 of the shade 50 installed on the outgoing side of the light control member 20, which achieves a more efficient daylighting function.
As shown in
In addition, when the second portion 32 contains only a little amount of the functional content 32b functioning as an absorbent or does not contain it at all, light, which has entered the second portion 32 without reflecting on the interface between the first portion 31 and the second portion 32, passes through the second portion 32 to pass through the light control member 20. As shown in
According to the aforementioned embodiment, there is installed, in the upper part of the opening 1, the light control member 20 capable of guiding light up to a position distant from the opening 1 inside the area to be daylighted (“inside of the room” in the illustrated example). The light control member 20 that offers the excellent daylighting function is formed to have a sheet-like shape. Thus, there is no portion that projects toward the area to be daylighted. Thus, disfiguring of a peripheral area of the opening 1 can be effectively avoided. In addition, the sheet-like light control member 20 including no projection is not so subjected to a restriction related to an installation place that the light control member 20 can be installed various openings 1. Namely, the daylighting system 10 according to this embodiment can be applied to various openings 1, without disfiguring the peripheral area of each opening 1.
In addition, the shade 50 is disposed oppositely to at least a part of the opening 1, which is below the part where the light control member 20 is disposed. The shade 50 can offer the light shielding function, the heat shielding function, the privacy function and so on. Namely, the daylighting system 10 including the light shielding member 20 and the shade 50 can exert various favorable functions upon light entering through the opening 1.
In addition, according to this embodiment, the shade 50 is also located on a position facing the light control member 20. Thus, when observed from the area to be daylighted, i.e., when observed from the inside of the room in the above example, the shade 50 hides the light control member 20 offering the daylighting function, so that it can be significantly effectively avoided that the peripheral area of the opening 1 is disfigured or impaired in terms of unified fashion. Moreover, by coloring the slats 60 of the shade 50, for example, even a design property of the peripheral area of the opening 1 can be improved.
Further, in the plane along both the normal direction nd to the light control member 20 and the second direction d2 which is the arrangement direction of the first and second portions 31, 32, the light control member 20 can control a traveling direction of incident light, such that the angular range θ0 including the outgoing direction of the light going out from the light control member 20, the light having changed its traveling direction in the light control member 20 and passed through the light control member 20, is smaller than the angular range θi including the incident direction of the light incident on the light control member 20. Thus, even when the slats 60 of the shade 50 are inclined so as to exert the light shielding function for an anti-glare effect, since light transmits through the light control member 20 such that its outgoing direction is narrowed down into a small angular range, the light can pass through between the slats 60 to enter the area to be daylighted. Namely, due to the combination of the light control member 20 and the shade 50 according to this embodiment, the light shielding function for shielding direct light in terms of an anti-glare effect can be offered, while the daylighting function can be simultaneously achieved.
The aforementioned embodiment can be variously modified. Herebelow, one modification example is described with reference to the drawings. In the below description and the drawings used in the below description, a component that can be configured similarly to the above embodiment is indicated by the same reference number as that of the above embodiment, and overlapped description is omitted.
For example, in the aforementioned embodiment, the shade 50 is located to cover not only an area opposed to a part of the opening 1, the part being below the part where the light control member 20 is disposed, but also an are opposed to the light control member 20. However, not limited thereto, as shown in
In addition, in the aforementioned embodiment, although the daylighting system 10 is applied to the opening 1 formed in the wall 2 of the building, the present invention is not limited thereto. For example, the daylighting system 10 can be applied to an opening formed in a mobile object such as an automobile, an electric train, an airplane, a vehicle, etc.
Further, as shown by the two-dot chain lines in
Furthermore, in the aforementioned embodiment, although the daylighting function for letting in sunlight in a desired direction can be achieved by bending a traveling direction of the sunlight by the reflection on the interface between the first portion 31 and the second portion 32 of the light control member 20, the present invention is not limited to this example. The light control member 20 may have a so-called prism surface which bends a traveling direction of light by reflection or refraction, so as to introduce the light.
Still furthermore, the light control member 20 may further have a functional layer expected to offer various functions, in addition to the first portions 31 and the second portions 32. For example, the light control member 20 may be further provided with a hard coat layer having abrasion resistance, as a layer closest to the inside of the room.
Yet furthermore, in the aforementioned embodiment, the inclinations of all the slats 60 included in the shade 50 are operated in parallel with one another by the ladder code 56. However, for example, by operating slats located on a position opposed to the light control member 20 and slats other than these slats by means of separate ladder codes, the inclinations of the slats 60 in the area opposed to the light control member 20 and the inclinations of the slats 60 in the other area may be independently adjusted.
Number | Date | Country | Kind |
---|---|---|---|
2013-125243 | Jun 2013 | JP | national |
This application is a continuation of U.S. application Ser. No. 14/897,871, filed Mar. 1, 2016, which in turn is the National Stage of International Application No. PCT/JP2014/065910, filed Jun. 16, 2014, the entireties of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
9366403 | Kashiwagi et al. | Jun 2016 | B2 |
20110043919 | Ko et al. | Feb 2011 | A1 |
20140104689 | Padiyath et al. | Apr 2014 | A1 |
20160223155 | Nango et al. | Aug 2016 | A1 |
20160252225 | Tsujimoto et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
58-128299 | Aug 1983 | JP |
11-036739 | Feb 1999 | JP |
2001-003661 | Jan 2001 | JP |
2006-222011 | Aug 2006 | JP |
2009-266794 | Nov 2009 | JP |
2013-037995 | Feb 2013 | JP |
2013-062157 | Apr 2013 | JP |
2012017509 | Feb 2012 | WO |
Entry |
---|
International Search Report (Application No. PCT/JP2014/065910) dated Aug. 12, 2014 (with English translation). |
International Preliminary Report on Patentability (Application No. PCT/JP2014/065910) dated Dec. 23, 2015. |
Japanese Office Action (Application No. 2013-125243) dated Feb. 14, 2017 (with English translation). |
Japanese Office Action (Application No. 2017-118983) dated Mar. 27, 2018 (with English translation). |
Number | Date | Country | |
---|---|---|---|
20170299135 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14897871 | US | |
Child | 15639208 | US |