Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.
1. Field
This disclosure relates to tubular daylighting systems and methods.
2. Description of Related Art
Daylighting systems typically include windows, openings, and/or surfaces that provide natural light to the interior of a building. Examples of daylighting systems include skylights and tubular daylighting device installations. Various devices and methods exist for connecting tube segments of a daylighting device together. Certain currently known tubular daylighting systems and methods suffer from various drawbacks.
In some embodiments, an internally-reflective tube assembly for use in a tubular daylighting device is configured to illuminate an interior space of a building with natural daylight received through a roof-mounted daylight collector. The tube assembly can include a first internally-reflective tube segment. The first tube segment can include a first lower end; first intermittently positioned projections, wherein the first projections extend from the first lower end and are spaced around a perimeter of the first lower end; a first upper end that is closer to a daylight collector of a tubular daylighting device than the first lower end when the first tube segment is positioned to receive daylight from the daylight collector of the tubular daylighting device; and a first tube segment sidewall extending between the first lower end and the first upper end, wherein the first tube sidewall has an interior surface having luminous reflectance greater than or equal to about 98% when measured with respect to CIE Illuminant D65.
The tube assembly can include a second internally-reflective tube segment. The second tube segment can include a second upper end and second intermittently positioned projections. The second projections can extend from the second upper end and can be spaced around a perimeter of the second upper end such that the second projections are capable of being woven together with the first projections. A second lower end can be further from the daylight collector of the tubular daylighting device than the second upper end when the second tube segment is positioned to receive daylight from the daylight collector of the tubular daylighting device. A second tube segment sidewall can extend between the second lower end and the second upper end, wherein the second tube sidewall has an interior surface having luminous reflectance greater than or equal to about 98% when measured with respect to CIE Illuminant D65. The first tube segment sidewall and the second tube segment sidewall can be substantially parallel when the first projections and the second projections are woven together.
The tube assembly can include a tensioning assembly configured to be applied around a woven connection junction between the first and second tube segments. The tensioning assembly can include a belt portion and a latch portion.
In a tube assembly, the first projections can include hooks configured to interlock with corresponding hooks of the second projections. The first projections and second projections can be configured to be weaved together at least partially through vertical placement of the first tube segment on the second tube segment.
In a tube assembly, the first projections and second projections can be configured to be weaved together at least partially through rotational movement of the first tube segment with respect to the second tube segment about a longitudinal axis of the tube assembly when the first lower end is touching the second upper end.
In a tube assembly, the first lower end includes a first perimeter edge having a first surface generally perpendicular to a longitudinal axis of the first tube segment and the second upper end includes a second perimeter edge having a second surface generally perpendicular to a longitudinal axis of the second tube segment, wherein at least a portion of the first surface is substantially flush with at least a portion of the second surface when the first and second projections are woven together.
Some embodiments provide a method of manufacturing an internally-reflective tube assembly for use in a tubular daylighting device. The method can include forming one or more sheets of at least partially flexible rigid material; and cutting a first tube segment form out of tube sidewall sheet material having first top, bottom, left and right edges. The first tube segment form can include one or more first projections along the first bottom edge. A second tube segment form can be cut out of tube sidewall sheet material having second top, bottom, left and right edges. The second tube segment form can include one or more second projections along the second top edge. The first projections and the second projections are configured to be woven together when the first and second tube segments are bent into a tubular shape.
The first and second tube segment forms have right-edge-to-left-edge dimensions that are substantially equal and uniform over top-edge-to-bottom-edge dimensions of the first and second tube segment forms.
The first projections can include hooks and a belt configured to be wrapped around a connection junction between the first and second tube segments when the first and second tube segment forms are bent into a tubular shape and connected to each other. The belt and the first and second tube segment forms can be made of the same material.
The method of claim 11 a tensioning latch assembly can be configured to securely friction fit the belt around the connection junction.
In certain embodiments, a method of installing an internally-reflective tube assembly in a building having a roof-mounted daylight collector is provided. The method can include positioning a first lower end of a first tube segment such that first lower end touches a second upper end of a second tube segment. The first and second tube segments can have a substantially uniform width through a longitudinal height of both tube segments. The first and second tube segments can be connected at least in part by weaving first projections of the first tube segment with second projections of the second tube segment. When connected, sidewalls of the first and second tube segments can be substantially parallel.
In some embodiments, the first and second tube segments are generally cylindrical. The method can include wrapping a belt around the tube assembly and operating a tensioning member configured to create a secure friction fit between the belt and the sidewalls of the first and second tube segments.
In certain embodiments, an upper end of the first tube segment is positioned to receive daylight through the roof-mounted daylight collector; and the upper end is connected to the daylight collector.
In some embodiments, the second tube segment is connected to a light diffuser positioned inside of the building. The tube assembly can be disposed between a ceiling and roof of a building structure, wherein daylight is permitted to pass from a region exterior to the building to an interior target area through the tube assembly.
Weaving the first and second projections together can include deflecting the first or second projections radially inward or outward.
Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of the inventions. In addition, various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure. Any feature or structure can be removed or omitted. Throughout the drawings, reference numbers can be reused to indicate correspondence between reference elements.
Although certain embodiments and examples are disclosed herein, inventive subject matter extends beyond the examples in the specifically disclosed embodiments to other alternative embodiments and/or uses, and to modifications and equivalents thereof. Thus, the scope of the claims appended hereto is not limited by any of the particular embodiments described below. For example, in any method or process disclosed herein, the acts or operations of the method or process can be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence. Various operations can be described as multiple discrete operations in a manner or order that can be helpful in understanding certain embodiments; however, the order of description should not be construed to imply that these operations are order-dependent. Additionally, the structures, systems, and/or devices described herein can be embodied as integrated components or as separate components. For purposes of comparing various embodiments, certain aspects and advantages of these embodiments are described. Not necessarily all such aspects or advantages are achieved by any particular embodiment. Thus, for example, various embodiments can be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as can be taught or suggested herein.
Tubular daylighting devices (TDD) are designed to capture sunlight from the roof or other exterior portion of a building or structure and channel the light into a target area of the structure, such as an interior room, for providing illumination during daylight hours. In certain embodiments, a TDD includes one or more of the following components: a clear dome disposed on the roof or exterior structure that allows sun to enter therein, but at least partially isolates the target area or interior of the structure or TDD from weather and debris; reflective tubing that channels the light generally downward toward the target area (e.g., an interior ceiling); and a diffuser structure at or near the base of the tube and/or ceiling of the structure interior to promote distribution of the light within the target area. In certain TDD assemblies and/or configurations, the reflective tubing comprises a plurality of tubes or tube segments joined or connected to form a pathway through which light may travel generally in the direction of the target area.
In certain embodiments, an auxiliary lighting system (not shown) can be installed in the daylighting device 100 within the tubing portion (120, 125) to provide light from the tube to the targeted area when daylight is not available in sufficient quantity to provide a desired level of interior lighting.
In the illustrated embodiment, the tubing portion of the daylighting device 100 includes a first tube segment 120 and a second tube segment 125. In certain embodiments, the tube segments 120 and 125 have substantially similar physical dimensions and/or characteristics. The tube segment 120 may include a length dimension, designated in
The tube segment 120 may have a width dimension, w, less than approximately 40 inches. For example, the width w can be approximately 10 to 28 inches. The distance w may represent a diameter of a cylindrically-shaped tube or tube segment. In certain embodiments, the tube segment 125 has similar length and/or width dimensions to those of tube segment 120.
Although two tube segments are depicted in
Certain embodiments of daylighting devices include a light-aligning structure, or collimator, disposed and configured such that light that would otherwise enter the diffuser 140 at undesirable angles is turned to a more desirable angle. When the daylighting device 100 is installed, the tube segment 125 can be physically connected to, or disposed in proximity to, a collimator, which is configured to turn light propagating through the daylighting device such that, when light exits the daylighting device 100 and/or enters the diffuser 140, the light has increased alignment characteristics, as compared to a device without a collimator. A collimator can be integrated, for example, with the lower tube segment 125, or attached thereto, and may have a shape of a hollow frustum, wherein the width or diameter of the collimator at its base is greater than the width or diameter of the tube segment with which it is associated. For example, in certain embodiments, a collimator helps ensure that light passing through the daylighting device will exit the daylighting device at an exit angle of less than or equal to about 45 degrees from vertical, or at a substantially vertical orientation, when the diffuser 140 is in a horizontal arrangement. In this manner, a collimator may reduce or eliminate glare and visibility issues that light exiting a lighting fixture between those angles can cause.
The diffuser 140 can be configured to spread light from the tube into the room, or target area, in which it is situated. The diffuser 140 can be configured to distribute or disperse the light generally throughout the target area. Various diffuser designs are possible. In certain embodiments, the diffuser 140 is secured to connected to the tubing of the daylighting device 100, such as to the tube segment 125. Though the embodiment depicted in
In embodiments utilizing tubing comprising a plurality of separate tube segments, it can be necessary or desirable to secure, attach, or otherwise connect the tube segments together to form an at least partially integrated tubing assembly. One mechanism for connecting tubes or tube segments involves nesting at least a portion of one tube or tube segment into a corresponding portion of another tube or tube segment.
In some embodiments, a tubular daylighting system includes multiple tube segments but does not have a nested tubing configuration, such as, for example, the configurations illustrated in
The overlapping tube segment configurations illustrated in
In some embodiments, a tubular daylighting system includes an attachment mechanism for joining multiple tube segments that is economical to manufacture and distribute. For example, reflective tubing can be a significant cost component of a TDD system. As an example, certain embodiments comprise a tube length or approximately 24 inches, and therefore when top and bottom portions of the tube are overlapped by, for example, 2 inches, more than 8% of the tube area can be dedicated to the overlap joint. While the increased overlap distance can provide added rigidity to portions of the tubing assembly, the overlap can also introduce costs. Similar issues can be encountered in joining together air ducts for heating, ventilation, and air conditioning installations, among possibly other applications. Therefore, certain aspects of the present disclosure can be relevant to applications beyond daylighting, such as heating, air conditioning, ventilation, ductwork, fluid conduits, and the like. For example, undesired airflow restrictions or turbulence can be introduced into such systems as a result of duct segment overlapping.
In some embodiments, a tubular daylighting system includes tube segments joined or connected together within a daylighting assembly, wherein the tube segments do not have tapered and/or substantially overlapping regions. In certain embodiments, a tubular daylighting system includes tube segments that have tapered and/or substantially overlapping regions and one or more other features described herein.
The daylighting device 300 may include a connection assembly 350 configured to facilitate connection of the illustrated tube segments to one another. The connection assembly 350 may comprise one or more structures or members configured to secure the tube segments together, which may comprise structures integrated with the tube segments, non-integrated structures, or a combination of integrated and non-integrated features. The connection assembly 350 can be disposed at or near the junction between the first and second tube segments.
The TDD 400 may include connection assemblies at top and/or bottom regions of tube segments connected between the collector and diffuser. In certain embodiments, the hook systems 424A and 424B are integrated with the first and second tube segments (420, 425), respectively. For example, the hook system 424A can include one or more hook or notch-shaped projections or cutouts of the tube segment 420. In certain embodiments, the hook system 424A is configured to be joined or weaved with a corresponding hook or hook system 424B associated with the tube segment 425. The terms “hook” and “hook system” are used herein according to their broad and ordinary meaning and may include latching assemblies, or any structure configured to provide a catch for another structure.
Although
Hooks can be formed in the wall of the tube segments. For example, the hooks may comprise cut-out notches in the top and/or bottom of the tubes. The notches can be spaced around the perimeter of the tube. In certain embodiments, the hooks are configured to be weaved together. For example, notches disposed at the edge of one tube can be weaved through the notches of another tube in a manner to provide an approximate alignment of the walls of the two tube segments. In certain embodiments, the connection assembly 450 includes adhesive tape in addition to the hooks.
Certain embodiments disclosed herein provide a mechanical belt that is configured to be wrapped around the perimeter of the tube assembly, such as at the joint region between the tube segments. The belt may provide additional support and/or rigidity to the joint of the tube assembly. With the tube segments positioned flush against one another at their edges, the connection assembly can be substantially void of air gaps at the junction. Without substantial overlap of tube segments, the belt can be desirable to provide increased support to the junction. In addition, or alternatively, embodiments disclosed herein may incorporate various types and forms of staggered slots, adhesives, tapes, sleeves, connective elements, or a combination of elements that provide the connection and/or securing functionality described herein.
In embodiments not requiring tapered tube overlap and/or screws for attachment purposes, the need for tools/drills and/or supplies (e.g., screws and tape) during installation can be reduced or eliminated, thereby potentially reducing installation cost and preparation/staging time. Furthermore, the embodiment of
The tube segments 420, 425 may be of substantially uniform construction, wherein the tube segments may be interchangeably connected in upper and lower positions. For example, a tube segment may comprise hook systems at both proximal and distal ends of the segment, wherein the proximal and distal hook systems are configured to be woven together, or mate, with each other such that substantially identical tube segments may be woven together or otherwise connected, wherein the proximal end of a first of the tube segments corresponds to the distal end of a second of the tube segments. Furthermore, in certain embodiments, the proximal and distal hook systems are substantially identical, such that ends of the tube segments may be joined together indiscriminately with respect to segment end.
Hook assemblies may also be configured to be connected with diffuser and/or collector members. Alternatively, tube segments configured to be connected directly with a diffuser or collector member may be designed specifically for such connection, wherein the relevant connection assembly differs in some respect from tube segment-to-tube segment connections. In certain embodiments, a tube assembly comprises a first tube segment configured to be connected directly to a collector member, a second tube segment configured to be connected directly to a diffuser member, as well as one or more intermediate tube segments configured to be disposed and connected between two other tube segments.
In certain embodiments, multiple tube segments may be cut from a single sheet of metal or other material, wherein hooks or other connection structures of opposing tube segments fit together in at least partially tessellated configuration. When negative space exists between opposing connection structures, such space may be cut-out or otherwise removed from the sheet.
The tube assembly of
In certain embodiments, the diameters of the tube segments do not taper substantially, such that the tube segments comprise a substantially uniform diameter/width over the length of the tubing, or a portion thereof. The tube assembly 500 can be secured without adhesive and/or screws. In certain embodiments, the tube segments comprise substantially parallel sidewalls at least in a region proximate to the junction between the tube segments. The tube assembly can include a collimating portion or assembly (not shown) having a non-uniform diameter with respect to the diameter of the tube segments at the junction between them.
In certain embodiments, the belt assembly 551, when fastened, does not substantially compress or indent the walls of the tube segments 520, 525 or cause substantial distortion or deformation therein. The belt assembly 551 can be held in position by surface friction forces between the belt and the sidewall of the tubing. Furthermore, adhesive can be utilized to assist in securing the belt in position. In certain embodiments, the sidewalls of the two tube segments are brought together to form a substantially continuous interior surface in at least portions of the interior surface of the tubing over the junction between the two segments.
In the tubing assembly 500 of
The body and/or fastener portions of the belt assembly 651 may comprise metal, such as aluminum, plastic, paper, or other material. In certain embodiments, the belt body is at least partially rigid. Furthermore, the belt body 652 can be at least partially flexible, such that it can be shaped around a tube assembly and fit substantially flush against the outer walls of the assembly. The fastener portion 655 can be adjustable for achieving a desirable amount of tightness when in a fastened configuration around the tube assembly. While the embodiment shown in
The belt fastener 755 is depicted in
The fastener 755 may include a secure adjustment member 757 that can be adjustably repositioned in order to provide a desirable degree of tightness when in a closed position. For example, as shown, the adjustment member may comprise a rigid structure 757 having mating projections (not shown) projecting from the structure 757 that can be secured to corresponding female receptacles in the first end portion 701 of the belt. Alternatively, the end portion 701 of the belt may comprise one or more male projection members configured to be received in corresponding female receptacles in the adjustment member 757. In certain embodiments, the adjustment member can be manually detached and/or repositioned with respect to the end portion 701 of the belt. In certain embodiments, the adjustment member is a fixed structure, wherein adjustable tension is achieved through latching a tension member onto one of a plurality distributed latch hooks and/or holes.
As described above, certain embodiments may provide for tube assemblies comprising tube segments connected together by weaving the perimeter of a tube inside and outside of a corresponding tube perimeter through, for example, j-shaped notches on the end of the tube segments. Each tube may have alternating notches around the perimeter that are configured to slide into the corresponding j-notches of the corresponding tube segment that are facing the opposite direction.
The notches and hooks can be designed to hold the tubes together without using screws or adhesive tape during the process of assembling a tubular daylighting device in the field.
In certain embodiments, the walls of the connected tube segments are configured such that when the hooks are interlocked, the walls of the upper segment rest on the walls of the lower segment. For example, the edges of the walls can be substantially flush with one another, rather than overlapping or providing gaps between, around the perimeter of the tubing. A belt assembly may help hold the segments in close proximity in order to reduce the formation of gaps. In certain embodiments, cutout projections of the edge of the tube segments can be flexed outward such that they at least partially overlap with the opposing tube.
The hooks can be configured to provide rotational catch functionality, wherein once two opposing hooks of connected tube segments have been woven together, relative rotational movement of the tube segments is restricted at least in the direction each of the respective hooks is facing. For example, with respect to the depicted embodiment shown in
In certain embodiments, the hooks are self-aligning, wherein the hooks provide a guide for securing the tube segments in a locked position. Such a configuration may provide simplified installation. Hooks may be configured to interlock in connection with the lowering of an upper tube segment onto a lower segment, wherein relative vertical displacement/movement allows for hooks to become engaged. In certain embodiments, hooks become engaged at least partly through radial weaving of the structures. The hooks may bow or deflect inwardly or outwardly to allow for interweaving of hooks.
While certain embodiments are described herein in the contest of hook connection structures, connection assemblies in accordance with the present disclosure may comprise any suitable or desirable connection structure. In certain embodiments, tube segment edge portions weave together in some manner to secure the tube segments together. For example, tube segment edge portions may radially overlap with one another, wherein edge portions are configured to deflect inwardly or outwardly to allow for such radial overlap. Such deflection may allow for secure mating of tube segments without substantial vertical nesting. Certain embodiments disclosed herein provide for woven connection of tube segments, wherein sidewalls of the tube segments are substantially parallel. In certain embodiments, edge projections alternatingly deflect inwardly and/or outwardly. Weaving of tube edge portions may provide radial stops, or catches, for preventing or reducing radial and/or longitudinal (or vertical) movement or displacement. As described above, the tube assembly can include a tensioning assembly applied around at least a portion of the perimeter of the tube assembly, such as substantially around the region of the woven connection.
In certain embodiments, tube segments have connection hooks associated with both ends of the segment, wherein the tube segment can be connected to another tube segment at either end, or both. For example, the tube segment 920 can be configured such that both ends of the tube present similar hook connection arrangements, wherein the tube segment can be flipped substantially indiscriminately and connected and connected to the tube segment 925 in either the flipped or un-flipped position.
While the depicted embodiment of
In certain embodiments, the hooks are configured to be weaved together. For example, notches disposed at the edge of one tube can be weaved through the notches of another tube in a manner to provide an approximate alignment of the walls of the two tube segments. In certain embodiments, the hooks and notches are configured such that the edges of the adjoined tube segments do not substantially overlap, with the possible exception of the hook portions themselves. For example, the extended edge 1027 and the recessed edge 1029 of the opposing tube segment can be positioned flush against one another when the tube segments are interlocked. Such features may provide reduced loss of light compared to daylighting systems incorporating tapered and overlapped tubes. In certain embodiments, the extended edge 1027 is permitted to flex outward slightly to accommodate some amount of overlap of the extended edge over the recessed edge 1029. When such overlap exists, a mechanical fastening belt as described above can be secured over the overlapping edge in order to substantially eliminate any gaps within the tube that might otherwise be caused by tube overlap, as discussed above. The thickness of the interior edge can present a surface substantially perpendicular to the axis of the tube, wherein light can be reflected or otherwise misdirected or absorbed by such surface.
The connector structures can be evenly spaced along the tube perimeter, or may have uneven spacing. In certain embodiments the circumferential distance between opposite-facing hooks is greater than the circumferential distance between hooks facing each other, or vice versa. In certain embodiments, hooks are evenly spaced approximately 60° apart, as shown. In certain embodiments, the tube segment 1100 comprises four hooks or other connection structures evenly spaced about the perimeter of the tube approximately 90° apart.
After the notched tube connections have been completed, a metal belt is installed around the perimeter at the two-segment junction, tightened, and/or fastened to provide added stability and to promote the formation of a substantially continuous reflective inner tube surface by the two interlocked segments for efficient light transfer down the tube. The additional caliper of the belt also provides a more rigid region at the two-segment junction. Such additional stability can be beneficial, particularly with respect to large-diameter assemblies and/or assemblies formed primarily of thin metal sheeting or other thin materials.
At least some of the embodiments disclosed herein may provide one or more advantages over existing lighting systems. For example, certain embodiments effectively allow increased daylight capture through the use of tubing connections without necessarily requiring the use of tube tapering, overlap, screws, and/or tape.
Discussion of the various embodiments disclosed herein has generally followed the embodiments illustrated in the figures. However, it is contemplated that the particular features, structures, or characteristics of any embodiments discussed herein can be combined in any suitable manner in one or more separate embodiments not expressly illustrated or described. It is understood that the fixtures disclosed herein can be used in at least some systems and/or other lighting installations besides daylighting systems.
In the above description of embodiments, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim require more features than are expressly recited in that claim. Moreover, any components, features, or steps illustrated and/or described in a particular embodiment herein can be applied to or used with any other embodiment(s). Thus, it is intended that the scope of the inventions herein disclosed should not be limited by the particular embodiments described above.
Number | Date | Country | |
---|---|---|---|
61782755 | Mar 2013 | US |