1. Field of the Invention
This invention relates to a d. c. charged particle accelerator. The invention is applicable to an accelerator for accelerating positive ions in ion implantation apparatus.
2. Background Information
Ion implantation may require the production of ion beams at high energies and high beam current. D. c. accelerators are known to be used in ion implanters for providing the required beam energy.
In a known charged particle accelerator, a number of accelerator electrodes define successive acceleration gaps. The accelerator electrodes are biased at regular voltage intervals to control the voltage gradient along the length of the accelerator. Bias voltages for the accelerator electrodes are derived from a potential divider connected to a high voltage generator providing the full accelerator potential, which may for example be several hundred kilovolts or in excess of one megavolt. A known high voltage generator for this purpose is a Cockcroft Walton voltage multiplying circuit.
There are challenges in designing a d. c. particle accelerator which can operate at relatively high energies and also maintain good stability at high beam currents.
In one embodiment, the invention provides a d. c. charged particle accelerator comprising acceleration electrodes including end electrodes and at least N−1 intermediate electrodes. The acceleration electrodes define at least N acceleration gaps between adjacent pairs of the electrodes, where N is at least 3. N d. c. voltage generators, which are d. c. isolated from each other, are each arranged to generate a respective one of N high voltage d. c. output voltages from input electric power delivered to the voltage generator. The N high voltage d. c. output voltages are connected to provide gap voltages across the N acceleration gaps. A d. c. isolating power delivery apparatus is arranged to deliver the input electric power to the N voltage generators while maintaining d. c. isolation between the voltage generators. The d. c. isolating power delivery apparatus is operative such that the input electric power delivered to the N d. c. voltage generators is voltage regulated input electric power, whereby the N high voltage d. c. output voltages are respective regulated high voltage d. c. output voltages.
Then each of the N d. c. voltage generators may be operative to generate a respective regulated high voltage d. c. output voltage in direct proportion to the voltage regulated input electric power. The N regulated output voltages may have a common value Vgap.
The N d. c. voltage generators and the d. c. isolating power delivery apparatus may be constituted by a step-up transformer having a primary winding and a secondary winding. Each of the windings has respective winding end terminals, an inverter connected to the primary winding and is operative to supply a regulated a. c. voltage across the end terminals of the primary winding to produce an a. c. voltage between the end terminals of the secondary winding having a predetermined peak-to-peak voltage value. A voltage multiplier ladder may be formed of diodes and capacitors and connected to the secondary winding end terminals. The ladder may have N stages providing N stage points and operative to provide at each of the N stage points a respective d. c. voltage at a respective multiple (n) of the predetermined regulated peak to peak a. c. voltage value, where n is 1, 2 . . . N. A connection from each stage point may be provided to a respective one of the acceleration electrodes to connect the N regulated high voltage d. c. output voltages as the gap voltages across the N accelerator gaps.
In a further embodiment, the invention provides a d. c. charged particle accelerator comprising acceleration electrodes including end electrodes and at least N−1 intermediate electrodes. The acceleration electrodes define at least N acceleration gaps between adjacent pairs of the electrodes, where N is at least three. A Cockcroft Walton (CW) voltage multiplying circuit provides, from a regulated a. c. driving voltage having a predetermined peak to peak value, a high voltage d. c. power supply. The CW circuit has N stages providing N stage points each providing a respective d. c. voltage at a respective multiple (n) of the predetermined peak to peak value where n is 1, 2, . . . N. A connection from each stage point of the CW circuit may be provided to a respective one of the acceleration electrodes. In another embodiment, each of the connections between one of the stage points of the CW circuit and the respective one of the accelerator electrodes includes a respective current limiting resistor.
The invention also provides a method of accelerating charged particles using d. c. voltages, comprising the steps of providing acceleration electrodes including end electrodes and at least N−1 intermediate electrodes, the acceleration electrodes defining at least N acceleration gaps between adjacent pairs of the electrodes, where N is at least three; generating N high voltage d. c. output voltages which are electrically isolated from each other from input electric power; voltage regulating and delivering the input electric power while maintaining d. c. isolation between the high voltage d. c. output voltages, whereby the N high voltage d. c. output voltages are regulated, and applying the N regulated output voltages to the acceleration electrodes defining the N acceleration gaps to provide gap voltages across the N acceleration gaps.
The invention further provides a method for acceleration electrodes including end electrodes and at least N−1 intermediate electrodes, the acceleration electrodes defining at least N acceleration gaps between adjacent pairs of the electrodes, where N is at least three; and a Cockcroft Walton (CW) voltage multiplying circuit to provide, from a regulated a. c. driving voltage having a predetermined peak to peak value, a high voltage d. c. power supply, wherein the CW circuit has N stages providing N stage points each providing a respective d. c. voltage at a respective multiple (n) of the predetermined peak to peak value where n is 1, 2, . . . N; and connecting each the stage point of the CW circuit to a respective one of the acceleration electrodes.
Examples of the invention will now be described with reference to the accompanying drawings, in which:
The end electrode 10, which is the right hand electrode in the drawing, may be held at ground potential, and increasing positive voltages applied to electrodes 12, 13 and 11 respectively. In a typical arrangement, these increasing positive voltages would define a common voltage drop (Vgap) across acceleration gaps between the adjacent pairs of electrodes. In the illustrated example, the common gap voltage Vgap is 40 kV, so that the total voltage drop from the left hand end electrode 11 to the ground electrode 10 is 120 kV. Then positive charged particles or ions in a beam directed along the axis 14 from left to right in
In accordance with the prior art arrangement shown in
As illustrated in the Figure, the transformer 18 has a secondary winding with a centre tap connected to ground (here via grounded end electrode 10). If the alternating voltage across each half of the secondary winding of the transformer winding 18 has a peak amplitude A, then the CW multiplier 17 which comprises three full wave rectifiers and associated capacitors, produces a d. c. output voltage at point 20 of 3×2 A. In the present example, the inverter 19 and the transformer 18 produce an output from each half of the secondary winding having a peak amplitude A=20 kV, so that the d. c. voltage generated at point 20 is 120 kV. In order to keep the reactive components of the CW multiplier 17 and also the transformer 18 as small as possible, the inverter 19 is arranged to drive the transformer primary at a frequency of several KHz, typically 30 KHz.
In accordance with standard practice for this prior art d. c. charged particle accelerator, the output of the CW multiplier 17 is connected to the end electrode of the accelerator at the highest potential relative to ground, shown here as left hand end electrode 11. A connection from point 20 to the electrode 11 is made via a resistance of a few kilohms, in order to provide some over current protection to the multiplier 17.
In order to provide the appropriate voltages at intermediate electrodes 12 and 13, high value resistances R are connected in series between successive electrodes to provide a potential divider illustrated generally at 21. To minimize current drain through the potential divider formed by the series connected resistors R, these resistors have a high resistance value, typically some tens of megohms. This is theoretically quite satisfactory as there should be negligible current flow to or from the intermediate electrodes 12 and 13.
In the embodiment of
Each of the d. c. voltage generators 26, 27 and 28 is shown having respective input lines 35 and 36, 37 and 38 and 39 and 40. Input electric power is delivered to the voltage generators along these input lines from a d. c. isolating power delivery apparatus 44. The d. c. isolating power apparatus 44 is arranged to deliver the required input electric power to the d. c. voltage generators 26, 27 and 28 while maintaining d. c. isolation between these voltage generators. The d. c. isolating power delivery apparatus 44 is operative such that the input electric power delivered to the d. c. voltage generators 26, 27 and 28 is voltage regulated input electric power. As a result, the output voltages from the d. c. voltage generators 26, 27 and 28 on the respective pairs of output lines 29 and 30, 31 and 32, and 33 and 34 are all regulated d. c. voltages.
Because the required input electric power is supplied to each of the voltage generators 26, 27 and 28, without compromising the d. c. isolation of these voltage generators, the output lines of the d. c. voltage generators can be connected as shown to the accelerator electrodes whereby the output lines of the generators are effectively connected in series. In this way, the required gap voltages are applied across the successive acceleration gaps of the accelerator.
The d. c. voltage generators 26, 27 and 28, together with the d. c. isolating power delivery apparatus 44 together operate so that the output voltages on the output lines of the d. c. voltage generators are all regulated voltages, providing respective defined gap voltages between the successive gaps of the accelerator. It can be seen, therefore, that the generators 26, 27 and 28 in combination with the d. c. isolating power delivery apparatus 44 provide a regulated d. c. high power voltage supply apparatus which has three pairs of output lines connected to respective adjacent pairs of the accelerator electrodes defining the three acceleration gaps. The regulated power supply apparatus is operative to provide three regulated high voltage d. c. output voltages which are electrically isolated from each other on the three pairs of output lines from the generators, to provide the required gap voltages across the three acceleration gaps.
Whereas the accelerators in
It is normal in the design of d. c. charged particle accelerators for the successive acceleration gaps of the accelerator to have a uniform gap size, and for the applied gap voltage to be the same across each gap. However, this is not strictly essential and different gap sizes may be used in some circumstances, and/or differing regulated gap voltages may be applied across the various acceleration gaps.
By providing regulated output voltages from the generators 26, 27 and 28, across each of the three acceleration gaps illustrated in
Referring back to the prior art arrangement of
In the illustrated example of the prior art, the accelerator is used to accelerate a beam of positive ions, so that a beam strike onto electrode 12 causes positive current to flow from electrode 12 into the potential divider 21. Because of the relatively high value of the resistors R in the potential divider 21, a relatively small current resulting from beam strike 50 can have a very substantial effect on the voltage across the resistors R, and hence cause a substantial disturbance of the gap voltages in the accelerator.
In an example, the intended gap voltage across each of the accelerator gaps may be 40 kV and the value R of the resistors of the potential divider 21 may be 40 Mohm. In the absence of any beam strike current flowing in intermediate electrodes 12 and 13, the current flowing through the series connected resistors R of the potential divider 21 is 1 mA. If the ion beam along axis 14 is a high power beam of say 50 mA, a beam strike 50 of just 2% of this beam current can produce current of 1 mA flowing into the potential divider 21 from the electrode 12. Clearly this beam strike current has a very substantial effect on the voltages across each of the resistors of the potential divider 21. In fact, the voltage across the acceleration gap defined by electrodes 10 and 12 would increase by over 65%. In a practical accelerator in which gap voltages are set as high as possible within the limits of the spacings and insulation between electrodes, an increase in gap voltage of this magnitude would very likely cause a breakdown or arcing between adjacent electrodes, so that the stability of the accelerator is compromised.
This tendency to instability in d. c. accelerators is aggravated for relatively high powered beams and for accelerators with large numbers of acceleration gaps, and frequently is a limiting factor for the beam current which can be passed through the accelerator.
The arrangement of the embodiment of the invention shown in
As described above, the voltage regulation of the output voltages of the embodiment of
An example of the invention is shown in
The regulated d. c. high voltage power supply apparatus shown in
The CW multiplier illustrated in
As mentioned above the circuits of
Referring again to the more familiar CW circuit layout of
Embodiments of the invention have been described above by way of example. As discussed in relation to
The embodiment of the invention described above with reference to
In general, a variety of examples and embodiments have been provided for clarity and for completeness. Other embodiments of the invention will be apparent to one of ordinary skill in the art when informed by the present specification. Detailed methods of and system for accelerating charged particles have been described herein but any other methods and systems can be used within the scope of the invention. The foregoing detailed description has described only a few of the many forms that this invention can take. For this reason this detailed description is intended by way of illustration and not by way of limitation. It is only the following claims including all equivalents which are intended to define the scope of the invention.
This application is a continuation-in-part of application Ser. No. 12/962,723 filed 8 Dec. 2010, the disclosure of which is incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3484866 | Kawai et al. | Dec 1969 | A |
4383180 | Turner | May 1983 | A |
5124658 | Adler | Jun 1992 | A |
5325284 | Stephenson | Jun 1994 | A |
6653642 | Pedersen et al. | Nov 2003 | B2 |
20050200320 | Korenev | Sep 2005 | A1 |
20090224701 | Morita et al. | Sep 2009 | A1 |
20100033115 | Cleland et al. | Feb 2010 | A1 |
20100301985 | Luo et al. | Dec 2010 | A1 |
Entry |
---|
Office Action dated Dec. 26, 2012 for U.S. Appl. No. 12/962,723. |
International Search Report and Written Opinion dated Jul. 9, 2012 for PCT Application No. PCT/US2011/062531. |
Weisser, D. “Voltage Distribution Systems—Resistors and Corona Points.” Electrostatic Accelerators: Fundamentals and Applications. The Netherlands: Springer, 2005. p. 110-22. |
U.S. Appl. No. 12/494,269, filed Jun. 30, 2009, entitled “Ion Implantation Apparatus”. |
Notice of Allowance and Fees dated Jun. 28, 2013 for U.S. Appl. No. 12/962,723. |
Number | Date | Country | |
---|---|---|---|
20120146555 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12962723 | Dec 2010 | US |
Child | 13186513 | US |