The present invention relates to a DC-DC converter that performs soft switching.
Power converters such as DC-DC converters employ zero voltage switching (hereinafter, referred to as “ZVS”) in order to reduce switching losses and achieve high-efficiency power transfer or in order to reduce noise and suppress switching surges so as to enable the use of low-cost, low withstand voltage devices. Patent Document 1 discloses a DC-DC converter capable of high-efficiency power transfer by implementing ZVS operations when there is a large voltage difference between a primary direct-current voltage and a secondary direct-current voltage. The DC-DC converter described in Patent Document 1 detects power on each of the primary and secondary sides and increases or decreases the duties of primary switches and the duties of secondary switches so as to minimize a power difference between the two sides. This allows implementation of ZVS operations.
In Patent Document 1, the duties of the primary and secondary switches are controlled. In this case, if on-duty time is short, it may not be possible to pass a sufficient current to accomplish ZVS. On the other hand, if on-duty time is changed in order to pass a sufficient current, an excessive current may flow, thereby causing an increase in loss and a decrease in power transmission efficiency.
In view of this, it is an object of the present invention to provide a DC-DC converter capable of ZVS control while suppressing an increase in loss resulting from a flow of large current.
In order to solve the above-described problem, a DC-DC converter according to a first aspect of the present invention includes a first full-bridge circuit including four switching elements that include a capacitor serving as a parasitic capacitance or an external parallel-connected capacitor, a second full-bridge circuit including four switching elements that include a capacitor serving as a parasitic capacitance or an external parallel-connected capacitor, a transformer including a first winding and a second winding, the first winding being connected to the first full-bridge circuit, and the second winding being connected to the second full-bridge circuit and magnetically coupled to the first winding, an inductance component connected in series with the first winding or the second winding, and a control circuit that controls soft switching of each switching element in each of the first full-bridge circuit and the second full-bridge circuit. An inductor current flowing through an equivalent inductor at a time of switching of turning on or off each switching element is greater than or equal to a threshold current, the equivalent inductor being equivalent to the transformer and the inductance component. When the first full-bridge circuit and the second full-bridge circuit have different output voltages, the control circuit causes the inductor current at a start time of a polarity inversion period to approach the inductor current at an end time of the polarity inversion period, the polarity inversion period being a period in which an output of the first full-bridge circuit and an output of the second full-bridge circuit have reverse polarities.
A second aspect of the present invention is the DC-DC converter of the first aspect, in which the control circuit adjusts a voltage output period of the first full-bridge circuit in accordance with an input voltage of the first full-bridge circuit, and adjusts a voltage output period of the second full-bridge circuit in accordance with an input voltage of the second full-bridge circuit.
A third aspect of the present invention is the DC-DC converter of the second aspect, in which the control circuit adjusts τ1 and τ2 to satisfy:
(τ2−τc)Vy=(τ1−τc)Vx
where τc is the polarity inversion period in which the output of the first full-bridge circuit and the output of the second full-bridge circuit have reverse polarities, τ1 is the voltage output period of the first switching circuit, τ2 is the voltage output period of the second switching circuit, Vx is the input voltage of the first full-bridge circuit, and Vy is the input voltage of the second full-bridge circuit, τ1, τ2, and τc being expressed in radian notation.
A fourth aspect of the present invention is the DC-DC converter of the first to third aspects, in which the threshold current is set such that energy accumulated in the equivalent inductor becomes greater than or equal to energy accumulated in two of the capacitors.
A fifth aspect of the present invention is the DC-DC converter of the fourth aspect, in which the following expression is satisfied:
I
ref
=α·Vx√(2C/L)
where Iref is the threshold current, Vx is the input voltage of the first full-bridge circuit, C is a capacitance of the capacitors, L is an inductance of the equivalent inductor, and α is a correction factor.
According to the first to fifth aspects of the present invention, the inductor current at the start time of the polarity inversion period is caused to approach the inductor current at the end time. Thus, the inductor current at the start time becomes equal to the inductor current at the end time. This reduces a situation where an increase in the inductor current at one of the start time and the end time causes an increase in the inductor current at the other time. Then, a flow of excessive current is prevented. This prevents an increase in loss and suppresses a decrease in power transmission efficiency of the DC-DC converter.
An embodiment of the present invention will be described hereinafter with reference to the drawings. The following description takes the example of using a dual-active-bridge (DAB) converter (hereinafter, referred to as a “DC-DC converter”) as a “DC-DC converter” according to the present invention.
1. Circuit Configuration of DC-DC Converter
The DC-DC converter 1 includes a pair of input/output terminals IO11 and IO12 and a pair of input/output terminals IO21 and IO22. The pair of input/output terminals IO11 and IO12 is connected to a direct-current power supply E1. The pair of input/output terminals IO21 and IO22 is connected to a direct-current power supply E2. In the present embodiment, a power supply voltage Vy of the direct-current power supply E2 is lower than a power supply voltage Vx of the direct-current power supply E1. That is, Vx>Vy.
The DC-DC converter 1 transforms the power supply voltage of the direct-current power supply E1 that is input from the input/output terminals IO11 and IO12, and outputs the transformed voltage from the input/output terminals IO21 and IO22. The DC-DC converter 1 also transforms the power supply voltage of the direct-current power supply E2 that is input from the input/output terminals IO21 and IO22, and outputs the transformed voltage from the input/output terminals IO11 and IO12. That is, the DC-DC converter 1 is a converter capable of bidirectional power transfer.
The DC-DC converter 1 includes a first full-bridge circuit 10, a second full-bridge circuit 20, and a transformer T.
The transformer T includes a first winding n1 and a second winding n2. The first winding n1 and the second winding n2 are magnetically coupled to each other. The first winding n1 is connected to the input/output terminals IO11 and IO12 via the first full-bridge circuit 10. The second winding n2 is connected to the input/output terminals IO21 and IO22 via the second full-bridge circuit 20.
The first full-bridge circuit 10 includes a first leg in which switching elements Q11 and Q12 are connected in series, and a second leg in which switching elements Q13 and Q14 are connected in series. The switching element Q11 is connected in parallel with a diode D11 and a capacitor C11, the switching element Q12 is connected in parallel with a diode D12 and a capacitor C12, the switching element Q13 is connected in parallel with a diode D13 and a capacitor C13, and the switching element Q14 is connected in parallel with a diode D14 and capacitor C14. The switching elements Q11 to Q14 are MOS-FETs. Alternatively, the switching elements Q11 to Q14 may be other transistors such as IGBTs or JFETs. The diodes D11 to D14 may be actual elements or parasitic diodes. Each of the capacitors C11 to C14 may be an actual element, a parasitic capacitance, or a combination of a parasitic capacitance and an actual element.
The first winding n1 of the transformer T is connected to the midpoint of each of the first leg and the second leg. An inductor L1 is provided between the first winding n1 of the transformer T and the midpoint of the first leg. Note that the location of the inductor L1 may be appropriately changed as long as the inductor L1 is connected in series with either the first winding n1 or the second winding n2. For example, the inductor L1 may be provided between the first winding n1 and the midpoint of the second leg. The inductor L1 may be an actual element, a leakage inductance of the transformer T, or a combination of an actual element and a leakage inductance.
The second full-bridge circuit 20 includes a third leg in which switching elements Q21 and Q22 are connected in series, and a fourth leg in which switching elements Q23 and Q24 are connected in series. The switching element Q21 is connected in parallel with a diode D21 and a capacitor C21, the switching element Q22 is connected in parallel with a diode D22 and a capacitor C22, the switching element Q23 is connected in parallel with a diode D23 and a capacitor C23, and the switching element Q24 is connected in parallel with a diode D24 and a capacitor C24. The switching elements Q21 to Q24 are MOS-FETs. Alternatively, the switching elements Q21 to Q24 may be other transistors such as IGBTs or JFETs. The diodes D21 to D24 may be actual elements or parasitic diodes. Each of the capacitors C21 to C24 may be an actual element, a parasitic capacitance, or a combination of a parasitic capacitance and an actual element.
The second winding n2 of the transformer T is connected to the midpoint of each of the third leg and the fourth leg. The aforementioned inductor L1 may be provided between the second winding n2 and the midpoint of either the third leg or the fourth leg.
The gate terminals of the switching elements Q1 to Q14 and Q21 to Q24 are connected to a control circuit 30. The control circuit 30 controls switching of each of the switching elements Q1 to Q14 and Q21 to Q24 so that the output power of the DC-DC converter 1 becomes set target power. In the present embodiment, the control circuit 30 performs soft switching of each of the switching elements Q11 to Q14 and Q21 to Q24 in order to reduce switching losses.
2. Soft Switching Operations
Soft switching operations of the switching elements Q11 to Q14 and Q21 to Q24 will be described hereinafter. The present embodiment adopts 3-level DAB control.
The DC-DC converter 1 transfers power from either the input/output terminals IO11 and IO12 or the input/output terminals IO21 and IO22 to the other, or vice versa. The following description is given on the assumption that the input/output terminals IO11 and IO12 are on the input side (primary side) and the input/output terminals IO21 and IO22 are on the output side (secondary side).
The timing chart of only the switching elements Q1 to Q14 in the first full-bridge circuit 10 is illustrated in
The control circuit 30 provides a phase difference and controls switching of the first full-bridge circuit 10 and the second full-bridge circuit 20. In the following description, the phase difference between the first full-bridge circuit 10 and the second full-bridge circuit 20 is expressed as δ. The control circuit 30 performs phase-shift PWM control at a switching frequency f (in the cycle of 1/f) on each of the first full-bridge circuit 10 and the second full-bridge circuit 20.
The following description is given of switching control performed on each of the switching elements Q11 to Q14 of the first full-bridge circuit 10. The switching of the second full-bridge circuit 20 is controlled such that the voltage V2 has a waveform illustrated in
Period from t0 to t1
In the period from t0 to t1, the switching elements Q11 and Q14 are ON and the switching elements Q12 and Q13 are OFF.
In this case, current flows in sequence from the direct-current power supply E1 through the switching element Q11, the inductor L, the second full-bridge circuit 20, and the switching element Q14 to the direct-current power supply E1 as illustrated in
At time t1, the switching element Q1 is turned off, and then the switching element Q12 is turned on after a dead-time interval. During this dead-time interval, the switching elements Q11 and Q12 are both OFF. At this time, the inductor current IL continues to flow through the inductor L due to the property of the inductor L, so that current flows from each of the capacitors C11 and C12 to the inductor L as illustrated in
Period from t1 to t2
In the period from t1 to t2, the switching elements Q12 and Q14 are ON and the switching elements Q11 and Q13 are OFF. In this case, current flows in a path from the switching elements Q14 and Q12 to the inductor L as illustrated in
At time t2, the switching element Q14 is turned off, and then the switching element Q13 is turned on after a dead-time interval. During this dead-time interval, the capacitor C14 is discharged, and the capacitor C13 is charged as described with reference to
Period from t2 to t3
In the period from t2 to t3, the switching elements Q12 and Q13 are ON and the switching elements Q11 and Q14 are OFF. Immediately after the switching element Q13 is turned on at time t2, current flows in a path from the direct-current power supply E1 through the switching element Q12, the inductor L, the second full-bridge circuit 20, and the switching element Q13 to the direct-current power supply E1 as illustrated in
At time t3, the switching element Q12 is turned off, and then the switching element Q11 is turned on after a dead-time interval. Then, the capacitor C12 is discharged, and the capacitor C11 is charged as described with reference to
Period from t3 to t0
In the period from t3 to t0, the switching elements Q11 and Q13 are ON and the switching elements Q12 and Q14 are OFF. In this case, current flows in a path from the inductor L through the switching element Q11 to the switching element Q13 as illustrated in
At time t0, the switching element Q13 is turned off, and then the switching element Q14 is turned on after a dead-time period. Then, the capacitor C13 is discharged and the capacitor C14 is charged as described with reference to
The switching control as described above causes the voltage V1 to transition so as to have a waveform illustrated in
3. Output Power of DC-DC Converter
The control circuit 30 controls the phase of a drive signal of each switching element to control the output power of the DC-DC converter 1.
In the present embodiment, Vx>Vy. That is, high-level V1 differs from high-level V2. A current flows through the inductor L due to the difference in voltage between V1 and V2. The control circuit 30 according to the present embodiment controls the inductor current IL during this period as described below in order to enable ZVS of each switching element.
Here, a polarity inversion period in which the voltages V1 and V2 have reverse polarities is expressed as τc. Also, the voltage output period of the first full-bridge circuit 10 is expressed as τ1, and the voltage output period of the second full-bridge circuit 20 is expressed as τ2. Here, τ1, τ2, and τc express times in angular (radian) measure.
The control circuit 30 controls the output power of the DC-DC converter 1 by using the voltage output periods τ1 and τ2 calculated from V1 and V2 while keeping the polarity inversion period τc constant. The voltage output period τ1 may be changed by controlling the phase of a drive signal of each switching element in the first full-bridge circuit 10. The voltage output period τ2 may be changed by controlling the phase of a drive signal of each switching element in the second full-bridge circuit 20.
The fixed value τc is set so as to enable ZVS of each switching element. Thus, τc has to satisfy the condition given by Expression (1) below.
In Expression (1) above, L is the inductance of the inductor L illustrated in, for example,
Also, Iref is the current value of the inductor current IL required to achieve ZVS. As described above, for example if the drain-source voltage of the switching element Q13 becomes zero after the discharge of the capacitor C14 and the charge of the capacitor C13 during the dead-time interval at time t2, the turn-on of the switching element Q13 is achieved by ZVS. That is, the ZVS of the switching element Q13 becomes possible if the energy of the inductor L is at least greater than or equal to the energy accumulated in each of the capacitors C13 and C14. To achieve this, Expression (2) below has to hold.
½LIL2≥½·2CVx2 (2)
In expression (2), IL is the inductor current flowing through the inductor L, and C is the capacitance of each of the capacitors C11 to C14 and C21 to C24. Then, Expression (2) is transformed into Expression (3) below. In Expression (3), α is the correction factor and set to an appropriate value as necessary. Here, it is assumed that α=1.
In Expression (3), α·Vx√(4C/L) is assumed to be the threshold current Iref. If |IL|≥|Iref| during the dead time intervals at times t0 and t2, ZVS of the switching element Q13 becomes possible. Similarly, if the condition expressed by Expression (3) above is satisfied at the time of turning on each switching element, ZVS of that switching element becomes possible.
In order to enable ZVS of each switching element, the control circuit 30 controls the inductor current IL in the period in which V1 and V2 have reverse polarities.
As illustrated in
The inductor current IL at the start times t4 and t8 of these periods and the inductor current IL at the end times t5 and t9 of these periods flow in reverse directions. The inductor current IL at times t5 and t9 is smaller than the inductor current IL at times t4 and t8. Then, the inductor current IL at times t5 and t9 is the smallest among the inductor current IL at each of times t4 to t11 when V1 and V2 are switched between high and low. Accordingly, if the inductor current IL at times t5 and t9 satisfy the condition expressed by Expression (3) above, ZVS of each switching element becomes possible.
However, if the inductor current IL at times t5 and t9 is increased, the inductor current IL at the other times will also increase, and an excessive current will flow. This increases losses and causes a decrease in power transmission efficiency of the DC-DC converter 1. In view of this, the control circuit 30 performs control so as to cause the inductor current IL at times t5 and t9 to approach the inductor current IL at times t4 and t8.
The inductor current IL at times t5 and t9 can be expressed by Expression (4) below.
The inductor current IL at times t4 and t8 can be expressed by Expression (5) below.
A condition that IL expressed by Expression (4) becomes equal to IL expressed by Expression (5) is expressed by Expression (6) below.
(τ2−τc)Vy=(τ1−τc)Vx (6)
As expressed by Expression (6), τ1 and τ2 are calculated based on the ratio between Vx and Vy. The control circuit 30 controls switching such that τ1 and τ2 become values calculated from Expression (6), and the output power of the DC-DC converter 1 becomes a target value. By so doing, the inductor current IL at times t5 and t9 becomes equal to the inductor current IL at times t4 and t8. This enables ZVS of each switching element while preventing a flow of large current. As a result, it is possible to suppress an increase in loss resulting from a flow of large current.
4. Variations
While one embodiment of the present invention has been described thus far, the present invention is not intended to be limited to the above-described embodiment.
While Vx>Vy in the above-described embodiment, it is also possible that Vx<Vy. In the above embodiment, τ1 and τ2 may satisfy τ1=τ2, or may satisfy τ1≠τ2, and it is sufficient that τ1 and τ2 satisfy the condition expressed by Expression (6). In Expression (6), the right and left sides do not necessarily have to match completely.
The above embodiment has been described on the assumption that the input/output terminals IO11 and IO12 are on the input side and the input/output terminals IO21 and IO22 are on the output side. However, the DC-DC converter 1 is capable of bidirectional power transfer. Accordingly, the input/output terminals IO11 and IO12 may be on the output side and the input/output terminals IO21 and IO22 may be on the input side. This case can be described in the same manner as in the above-described embodiment, and therefore a description thereof is omitted. Note that the DC-DC converter 1 does not necessarily have to be a bidirectional converter.
Each element in the above-described embodiments and variations may be combined appropriately within a range that presents no contradictions.
Number | Date | Country | Kind |
---|---|---|---|
2018-119552 | Jun 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/017380 | 4/24/2019 | WO | 00 |