The invention can best be understood by reference to the following description taken in conjunction with the accompanying drawings, in which:
Although the invention will be described in connection with certain preferred embodiments, it will be understood that the invention is not limited to those particular embodiments. On the contrary, the invention is intended to include all alternatives, modifications and equivalent arrangements as can be included within the spirit and scope of the invention as defined by the appended claims.
A DC motor and gearbox comprise a rotational system where a mechanical shock, linear or rotational, is translated into a change in the torque the motor is applying to a driven device via the gearbox, and to the motor mount. The mechanical shock is typically due to a sudden change in the motion of the driven device, which in turn is due to a change in the force opposing the motion.
The torque r applied by the motor to the gearbox and the motor mount is the torque from the motor electromagnetic field τemf and the torque from the rotor inertia τinertia.
τemf+τineria
The torque τemf from the motor electromagnetic field is proportional to the motor current i.
τemf=K1i
The torque τinertia from the rotor τinertia is proportional to the change in rotor angular velocity ω.
The current i for a DC motor is related to the terminal voltage V, the motor electrical resistance R, and the back-emf voltage αω.
The change in rotor angular velocity
for a DC motor with constant terminal voltage is proportional to the change in motor current.
The motor torque from the rotor τinertia is proportional to the change in motor current.
The total torque ρ from the motor electromagnetic field and the rotor inertia can be described in terms of the motor current.
If the motion of the driven device is stopped, the electromagnetic field torque τemf and the inertial torque τinertia will continue to turn the motor shaft, compressing the elasticity in the motor mounting, the gearbox and the driven device up to the point where the motion was stopped. The mechanical shock is from the inertial torque and can be significantly above the device tolerances even though the current from the electromagnetic torque is well below the locked rotor level.
In one embodiment of the present invention, a DC motor mechanical shock protection system monitors the motor current to determine the torque the motor is applying to the gearbox, and takes mitigating action if the torque approaches a level that can damage the driven device and/or the drive system. This protects the system from mechanical shock without limiting the available torque during normal operation. The change in motor current is monitored to detect the inertial torque before the elasticity between the motor and the driven device is fully compressed and the motor mounting or gearbox begin to be damaged.
Step 14 determines whether a positive change in the motor current rises above a threshold that represents inertial torque that can damage the system, i.e., to detect an incipient mechanical shock condition. The threshold is preferably significantly above the maximum normal operating level. If step 14 yields an affirmative answer, step 15 adjusts the motor current to stop or reverse the motor, to counteract the incipient shock before any damage is done to the motor or gearbox. A negative answer at step 14 causes the system to return to step 12 to calculate the the magnitude of the change in current magnitude during the next time interval Δt.
The system continues to successively calculate the change Δi, if any, in the motor current i in each successive time interval Δt. Each time a calculated change Δi is positive, that change is compared with the preselected threshold value Δith and, if the measured change Δi exceeds the threshold value Δith, the current i is immediately adjusted to stop or reverse the motor. The effect of this system is to monitor the first derivative (the instantaneous rate of change) of the motor current i with respect to time, to monitor the magnitude and polarity of that first derivative, and to detect positive changes of magnitude that exceed a preselected threshold.
The algorithm shown in
One example of an application in which the mechanical shock protection system of this invention is useful is in transfer switches, which are used to connect an electrical load to one of typically two separate power sources. A transfer switch connects a load to only one of the sources at a time using one switch per source, and a DC-motor-driven actuator opens and closes the switches, as described in U.S. Patent Application Publication No. 2006/0131146, which is incorporated herein by reference.
While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations may be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.