The present invention relates generally to the control of DC drive motors and, more particularly, to a mechanical shock protection system for DC-motor drive systems.
A DC motor is used to drive an attached mechanical device, which is typically coupled to the motor through an intermediary gearing system such as a gearbox. If the attached device is suddenly stopped, it can produce mechanical shock that is transmitted into the driving motor and gearbox. The mechanical shock can occur when the part of the device that is in motion hits an end stop or other obstruction in the travel path.
If the mechanical shock is sufficiently strong or occurs repeatedly, the motor and gearbox can be damaged and cause the system to fail to operate. The mechanical shock can damage the motor by twisting the motor shaft or loosening or breaking the motor's mounting to the device. The mechanical shock can damage the gearbox by cracking the gears, breaking off gear teeth, or loosening or breaking the gearbox's mounting to the device.
A common solution to protect a device from this kind of mechanical shock is to pad the travel end stops with a shock absorbing material, such as rubber. This solution requires extra cost and does not protect against an unanticipated obstruction being placed maliciously or unintentionally in the travel path.
Another common solution is to strengthen the motor and gearbox materials to handle the potential shock. This solution usually adds significant cost to the manufacture of the system.
Yet another common solution is to slow the motion of the device down to the point where a sudden stop will not produce enough mechanical shock to damage the system. This solution can adversely effect the operation of the system.
In one embodiment of this invention, the torque produced by a DC motor is controlled by monitoring the motor torque produced by rotor inertia, and adjusting the electrical current supplied to the motor in response to an increase in the monitored motor torque that exceeds a preselected threshold. The adjustment of the motor current preferably stops or reverses the motor.
In one specific implementation, the torque produced by rotor inertia is monitored by monitoring the electrical current supplied to the motor, detecting increases in the monitored electrical current in selected time intervals, and comparing each of the detected increases with a preselected threshold that is significantly above increases that occur during normal operation of the motor. Increases in the monitored electrical can be detected by calculating any change that occurs in the magnitude of the motor current in each selected time interval, and determining whether each calculated change is positive.
The invention can best be understood by reference to the following description taken in conjunction with the accompanying drawings, in which:
Although the invention will be described in connection with certain preferred embodiments, it will be understood that the invention is not limited to those particular embodiments. On the contrary, the invention is intended to include all alternatives, modifications and equivalent arrangements as can be included within the spirit and scope of the invention as defined by the appended claims.
A DC motor and gearbox comprise a rotational system where a mechanical shock, linear or rotational, is translated into a change in the torque the motor is applying to a driven device via the gearbox, and to the motor mount. The mechanical shock is typically due to a sudden change in the motion of the driven device, which in turn is due to a change in the force opposing the motion.
The torque τ applied by the motor to the gearbox and the motor mount is the torque from the motor electromagnetic field τemf and the torque from the rotor inertia τinertia.
τ=τemf+τinertia
The torque τemf from the motor electromagnetic field is proportional to the motor current i.
τemf=K1i
The torque τinertia from the rotor inertia is proportional to the change in rotor angular velocity ω.
The current i for a DC motor is related to the terminal voltage V, the motor electrical resistance R, and the back-emf voltage αω.
The change in rotor angular velocity
for a DC motor with constant terminal voltage is proportional to the change in motor current.
The motor torque from the rotor inertia τinertia is proportional to the change in motor current.
The total torque τ from the motor electromagnetic field and the rotor inertia can be described in terms of the motor current.
If the motion of the driven device is stopped, the electromagnetic field torque τemf and the inertial torque τinertia will continue to turn the motor shaft, compressing the elasticity in the motor mounting, the gearbox and the driven device up to the point where the motion was stopped. The mechanical shock is from the inertial torque and can be significantly above the device tolerances even though the current from the electromagnetic torque is well below the locked rotor level.
In one embodiment of the present invention, a DC motor mechanical shock protection system monitors the motor current to determine the torque the motor is applying to the gearbox, and takes mitigating action if the torque approaches a level that can damage the driven device and/or the drive system. This protects the system from mechanical shock without limiting the available torque during normal operation. The change in motor current is monitored to detect the inertial torque before the elasticity between the motor and the driven device is fully compressed and the motor mounting or gearbox begin to be damaged.
Step 14 determines whether a positive change in the motor current rises above a threshold that represents inertial torque that can damage the system, i.e., to detect an incipient mechanical shock condition. The threshold is preferably significantly above the maximum normal operating level. If step 14 yields an affirmative answer, step 15 adjusts the motor current to stop or reverse the motor, to counteract the incipient shock before any damage is done to the motor or gearbox. A negative answer at step 14 causes the system to return to step 12 to calculate the the magnitude of the change in current magnitude during the next time interval Δt.
The system continues to successively calculate the change Δi, if any, in the motor current i in each successive time interval Δt. Each time a calculated change Δi is positive, that change is compared with the preselected threshold value Δith and, if the measured change Δi exceeds the threshold value Δith, the current i is immediately adjusted to stop or reverse the motor. The effect of this system is to monitor the first derivative (the instantaneous rate of change) of the motor current i with respect to time, to monitor the magnitude and polarity of that first derivative, and to detect positive changes of magnitude that exceed a preselected threshold.
The algorithm shown in
One example of an application in which the mechanical shock protection system of this invention is useful is in transfer switches, which are used to connect an electrical load to one of typically two separate power sources. A transfer switch connects a load to only one of the sources at a time using one switch per source, and a DC-motor-driven actuator opens and closes the switches, as described in U.S. Patent Application Publication No. 2006/0131146, which is incorporated herein by reference.
While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations may be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4270164 | Wyman et al. | May 1981 | A |
4553187 | Burns et al. | Nov 1985 | A |
4686598 | Herr | Aug 1987 | A |
4713593 | Rodi et al. | Dec 1987 | A |
4816987 | Brooks et al. | Mar 1989 | A |
4924166 | Roussel | May 1990 | A |
5223775 | Mongeau | Jun 1993 | A |
5432421 | Kessler et al. | Jul 1995 | A |
5644510 | Weir | Jul 1997 | A |
5648887 | Herndon et al. | Jul 1997 | A |
6100604 | Morroni et al. | Aug 2000 | A |
6271709 | Kimura et al. | Aug 2001 | B1 |
6479958 | Thompson et al. | Nov 2002 | B1 |
6823134 | Glasgow et al. | Nov 2004 | B2 |
6859030 | Otte | Feb 2005 | B2 |
20040145321 | Yasui et al. | Jul 2004 | A1 |
20060131146 | Filippenko | Jun 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20080084172 A1 | Apr 2008 | US |