The field of art to which this invention generally pertains is methods and apparatus for making use of electrical energy to effect chemical changes.
No matter how unique the product or process is, over time, all manufacturing processes look for ways to become more efficient and more effective. This can take the form of raw material costs, energy costs, or simple improvements in process stability and efficiencies, among other things. In general, raw material costs and energy resources, which are a substantial part of the cost of most if not all manufacturing processes, tend to actually increase over time, because of scale up and increased volumes if for no other reasons. For these, and other reasons, there is a constant search in this area for ways to not only improve the processes and products being produced, but to produce them in more efficient and effective ways as well.
The systems described herein meet the challenges described above while accomplishing additional advances as well.
A method of operating a DC plasma arc torch is described using plasma forming gas and an operating voltage power supply, where the power supply is at least two times the average operating voltage used, resulting in more stable operation of the torch including reduced voltage fluctuations and substantially no extinguishing of the arc.
Additional embodiments include: the method described above where the torch is operated in a power regulating mode where the power supply is operated at a given power setpoint, and the power supply adjusts both the output voltage and the current in order to keep the output power at the setpoint; the method described above where the torch is operated with a current setpoint at which the power supply switches into current regulated mode to keep the arc from extinguishing, and then raises the current setpoint and switches back to power regulated mode once the current is high enough to keep the arc from extinguishing, resulting in substantial elimination of voltage fluctuations and substantial elimination of the arc extinguishing; the method described above where the torch includes concentric cylinder electrodes; the method described above where the power supply has the capability of igniting the torch at a pulse voltage of at least 20 kilovolts; the method described above where the electrodes comprise graphite; the method described above where the plasma forming gas is hydrogen.
An apparatus is also described comprising, a DC plasma torch and an operating voltage power supply, wherein the power supply is at least two times the average operating voltage used, resulting in a more stable operation of the torch.
Additional embodiments include: the apparatus described above where the torch includes concentric cylinder electrodes; the apparatus described above where the power supply has the capability of igniting the torch at a pulse voltage of at least 20 kilovolts; the apparatus described above where the power supply contains inductive filters distributed among positive and negative legs of a regulator to prevent conducted emissions caused by the plasma torch and/or igniter from feeding back into sensitive electronic components; the apparatus described above including filtering elements that causes sensitive electronic components to be exposed to 50% less energy in the form of voltage or current in an instantaneous or cumulative measurement; the apparatus described above where the power supply contains filtering elements at the output of a chopper regulator to shunt high frequency energy; the apparatus described above where the power supply contains chopper regulators in a parallel configuration to achieve redundancy; the apparatus described above where the power supply contains chopper regulators in a series-parallel configuration to allow the use of lower blocking voltages; and the apparatus described above where the electrodes comprise graphite.
These, and additional embodiments, will be apparent from the following descriptions.
The particulars shown herein are by way of example and for purposes of illustrative discussion of the various embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
The present invention will now be described by reference to more detailed embodiments. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety.
Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
A typical DC (direct current) power supply for a DC plasma arc torch will typically be sized such that its maximum voltage is on the order of 35% above the anticipated operating voltage of the torch. With a torch design that employs concentric cylinders as the electrodes (see, for example, U.S. Pat. Nos. 4,289,949 and 5,481,080, the disclosures of which are herein incorporated by reference), the arc behavior can be erratic, for example, exhibited by large fluctuations in voltage to the arc, or even in the extinguishing of the arc. In order to obtain stable operation of such torches, a maximum power supply voltage that is on the order of two times greater than average operating voltage should be used. This will result in the reducing and minimizing the fluctuations in voltage to the arc and substantial elimination of the arc extinguishing.
Additionally, for the same reasons, a higher voltage pulse (e.g., 20 kilovolts (kV)) is required to ignite the torch as opposed to more frequently used lesser voltages (e.g., 6 kV to 12 kV). Due to the higher voltage required, an appropriate capacitive filter is also required to prevent damage to the sensitive electronic components that control the power electronic switching devices. Furthermore, if concentric cylinder graphite rods are used, without a power supply appropriately sized as described herein (e.g., larger than typically used with conventional DC plasma torches) the process would simply not be able to be run stably.
Operating the torch in a power regulating mode also helps to reduce voltage fluctuations. Typically most torches run in current regulated mode, where the power supply is given a current setpoint, and the power supply then adjusts its output voltage in order to keep the current at the setpoint, regardless of the load voltage. Power regulated mode is where the power supply is given a power setpoint, and the power supply then adjust both the output voltage and the current in order to keep the output power at the setpoint.
Running in power regulated mode would substantially reduce the voltage fluctuations, but could lead to the arc extinguishing more often if the current and voltage drifted too far apart and the current gets too low. This can be overcome by operating with a threshold at which the power supply would switch back into current regulated mode in order to keep the arc alive, and then raising the current setpoint and switching back to power regulated mode once the current was high enough. By having a system where the power supply runs in power mode in default, but switches to current mode if the current drops too low, substantial elimination of voltage fluctuations and substantial elimination of the arc extinguishing is accomplished. In other words, not only can set voltage fluctuation standards be met, but the arc can be kept alive at the same time.
A typical torch useful with the present invention is shown schematically in
The power ranges used will vary depending on such things as the size of the reactor, the distance between the electrodes, etc. And while typical operating voltages can be in the 600-1000 volt range, this can also vary depending on such things as electrode gap, gas composition, pressures and/or flow rates used, etc.
Sensitive electronic components are protected through the use of filters as defined herein. Energy is typically shunted through the filter so that the sensitive electronic components are subjected a lower total voltage or current, or rate of change of voltage or current. Appropriate filters include capacitors, LCL (inductive filter), or common mode filter or any other filter of the like.
Plasma Voltage: the instantaneous voltage of the plasma-arc, which varies as a function of the plasma-arc instantaneous impedance and the instantaneous current output of the power supply
Operating Voltage: the ultimate output voltage capability of the power supply.
Filter: an arrangement of inductors and/or capacitors that may include resistive components, used to shunt electrical energy away from or block electrical energy from affecting sensitive electronic components.
Sensitive Electronic Components: any device that is integral to the electrical design of the power supply and its various subsystems that is susceptible to excessive voltage, current, and/or heat. This may include power electronic switching devices such as Insulated Gate Bipolar Transistors, Power Metal-Oxide-Semiconductor Field Effect Transistors, Integrated Gate Commutating Thyristors, Gate Turn-Off Thyristors, Silicon Controlled Rectifiers, etc.; the control circuits used to switch or “gate” the power electronic switching devices; transient voltage surge suppression devices; capacitors, inductors, and transformers.
Chopper Regulator: alternate term for a buck regulator, including the traditional topology and all variations, wherein the input DC voltage to the converter is “chopped” using a PWM (pulse width modulation) controlled electronic switch to some lower output voltage.
Snubber Circuit: a protection circuit placed in parallel with a power electronic switching device, the purpose of which is to limit high rates of change of voltage across and/or current through the device.
Smoothing Reactor: refers to either an inductor used as the storage element in a traditional buck/chopper regulator, or an inductor used to limit current ripple at the output of a DC-DC converter.
A DC concentric cylinder, graphite electrode, plasma torch is operated using an average operating voltage of 300-500 volts. The power supply to operate the plasma torch has a voltage generating capability of at least two times the average operating voltage needed, i.e. 1000 volts. This results in a much more stable operation of the torch as described herein. A separate starter power supply also has the capability of igniting the torch at a pulse voltage of at least 20 kilovolts. The starter power supply contains an appropriate amount of capacitive filtering to shunt unwanted energy away from sensitive electronic components.
A topology for implementing the system described in Example 1 is as follows. A 6, 12, 18, or 24-pulse rectifier is used as the front end AC-DC converter. This rectifier can be phase-controlled or naturally commutated, with a capacitive output filter, and with or without a commutating output choke. Several chopper regulators composed of power electronic switching devices, snubber circuits, and gating control circuits are used to control the current applied to the load. These chopper regulators can be placed in a parallel configuration to add redundancy, or in a series-parallel configuration to also allow for the use of devices with lower blocking voltages. Smoothing reactors are used as the main energy storage device in the current regulator, and are distributed among the positive and negative legs of the regulator to add additional protection for the sensitive power electronics. Capacitors are used as filters on the output of the current regulator to absorb high frequency energy that may arise from the chaotic nature of the plasma torch load.
Thus, the scope of the invention shall include all modifications and variations that may fall within the scope of the attached claims. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This application is a continuation of U.S. application Ser. No. 15/221,088, filed Jul. 27, 2016, which claims priority to U.S. Provisional Application No. 62/198,431, filed Jul. 29, 2015, which applications are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1339225 | Rose | May 1920 | A |
1536612 | Lewis | May 1925 | A |
1597277 | Jakowsky | Aug 1926 | A |
2002003 | Otto et al. | May 1935 | A |
2039312 | Goldman | May 1936 | A |
2062358 | Frolich | Dec 1936 | A |
2393106 | Bernard et al. | Jan 1946 | A |
2557143 | Royster | Jun 1951 | A |
2572851 | Daniel et al. | Oct 1951 | A |
2603669 | Chappell | Jul 1952 | A |
2616842 | Charles et al. | Nov 1952 | A |
2785964 | Pollock | Mar 1957 | A |
2850403 | Day | Sep 1958 | A |
2851403 | Hale | Sep 1958 | A |
2897071 | Gilbert | Jul 1959 | A |
2951143 | Anderson et al. | Aug 1960 | A |
3009783 | Charles et al. | Nov 1961 | A |
3073769 | George et al. | Jan 1963 | A |
3127536 | McLane | Mar 1964 | A |
3253890 | De et al. | May 1966 | A |
3288696 | Orbach | Nov 1966 | A |
3307923 | Ruble | Mar 1967 | A |
3308164 | Shepard | Mar 1967 | A |
3309780 | Goins | Mar 1967 | A |
3331664 | Jordan | Jul 1967 | A |
3342554 | Jordan et al. | Sep 1967 | A |
3344051 | Latham, Jr. et al. | Sep 1967 | A |
3408164 | Johnson | Oct 1968 | A |
3409403 | Geir et al. | Nov 1968 | A |
3420632 | Ryan et al. | Jan 1969 | A |
3431074 | Jordan et al. | Mar 1969 | A |
3453488 | Cann et al. | Jul 1969 | A |
3464793 | Jordan et al. | Sep 1969 | A |
3619138 | Gunnell | Nov 1971 | A |
3619140 | Morgan et al. | Nov 1971 | A |
3637974 | Tajbl et al. | Jan 1972 | A |
3673375 | Camacho et al. | Jun 1972 | A |
3725103 | Jordan et al. | Apr 1973 | A |
3852399 | Rothbuhr et al. | Dec 1974 | A |
3922335 | Jordan et al. | Nov 1975 | A |
3981654 | Rood et al. | Sep 1976 | A |
3981659 | Myers | Sep 1976 | A |
3984743 | Horie | Oct 1976 | A |
3998934 | Vanderveen | Dec 1976 | A |
4028072 | Braun et al. | Jun 1977 | A |
4035336 | Jordan et al. | Jul 1977 | A |
4057396 | Matovich | Nov 1977 | A |
4075160 | Mills et al. | Feb 1978 | A |
4088741 | Takewell | May 1978 | A |
4101639 | Surovikin et al. | Jul 1978 | A |
4138471 | Lamond et al. | Feb 1979 | A |
4199545 | Matovich | Apr 1980 | A |
4282199 | Lamond et al. | Aug 1981 | A |
4289949 | Raaness et al. | Sep 1981 | A |
4292291 | Rothbuhr et al. | Sep 1981 | A |
4317001 | Silver et al. | Feb 1982 | A |
4372937 | Johnson | Feb 1983 | A |
4404178 | Johnson et al. | Sep 1983 | A |
4431624 | Casperson | Feb 1984 | A |
4452771 | Hunt | Jun 1984 | A |
4460558 | Johnson | Jul 1984 | A |
4472172 | Sheer et al. | Sep 1984 | A |
4543470 | Santen et al. | Sep 1985 | A |
4553981 | Fuderer | Nov 1985 | A |
4577461 | Cann | Mar 1986 | A |
4597776 | Ullman et al. | Jul 1986 | A |
4601887 | Dorn et al. | Jul 1986 | A |
4678888 | Camacho et al. | Jul 1987 | A |
4689199 | Eckert | Aug 1987 | A |
4755371 | Dickerson | Jul 1988 | A |
4765964 | Gravley et al. | Aug 1988 | A |
4766287 | Morrisroe et al. | Aug 1988 | A |
4787320 | Raaness et al. | Nov 1988 | A |
4864096 | Wolf et al. | Sep 1989 | A |
4977305 | Severance, Jr. | Dec 1990 | A |
5039312 | Hollis, Jr. et al. | Aug 1991 | A |
5045667 | Iceland et al. | Sep 1991 | A |
5046145 | Drouet | Sep 1991 | A |
5105123 | Ballou | Apr 1992 | A |
5138959 | Kulkarni | Aug 1992 | A |
5147998 | Tsantrizos et al. | Sep 1992 | A |
5206880 | Olsson | Apr 1993 | A |
5222448 | Morgenthaler et al. | Jun 1993 | A |
5352289 | Weaver et al. | Oct 1994 | A |
5399957 | Vierboom | Mar 1995 | A |
5427762 | Steinberg et al. | Jun 1995 | A |
5476826 | Greenwald et al. | Dec 1995 | A |
5481080 | Lynum et al. | Jan 1996 | A |
5486674 | Lynum et al. | Jan 1996 | A |
5500501 | Lynum et al. | Mar 1996 | A |
5527518 | Lynum et al. | Jun 1996 | A |
5578647 | Li et al. | Nov 1996 | A |
5593644 | Norman et al. | Jan 1997 | A |
5602298 | Levin | Feb 1997 | A |
5604424 | Shuttleworth | Feb 1997 | A |
5611947 | Vavruska | Mar 1997 | A |
5673285 | Wittle et al. | Sep 1997 | A |
5717293 | Sellers | Feb 1998 | A |
5725616 | Lynum et al. | Mar 1998 | A |
5749937 | Detering et al. | May 1998 | A |
5935293 | Detering et al. | Aug 1999 | A |
5951960 | Lynum et al. | Sep 1999 | A |
5989512 | Lynum et al. | Nov 1999 | A |
5997837 | Lynum et al. | Dec 1999 | A |
6058133 | Bowman et al. | May 2000 | A |
6068827 | Lynum et al. | May 2000 | A |
6099696 | Schwob et al. | Aug 2000 | A |
6188187 | Harlan | Feb 2001 | B1 |
6197274 | Mahmud et al. | Mar 2001 | B1 |
6277350 | Gerspacher | Aug 2001 | B1 |
6358375 | Schwob | Mar 2002 | B1 |
6380507 | Childs | Apr 2002 | B1 |
6395197 | Detering et al. | May 2002 | B1 |
6403697 | Mitsunaga et al. | Jun 2002 | B1 |
6441084 | Lee et al. | Aug 2002 | B1 |
6442950 | Tung | Sep 2002 | B1 |
6444727 | Yamada et al. | Sep 2002 | B1 |
6471937 | Anderson et al. | Oct 2002 | B1 |
6602920 | Hall et al. | Aug 2003 | B2 |
6703580 | Brunet et al. | Mar 2004 | B2 |
6773689 | Lynum et al. | Aug 2004 | B1 |
6955707 | Ezell et al. | Oct 2005 | B2 |
7167240 | Stagg | Jan 2007 | B2 |
7294314 | Graham | Nov 2007 | B2 |
7312415 | Ohmi et al. | Dec 2007 | B2 |
7360309 | Vaidyanathan et al. | Apr 2008 | B2 |
7431909 | Rumpf et al. | Oct 2008 | B1 |
7452514 | Fabry et al. | Nov 2008 | B2 |
7462343 | Lynum et al. | Dec 2008 | B2 |
7563525 | Ennis | Jul 2009 | B2 |
7582184 | Tomita et al. | Sep 2009 | B2 |
7623340 | Song et al. | Nov 2009 | B1 |
7635824 | Miki et al. | Dec 2009 | B2 |
7655209 | Rumpf et al. | Feb 2010 | B2 |
7777151 | Kuo | Aug 2010 | B2 |
7847009 | Wong et al. | Dec 2010 | B2 |
7968191 | Hampden-Smith et al. | Jun 2011 | B2 |
8147765 | Muradov et al. | Apr 2012 | B2 |
8221689 | Boutot et al. | Jul 2012 | B2 |
8257452 | Menzel | Sep 2012 | B2 |
8277739 | Monsen et al. | Oct 2012 | B2 |
8323793 | Hamby et al. | Dec 2012 | B2 |
8443741 | Chapman et al. | May 2013 | B2 |
8471170 | Li et al. | Jun 2013 | B2 |
8486364 | Vanier et al. | Jul 2013 | B2 |
8501148 | Belmont et al. | Aug 2013 | B2 |
8581147 | Kooken et al. | Nov 2013 | B2 |
8710136 | Yurovskaya et al. | Apr 2014 | B2 |
8771386 | Licht et al. | Jul 2014 | B2 |
8784617 | Novoselov et al. | Jul 2014 | B2 |
8850826 | Ennis | Oct 2014 | B2 |
8871173 | Nester et al. | Oct 2014 | B2 |
8911596 | Vancina | Dec 2014 | B2 |
9095835 | Skoptsov et al. | Aug 2015 | B2 |
9229396 | Wu et al. | Jan 2016 | B1 |
9315735 | Cole et al. | Apr 2016 | B2 |
9388300 | Dikan et al. | Jul 2016 | B2 |
9445488 | Foret | Sep 2016 | B2 |
9574086 | Johnson et al. | Feb 2017 | B2 |
9679750 | Choi et al. | Jun 2017 | B2 |
10100200 | Johnson et al. | Oct 2018 | B2 |
10138378 | Hoermman et al. | Nov 2018 | B2 |
10370539 | Johnson et al. | Aug 2019 | B2 |
10618026 | Taylor et al. | Apr 2020 | B2 |
10808097 | Hardman et al. | Oct 2020 | B2 |
11492496 | Hoermann et al. | Nov 2022 | B2 |
20010029888 | Sundarrajan et al. | Oct 2001 | A1 |
20010039797 | Cheng | Nov 2001 | A1 |
20020000085 | Hall et al. | Jan 2002 | A1 |
20020021430 | Koshelev et al. | Feb 2002 | A1 |
20020050323 | Moisan et al. | May 2002 | A1 |
20020051903 | Masuko et al. | May 2002 | A1 |
20020141476 | Varela | Oct 2002 | A1 |
20020157559 | Brunet | Oct 2002 | A1 |
20030103858 | Baran et al. | Jun 2003 | A1 |
20030136661 | Kong et al. | Jul 2003 | A1 |
20030152184 | Shehane et al. | Aug 2003 | A1 |
20040047779 | Denison | Mar 2004 | A1 |
20040071626 | Smith et al. | Apr 2004 | A1 |
20040081609 | Green et al. | Apr 2004 | A1 |
20040081862 | Herman | Apr 2004 | A1 |
20040148860 | Fletcher | Aug 2004 | A1 |
20040168904 | Anazawa et al. | Sep 2004 | A1 |
20040211760 | Delzenne et al. | Oct 2004 | A1 |
20040213728 | Kopietz et al. | Oct 2004 | A1 |
20040216559 | Kim et al. | Nov 2004 | A1 |
20040247509 | Newby | Dec 2004 | A1 |
20050063892 | Tandon et al. | Mar 2005 | A1 |
20050063893 | Ayala et al. | Mar 2005 | A1 |
20050079119 | Kawakami et al. | Apr 2005 | A1 |
20050230240 | Dubrovsky et al. | Oct 2005 | A1 |
20060034748 | Lewis et al. | Feb 2006 | A1 |
20060037244 | Clawson | Feb 2006 | A1 |
20060068987 | Bollepalli et al. | Mar 2006 | A1 |
20060107789 | Deegan | May 2006 | A1 |
20060155157 | Zarrinpashne et al. | Jul 2006 | A1 |
20060226538 | Kawata | Oct 2006 | A1 |
20060228290 | Green | Oct 2006 | A1 |
20060239890 | Chang et al. | Oct 2006 | A1 |
20070140004 | Marotta | Jun 2007 | A1 |
20070183959 | Charlier et al. | Aug 2007 | A1 |
20070270511 | Melnichuk et al. | Nov 2007 | A1 |
20070293405 | Zhang et al. | Dec 2007 | A1 |
20080041829 | Blutke et al. | Feb 2008 | A1 |
20080121624 | Belashchenko et al. | May 2008 | A1 |
20080159947 | Yurovskaya et al. | Jul 2008 | A1 |
20080169183 | Hertel et al. | Jul 2008 | A1 |
20080182298 | Day | Jul 2008 | A1 |
20080226538 | Rumpf et al. | Sep 2008 | A1 |
20080233402 | Carlson et al. | Sep 2008 | A1 |
20080279749 | Probst et al. | Nov 2008 | A1 |
20080292533 | Belmont et al. | Nov 2008 | A1 |
20090014423 | Li et al. | Jan 2009 | A1 |
20090035469 | Sue et al. | Feb 2009 | A1 |
20090090282 | Gold et al. | Apr 2009 | A1 |
20090142250 | Fabry et al. | Jun 2009 | A1 |
20090155157 | Stenger et al. | Jun 2009 | A1 |
20090173252 | Nakata et al. | Jul 2009 | A1 |
20090208751 | Green et al. | Aug 2009 | A1 |
20090230098 | Salsich et al. | Sep 2009 | A1 |
20100055017 | Vanier et al. | Mar 2010 | A1 |
20100147188 | Mamak et al. | Jun 2010 | A1 |
20100249353 | Macintosh et al. | Sep 2010 | A1 |
20110036014 | Tsangaris et al. | Feb 2011 | A1 |
20110071692 | D'Amato et al. | Mar 2011 | A1 |
20110071962 | Lim | Mar 2011 | A1 |
20110076608 | Bergemann et al. | Mar 2011 | A1 |
20110120137 | Ennis | May 2011 | A1 |
20110138766 | Elkady et al. | Jun 2011 | A1 |
20110150756 | Adams et al. | Jun 2011 | A1 |
20110155703 | Winn | Jun 2011 | A1 |
20110180513 | Luhrs et al. | Jul 2011 | A1 |
20110214425 | Lang et al. | Sep 2011 | A1 |
20110236816 | Stanyschofsky et al. | Sep 2011 | A1 |
20110239542 | Liu et al. | Oct 2011 | A1 |
20120018402 | Carducci et al. | Jan 2012 | A1 |
20120025693 | Wang et al. | Feb 2012 | A1 |
20120177531 | Chuang et al. | Jul 2012 | A1 |
20120201266 | Boulos et al. | Aug 2012 | A1 |
20120232173 | Juranitch et al. | Sep 2012 | A1 |
20120292794 | Prabhu et al. | Nov 2012 | A1 |
20130039841 | Nester et al. | Feb 2013 | A1 |
20130062195 | Samaranayake et al. | Mar 2013 | A1 |
20130062196 | Sin | Mar 2013 | A1 |
20130092525 | Li et al. | Apr 2013 | A1 |
20130105739 | Bingue et al. | May 2013 | A1 |
20130194840 | Huselstein | Aug 2013 | A1 |
20130292363 | Hwang et al. | Nov 2013 | A1 |
20130323614 | Chapman et al. | Dec 2013 | A1 |
20130340651 | Wampler et al. | Dec 2013 | A1 |
20140000488 | Sekiyama et al. | Jan 2014 | A1 |
20140057166 | Yokoyama et al. | Feb 2014 | A1 |
20140131324 | Shipulski | May 2014 | A1 |
20140151601 | Hyde et al. | Jun 2014 | A1 |
20140166496 | Lin et al. | Jun 2014 | A1 |
20140190179 | Baker et al. | Jul 2014 | A1 |
20140224706 | Do et al. | Aug 2014 | A1 |
20140227165 | Hung et al. | Aug 2014 | A1 |
20140248442 | Luizi et al. | Sep 2014 | A1 |
20140290532 | Rodriguez et al. | Oct 2014 | A1 |
20140294716 | Susekov et al. | Oct 2014 | A1 |
20140339478 | Probst et al. | Nov 2014 | A1 |
20140345828 | Ehmann et al. | Nov 2014 | A1 |
20140357092 | Singh | Dec 2014 | A1 |
20140373752 | Hassinen et al. | Dec 2014 | A2 |
20150004516 | Kim et al. | Jan 2015 | A1 |
20150044105 | Novoselov | Feb 2015 | A1 |
20150044516 | Kyrlidis et al. | Feb 2015 | A1 |
20150056127 | Chavan et al. | Feb 2015 | A1 |
20150056516 | Hellring et al. | Feb 2015 | A1 |
20150064099 | Nester et al. | Mar 2015 | A1 |
20150087764 | Sanchez Garcia et al. | Mar 2015 | A1 |
20150180346 | Yuzurihara | Jun 2015 | A1 |
20150210856 | Johnson et al. | Jul 2015 | A1 |
20150210857 | Johnson et al. | Jul 2015 | A1 |
20150210858 | Hoermann et al. | Jul 2015 | A1 |
20150211378 | Johnson et al. | Jul 2015 | A1 |
20150217940 | Si et al. | Aug 2015 | A1 |
20150218383 | Johnson et al. | Aug 2015 | A1 |
20150223314 | Hoermann et al. | Aug 2015 | A1 |
20150252168 | Schuck et al. | Sep 2015 | A1 |
20150259211 | Hung et al. | Sep 2015 | A9 |
20150307351 | Mabrouk et al. | Oct 2015 | A1 |
20160030856 | Kaplan et al. | Feb 2016 | A1 |
20160152469 | Chakravarti et al. | Jun 2016 | A1 |
20160243518 | Spitzl | Aug 2016 | A1 |
20160293959 | Blizanac et al. | Oct 2016 | A1 |
20160296905 | Kuhl | Oct 2016 | A1 |
20170034898 | Moss et al. | Feb 2017 | A1 |
20170037253 | Hardman et al. | Feb 2017 | A1 |
20170058128 | Johnson et al. | Mar 2017 | A1 |
20170066923 | Hardman et al. | Mar 2017 | A1 |
20170073522 | Hardman et al. | Mar 2017 | A1 |
20170349758 | Johnson et al. | Dec 2017 | A1 |
20180015438 | Taylor et al. | Jan 2018 | A1 |
20180016441 | Taylor et al. | Jan 2018 | A1 |
20180022925 | Hardman et al. | Jan 2018 | A1 |
20180340074 | Wittmann et al. | Nov 2018 | A1 |
20180366734 | Korchev et al. | Dec 2018 | A1 |
20190048200 | Johnson et al. | Feb 2019 | A1 |
20190100658 | Taylor et al. | Apr 2019 | A1 |
20190338139 | Hoermann et al. | Nov 2019 | A1 |
20200140691 | Johnson et al. | May 2020 | A1 |
20200239697 | Wittmann et al. | Jul 2020 | A1 |
20210261417 | Cardinal et al. | Aug 2021 | A1 |
20220272826 | Hoermann et al. | Aug 2022 | A1 |
20220274046 | Johnson et al. | Sep 2022 | A1 |
20220339595 | Taylor et al. | Oct 2022 | A1 |
Number | Date | Country |
---|---|---|
2897071 | Nov 1972 | AU |
830378 | Dec 1969 | CA |
964405 | Mar 1975 | CA |
2353752 | Jan 2003 | CA |
2621749 | Aug 2009 | CA |
86104761 | Feb 1987 | CN |
1059541 | Mar 1992 | CN |
1076206 | Sep 1993 | CN |
1077329 | Oct 1993 | CN |
1078727 | Nov 1993 | CN |
1082571 | Feb 1994 | CN |
1086527 | May 1994 | CN |
1196032 | Oct 1998 | CN |
1398780 | Feb 2003 | CN |
1458966 | Nov 2003 | CN |
1491740 | Apr 2004 | CN |
1644650 | Jul 2005 | CN |
101092691 | Dec 2007 | CN |
101193817 | Jun 2008 | CN |
101198442 | Jun 2008 | CN |
201087175 | Jul 2008 | CN |
101368010 | Feb 2009 | CN |
101657283 | Feb 2010 | CN |
101734620 | Jun 2010 | CN |
102007186 | Apr 2011 | CN |
102060281 | May 2011 | CN |
102108216 | Jun 2011 | CN |
102186767 | Sep 2011 | CN |
102350506 | Feb 2012 | CN |
102612549 | Jul 2012 | CN |
102666686 | Sep 2012 | CN |
202610344 | Dec 2012 | CN |
102869730 | Jan 2013 | CN |
102993788 | Mar 2013 | CN |
103108831 | May 2013 | CN |
103160149 | Jun 2013 | CN |
103391678 | Nov 2013 | CN |
203269847 | Nov 2013 | CN |
203415580 | Jan 2014 | CN |
204301483 | Apr 2015 | CN |
104798228 | Jul 2015 | CN |
105070518 | Nov 2015 | CN |
105073906 | Nov 2015 | CN |
105308775 | Feb 2016 | CN |
205472672 | Aug 2016 | CN |
107709474 | Feb 2018 | CN |
211457 | Jul 1984 | DE |
19807224 | Aug 1999 | DE |
200300389 | Dec 2003 | EA |
0315442 | May 1989 | EP |
0325689 | Aug 1989 | EP |
0616600 | Sep 1994 | EP |
0635044 | Feb 1996 | EP |
0635043 | Jun 1996 | EP |
0861300 | Sep 1998 | EP |
0982378 | Mar 2000 | EP |
1017622 | Jul 2000 | EP |
1088854 | Apr 2001 | EP |
1188801 | Mar 2002 | EP |
3099397 | Dec 2016 | EP |
3100597 | Dec 2016 | EP |
3253826 | Dec 2017 | EP |
3253827 | Dec 2017 | EP |
3253904 | Dec 2017 | EP |
3331821 | Jun 2018 | EP |
3347306 | Jul 2018 | EP |
3350855 | Jul 2018 | EP |
3448553 | Mar 2019 | EP |
3448936 | Mar 2019 | EP |
3592810 | Jan 2020 | EP |
3612600 | Feb 2020 | EP |
3676220 | Jul 2020 | EP |
3676335 | Jul 2020 | EP |
3676901 | Jul 2020 | EP |
3700980 | Sep 2020 | EP |
3774020 | Feb 2021 | EP |
1249094 | Dec 1960 | FR |
2891434 | Mar 2007 | FR |
2937029 | Apr 2010 | FR |
395893 | Jul 1933 | GB |
987498 | Mar 1965 | GB |
1068519 | May 1967 | GB |
1400266 | Jul 1975 | GB |
1492346 | Nov 1977 | GB |
2419883 | May 2006 | GB |
S5021983 | Jul 1975 | JP |
S5987800 | May 1984 | JP |
S6411074 | Jan 1989 | JP |
H04228270 | Aug 1992 | JP |
H05226096 | Sep 1993 | JP |
H06302527 | Oct 1994 | JP |
H06322615 | Nov 1994 | JP |
H07500695 | Jan 1995 | JP |
H07307165 | Nov 1995 | JP |
H08176463 | Jul 1996 | JP |
H08319552 | Dec 1996 | JP |
H09316645 | Dec 1997 | JP |
H11123562 | May 1999 | JP |
2001164053 | Jun 2001 | JP |
2001253974 | Sep 2001 | JP |
2002121422 | Apr 2002 | JP |
2004300334 | Oct 2004 | JP |
2005235709 | Sep 2005 | JP |
2005243410 | Sep 2005 | JP |
5226096 | Jul 2013 | JP |
20030046455 | Jun 2003 | KR |
20080105344 | Dec 2008 | KR |
20140075261 | Jun 2014 | KR |
2425795 | Aug 2011 | RU |
2488984 | Jul 2013 | RU |
200418933 | Oct 2004 | TW |
WO-9204415 | Mar 1992 | WO |
WO-9312030 | Jun 1993 | WO |
WO-9312031 | Jun 1993 | WO |
WO-9312633 | Jun 1993 | WO |
WO-9318094 | Sep 1993 | WO |
WO-9320152 | Oct 1993 | WO |
WO-9320153 | Oct 1993 | WO |
WO-9323331 | Nov 1993 | WO |
WO-9408747 | Apr 1994 | WO |
WO-9618688 | Jun 1996 | WO |
WO-9703133 | Jan 1997 | WO |
WO-9813428 | Apr 1998 | WO |
WO-0018682 | Apr 2000 | WO |
WO-0224819 | Mar 2002 | WO |
WO-03014018 | Feb 2003 | WO |
WO-2004083119 | Sep 2004 | WO |
WO-2005054378 | Jun 2005 | WO |
WO-2007016418 | Feb 2007 | WO |
WO-2009143576 | Dec 2009 | WO |
WO-2010040840 | Apr 2010 | WO |
WO-2010059225 | May 2010 | WO |
WO-2012015313 | Feb 2012 | WO |
WO-2012067546 | May 2012 | WO |
WO-2012094743 | Jul 2012 | WO |
WO-2012149170 | Nov 2012 | WO |
WO-2013134093 | Sep 2013 | WO |
WO-2013184074 | Dec 2013 | WO |
WO-2013185219 | Dec 2013 | WO |
WO-2014000108 | Jan 2014 | WO |
WO-2014012169 | Jan 2014 | WO |
WO-2014149455 | Sep 2014 | WO |
WO-2015049008 | Apr 2015 | WO |
WO-2015051893 | Apr 2015 | WO |
WO-2015093947 | Jun 2015 | WO |
WO-2015116797 | Aug 2015 | WO |
WO-2015116798 | Aug 2015 | WO |
WO-2015116800 | Aug 2015 | WO |
WO-2015116807 | Aug 2015 | WO |
WO-2015116811 | Aug 2015 | WO |
WO-2015116943 | Aug 2015 | WO |
WO-2016012367 | Jan 2016 | WO |
WO-2016014641 | Jan 2016 | WO |
WO-2016126598 | Aug 2016 | WO |
WO-2016126599 | Aug 2016 | WO |
WO-2016126600 | Aug 2016 | WO |
WO-2017019683 | Feb 2017 | WO |
WO-2017027385 | Feb 2017 | WO |
WO-2017034980 | Mar 2017 | WO |
WO-2017044594 | Mar 2017 | WO |
WO-2017048621 | Mar 2017 | WO |
WO-2017190015 | Nov 2017 | WO |
WO-2017190045 | Nov 2017 | WO |
WO-2018165483 | Sep 2018 | WO |
WO-2018195460 | Oct 2018 | WO |
WO-2019046320 | Mar 2019 | WO |
WO-2019046322 | Mar 2019 | WO |
WO-2019046324 | Mar 2019 | WO |
WO-2019084200 | May 2019 | WO |
WO-2019195461 | Oct 2019 | WO |
WO-2022076306 | Apr 2022 | WO |
Entry |
---|
AP-42, Fifth Edition, vol. 1, Chapter 6: Organic Chemical Process Industry, Section 6.1: Carbon Black (1983): 1-10. |
Ayala, et al., Carbon Black Elastomer Interaction. Rubber Chemistry and Technology (1991): 19-39. |
Bakken, et al., Thermal plasma process development in Norway. Pure and Applied Chemistry 70.6 (1998): 1223-1228. |
Biscoe, et al., An X-ray study of carbon black. Journal of Applied physics, 1942; 13: 364-371. |
Boehm, Some Aspects of Surface Chemistry of Carbon Blacks and Other Carbons. Carbon. 32.5. (1994): 759-769. |
Breeze, Raising steam plant efficiency-Pushing the steam cycle boundaries.PEI Magazine 20.4(2012) 12 pages. |
Cataldo, The impact of a fullerene-like concept in carbon black science. Carbon 40 (2002): 157-162. |
Chiesa, et al., Using Hydrogen as Gas Turbine Fuel. ASME. J. Eng. Gas Turbines Power 127.1. (2005):73-80. doi:10.1115/1.1787513. |
Cho, et al., Conversion of natural gas to hydrogen and carbon black by plasma and application of plasma black. Symposia-American Chemical Society, Div. Fuel Chem. 49.1. (2004): 181-183. |
Co-pending U.S. Appl. No. 16/097,035, filed Oct. 26, 2018. |
Co-pending U.S. Appl. No. 16/563,008, filed Sep. 6, 2019. |
Co-pending U.S. Appl. No. 16/657,386, filed Oct. 18, 2019. |
Co-pending U.S. Appl. No. 16/802,174, filed Feb. 26, 2020. |
Co-pending U.S. Appl. No. 16/802,190, filed Feb. 26, 2020. |
Co-pending U.S. Appl. No. 16/802,212, filed Feb. 26, 2020. |
Co-pending U.S. Appl. No. 16/807,550, filed Mar. 3, 2020. |
Co-pending U.S. Appl. No. 16/855,276, filed Apr. 22, 2020. |
Donnet, et al., Carbon Black. New York: Marcel Dekker, (1993): 46, 47 and 54. |
Donnet, et al., Observation of Plasma-Treated Carbon Black Surfaces by Scanning Tunnelling Microscopy. Carbon (1994) 32(2): 199-206. |
EP16845031.0 Extended European Search Report dated Mar. 18, 2019. |
EP16847102.7 Extended European Search Report dated Jul. 5, 2019. |
EP17790549.4 Extended European Search Report dated Nov. 26, 2019. |
EP17790570.0 Extended European Search Report dated Nov. 8, 2019. |
Extended European Search Report for EP Application No. 15742910.1 dated Jul. 18, 2017. |
Extended European Search Report for EP Application No. 15743214.7 dated Jan. 16, 2018. |
Extended European Search Report for EP Application No. 16747055.8, dated Jun. 27, 2018. |
Extended European Search Report for EP Application No. 16747056.6 dated Jun. 27, 2018. |
Extended European Search Report for EP Application No. 16747057.4 dated Oct. 9, 2018. |
Extended European Search Report for EP Application No. 16835697.0 dated Nov. 28, 2018. |
Fabry, et al., Carbon black processing by thermal plasma. Analysis of the particle formation mechanism. Chemical Engineering Science 56.6 (2001): 2123-2132. |
Fulcheri, et al., From methane to hydrogen, carbon black and water. International journal of hydrogen energy 20.3 (1995): 197-202. |
Fulcheri, et al., Plasma processing: a step towards the production of new grades of carbon black. Carbon 40.2 (2002): 169-176. |
Gago, et al., Growth mechanisms and structure of fullerene-like carbon-based thin films: superelastic materials for tribological applications. Trends in Fullerene Research, Published by Nova Science Publishers, Inc. (2007): 1-46. |
Garberg, et al.,A transmission electron microscope and electron diffraction study of carbon nanodisks. Carbon 46.12 (2008): 1535-1543. |
Grivei, et al., A clean process for carbon nanoparticles and hydrogen production from plasma hydrocarbon cracking. Publishable Report, European Commission Joule III Programme, Project No. JOE3-CT97-0057,circa (2000): 1-25. |
Hernandez, et al. Comparison of carbon nanotubes and nanodisks as percolative fillers in electrically conductive composites. Scripta Materialia 58 (2008) 69-72. |
Hoyer, et al., Microelectromechanical strain and pressure sensors based on electric field aligned carbon cone and carbon black particles in a silicone elastomer matrix. Journal of Applied Physics 112.9 (2012): 094324. |
International Preliminary Report on Patentability for Application No. PCT/US2015/013482 dated Aug. 2, 2016. |
International Preliminary Report on Patentability for Application No. PCT/US2015/013484 dated Aug. 2, 2016. |
International Preliminary Report on Patentability for Application No. PCT/US2015/013487 dated Aug. 2, 2016. |
International Preliminary Report on Patentability for Application No. PCT/US2015/013505 dated Aug. 2, 2016. |
International Preliminary Report on Patentability for Application No. PCT/US2015/013510 dated Aug. 2, 2016. |
International Preliminary Report on Patentability for Application No. PCT/US2017/030139 dated Oct. 30, 2018. |
International Preliminary Report on Patentability for Application No. PCT/US2017/030179 dated Oct. 30, 2018. |
International Search Report and Written Opinion for Application No. PCT/US2015/013482 dated Jun. 17, 2015. |
International Search Report and Written Opinion for Application No. PCT/US2015/013484 dated Apr. 22, 2015. |
International Search Report and Written Opinion for Application No. PCT/US2015/013487 dated Jun. 16, 2015. |
International Search Report and Written Opinion for Application No. PCT/US2015/013505 dated May 11, 2015. |
International Search Report and Written Opinion for Application No. PCT/US2015/013510 dated Apr. 22, 2015. |
International Search Report and Written Opinion for Application No. PCT/US2015/013794 dated Jun. 19, 2015. |
International Search Report and Written Opinion for Application No. PCT/US2016/015939 dated Jun. 3, 2016. |
International Search Report and Written Opinion for Application No. PCT/US2016/015941 dated Apr. 21, 2016. |
International Search Report and Written Opinion for Application No. PCT/US2016/015942 dated Apr. 11, 2016. |
International search Report and Written Opinion for Application No. PCT/US2016/044039 dated Oct. 6, 2016. |
International Search Report and Written Opinion for Application No. PCT/US2016/045793 dated Oct. 18, 2016. |
International Search Report and Written Opinion for Application No. PCT/US2016/047769 dated Dec. 30, 2016. |
International Search Report and Written Opinion for Application No. PCT/US2016/050728 dated Nov. 18, 2016. |
International search Report and Written Opinion for Application No. PCT/US2016/051261 dated Nov. 18, 2016. |
International Search Report and Written Opinion for Application No. PCT/US2017/030139 dated Jul. 19, 2017. |
International Search Report and Written Opinion for Application No. PCT/US2017/030179 dated Jul. 27, 2017. |
International Search Report and Written Opinion for Application No. PCT/US2018/021627 dated May 31, 2018. |
International Search Report and Written Opinion for Application No. PCT/US2018/028619 dated Aug. 9, 2018. |
International Search Report and Written Opinion for Application No. PCT/US2018/048374 dated Nov. 21, 2018. |
International Search Report and Written Opinion for Application No. PCT/US2018/048378 dated Dec. 20, 2018. |
International Search Report and Written Opinion for Application No. PCT/US2018/048381 dated Dec. 14, 2018. |
International Search Report for Application No. PCT/US2015/13482 dated Jun. 17, 2015. |
International Search Report for Application No. PCT/US2015/13487 dated Jun. 16, 2015. |
Knaapila, et al., Directed assembly of carbon nanocones into wires with an epoxy coating in thin films by a combination of electric field alignment and subsequent pyrolysis. Carbon 49.10(2011): 3171-3178. |
Krishnan, et al., Graphitic cones and the nucleation of curved carbon surfaces. Nature 388.6641 (1997): 451-454. |
Larouche, et al.,Nitrogen Functionalization of Carbon Black in a Thermo-Convective Plasma Reactor. Plasma Chem Plasma Process (2011) 31: 635-647. |
Medalia, et al., Tinting Strength of Carbon Black. Journal of Colloid and Interface Science 40.2. (1972). |
Naess, et al., Carbon nanocones: wall structure and morphology. Science and Technology of advanced materials (2009): 7 pages. |
Partial International Search Report for Application No. PCT/US2018/028619 dated Jun. 18, 2018. |
PCT/US2018/021627 International Search Report and Written Opinion dated May 31, 2018. |
PCT/US2018/028619 International Search Report and Written Opinion dated Aug. 9, 2018. |
PCT/US2018/048374 International Search Report and Written Opinion dated Nov. 21, 2018. |
PCT/US2018/057401 International Search Report and Written Opinion dated Feb. 15, 2019. |
PCT/US2018/064538 International Search Report and Written Opinion dated Feb. 19, 2019. |
PCT/US2019/025632 International Search Report and Written Opinion dated Jun. 24, 2019. |
Polman, et al., Reduction of CO2 emissions by adding hydrogen to natural gas. IEA Green House Gas R&D programme (2003): 1-98. |
Pristavita, et al. Carbon blacks produced by thermal plasma: the influence of the reactor geometry on the product morphology. Plasma Chemistry and Plasma Processing 30.2 (2010): 267-279. |
Pristavita, et al., Carbon nanoparticle production by inductively coupled thermal plasmas: controlling the thermal history of particle nucleation. Plasma Chemistry and Plasma Processing 31.6 (2011): 851-866. |
Pristavita, et al., Volatile Compounds Present in Carbon Blacks Produced by Thermal Plasmas. Plasma Chemistry and Plasma Processing 31.6 (2011): 839-850. |
Reese, Resurgence in American manufacturing will be led by the rubber and tire industry. Rubber World. 255. (2017): 18-21 and 23. |
Reynolds, Electrode Resistance: How Important is Surface Area. Oct. 10, 2016. p. 3 para[0001]; Figure 3; Retrieved from http://electrotishing.net/2016/10/10/electrode-resistance-how-important-is-surface-area/ on May 8, 2018. |
Search Report for Application No. RU2016135213 dated Feb. 12, 2018. |
Sun, et al., Preparation of carbon black via arc discharge plasma enhanced by thermal pyrolysis. Diamond & Related Materials (2015), doi: 10.1016/j.diamond.2015.11.004, 47 pages. |
Supplementary Partial European Search Report for EP Application No. 15743214.7 dated Sep. 12, 2017. |
Translation of Official Notification of RU Application No. 2016135213 dated Feb. 12, 2018. |
Tsujikawa, et al., Analysis of a gas turbine and steam turbine combined cycle with liquefied hydrogen as fuel. International Journal of Hydrogen Energy 7.6 (1982): 499-505. |
U.S. Appl. No. 14/591,541 Notice of Allowance dated Sep. 17, 2018. |
U.S. Environmental Protection Agency, Guide to Industrial Assessments for Pollution Prevention and Energy Efficiency. EPA 625/R-99/003 (1999): 474 pages. |
U.S. Appl. No. 14/591,528 Office Action dated Jan. 17, 2019. |
U.S. Appl. No. 15/548,346 Office Action dated Oct. 22, 2019. |
U.S. Appl. No. 15/548,348 Office Action dated Apr. 25, 2019. |
U.S. Appl. No. 14/591,476 Notice of Allowance dated Mar. 20, 2019. |
U.S. Appl. No. 14/591,476 Office Action dated Feb. 27, 2017. |
U.S. Appl. No. 14/591,476 Office Action dated Jul. 11, 2016. |
U.S. Appl. No. 14/591,476 Office Action dated Jun. 7, 2018. |
U.S. Appl. No. 14/591,476 Office Action dated Mar. 16, 2016. |
U.S. Appl. No. 14/591,476 Office Action dated Oct. 13, 2017. |
U.S. Appl. No. 14/591,528 Office Action dated Jan. 16, 2018. |
U.S. Appl. No. 14/591,528 Office Action dated Oct. 28, 2019. |
U.S. Appl. No. 14/591,541 Notice of Allowance dated Jun. 7, 2018. |
U.S. Appl. No. 14/591,541 Office Action dated Feb. 22, 2017. |
U.S. Appl. No. 14/591,541 Office Action dated Jul. 14, 2016. |
U.S. Appl. No. 14/591,541 Office Action dated Mar. 16, 2016. |
U.S. Appl. No. 14/591,541 Office Action dated Oct. 13, 2017. |
U.S. Appl. No. 14/601,761 Corrected Notice of Allowance dated Feb. 9, 2018. |
U.S. Appl. No. 14/601,761 Ex Parte Quayle Actionn dated May 19, 2017. |
U.S. Appl. No. 14/601,761 Notice of Allowance dated Feb. 9, 2018. |
U.S. Appl. No. 14/601,761 Notice of Allowance dated Jan. 18, 2018. |
U.S. Appl. No. 14/601,761 Notice of Allowance dated Jun. 19, 2018. |
U.S. Appl. No. 14/601,761 Notice of Allowance dated Oct. 11, 2018. |
U.S. Appl. No. 14/601,761 Notice of Allowance dated Sep. 17, 2018. |
U.S. Appl. No. 14/601,761 Office Action dated Apr. 14, 2016. |
U.S. Appl. No. 14/601,761 Office Action dated Oct. 19, 2016. |
U.S. Appl. No. 14/601,793 Notice of Allowance dated Oct. 7, 2016. |
U.S. Appl. No. 14/601,793 Office Action dated Apr. 13, 2016. |
U.S. Appl. No. 14/601,793 Office Action dated Aug. 3, 2016. |
U.S. Appl. No. 14/610,299 Notice of Allowance dated Feb. 20, 2020. |
U.S. Appl. No. 14/610,299 Office Action dated May 2, 2017. |
U.S. Appl. No. 14/610,299 Office Action dated Sep. 25, 2018. |
U.S. Appl. No. 15/221,088 Office Action dated Apr. 20, 2018. |
U.S. Appl. No. 15/221,088 Office Action dated Dec. 23, 2016. |
U.S. Appl. No. 15/221,088 Office Action dated Dec. 4, 2019. |
U.S. Appl. No. 15/221,088 Office Action dated Mar. 7, 2019. |
U.S. Appl. No. 15/221,088 Office Action dated Sep. 19, 2017. |
U.S. Appl. No. 15/229,608 Office Action dated Apr. 8, 2019. |
U.S. Appl. No. 15/229,608 Office Action dated May 15, 2020. |
U.S. Appl. No. 15/229,608 Office Action dated Oct. 25, 2019. |
U.S. Appl. No. 15/241,771 Office Action dated Jul. 6, 2018. |
U.S. Appl. No. 15/241,771 Office Action dated Mar. 13, 2019. |
U.S. Appl. No. 15/241,771 Office Action dated May 1, 2020. |
U.S. Appl. No. 15/241,771 Office Action dated Sep. 25, 2019. |
U.S. Appl. No. 15/259,884 Office Action dated Feb. 25, 2020. |
U.S. Appl. No. 15/259,884 Office Action dated Jan. 9, 2018. |
U.S. Appl. No. 15/259,884 Office Action dated May 31, 2019. |
U.S. Appl. No. 15/259,884 Office Action dated Oct. 11, 2018. |
U.S. Appl. No. 15/262,539 Notice of Allowance dated Jun. 18, 2020. |
U.S. Appl. No. 15/262,539 Office Action dated Jun. 1, 2018. |
U.S. Appl. No. 15/262,539 Office Action dated Jan. 4, 2019. |
U.S. Appl. No. 15/262,539 Office Action dated Sep. 19, 2019. |
U.S. Appl. No. 15/410,283 Office Action dated Jan. 16, 2020. |
U.S. Appl. No. 15/410,283 Office Action dated Jun. 7, 2018. |
U.S. Appl. No. 15/410,283 Office Action dated Mar. 12, 2019. |
U.S. Appl. No. 15/548,346 Office Action dated May 4, 2020. |
U.S. Appl. No. 15/548,348 Notice of Allowance dated Dec. 12, 2019. |
U.S. Appl. No. 15/548,352 Office Action dated Jan. 31, 2020. |
U.S. Appl. No. 15/548,352 Office Action dated May 9, 2019. |
U.S. Appl. No. 15/548,352 Office Action dated Oct. 10, 2018. |
U.S. Appl. No. 16/159,144 Office Action dated Mar. 26, 2020. |
Verfondern, Nuclear Energy for Hydrogen Production. Schriften des Forschungzentrum Julich 58 (2007): 4 pages. |
Wikipedia, Heating Element. Oct. 14, 2016. p. 1 para[0001]. Retrieved from https://en.wikipedia.org/w/index.php?title=Heating_element&oldid=744277540 on May 9, 2018. |
Wikipedia, Joule Heating. Jan. 15, 2017. p. 1 para[0002]. Retrieved from https://en.wikipedia.org/w/index. Dhp?title=Joule_heating&oldid=760136650 on May 9, 2018. |
Separation of Flow. (2005). Aerospace, Mechanical & Mechatronic Engg. Retrieved Jul. 16, 2020, from http://www-dp.eng.cam.ac.uk/web/library/enginfo/aerothermal_dvd_only/aero/fprops/introvisc/node9.html. |
ASTM International: Standard Test Method for Carbon Black—Morphological Characterization of Carbon Black Using Electron Microscopy, D3849-07 (2011); 7 Pages. |
Carmer, et al., Formation of silicon carbide particles behind shock waves. Appl. Phys. Lett. 54 (15), Apr. 10, 1989. 1430-1432. |
Co-pending U.S. Appl. No. 17/021,197, inventors Hardman; Ned J. et al., filed Sep. 15, 2020. |
Co-pending U.S. Appl. No. 17/031,484, inventors Johnson; Peter L. et al., filed Sep. 24, 2020. |
Co-pending U.S. Appl. No. 17/072,416, inventors Taylor; Roscoe W. et al., filed Oct. 16, 2020. |
Co-pending U.S. Appl. No. 17/239,041, inventors Hardmanned; J. et al., filed Apr. 23, 2021. |
Co-pending U.S. Appl. No. 17/245,296, inventors Johnsonpeter; L. et al., filed Apr. 30, 2021. |
Co-pending U.S. Appl. No. 17/329,532, inventors Taylorroscoe; W. et al., filed May 25, 2021. |
Co-pending U.S. Appl. No. 17/412,913, inventors Johnson; Peter L. et al., filed Aug. 26, 2021. |
Co-pending U.S. Appl. No. 17/473,106, inventors Taylorroscoe; W. et al., filed Sep. 13, 2021. |
Co-pending U.S. Appl. No. 17/487,982, inventors Hoermannalexander; F. et al., filed Sep. 28, 2021. |
Co-pending U.S. Appl. No. 17/529,928, inventors Hardmanned; J. et al., filed Nov. 18, 2021. |
Co-pending U.S. Appl. No. 17/741,161, inventors Hoermann; Alexander F. et al., filed May 10, 2022. |
Co-pending U.S. Appl. No. 17/817,482, inventor Hardmanned; J., filed Aug. 4, 2022. |
Co-pending U.S. Appl. No. 17/819,075, inventor Ned; J. Hardman, filed Aug. 11, 2022. |
Co-pending U.S. Appl. No. 17/862,242, inventors Hardman; Ned J. et al., filed Jul. 11, 2022. |
Co-pending U.S. Appl. No. 17/938,304, inventors Roscoe; W. Taylor et al., filed Oct. 5, 2022. |
Co-pending U.S. Appl. No. 18/046,723, inventors Peter; L. Johnson et al., filed Oct. 14, 2022. |
Co-pending U.S. Appl. No. 18/066,929, inventor Alexander; F. Hoermann, filed Dec. 15, 2022. |
Database WPI, Week 200323, 2017 Clarivate Analytics. Thomson Scientific, London, GB; Database accession No. 2003-239603, XP002781693. |
EP18764428.1 Extended European Search Report dated Jan. 11, 2021. |
EP18788086.9 Extended European Search Report dated Jan. 11, 2021. |
EP18850029.2 Extended European Search Report dated Apr. 29, 2021. |
EP18850502.8 Extended European Search Report dated Feb. 25, 2021. |
EP18851605.8 Extended European Search Report dated Feb. 25, 2021. |
EP18869902.9 Extended European Search Report dated Mar. 19, 2021. |
EP19780959.3 Extended European Search Report dated Dec. 21, 2021. |
Frenklach, et al., Silicon carbide and the origin of interstellar carbon grains. Nature, vol. 339; May 18, 1989: 196-198. |
Gomez-Pozuelo, et al., Hydrogen production by catalytic methane decomposition over rice husk derived silica. Fuel, Dec. 15, 2021; 306: 121697. |
Invitation to Pay Additional Fees in PCT/US2018/028619 dated Jun. 18, 2018. |
Invitation to Pay Additional Fees in PCT/US2018/048378 dated Oct. 26, 2018. |
Invitation to Pay Additional Fees in PCT/US2018/048381 dated Oct. 9, 2018. |
Invitation to Pay Additional Fees in PCT/US2018/057401 dated Dec. 19, 2018. |
Lee, et al., Application of Thermal Plasma for Production of Hydrogen and Carbon Black from Direct Decomposition of Hydrocarbon, Appl. Chem. Eng., vol. 18, No. 1, Feb. 2007, pp. 84-89. |
Long C. M., et al., “Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions”, Environmental Pollution, 2013, 181, pp. 271-286.https://doi.org/10.1016/j.envpol.2013.06.009. |
PCT/US2021/053371 International Search Report and Written Opinion dated Feb. 17, 2022. |
U.S. Appl. No. 16/657,386 Notice of Allowance dated May 20, 2022. |
U.S. Appl. No. 14/591,528 Office Action dated Sep. 11, 2020. |
U.S. Appl. No. 14/610,299 Notice of Allowance dated Dec. 13, 2021. |
U.S. Appl. No. 14/610,299 Notice of Allowance dated Nov. 16, 2021. |
U.S. Appl. No. 14/610,299 Office Action dated Feb. 17, 2021. |
U.S. Appl. No. 15/229,608 Office Action dated Apr. 4, 2022. |
U.S. Appl. No. 15/229,608 Office Action dated Feb. 1, 2021. |
U.S. Appl. No. 15/229,608 Office Action dated Nov. 28, 2022. |
U.S. Appl. No. 15/241,771 Office Action dated Dec. 16, 2022. |
U.S. Appl. No. 15/241,771 Office Action dated Dec. 30, 2021. |
U.S. Appl. No. 15/241,771 Office Action dated Jul. 18, 2022. |
U.S. Appl. No. 15/259,884 Office Action dated Jun. 18, 2021. |
U.S. Appl. No. 15/259,884 Office Action dated Mar. 4, 2022. |
U.S. Appl. No. 15/262,539 Notice of Allowance dated Jul. 23, 2020. |
U.S. Appl. No. 15/410,283 Office Action dated Jul. 31, 2020. |
U.S. Appl. No. 15/548,346 Office Action dated Jul. 16, 2021. |
U.S. Appl. No. 15/548,346 Office Action dated Mar. 18, 2022. |
U.S. Appl. No. 15/548,346 Office Action dated Oct. 3, 2022. |
U.S. Appl. No. 15/548,352 Office Action dated Apr. 7, 2022. |
U.S. Appl. No. 15/548,352 Office Action dated Aug. 11, 2020. |
U.S. Appl. No. 15/548,352 Office Action dated Sep. 21, 2021. |
U.S. Appl. No. 16/097,035 Notice of Allowance dated Jul. 7, 2022. |
U.S. Appl. No. 16/097,035 Notice of Allowance dated Mar. 24, 2022. |
U.S. Appl. No. 16/097,035 Office Action dated May 10, 2021. |
U.S. Appl. No. 16/097,035 Office Action dated Oct. 30, 2020. |
U.S. Appl. No. 16/097,039 Notice of Allowance dated Jun. 14, 2021. |
U.S. Appl. No. 16/097,039 Office Action dated Nov. 18, 2020. |
U.S. Appl. No. 16/180,635 Notice of Allowance dated Jul. 8, 2021. |
U.S. Appl. No. 16/180,635 Notice of Allowance dated Jun. 29, 2021. |
U.S. Appl. No. 16/180,635 Office Action dated Dec. 15, 2020. |
U.S. Appl. No. 16/445,727 Notice of Allowance dated Oct. 26, 2022. |
U.S. Appl. No. 16/445,727 Office Action dated Apr. 15, 2022. |
U.S. Appl. No. 16/445,727 Office Action dated Aug. 17, 2021. |
U.S. Appl. No. 16/563,008 Office Action dated Jul. 25, 2022. |
U.S. Appl. No. 16/657,386 Office Action dated Nov. 12, 2021. |
U.S. Appl. No. 16/657,386 Office Action dated Sep. 16, 2022. |
U.S. Appl. No. 16/802,174 Office Action dated Aug. 31, 2022. |
U.S. Appl. No. 16/802,174 Office Action dated Feb. 16, 2022. |
U.S. Appl. No. 16/802,190 Office Action dated Oct. 5, 2022. |
U.S. Appl. No. 16/802,212 Office Action dated Sep. 16, 2022. |
U.S. Appl. No. 16/855,276 Notice of Allowance dated May 11, 2022. |
U.S. Appl. No. 16/855,276 Office Action dated Apr. 5, 2021. |
U.S. Appl. No. 16/855,276 Office Action dated Oct. 25, 2021. |
U.S. Appl. No. 16/802,190 Office Action dated Jan. 31, 2022. |
What is Carbon Black, Orion Engineered Carbons, (Year: 2015). |
Co-pending U.S. Appl. No. 18/172,835, inventor Ned; J. Hardman, filed Feb. 22, 2023. |
PCT/US2022/045451 International Search Report and Wrtitten Opinion dated Feb. 17, 2023. |
U.S. Appl. No. 16/445,727 Notice of Allowance dated Feb. 2, 2023. |
U.S. Appl. No. 16/563,008 Office Action dated Mar. 16, 2023. |
U.S. Appl. No. 16/657,386 Notice of Allowance dated Mar. 10, 2023. |
U.S. Appl. No. 17/498,693 Office Action dated Apr. 3, 2023. |
U.S. Appl. No. 17/817,482 Office Action dated Mar. 29, 2023. |
Number | Date | Country | |
---|---|---|---|
20210120658 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
62198431 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15221088 | Jul 2016 | US |
Child | 16892199 | US |