Deacidification of cellulose based materials using hydrofluoroether carriers

Information

  • Patent Grant
  • 6342098
  • Patent Number
    6,342,098
  • Date Filed
    Friday, May 12, 2000
    24 years ago
  • Date Issued
    Tuesday, January 29, 2002
    22 years ago
Abstract
An improved method of deacidifying books, imaged paper and other imaged materials having a cellulose base wherein, for a sufficient time to raise the pH of the materials, the materials are treated with alkaline particles of a basic metal oxide, hydroxide or salt dispersed in a hydrofluorether carrier, alone, or in combination with a perfluorinated carrier. A surfactant is added.
Description




STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH




Not Applicable




REFERENCE TO MICROFICHE APPENDIX




Not Applicable




BACKGROUND OF THE INVENTION




The deterioration of paper, books and newspapers is well-known and of growing concern to librarians and archivists throughout the world. The causes of paper deterioration are numerous and include inherent acidity, photodegradation, oxidation, and even microbiological attack under certain conditions. These factors combined with initial paper quality have severely reduced the permanence of library and archival collections. It is becoming generally accepted that the most insidious problem is the acidity of most book paper produced in the last one hundred years.




The demand for large amounts of printing paper over the last century led to the introduction of pulp fiber produced from wood by chemical or mechanical means. However, paper made from untreated wood pulp is too absorbent to allow sharp image imprint. Therefore, chemicals have to be added to the wood fibers during processing. These additives allow the paper to accept inks and dyes and increase paper opacity. Unfortunately, most of these chemicals are either acidic or are deposited by acidic mechanisms which initiate the slow, but relentless acidic deterioration of paper. Other contributions to the acidification of paper are supplied by man through industrial emissions of sulfur and nitrogen and carbon oxides or by natural processes such as sea salt spray. Even books or paper of neutral and alkaline characters are not immune. As neighboring papers of acidic nature degrade, volatile acids are produced which either diffuse through adjoining books or permeate the atmosphere and may ultimately acidify even the “safe or stable” books.




In order to arrest this acidic degradation, paper materials must be deacidified and provided with an alkaline reserve or buffer to retard a return to an acidic state. There are several known processes for deacidifying paper whether bound or unbound. Numbering among these are processes using volatile metal alkyls, e.g. U.S. Pat. Nos. 3,969,549, and 4,051,276, and volatile amines e.g. U.S. Pat. Nos. 3,472,611, 3,771,958 and 3,703,353. 3,676,182 describes the treatment of cellulosic materials with alkali and alkaline earth bicarbonates, carbonates, and hydroxides in a halogenated hydrocarbon solvent or lower aliphatic hydrocarbon such as n-butane with an optional plasticizing agent such as ethylene glycol. U.S. Pat. No. 3,676,055 to Smith describes a nonaqueous deacidification solution for treating cellulosic materials comprising 1000 cc of 7 percent magnesium methoxide in methanol and in addition 20 pounds of dichlorodifluoromethane (Freon 22). Canadian Patent No. 911,110 to Smith describes a deacidification solution of a 7% magnesium methoxide solution in methanol (10 parts) and a halogenated solvent or solvents (90 parts): and states that a magnesium alkoxide reacts with water in paper to form a mildly alkaline milk of magnesia, being magnesium hydroxide. Improved results are reported with the use of the halogenated hydrocarbon solvents.




Unfortunately, all of these processes suffer from one or more of a number of drawbacks that have prevented their wide-spread acceptance. These drawbacks include high cost, toxicity, complexity of treatment, residual odor, deleterious effects on certain types of paper and inks, lack of an alkaline reserve, and the necessity of drying the book or paper to very low moisture contents before treatment.




Kundrot, U.S. Pat. No. 4,522,843, provided a solution to the problems experienced with prior art systems. The method of the Kundrot patent utilizes a dispersion of alkaline particles of a basic metal oxide, hydroxide or salt, such as magnesium oxide, in a gas or liquid dispersant. The MgO, when converted to Mg(OH)


2


, according to the reaction MgO+H


2


O→Mg(OH)


2


effectively neutralizes the initial acidity in the paper and provides an adequate alkaline reserve to counter future re-acidification. The deacidification reactions occur later (a period of days) and are typically described as Mg(OH)


2


+H


2


O


4


→MgSO


4


+2 H


2


O. The liquid dispersant or carrier, described in the Kundrot patent is an inert halogenated hydrocarbon. It does not take part in the deacidification, but serves to carry the particles to the fabric of the paper. In several embodiments described, the halogenated hydrocarbons are Freons, or chlorofluorocarbons (CFC). CFC's have since been found to harm public health and the environment by depleting ozone in the upper atmosphere. Manufacturers of CFC's presently place limits on the amounts they will sell to any one purchaser and are phasing out production of CFC's entirely.




A replacement for the CFC carrier in the method of deacidifying books and other cellulose based materials described in the Kundrot patent was described in Leiner et al., U.S. Pat. No. 5,409,736. The Leiner patent replaced the CFC's of the Kundrot patent with perfluorinated carriers, such as perfluoropolyoxy ether and perfluoromorpholine. Unlike CFC's, perfluorocarbons are not known to cause damage to the ozone layer. However, perfluorocarbons are classified as greenhouse gases because they decompose slowly and trap heat in the atmosphere.




SUMMARY OF THE INVENTION




The present invention provides an improvement in a method for deacidifying cellulose based materials, such as books, magazines, newspapers, maps, documents, photographs and postcards, facsimile paper, folders, imaged paper and the like. The method involves generally treating the cellulose based materials with alkaline particles of a basic metal selected from the group consisting of oxides, hydroxide and salts, dispersed in a carrier liquid or similar dispersion medium, in an amount and for a time sufficient to pass the alkaline particles into the interstices of the materials and increase the pH of the materials. The improvement comprises dispersing the alkaline particles in an inert medium comprised of a hydrofluoroether carrier and a surfactant. Optionally, the carrier may include combinations of hydrofluoroether and a perfluorinated compound.




The hydrofluoroether carrier of the present invention does not damage the cellulose based materials by discoloring pages or leather bindings and covers, nor does it cause inks to run or fade or weaken bindings. The new carrier has a relatively short lived atmospheric life time, disassociating into components in few years. The new carrier has an ozone depletion potential of zero and is not classified as a greenhouse gas. Therefore, it is ecologically preferable to the CFC's used in the past.




The hydrofluoroether carriers have been found to provide a better dispersion of the alkaline particles with less surfactant than the CFC or the perfluorinated carriers.











BRIEF DESCRIPTION OF THE FIGURE





FIG. 1

is a graph showing the comparison between the settling rate for samples of alkaline particles dispersed in hydrofluoroether and that of samples of alkaline particles dispersed in a perfluorinated compound.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The cellulosic materials can be treated with any suitable basic metal oxide, hydroxide or salt as described in U.S. Pat. No. 4,522,843 to Kundrot, which is hereby incorporated herein by reference. Suitable materials, according to the Kundrot patent, are the oxides, hydroxides, carbonates and bicarbonates of the Group I and II metals of the Periodic table and zinc. Preferred are the materials in which the cation is magnesium, zinc, sodium, potassium, or calcium. Particularly preferred are the relatively non-toxic oxides, carbonates and bicarbonates of magnesium and zinc and the hydroxides of sodium, potassium and calcium. Representative examples include magnesium oxide, magnesium carbonate, magnesium bicarbonate, zinc carbonate, zinc bicarbonate, zinc oxide, sodium hydroxide, potassium hydroxide and calcium hydroxide. Magnesium oxide is most preferred. The predominate particle size (95-99%) is preferably between 0.05 and 2.0 micron. Typical surface areas are between 50 and 200 m


2


/g BET, preferably about 170-180 m


2


/g.




The particles can be formed by burning the elemental metal and collecting the smoke, attrition of the preformed oxides or calcination of the elemental salts. For example, basic magnesium carbonate can be calcined at 450° C.-550° C. to produce a polydisperse high activity magnesium oxide with an average particle size of 0.4 microns and a predominant particle size between 0.1 and 1.0 micron. The smaller particles can be filtered out.




The particles can be applied in the paper making process or to the finished paper by immersing the paper in a suspension of the non-aqueous inert deacidifying fluid. Inert as used herein means that there is a very low interaction, and preferably no interaction, between the fluid medium and inks, dyes, bindings, cover materials and the like in the cellulose based materials. The inert fluid medium of the present invention is a hydrofluoroether carrier and a surfactant that will disperse the alkaline particles in the carrier.




Optionally, the carrier may be comprised of a combination of hydrofluoroether and perfluorinated compounds. Hydrofluoroether is miscible in all proportions with perfluorinated compounds so the carriers blend readily. The volatility of the carrier medium can be adjusted by adding varying amounts of perfluorinated compounds to achieve a desired volatility. Perfluorohexane is more volatile than perfluoroheptane, so would be preferred in combination with hydrofluoroether where a greater volatility is desired.




It is believed that samples representative of the entire range of papers used in the United States were included in testing of the hydrofluoroether carrier; papers such as those found in hard cover and soft cover books, encyclopedias, periodicals, newspapers, magazines, comic books and other documents. In addition, tests were run on a variety of bindings including backrams, leathers, synthetic leathers and polymers.




While any suitable known surfactant may be used, it is important that the surfactant not cause damage or leave any telltale odor. It must also be soluble in hydrofluoroether. A preferred surfactant is perfluoropolyoxyether alkanoic acid. In prior carrier media, the surfactant is important for the proper dispersion of the alkaline particles throughout the carrier. It was soon discovered, however, that when hydrofluoroether is used as the dispersant for the alkaline particle, a better dispersion is achieved with much less surfactant than is used in the prior systems. Tests were done to compare the settling times for dispersions wherein perfluorinated carriers or hydrofluoroether carriers were used. The values set forth in the Table were obtained by measurements using a light transmission method. The values are reported in Nephelometric Turbidity Units (NTU). As the NTU value drops, more light is transmitted through the sample, meaning that more of the dispersed phase, in this case alkaline particles, have settled out of the dispersion. Settling rate is directly correlated to the average particle size in the dispersion. The perfluorinated carrier tested was perfluoroheptane, identified as PF5070 in the Table. The hydrofluoroether tested was nonafluoromethoxybutane, identified as HFE7100 in the Table. The surfactant used in the testing was perfluoropolyoxyether alkanoic acid (Fomblin® monoacid). The results are set forth in Table 1.












TABLE 1











DISPERSION STUDIES

















NTU




Elapsed Minutes





DROP




CUMUL




% LOSS




Regression Output:














HFE 7100 MgO .4 g/l Surfactant .1 g/l



















1196




0




0




0




0




0




Constant





3.082244






1122




15





74




74




6.187291




Std Err of Y Est





2.1224






1046




30





76




150




12.54181




R Squared





0.962225






1071




45





−25




125




10.45151




No. of Observations





11






1001




60





70




195




16.30435




Degrees of Freedom





9






968




75





33




228




19.06355




X Coefficient(s)




0.204267






938




90





30




258




21.57191




Std Err of Coef.




0.013491






890




105





48




306




25.58528






837




120





53




359




30.01672






841




135





−4




355




29.68227






825




150





16




371




31.02007











PFE 5070 MgO .4 g/l Surfactant .1 g/l



















923




0





0




0




0




Constant





7.199842






816




15





107




107




11.59263




Std Err of Y Est





5.258791






749




30





67




174




18.85157




R Squared





0.942268






678




45





71




245




26.54388




No. of Observations





11






576




60





102




347




37.5948




Degrees of Freedom





9






566




75





10




357




38.67822




X Coefficient(s)




0.405135






447




90





119




476




51.57096




Std Err of Coef.




0.033427






421




105





26




502




54.38787






409




120





12




514




55.68797






388




135





21




535




57.96316






364




150





24




559




60.56338











HFE 7100 MgO .4 g/l Surfactant .075 g/l



















1037




0





0




0




0




Constant





2.945552






981




15





56




56




5.400193




Std Err of Y Est





2.01327






964




30





17




73




7.039537




R Squared





0.973994






905




45





59




132




12.72903




No. of Observations





11






863




60





42




174




16.77917




Degrees of Freedom





9






818




80





45




219




21.11861




X Coefficient(s)




0.194234






803




95





15




234




22.56509




Std Err of Coef.




0.01058






769




110





34




268




25.84378






738




135





31




299




28.83317






687




160





51




350




33.75121






663




185





24




374




36.06557











HFE 7100 MgO .4 g/l Surfactant .025 g/l



















911




0





0




0




0




Constant





3.205269






887




15





24




24




2.634468




Std Err of Y Est





2.583309






835




30





52




76




8.342481




R Squared





0.963476






768




45





67




143




15.69704




No. of Observations





14






735




60





33




176




19.31943




Degrees of Freedom





12






720




75





15




191




20.96597




X Coefficient(s)




0.20315






717




90





3




194




21.29528




Std Err of Coef.




0.011418






697




105





20




214




23.49067






653




120





44




258




28.32053






608




135





45




303




33.26015






601




150





7




310




34.02854






570




165





31




341




37.43139






571




180





−1




340




37.32162






546




195





25




365




40.06586














The data from Table 1 is presented in FIG.


1


. From the values shown, it can be seen that the settling rate for hydrofluoroether 7100 (HFE7100) is about half that of the perfluorinated compound tested (PF5070). From Stokes law for the free-settling velocity of spherical particles at low Reynolds Number, this corresponds to a decrease in effective particle size of approximately 50%. In gravitational sedimentation methods, particle size is determined from settling velocity. The equation relating particle size to settling velocity is known as Stokes Law:







d
st

=



18





η





u



(


p
s

-

p
f


)


g













where d


st


is the Stokes diameter, η is viscosity, u is the particle settling velocity under gravity, p


s


is the particle density, p


f


is the fluid density and g is the acceleration due to gravity. Therefore, Stokes diameter is directly proportional to the square root of the settling velocity and inversely proportional to the difference in particle and fluid density. See, Perry's Chemical Engineering Handbook, 20-7 (7


th


ed).




It can also be seen from the results in Table 1, that a decrease in the amount of surfactant by a factor of four has no effect on the settling rate of MgO in HFE7100.




As provided in the Kundrot patent, a suitable carrier for a liquid suspension of particles is preferably inert and possesses a high enough vapor pressure to allow its removal from the paper following treatment. The boiling point for the hydrofluoroethers are within the range of 40° C.-100° C. The boiling point for the preferred carrier is 60° C.




An odor test was conducted by fanning books, magazines and other cellulose based material being evaluated after treatment using hydrofluoroether and Fombline® monoacid as the surfactant and recording the first impression on a scale of 0 to 5, from no odor at all to an overpowering odor. No odor was detected in dry books. Fomblin® monoacid is completely soluble in HFE 7100.




In use, a bath of an inert carrier and its suitable associated surfactant is prepared by adding to the carrier an amount of the appropriate surfactant, preferably 1×10


−3


wt %. The alkaline particles are then added and dispersed throughout the carrier-surfactant medium.




The amount of surfactant and alkaline material will depend in part on the length of treatment and the amount of deposition desired. The carrier is present in excess amounts, sufficient to immerse the quantity of materials being treated. Generally, however, the concentration of alkaline material will be between about 0.01 and about 0.6 weight percent. A most preferred range for the basic material particles is between about 0.01% and about 0.2%, the preferred range for the surfactant is between about 6.25×10


−4


and 3.74×10


−2


. The preferred alkaline particles, MgO, are generally present in a dispersion maintained at approximately 0.3-6.0 g/L MgO based on the volume of the carrier.




The suspension of alkaline particles in the hydrofluoroether carrier and surfactant is preferably sprayed onto the pages of a book or other document. Alternatively, the cellulose based materials may be immersed into a bath, and preferably moved as described in U.S. Pat. No. 5,422,147 and in U.S. patent application Ser. No. 08/586,252 filed Jan. 16, 1996, now U.S. Pat. No. 5,770,148 both of which are hereby incorporated herein by reference. The movement is preferably continued for 10-30 minutes at room temperature.




The suspension permeates the fibers of the paper leaving alkaline particles behind when the carrier and surfactant medium are evaporated. The pH of the paper is thereby raised and an alkaline reserve of at least 300 milliequivalents reserve per kilogram of paper typically remains in the fiber of the paper. Paper treated with the improved process of the present invention typically show a pH value ranging from 7.5 to 9.5.




The following example demonstrates that the pH of test strips of paper was raised using the improved process of the present invention.




EXAMPLES




Example 1




Twenty-five percent (25%) rag bond paper having an initial pH of 5.5 and an initial alkaline reserve of 0% was dipped in a dispersion of 0.3 g/l MgO, 0.075 g/l Fomblin® in HFE 7100 for 15 minutes at room temperature. Following drying, the pH of the paper was 9.9 and the alkaline reserve was 1.75% (reported as weight percent calcium carbonate equivalent).




Example 2




Experiment 1 was repeated using a dispersion of 0.6 g/l MgO and 0.15 g/l Fomblin® in HFE 7100. The pH of the paper rose to 9.8 and the alkaline reserve rose to 2.35% (wt % calcium carbonate equivalent).




Example 3




Experiment 1 was repeated using a dispersion of 0.3 g/l MgO, 0.3 g/l ZnO, 0.15 g/l Fomblin® in HFE7100. The treated paper had a pH of 9.4 and an alkaline reserve of 1.65% (wt % calcium carbonate equivalent).




Example 4




Experiment 1 was repeated, dipping the bond paper into a dispersion of 4.0 g/l MgO and 1.2 g/l Fomblin® in HFE 7100. The treated paper had a pH of 9.6 and an alkaline reserve of 1.98% (wt % calcium carbonate equivalent).




Example 5




A dispersion of 4.0 g/l MgO, 1.2 g/l Fomblin® in HFE 7100 was sprayed evenly onto the entire surface of both sides of a standard 8½×11 inch sheet of paper having a pH of 5.5 and an alkaline reserve of zero, at a rate of 90 ml/min. for 2.5 seconds per side. Approximately 7.5 ml dispersion was applied. The treated paper had a ph of 9.5 and an alkaline reserve of 1.6% (wt % calcium carbonate equivalent).



Claims
  • 1. A deacidification dispersion medium, comprising:alkaline particles being a basic metal compound selected from the group consisting of oxides, hydroxides, and salts; and an inert medium that includes a carrier and an associated surfactant, the carrier including a sufficient amount of hydrofluoroether to increase the dispersion of the alkaline particles relative to a perfluorinated carrier, the surfactant being soluble in the hydrofluoroether to form the deacidification dispersion medium.
  • 2. The deacidification medium of claim 1, wherein the metal compound includes a cation selected from the group consisting of magnesium, zinc, sodium, potassium, and calcium.
  • 3. The deacidification medium of claim 1, wherein the surfactant is perfluoropolyoxyether alkanoic acid.
  • 4. The deacidification medium of claim 1, wherein the hydrofluoroether is nonafluoromethoxybutane.
  • 5. The deacidification medium of claim 1, wherein the surfactant is present in amounts between 6.25×10−4 and 3.84×10−2 weight percent.
  • 6. The deacidification medium of claim 1, wherein the alkaline particles are present in amounts between about 0.01 and 0.6 weight percent.
  • 7. The deacidification medium of claim 1, wherein the carrier includes an amount of a perfluorinated compound.
  • 8. A deacidification medium, comprising:alkaline particles being a basic metal compound selected from the group consisting of oxides, hydroxides, and salts; and an inert dispersion medium that includes a carrier and an associated surfactant, the carrier including one of a hydrofluoroether or the combination of a perfluorinated compound and hydrofluoroether, the hydrofluoroether being present in a sufficient amount to increase the dispersion of the alkaline particles relative to a perfluorinated carrier, the surfactant being soluble in the hydrofluoroether to form the deacidification dispersion medium.
  • 9. The deacidification medium of claim 8, wherein the metal compound includes a cation selected from the group consisting of magnesium, zinc, sodium, potassium, and calcium.
  • 10. The deacidification medium of claim 8, wherein the surfactant is perfluoropolyoxyether alkanoic acid.
  • 11. The deacidification medium of claim 8, wherein the hydrofluoroether is nonafluoromethoxybutane.
  • 12. The deacidification medium of claim 8, wherein the surfactant is present in amounts between 6.25×10−4 and 3.84×10−2 weight percent.
  • 13. The deacidification medium of claim 8, wherein the alkaline particles are present in amounts between about 0.01 and 0.6 weight percent.
  • 14. A method of forming a deacidification dispersion medium, comprising:dispersing alkaline particles in an inert medium that includes a carrier and an associated surfactant to form the deacidification dispersion medium, the alkaline particles being a basic metal compound selected from the group consisting of oxides, hydroxides and salts, the carrier including one of a hydrofluoroether or the combination of a perfluorinated compound and hydrofluoroether, the hydrofluoroether being present in a sufficient amount to increase the dispersion of the alkaline particles relative to a perfluorinated carrier, the surfactant being soluble in the hydrofluoroether.
  • 15. The method of claim 14, wherein the surfactant is perfluoropolyoxyether alkanoic acid.
  • 16. The method of claim 14, wherein the hydrofluoroether is nonafluoromethoxybutane.
  • 17. The method of claim 14, wherein the surfactant is present in amounts between 6.25×10−4 and 3.84×10−2 weight percent.
  • 18. The method of claim 14, wherein the alkaline particles are present in amounts between about 0.01 and 0.6 weight percent.
CROSS REFERENCE TO RELATED APPLICATION

This application is a division of U.S. application Ser. No. 09/054,690, filed Apr. 3, 1998, now U.S. Pat. No. 6,080,448.

US Referenced Citations (30)
Number Name Date Kind
2864723 Fluck et al. Dec 1958 A
3472611 Langwell Oct 1969 A
3536578 Brundige et al. Oct 1970 A
3665041 Sianesi et al. May 1972 A
3676055 Smith Jul 1972 A
3676182 Smith Jul 1972 A
3703353 Kusterer, Jr. et al. Nov 1972 A
3771958 Kusteret, Jr. et al. Nov 1973 A
3810874 Mitsch et al. May 1974 A
3898356 Williams et al. Aug 1975 A
3939091 Kelly, Jr. Feb 1976 A
3969549 Williams et al. Jul 1976 A
4051276 Williams et al. Sep 1977 A
4318963 Smith Mar 1982 A
4522843 Kundrot Jun 1985 A
4523039 Lagow et al. Jun 1985 A
5137760 Lundquist Aug 1992 A
5208072 Kamienski et al. May 1993 A
5264243 Wedinger et al. Nov 1993 A
5409736 Leiner et al. Apr 1995 A
5422147 Leiner et al. Jun 1995 A
5565497 Godbey et al. Oct 1996 A
5605882 Klug et al. Feb 1997 A
5733416 Kaiser Mar 1998 A
5750797 Vitcak et al. May 1998 A
5770148 Leiner et al. Jun 1998 A
5851436 Merchant et al. Dec 1998 A
6023002 Behr et al. Feb 2000 A
6106946 Tanaka et al. Aug 2000 A
6162766 Muir et al. Dec 2000 A
Foreign Referenced Citations (4)
Number Date Country
911110 Oct 1972 CA
0 543 372 May 1993 EP
WO 8700217 Jan 1987 WO
WO 9726409 Jul 1997 WO
Non-Patent Literature Citations (1)
Entry
Database WPI, Section CH, Week 9817, Derwent Publications Ltd., London, GB; Class E33, AN 98-189876, XP002106837 & JP 10 046497 A (Kato H), Feb. 17, 1998.