The present invention relates to a method for decelerating a target retriever. In particular, the present invention relates to a dead stop assembly which provides improved stopping of a target retriever.
In order to properly train law enforcement officers and the military, it is important to train under live fire scenarios which help condition the trainee to respond appropriately to a given set of circumstances. In many cases this involves the trainee shooting at targets on a shooting range. For example, a target may be advanced a certain distance, e.g. 25 feet, and then turned to expose the target. In one scenario the target may include a photograph of an armed person pointing a gun at the officer, soldier, etc. In another scenario the target may be a photograph of a person holding out a cell phone or other device which does not pose a threat to the trainee. In still other scenarios a photograph may be placed on the target in which an armed person is holding a weapon and standing behind a hostage. By repeating such scenarios the trainee is taught to make split-second decisions regarding the need to fire or not. As the officer, soldier, etc. becomes more comfortable with his or her ability to rapidly assess and respond to different scenarios, the risk of fatality to the trainee and innocent bystanders is reduced.
In order to facilitate such training, many shooting ranges will have targets mounted on target retrievers. The target retrievers typically move along a rail. In some situations the retriever simply advances to a desired position, stops, and turns the target so as to expose the trainee to the desired scenario. In other situations, the target retriever may be moved at a high rate of speed. For example, a target may be turned at 25 feet from the trainee and then rapidly advanced toward the trainee to simulate an officer being attacked by a criminal. The officer may need to shoot three rounds within a desired area prior to the target being stopped.
Likewise, the target retriever may be alternately advanced towards and moved away from the trainee to simulate other scenarios. When done at a high rate of speed, the target retriever may have substantial inertia and may be difficult to stop. If the braking mechanism on the retriever is inadequate or fails, there is a need for a dead stop to prevent the target retriever from running off the rail and potentially injuring people. Because of the mass of a target retriever, they have been known to shear the bolts of a dead stop and create a potentially dangerous situation for the trainee or others in the area. Thus, it is desirable to provide a dead stop assembly which is robust and brings the target retriever to a more gradual stop.
The following summary of the present invention is not intended to describe each illustrated embodiment or every possible implementation of the invention, but rather to give illustrative examples of application of principles of the invention.
In some configurations, the invention may comprise a dead stop assembly for decelerating a target retriever. The dead stop assembly may include a housing and a deceleration member for decelerating a target retriever.
In accordance with one aspect of the invention, the housing may include one or more projections for insertion into one or more slots disposed along a rail used to carry the target retriever.
In accordance with another aspect of the invention, the deceleration member may be attached at one end to the rail and attached in the opposing end to the housing.
In accordance with another aspect of the invention, the deceleration member may be a piston and cylinder which has a first extended position and a second, compressed position.
In accordance with another aspect of the invention, the deceleration member may be a spring which has a first, extended position and a second, compressed position.
In accordance with another aspect of the invention, the deceleration member may be rubber or foam which has a first, extended ambient condition and a second, compressed position.
In accordance with another aspect of the invention, the deceleration member may be formed from rubber or other elastic material which has a first, ambient position and a second, extended position for decelerating the retriever.
In accordance with another aspect of the invention, a position indicator may be disposed on the housing so as to provide a viewer with the ability to determine when the housing has been displaced due to impact with a target retriever.
It will be appreciated that aforementioned aspects of the invention are unique and that the invention can be implemented without all aspects set forth above. Therefore, no claim contained herein should be read as including any particular aspect without language setting forth such an element.
Various embodiments of the present disclosure are shown and described in reference to the numbered drawings wherein:
It will be appreciated that the drawings are illustrative and not limiting of the scope of the invention which is defined by the appended claims. The embodiments shown accomplish various aspects and objects of the invention. It will be appreciated that it is not possible to clearly show each element and aspect of the present disclosure in a single figure, and as such, multiple figures are presented to separately illustrate the various details of different aspects of the invention in greater clarity. Similarly, not all configurations or embodiments described herein or covered by the appended claims will include all of the aspects of the present disclosure as discussed above.
Various aspects of the invention and accompanying drawings will now be discussed in reference to the numerals provided therein so as to enable one skilled in the art to practice the present invention. The skilled artisan will understand, however, that the methods described below can be practiced without employing these specific details, or that they can be used for purposes other than those described herein. Indeed, they can be modified and can be used in conjunction with products and techniques known to those of skill in the art in light of the present disclosure. The drawings and the descriptions thereof are intended to be exemplary of various aspects of the invention and are not intended to narrow the scope of the appended claims. Furthermore, it will be appreciated that the drawings may show aspects of the invention in isolation and the elements in one figure may be used in conjunction with elements shown in other figures.
Reference in the specification to “one embodiment,” “one configuration,” “an embodiment,” or “a configuration” means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment, etc. The appearances of the phrase “in one embodiment” in various places may not necessarily limit the inclusion of a particular element of the invention to a single embodiment, rather the element may be included in other or all embodiments discussed herein.
Furthermore, the described features, structures, or characteristics of embodiments of the present disclosure may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details may be provided, such as examples of products or manufacturing techniques that may be used, to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that embodiments discussed in the disclosure may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations may not be shown or described in detail to avoid obscuring aspects of the invention.
Before the present invention is disclosed and described in detail, it should be understood that the present invention is not limited to any particular structures, process steps, or materials discussed or disclosed herein, but is extended to include equivalents thereof as would be recognized by those of ordinarily skill in the relevant art. More specifically, the invention is defined by the terms set forth in the claims. It should also be understood that terminology contained herein is used for the purpose of describing particular aspects of the invention only and is not intended to limit the invention to the aspects or embodiments shown unless expressly indicated as such. Likewise, the discussion of any particular aspect of the invention is not to be understood as a requirement that such aspect is required to be present apart from an express inclusion of that aspect in the claims.
It should also be noted that, as used in this specification and the appended claims, singular forms such as “a,” “an,” and “the” may include the plural unless the context clearly dictates otherwise. Thus, for example, reference to “a bracket” may include an embodiment having one or more of such brackets, and reference to “the target plate” may include reference to one or more of such target plates.
As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result to function as indicated. For example, an object that is “substantially” enclosed would mean that the object is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context, such that enclosing the nearly all of the length of a lumen would be substantially enclosed, even if the distal end of the structure enclosing the lumen had a slit or channel formed along a portion thereof. The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result. For example, structure which is “substantially free of” a bottom would either completely lack a bottom or so nearly completely lack a bottom that the effect would be effectively the same as if it lacked a bottom.
As used herein, the term “generally” refers to something that has characteristics of a quality without being exactly that quality. For example, a structure said to be generally vertical would be at least as vertical as horizontal, i.e. would extend 45 degrees or greater from horizontal. Likewise, something said to be generally circular may be rounded like an oval but need not have a consistent diameter in every direction.
As used herein, the term “about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be “a little above” or “a little below” the endpoint while still accomplishing the function associated with the range.
As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member.
Concentrations, amounts, proportions and other numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 to about 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3, and 4 and sub-ranges such as from 1-3, from 2-4, and from 3-5, etc., as well as 1, 2, 3, 4, and 5, individually. This same principle applies to ranges reciting only one numerical value as a minimum or a maximum. Furthermore, such an interpretation should apply regardless of the breadth of the range or the characteristics being described.
Turning now to
One concern with target retriever 4 is that the cable may get out of alignment or the braking mechanism may fail, thereby resulting in a retriever which will not stop at the appropriate location. To prevent risk of injury and potential damage to the target retriever 4, dead stops 9 are placed adjacent opposing ends of the rail 7 to provide emergency stopping for the target retriever. The dead stops 9, however, can potentially damage the retriever and may be sheared off if the retriever is traveling at a rate of speed which is too high.
Turning now to
The rail 18 may include one or more slots 26 to receive one or more projections 30 from the dead stop assembly 14. The projections 30 and channels 26 can be used to help the dead stop assembly move linearly when impacted by a target retriever (not shown). Moreover, the dead stop assembly 14 can be disposed in the channel 20 on either the upper side or lower side of the rail 18. (It will be appreciated that a dead stop assembly 14 disposed on the bottom of the rail 8 would typically include a structure for holding the housing of the dead stop assembly to the rail. This could be accomplished, for example, by a plurality of tabs which extend around the lower arm or cross-member 18c of the rail. However, in most situations the dead stop assembly 14 will be disposed on top of the rail 18 to protect it from being hit by bullets and the like.)
The dead stop assembly 14 may include a housing 34 which may be configured to move within the channel 20 on the rail 18. The housing 34 may include a bracket 38 onto which the projections 30 may be mounted by nuts and bolts 42. This allows the projections 32 be readily replaceable. Because the projections 32 extend below the upper cross-member of the rail 18, they are subject to being hit by bullets and, therefore, can be damaged. It will be appreciated, however, that the projections could be formed integrally with the housing 34 or the bracket 38.
As shown in
Also shown in
Turning now to
Also visible in
Turning now to
Turning now to
The opposing second end 76b may be attached to a tab 84 which is attached via a bracket 88 to the rail 18. Unlike the first end 76a, the second end 76b of the deceleration member 76 will generally not move linearly when the guard 46 is struck by a target retriever. Thus, the dampening member 76 will be moved into a second, compressed orientation such as that shown in
Because the dead stop assembly 14 decelerates the target retriever to a stop over a distance of, for example, 6 to 8 inches instead of immediately, less harm is potentially done to any sensors or other instruments carried by the target retriever. Additionally, the risk that the target retriever will simply break off the dead stop is substantially reduced as well. Therefore, the dead stop assembly 14 may provide for a longer functional life, as well as doing less damage to a target retriever that has not been properly braked.
Turning now to
The tab 84 may be formed integrally with or otherwise attached to the bracket 88. The bracket 88 may include a plurality of holes 94 which may be disposed in alignment with holes 18e in the rail 18 so that nuts and bolts 96 can be used to anchor the bracket 88 in place on the rail. Also visible in the rail 18 are the slots 26 in which the projections 30 slide as the housing 34 moves back and forth after being impacted by a target retriever.
Turning now to
As will be explained in additional detail later, the guard 46 may be attached to the housing 34 by one or more pin or bolt 90, or other fastener. The housing 34 may move along a slot or channel 26 formed in the rail 18. As shown in
Turning now to
The housing 34 may be attached to a damping or deceleration mechanism 76 to decelerate the housing and thus a target retriever which forcefully impacts the housing. The housing 34 may be attached by a post 81 or other attachment to a resilient band or other form of spring. The opposing end of the resilient band or spring 78 may be attached by a post 79 or other attachment to the rail 18. When a target retriever impacts the guard, the housing 34 moves toward the opposing end of the channel 26 in the rail 18. As it does so, the resilient band or spring 78 stretches, buts resists movement of the housing 34, thereby decelerating the housing and the target retriever. If the resilient band or spring 78 is not sufficient to stop the housing 34 before it impacts the opposing end of the channel, the bumper 36 will help to reduce the force of the impact as it engages the rail. Thus, the target retriever will be slowed, both reducing the risk of damage to the target retriever and substantially reducing the risk that a high velocity target retriever will simply shear off the dead stop. Both help to prevent damage, reduce repair costs and promote longevity of the system.
It will be appreciated that the disclosure herein includes various parts and assemblies which can be used together. Thus, the present disclosure teaches a dead stop assembly for decelerating a target retriever moving along a rail, the dead stop assembly may include a deceleration member having a first end and a second end, and wherein the deceleration member is movable between a first, extended orientation and a second, compressed orientation and where in the first end is movable with respect to the rail and the second end is attached to the rail. Further more the dead stop assembly may include a second end of the deceleration member attached to the rail by a bracket; a second end of the deceleration member is pivotably attached to a bracket; a bracket including a tab extending upwardly away from the rail; a first end of the deceleration member being attached to the housing, or combinations thereof.
The dead stop assembly may include a deceleration member disposed inside the housing, and a tab disposed inside the housing, the first end of the deceleration member being attached to the tab; a guard disposed at one end of the housing, the guard being generally pointed and made from a ballistic material; a tab attached to the guard; at least one projection extending from the housing; a rail having at least one slot and wherein the projection extends into the slot; at least one projection attached to the housing by a bracket; and/or a projection is attached to the bracket by a plurality of removable fasteners, and combinations thereof.
The rail may include a topside and a plurality of slots and holes disposed in the topside; and the plurality of slots may extend generally lengthwise along the rail.
A dead stop assembly may include a bracket configured for attachment to a rail, a deceleration member having a first end and a second end, the second end being configured for attachment to the bracket and a housing, the housing having an attachment member for attachment to the first end of the deceleration member and at least one projection extending from the housing. The dead stop assembly may also include: at least one projection is attached to the housing by a removable fastener; first end of the deceleration member which is pivotably attached to the housing and wherein the second end of the deceleration member is pivotably attached to the bracket; a first pin and a second pin for connecting the deceleration member to the bracket and to the housing, respectively; and/or at least one projection extending from the housing having a first projection and a second projection, the first projection and the second projection being removably attached to a bracket and the bracket being attached to the housing, or combinations thereof.
The present disclosure also teaches method for decelerating a target retriever moving along a rail, having a dead stop assembly including a deceleration member movable between a first, extended orientation, and a second, compressed orientation, wherein the deceleration member has a first end and a second end and wherein the second end is attached to the rail so as to stop the second end from moving literary linearly when the deceleration member is impacted by a target retriever. The method may include attaching a housing to the first end of the deceleration member and having at least one projection attached to the housing member slide within a slot on the rail when the housing is impacted by a target retriever.
The present disclosure also teaches A dead stop assembly for stopping a target retriever moving along a rail, the dead stop assembly comprising a housing movable between a first position and a second position, the housing member having guard at one end for engaging the target retriever, a deceleration member attached to the housing and to the rail, the deceleration member disposed to slow movement of the housing from the first position to the second position, and wherein at least one of the dead stop assembly and the rail have a channel formed therein to facilitate sliding of the dead stop assembly.
Thus, there is disclosed a dead stop assembly and method of use. It will be appreciated that numerous modifications may be made without departing from the scope and spirit of this disclosure. The appended claims are intended to cover such modifications.
Number | Date | Country | |
---|---|---|---|
62784678 | Dec 2018 | US |