This application is the US national phase of international application PCT/FI2005/050108 filed 29 Mar. 2005 which designated the U.S. and claims benefit of Finnish patent application Fl 20045141 filed 20 Apr. 2004, the entire contents of these applications are incorporated by reference.
The invention relates to a debarking mechanism for the excortication or pretreatment of trees for separately performed final barking and for the expulsion of at least some of the removed barks from a wood flow passing through the debarking mechanism, said debarking mechanism comprising a number of rotatable debarking shafts extending parallel to the advancing direction of the trees to be fed therethrough, which are provided with a number of teeth extending beyond the circumferential surface of the shaft and adapted to strip bark off the presently processed trees transversely to the lengthwise direction of the trees and at the same time to convey the trees transversely relative to said shafts, and said shafts, together with the teeth thereof being adapted to constitute at least a section of a support surface, upon which the presently processed trees travel through the debarking mechanism, and said shafts being adapted to each other in such a way that the processed trees perform a circular motion in the debarking mechanism, in which motion the trees are forced upon the support surface constituted by the debarking shafts, by the action of their rotatory motion, in their turn into the upper position, from which they roll down to the lower position above the other trees being processed in the debarking mechanism.
This type of prior known debarking mechanisms are provided with finger plates between the uppermost debarking shaft and the side wall of the debarking mechanism—in some mechanisms also between the debarking shafts—to prevent trees from getting wedged between the debarking shaft and the side wall of the debarking mechanism or between two debarking shafts and thus to prevent the wedged tree from getting broken.
The barks can usually get out from between the debarking shaft and the fingerplate or between two debarking shafts. The barks getting off the trees in long strips, instead, cause problems by stuffing the gaps between the uppermost debarking shaft and the related fingerplates, thus causing the barks to gather into big lumps at these uppermost finger plates.
In order to eliminate these disadvantages, the debarking mechanism of the invention has been arranged in such a way, that the uppermost debarking shaft has been provided with a guiding surface, said guiding surface together with the uppermost debarking shaft forming a slot converging in the rotational direction of the debarking shaft. The mentioned guiding surface, on one hand, helps the barks to get into the said slot and, on the other hand, prevents the trees from getting into the slot between the guiding surface and the uppermost debarking shaft.
The guiding surface is preferably provided with grooves in order to arrange said guiding surface and the teeth of the uppermost debarking shaft interlocked.
A freely rotating roller or a roller rotated by a suitable driving apparatus has proved to be the most efficient form of application of the guiding surface.
In yet another preferable application of the invention, the higher the debarking shaft lies, the bigger the selected circumferential speed of the debarking shaft is. This arrangement, on one hand, prevents the trees from getting wedged between the debarking shafts and, on the other hand, causes the barks to get out from the debarking mechanism easier.
At least one of the debarking shafts, most preferably the uppermost debarking shaft, has been moved sideways towards the inner part of the debarking mechanism in such a way that the said debarking shaft makes the trees conveyed by the lower debarking shaft to change their direction of motion so that when dividing the motion into a horizontal and a vertical component, the horizontal component of motion points towards the inner part of the debarking mechanism.
The new position of the uppermost debarking shaft causes that the trees, at the best, cannot at all go over the uppermost debarking shaft, nor can the trees, as a result of the above, hinder the barks from going into the slot between the uppermost debarking shaft and the said guiding surface.
The invention will now be described in more detail with reference to the accompanying drawings, in which:
The debarking mechanism 1 shown in the drawings is intended for the excortication or pretreatment of trees 2 for separately performed final barking and for the expulsion of at least some of the removed barks from a wood flow passing through the debarking mechanism. The debarking mechanism 1 is provided with a number of rotatable debarking shafts 3, 3′ extending parallel to the advancing direction A (
The debarking shafts 3, 3′ are provided with a number of teeth 4 extending beyond the circumferential surface of the debarking shaft and adapted to strip bark off the presently processed trees 2 transversely to the longitudinal direction of the trees and at the same time to convey the trees transversely relative to said debarking shafts.
The debarking shafts 3, 3′, together with the teeth 4 thereof, constitute a part of a support surface for carrying the trees 2 through the debarking mechanism 1. The
The debarking shafts 3, 3′ are adapted with each other so that the processed trees 2 perform a circulation motion C in the debarking mechanism, in which motion the trees 2 are positively fed on the support surface formed by the debarking shafts 3, 3′ effected by the rotatory motion 5 in their turn into the upper position, from which they roll down into the lower position above the other trees 2 in the debarking mechanism 1.
In the state-of-the-art
However, especially the barks getting off in long strips cause sometimes problems by stuffing the slots between the uppermost debarking shaft 3′ and the connected fingerplates 11, whereby the barks start gathering into big lumps at the fingerplates 11.
For the elimination of the said problem, a diagrammatic solution is shown in
In the example of
In the solution according to
In the application example of
The guiding surface 8—regardless of whether it is a rotating or fixed guiding surface or whether the guiding surface is plate-formed, cylindrical or of another form—is preferably provided with grooves 10 in order to get the said guiding surface and the teeth 4 of the uppermost debarking shaft 3′ interlocked and thus to form the slot 9 to the desired size (
The circumferential speed of the debarking shaft 3, 3′ has been preferably chosen the greater the higher the debarking shaft 3, 3′ lies. This arrangement, on one hand, prevents the trees 2 from getting wedged between the debarking shafts 3, 3′ and on the other hand makes the removal of barks from the debarking mechanism 1 easier.
Number | Date | Country | Kind |
---|---|---|---|
20045141 | Apr 2004 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2005/050108 | 3/29/2005 | WO | 00 | 10/12/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/102634 | 11/3/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5394912 | Hume | Mar 1995 | A |
5630453 | Ishizawa | May 1997 | A |
6588467 | Havumaki et al. | Jul 2003 | B2 |
6615884 | Havumaki et al. | Sep 2003 | B2 |
6619345 | Havumaki et al. | Sep 2003 | B2 |
20030159760 | Peetso et al. | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
28777 | Apr 1957 | FI |
112181 | Oct 2002 | FI |
8007901 | May 1982 | SE |
WO2005102635 | Mar 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070079902 A1 | Apr 2007 | US |