The field of the invention is an uphole milling system and more particularly where the location and characteristics of a debris bridge above the rat hole is monitored in real time.
Milling one or more strings in an uphole direction in a single trip are discussed in U.S. Pat. No. 8,555,955. Uphole milling is also described in U.S. Pat. No. 6,679,328. Grinding cuttings moving uphole from a mill for a second time to reduce their size so that they can be circulated out of a borehole are described in US 20160040496 and 20160040495. Drilling systems that monitor parameters such as fluid circulation rates as well as borehole parameters such as rat hole depth as well as a cuttings removal rate to allow real time changing of drilling parameters are described in US 20140209383.
When milling in an uphole direction the cuttings are allowed to go to hole bottom frequently referred to as the rat hole. If the cuttings fall to hole bottom as planned there is no problem later with plugging and abandoning the borehole with cement placed within the section of hole that was removed by milling. On the other hand, if the cuttings bridge the borehole close to the mill location, the milling itself can be affected or the position of the bridge can impact the ability to place cement so that the well will be not properly sealed when the cement is pumped into position where the casing was milled out.
The present invention seeks to address this issue in several ways. The uphole mill assembly has a signaling capability to determine whether or not a bridge is forming and if the bridge is forming the system can detect its location and its density in real time. The uphole milling assembly contains a downhole oriented mill or similar device that can be brought against the bridge to grind up the bridge so that uphole milling can resume. These and other aspects of the present invention will be more readily apparent from a review of the description of the preferred embodiment and the associated drawings while recognizing that the full scope of the invention is to be determined from the appended claims.
A bottom hole assembly (BHA) contains a motor and a section mill for milling in an uphole direction after blade extension with circulating fluid through the BHA. Below the section mill is sensing equipment to detect location of a bridge formed by the cuttings, or swarf, from the section mill. A secondary mill oriented for cutting in a downhole direction is located at the bottom of the BHA for use in removal of the bridge. The sensing equipment delivers in real time data as to the density of the bridge so that decisions to interrupt the section milling and to lower the secondary mill to the bridge can be made in real time. After the required length of section is milled, and the sensor has confirmed that the milled interval is sufficiently clean to set a barrier, cement is pumped to form a plug within that section and abandon the hole.
Referring to
When the milling is finished, a cement plug followed by a cement wiper are pumped down the string 10, or the BHA 12 is removed from the borehole and cement is pumped through a secondary BHA for cementing, into void 52 so that the well is plugged and can be abandoned in conformance with local regulations.
While the preferred signaling system for location and density of the debris bridge 46 is acoustic, other signal types are envisioned and those that can gather information on the bridge 46 while blades 24 are cutting are envisioned as well. Wired systems with coiled tubing are also envisioned for power and data transmission. Use of coiled tubing may entail an anchor to prevent the stator of pump system 20 from rotating. Battery powered mud pulse systems or other downhole wireless communication techniques, e.g. acoustics and electromagnetic, are also contemplated. Data can be stored locally while being transmitted in real time. Another real time data system that can be used is described in U.S. Pat. No. 8,875,810 whose contents are incorporated by reference herein as if fully set forth.
The disclosed system envisions and uphole and downhole mill on the same BHA to provide the ability to mill up and to break up debris bridges by setting down weight and milling down. Both mills can have hydraulically or electrically actuated blades using the pumped fluid to drive the downhole motor. The cuttings that are formed can be re-milled by an attrition device before reaching the rat hole to reduce the chance of a bridge forming. Downward oriented flow stream 40 can also agitate the cuttings and reduce the probability of bridge formation. Alternatively the cuttings can be attracted to the rat hole with magnets delivered on the BHA and dropped when the lower end of the BHA is adjacent the rat hole.
The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below:
Number | Name | Date | Kind |
---|---|---|---|
5265675 | Hearn | Nov 1993 | A |
6679328 | Davis et al. | Jan 2004 | B2 |
7562700 | Lewis et al. | Jul 2009 | B2 |
7708086 | Witte | May 2010 | B2 |
8555955 | Davis | Oct 2013 | B2 |
8875810 | Meister et al. | Nov 2014 | B2 |
9422781 | Bennett | Aug 2016 | B1 |
20030057366 | Gzara | Mar 2003 | A1 |
20120040486 | Rack | Feb 2012 | A1 |
20140209383 | Vuyk, Jr. | Jul 2014 | A1 |
20150114665 | Hora | Apr 2015 | A1 |
20160040486 | Eppink et al. | Feb 2016 | A1 |
20160040495 | Mahajan et al. | Feb 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20180128071 A1 | May 2018 | US |