1. Field of Invention
This invention relates generally to oil pumps and, more specifically, to a debris evacuation apparatus and method that is intended to extend plunger and barrel life.
2. Background of the Invention
In general terms, an oil well pumping system begins with an above-ground pumping unit, which creates the up and down pumping action that moves the oil (or other substance being pumped) out of the ground and into a flow line, from which the oil is taken to a storage tank or other such structure.
Below ground, a shaft is lined with piping known as “tubing.” Into the tubing is inserted a sucker rod, which is ultimately, indirectly, coupled at its north end to the pumping unit. Below the sucker rod are located a number of pumping system components, including the cage and, below the cage, the plunger. The plunger operates within a barrel, which barrel is positioned within the tubing.
The amount of space between the exterior surface of the plunger and the interior surface of the barrel can be as great as 0.01″. This space allows a constant passage of fluid, including debris, between the plunger exterior and the barrel interior. The debris that is contained within the fluid and that passes through the space between plunger and barrel scores the plunger and the barrel, reducing the operating life of both.
A need therefore existed for an apparatus and method that will evacuate debris from the space that is between the plunger and the barrel, so as to extend the operating life of each of these two pumping system components. The present invention addresses this need and provides other, related, advantages.
It is an object of the present invention to provide an apparatus and method that will evacuate debris from the space that is between the plunger and the barrel, so as to extend the operating life of each of these two pumping system components.
Referring first to
Beginning from the north end (the top in the drawing figures), the main exterior topography of this embodiment of the apparatus 10, which has a substantially cylindrical external configuration, includes the following: (a) an external threaded section 12; (b) a collar area 14; (c) an upper seal 16; (d) an upper groove 18; (e) ports 20; (f) a lower seal 22; (g) a lower groove 24; and (h) a main shaft 26. The length of the apparatus 10 can range from approximately six inches to six feet or more.
Referring to
The seals 16 and 22 are preferably formed of a pressure actuated or elastic wiper seal type of material, although other suitable sealing materials could be utilized. The seals 16 and 22 should be positioned, and dimensioned, so as to contact the interior of the barrel, forming a seal. (It should be noted that it would be possible to entirely eliminate seals 16 and 22, while still preserving much of the functionality of the apparatus 10 as described herein.)
The tolerance between the exterior of the main shaft 26 and the interior of the barrel should be approximately 0.002″—i.e., substantially less than the approximately 0.01″ tolerance commonly seen between the plunger and barrel. This configuration permits the main shaft 26 to act as a guide for the seals 16 and 22, thus taking from the seals 16 and 22 some of the side load.
The preferred placement of the apparatus 10 within a pumping system will now be described. It is preferred to couple the north end of the apparatus 10 to the south end of the open cage, by inserting external threaded section 12 into a mating threaded region within the south end of the open cage. It is preferred to couple the south end of the apparatus 10 to the north end of the plunger, by inserting the threaded north end of the plunger into the internal threaded section 30. As can be seen in
It should be noted that, instead of positioning the interior section 28 interior to the main shaft 26, it would be possible to position it below the main shaft 26. In such a configuration, it would be desirable to provide a threaded exterior space at the north end of the interior section 28, to be inserted into the south end of the apparatus 10, and a threaded interior space at the south end of the interior section 28 of sufficient dimension to receive the north end of the plunger. Alternatively, in a configuration of the apparatus 10 in which the interior section 28 is positioned below the main shaft 26, it would be possible to provide male threading on both ends of the interior section 28, with coupling female threading provided on the south end of the main shaft 26 and north end of the plunger.
Further description and explanation of the features of the apparatus 10 and its use will be provided in connection with a description of the operation of the apparatus 10 during a typical pumping operation.
First, it should be noted that upward movement of the pumped fluid occurs during the downstroke. Referring now to
The angling of the veins 34 imparts rotational movement to the fluid as it passes therethrough. The fluid, which is now in rotation, enters the expansion chamber 36. The increase in diameter causes an increase in the velocity of the rotating fluid. The fluid continues to rotate as it travels upward, through the passage 38. The rotation of the fluid creates a vortex, with an area of lower pressure in the interior of the vortex.
Northward travel of debris located exterior to the apparatus 10 and below seal 22 will be blocked by seal 22. The debris will enter the lower groove 24, and will be drawn through the port 20. The drawn-in debris then joins the fluid traveling upward through the apparatus 10, and is pumped out. In the event that seal 22 becomes worn or otherwise in the event that debris enters the area above seal 22, debris will be blocked by seal 16 and enter upper groove 18, and be drawn in through ports 20 therein, as herein-described.
It can be seen that it would be possible to eliminate the upper groove 18 and seal 16 (including the ports 20 associated with the upper groove 18), while still providing a substantial improvement in debris removal. Alternatively, the lower grove 24 and seal 22 could be eliminated, with only the upper groove 18 and seal 16 provided. It may also be desired to provide more than two grooves and seals.
Attention is now directed to collar area 14. The purpose of the inwardly angled collar area 14 is to trap larger debris located north of the apparatus 10. On the upstroke, such debris will become trapped within the collar area 14, while smaller debris is allowed to travel southward and become more evenly distributed over a larger areas of the exterior surface of the apparatus 10 and plunger—thereby limiting the risk of sticking caused when large amounts of debris become trapped between the plunger and barrel. On the downstroke, the debris will mix with pumped fluid coming out of the cage, and will be drawn up the barrel. While it is preferred to have a collar area 14 to further optimize debris removal, it would be possible to provide substantial improvement in debris removal without providing the collar area 14. In one embodiment, the collared area has a diameter, when measured from the base of the inward angled portion thereof, that is approximately eight one-thousands of an inch less than the diameter of the main shaft 26.
It may also be desired to provide a collar area on the south end of the apparatus 10 as well as on its north end, to further improve debris removal. In this embodiment, the south collar area would be formed in the south end of the main shaft 26.
While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and details may be made therein without departing from the spirit and scope of the invention.
This is a continuation-in-part of Ser. No. 10/632,201, filed Jul. 30, 2003 in the name of the same inventor hereof, and to which priority is claimed.
Number | Date | Country | |
---|---|---|---|
Parent | 10632201 | Jul 2003 | US |
Child | 10862757 | Jun 2004 | US |