During completion operations, a setting tool is used for deploying and setting a liner hanger system downhole. The drilling fluid in some downhole environments may be heavily laden drilling fluid of about 20 lbf/gal (ppg). A major weighting component in the drilling fluid is barite, which has the tendency to sag or deposit in low flow velocity and low-pressure gradient areas within the fluid column. When setting a liner hanger in this fluid environment, the deposited barite tends to accumulate in areas around a hydraulic setting cylinder used to set the slips of the liner hanger. This accumulation of barite tends to increase the actuation pressure required from the setting tool to move and set the slips of the liner hanger.
The barite can also adversely affect the setting tool. In particular, the debris-laden drilling fluid has the tendency to deposit debris into the workings of the tool's setting mechanisms, which interferes with the actuation of the setting of the liner hanger. Additionally, drilling fluid is traditionally used as the working fluid to pressurize a hydraulic setting cylinder of the liner hanger to set the slips. When such debris-laden fluid is used, there is an increased potential to foul the setting tool and the internal pressure volume of the liner hanger.
Although existing techniques may be useful and effective, the subject matter of the present disclosure is directed to overcoming, or at least reducing the effects of, one or more of the problems set forth above.
According to the present disclosure, a setting tool is used on tubing and is activated by applied tubing pressure behind a deployed plug to set a liner hanger in a borehole. The liner hanger has a hanger bore with at least one inlet port. The at least on inlet port is disposed in fluid communication with a hydraulic setting mechanism for the liner hanger. The setting tool comprises: a tool body, a bonnet, an actuator piston, a check valve, and an actuator seat.
The tool body is disposed on the tubing and has a tool bore for borehole fluid. A stinger portion of the tool body is configured to seal inside the hanger bore and has at least one outlet port, which is disposed in fluid communication with the at least one inlet port. The bonnet is disposed on the tool body and contains a first volume configured to hold an activation fluid separate from the borehole fluid.
The actuator piston is disposed in the tool bore and has a second volume defined therewith. The second volume is configured to hold the actuation fluid, and the at least one outlet port communicates the second volume with the at least one inlet port of the hanger. The check valve is disposed on the tool body and is configured to communicate the actuation fluid from the first volume to the second volume.
The actuator seat is associated with the actuator piston and is configured to engage the deployed plug. The actuator piston is configured to move in response to the applied tubing pressure behind the deployed plug engaged in the actuator seat. In response to the movement, the actuator piston is configured to intensify the applied tubing pressure on the actuation fluid in the second volume to the hydraulic setting mechanism for the liner hanger.
According to the present disclosure, a method of setting a liner hanger in a borehole is disclosed. The liner hanger has a hydraulic setting mechanism. The method comprises: running the liner hanger into position in the borehole by using a setting tool disposed on tubing, the setting tool having a first volume with an actuation fluid separate from the borehole fluid, the setting tool having an actuator piston with a second volume for the actuation fluid; balancing pressure in the second volume to hydrostatic pressure in the borehole by drawing the actuation fluid from the first volume to the second volume; engaging a plug in the tubing on an actuator seat in the setting tool; applying tubing pressure behind the engaged plug in the actuator seat; moving the actuator piston in the setting tool in response to the applied tubing pressure behind the engaged plug; and intensifying the applied tubing pressure to an intensified pressure of the actuation fluid in the second volume of the actuator piston and communicating the intensified pressure to the hydraulic setting mechanism of the liner hanger.
The foregoing summary is not intended to summarize each potential embodiment or every aspect of the present disclosure.
The setting tool 50 is connected to a running string 32 from the surface/rig deck/rig drawworks or the like. The running string 32 is run through a wellhead 30 and runs in the liner 14 and the liner hanger 20 through the casing 12. When the proper depth is reached, the setting tool 50 activates the liner hanger 20 by setting slips 22 and a packing element 24 so the liner 14 extends into the open borehole 10. The setting tool 50 of the present disclosure allows the liner hanger 20 to be run and set in downhole environments having a heavy, debris-laden drilling fluid, which would typically interfere with setting the liner hanger 20 as noted above. As shown in
Briefly, the setting tool 50 includes a body 56 having a flow bore 58 therethrough from an uphole end 52 to a downhole end 54. As is typical but now shown, the uphole end 52 connects to a tubing string for running the setting tool 50 and liner hanger 20. The downhole end 54 can have additional tubing that includes a coupler for attaching additional component and that includes a pickup spacer (not shown) for removing components of the setting tool 50 from inside the hanger 20 during retrieval as discussed below. The flow bore 58 allows running fluid to pass through the setting tool 50 during run-in operations so that circulation can be provided as the liner (14) and hanger 20 are run through the borehole (10).
A stinger portion of the tool body 56 uses a pack-off assembly 90 to seal inside the hanger bore 28 so at least one outlet port (not labelled in
In addition to these elements, the setting tool 50 includes a floating junk bonnet 60, a packer actuator 64, a release mechanism 53, a locking mechanism 70, a slick stinger actuator 80, a pressure-balancing check valve assembly (i.e., balancing check valve 100), and an over-pressure venting assembly (i.e., venting valve 110).
The floating junk bonnet 60 is disposed on the tool body 56 and defines a first reserve volume 67 configured to hold an activation fluid separate and different from the borehole fluid. The floating junk bonnet 60 prevents drilling fluid from being introduced into an annular area of the inner bore 28 of the liner hanger mandrel 26/polished bore receptacle 21 and the outside surface of the setting tool's components. In conjunction with the floating junk bonnet 60, the pack-off assembly 90 isolates the hydraulic setting port 27 of the liner hanger 20 from the drilling fluids above and below it. The fluid above the pack-off assembly 90 is isolated from drilling fluid by the bonnet 60, and pack-off seals 99a-b and 99c-d on a body 92 of the pack-off assembly 90 isolates the setting port 27. This is part of the debris exclusion achieved by the setting tool 50.
Looking at further details of the setting tool 50,
The locking mechanism 70 of the setting tool 50 allows for high circulation rates without wear or premature setting of the liner hanger 20. In particular, the setting tool 50 can withstand high-flow and circulation rates because the locking mechanism 70 prevents any unintentional movement of the actuator piston 84 until the system is unlocked and it is desired to set the system. Using the locking mechanism 70, the setting tool 50 can also withstand open-hole pack-off situations where circulation flow is suddenly stopped and wellbore pressure increases. The pressure increase without the locking mechanism 70 in place could cause the actuator piston 84 to actuate due to the differential piston surfaces that are on the actuator piston 84. With the locking mechanism 70 in place, however, the actuator piston 84 is held in place to internal pressures well above 10,000-psi. Pack-off pressure is not allowed to achieve such a magnitude because well formation damage would likely occur.
The slick stinger actuator 80 includes an actuator seat 82 and an actuator piston 84 disposed in the tool bore 58. The actuator seat 82 is associated with the actuator piston 84 and is configured to engage the deployed plug B. The actuator piston 84 has a second (tool) volume 87 configured to hold the actuation fluid. The outlet ports 57, 97 on the tool body 56/pack-off body 92 communicate the tool volume 87 with the inlet port(s) 27 of the hanger 20.
During the general operation disclosed in more detail below, the setting tool 50 runs the liner hanger 20 to depth in the casing 12. The actuation fluid from the reserve volume 67 of the bonnet (60) is drawn through the balancing check valve 100 to the tool volume 87 to balance pressure inside the setting tool 50 with the increasing hydrostatic pressure. The check valve 100 disposed on the tool body 56 is configured to communicate the actuation fluid from the reserve volume 67 of the bonnet 60 to the tool volume 87, but to prevent reverse communication.
In this way, the balancing check valve 100 is employed to allow for a hydrostatic response of the floating junk bonnet 60 to transfer hydrostatic pressure to the tool volume 87 of the tool 50, which in turn communicates with an isolated annular volume 95 of the pack-off assembly 90. This ensures that the pressure effect of the drilling fluid weight and depth are not a pressure/load factor that must be overcome with applied setting pressure from the setting tool 50 for the liner hanger 20. Thus, the tool 50 can become pressure-balanced to the hydrostatic pressure. As the setting tool 50 and liner hanger 20 are run in hole to depth, the effect of the hydrostatic pressure equalizes all internal and external components and features without the introduction of debris and weighted drilling fluids.
When ready to set the liner hanger 20, operators deploy a plug (e.g., drop ball B) down the tubing string to the seat 82 of the actuator 80. Tubing pressure is applied behind the seated plug B, and the locking mechanism 70 is unlocked. Then, the actuator piston 84 is sheared free and is moved. The actuator piston 84 in response to the movement intensifies the applied tubing pressure on the actuation fluid in the tool volume 87 communicated to the hydraulic setting piston 25 for the liner hanger 20. This allows the setting slips 22 of the liner hanger 20 to engage inside the casing 12.
Having a general understanding of the setting tool 50 and its operation, some of the benefits are now noted. For instance, the setting tool 50 can be particularly useful for deploying and setting the liner hanger 20 in downhole environments having a heavy, debris-laden drilling fluid, such as 20 lbf/gal (ppg). As noted previously, a major weighting component in the drilling fluid can be barite, which has the tendency to sag or deposit in low flow velocity and low-pressure gradient areas within the fluid column.
The setting tool 50 of the present disclosure can mitigate issues encountered when setting the liner hanger 20 in such an environment. In particular, the setting tool 50 can overcome the resistance caused by deposits that accumulate in areas around the hydraulic setting piston 25 used to set the slips 22 of the hanger 20. This disclosed setting tool 50 provides the required actuation pressure from the setting tool 50 to move and set the slips 22 by intensifying the pressure applied by the tubing pressure behind the seated plug B. Additionally, the inner workings of the setting tool's setting mechanism are kept free of the debris-laden drilling fluid to mitigate interference of the fluid with the actuation of the setting of the liner hanger 20 and to avoid fouling the setting tool 50 and the internal pressure volume 29 of the liner hanger 20.
Overall, the disclosed setting tool 50 minimizes contact with the drilling fluid, which reduces operational risk for setting the liner hanger 20 and potential non-productive time (NPT). As will be appreciated, the liner hanger 20 will be exposed externally to the drilling fluid, but the internal actuation fluid and the means to deliver the pressurize fluid via the setting tool 50 are not contaminated or compromised by detrimental debris.
Additional debris exclusion for the setting tool 50 is achieved by isolating the actuator piston 84, which is part of the slick stinger 80 of the setting tool 50. The slick stinger's piston 84 acts as a sealing sleeve that provides debris and pressure isolation during cementing operations during the liner hanger 50 installation. The slick stinger actuator 80 provides pressure control while transitioning to a packer setting position after cementing. However, prior to any of these functions, the slick stinger actuator 80 houses setting mechanisms required to actuate and provide isolated setting pressure to the hydraulic setting piston 25 of the liner hanger 20.
The actuator piston 84 in the slick stinger actuator 80 is isolated from the drilling fluid by seals 85a-b. In this way, the actuator piston 84 can prevent the drilling fluid from being introduced into the clean fluid inside the tool volume 87. The clean setting fluid, which is used as part of the fluid volume from the pack-off assembly 90, is fed from the balancing check valve 100. The setting fluid is completely isolated from external dirty fluids, and only clean fluids are introduced into the liner hanger setting port 27 and hydraulic chamber 29 of the hydraulic setting piston 25 during the setting operation.
The disclosed setting tool 50 also excludes annular wellbore fluids by using the floating junk bonnet 60 and by isolating the tool volume 87 using the pack-off assembly 90. Additionally, to exclude debris, the intensifying actuator piston 84 uses clean fluid from the volumes 67, 87 of the bonnet 60 and the actuation mechanism. The actuator piston 84 does not introduce contaminated, dirty wellbore fluids into the hydraulic setting piston 25 of the liner hanger 20.
The disclosed setting tool 50 is pressure-balancing because the setting tool 50 is always hydrostatically balanced via the balancing check valve 100 on the pack-off assembly 90. This ensures that only relative pressures above the hydrostatic pressure reference may be applied to set the liner hanger 20.
In one configuration, the intensifying actuator piston 84 of the setting tool 50 can provide a power ratio of 3.6 to 1, multiplying the applied tubing pressure by almost 4 time to produce a setting pressure that provides a large setting force to push through debris-laden environment to set the slips 22 of the liner hanger 20. In one example, an applied tubing pressure from the surface of 2600-psi against the seated plug B in the actuator seat 82 relates to an applied setting pressure of about 10,000-psi to the hydraulic setting piston 25 of the liner hanger 20.
Once the setting tool 50 runs in the liner hanger 20 to depth, a setting ball B is dropped to the release mechanism 53 of the setting tool 50 (Block 204). The setting tool 50 is then unlocked using tubing pressure against the dropped ball B seated in a first seat of the release mechanism 53 (Block 206).
With the ball B expelled from the release mechanism 53, the ball B reaches a second seat 82 of the actuator 80 (Block 208), and pressure is applied to unlock a locking mechanism 70 holding the seat 82 (Block 210).
Operation of the setting tool 50 can then follow a normal stage of operation (Blocks 220).
When successful, the liner hanger 20 is set in the casing 12 by actuating the hydraulic setting piston 25 of the liner hanger 20 using the intensified pressure (Block 224). When setting of the liner hanger 20 is successful in the end, then further stages of operation can follow in which cementing darts are dropped and a packer of the liner hanger system is set (Block 226). Once operations complete, a releasable connection 94 on the setting tool 50 is released from inside the liner hanger 20, and the setting tool 50 is retrieved from the liner hanger 20 set in the casing 12 (Block 228).
Should normal operation be unsuccessful, operation of the setting tool 50 can then follow an alternative stage of operation in which the setting tool is reset and actuation is reattempted (Blocks 230, 232). Again,
As shown in
The piston 106 in a closed position as shown in
As then shown in
Continuing with the setting procedures,
The locking mechanism 70 includes a sleeve 72 having the actuator seat 82. The sleeve 72 is held by shear pins 74 inside the tool body 56, and a locking collet 76 has collet fingers 77 held engaged against a ring 78 inside the tool body 56. As will be appreciated, other configurations can be used to lock the seat 82 in place.
While running in the hole with the liner hanger 20/setting tool 50, the actuator seat 82 is locked into place by the locking mechanism 70 having the supported locking collet 76. The shear pins 74 prevent premature movement of the sleeve 72 in response to forces during run-in, such as any forces caused by fluid flow through the tool body 56. Once ready to deploy the liner hanger 20 in the casing 12, the actuator piston 84 may only be actuated after a closed pressure volume is pressurized to produce the required force to shear locking pins 74 and un-support the locking collet 76 so the seat 82 can engage (affix to) the piston 84.
To do this, initial pressure is applied behind the dropped setting ball B landed on the expandable seat 82, the sleeve 72 can shear the shear pin 74 once a predetermined force is reached. The sleeve 72 then shifts a short distance. The shifted sleeve 72 then shoulders against the actuator's piston 84 so that pressure applied against the seated ball B in the seat 82 can be applied to the actuator's piston 84. A lock ring 79, such as an expanding locking C-ring 79 on the sleeve 72, can lock in a locking groove of the piston 84 to lock them together. This locking prevents re-supporting the collet 76 and locking the sleeve 72 again.
As shown in
As shown in
During operation as shown in
As shown in
As then shown in
Once the shear pins 88b are sheared, the volume 87 of the tool's volume 87 can be transferred to the liner hanger hydraulic chamber 29. The tubing pressure is increased to a predetermined pressure until the liner hanger 20 takes liner hang weight. Preferably, the tubing pressure is increased in increments to the predetermined pressure. For example, the tubing pressure can be increased in 200-psi increments from 1300-psi to reach 2100-psi.
As the actuator piston 82 travels a greater distance as shown in
As can be seen, the actuator piston 84 transfers the clean fluid to the piston chamber 29. The axial displacement of the closed ball seat 82 is equal to the axial displacement of the actuator piston 84. The displaced volume created by the differential piston volume of the actuator piston 84 can sufficiently displace the hydraulic setting piston 25 to create slip contact with the casing 12. The intensifying actuator piston 84 also compresses the fluid volume to create an elevated internal pressure (e.g., 10,000 psi). The working fluid may preferably be water because the Bulk Modulus of water can help calculate the required amount of water needed to pressurize the hydraulic setting piston 25 to deliver the pressure load to set the slips 22.
Once the liner hanger 20 is determined to be able to take weight, the applied surface pressure is increased to the point where the setting ball B is expelled from the expandable seat 82 and the controlled closed volume is removed. The applied pressure from the surface drives the actuator piston 84 to apply pressure to the hydraulic chamber 29 of the hydraulic setting piston 25 as long as the setting ball B remains on the expandable seat 82 and the actuator piston 84 displaces to its fully stroked position.
As can be seen, the setting of the liner hanger 20 depends on applied pressure from the surface to a closed tubing volume created by the setting ball B on the expandable seat 82. The setting ball B eventually expands the actuator seat 82 and is expelled at a predetermined pressure, such as 2600-psi depending on the implementation.
As mentioned, debris-laden environment may increase the need for more force to move components to set the liner hanger 20. For this reason, the actuator piston 84 provides a differential piston that takes the applied surface pressure and intensifies the output pressure at a configured ratio, such as 3.6:1, to the hydraulic setting chamber 29 of the liner hanger 20. As one example, input surface pressure of 2600-psi can deliver an output pressure of 9550-psi to the liner hanger system to force its way through bedded debris.
The total stroke of the actuator piston 84 accounts for the pressure to rupture the shear pins in the liner hanger's piston 25, fully stroke the piston 25, and drive the slips 22 into the wall of the casing 12 with the application of surface pressure with volume to spare. If another application of setting pressure is desired to be applied to the hydraulic setting piston 25 of the liner hanger 20, operators can release the applied surface pressure, as this will allow the actuator piston 84 of the intensifier to return to its start position. The hydraulic setting piston 25 cannot go back to its original position due to a body lock ring or slip lock dogs. Yet, as the actuator piston 84 is pushed back by its compression spring 86, a differential pressure is created that causes the balancing check valve 100 of the pack-off assembly 90 to accept clean fluid from the bonnet's volume 67. This recharges the setting volume 87 with fluid for the next pressure application. At this point, the surface pressure may again be applied.
The slips 22 should be able to handle the liner hanger's weight. If the slips 22 are taking load, then pressuring-up of the tubing pressure can be performed until the ball B is expelled from the expandable set 82. The expelling pressure can be a pressure of about 2300-2500-psi with a maximum of 9200-psi intensified pressure to the hydraulic setting piston 25. This pressure can be a safe burst load to the liner hanger 20.
The expelling of the setting ball B through the expandable seat 82 in the debris environment may require applying surface pressures greater than the predetermined pressure (e.g., 2600 psi) to the point where the intensified pressure of the actuator piston 84 delivers a pressure greater than a maximum pressure (e.g., 10,000-psi) that can potentially damage equipment.
The over-pressure venting assembly (i.e., venting valve 110) can respond to the increase in the intensified pressure and can shift, but not shear a venting pin 114. To prevent over-pressurization of the hydraulic setting piston 25 and its seals, for example, the venting valve 110 prevents any pressure above the maximum pressure (10,000 psi) from being delivered to the liner hanger 20. As shown in
In maintaining the pressure balance, the venting valve 110 can also respond to increases in temperature downhole by moving accordingly. For example, the gap between the floating piston 116 and the venting shear pins 114 can be calibrated for thermal expansion of the clean fluid in the volume 87 from ambient temperature up to about 350 F. This can help keep pressures balanced during run-in of the setting tool 50 and when operated at depth.
Once the maximum pressure (10,000 psi) threshold has been created, the floating piston 116 can shear a set of venting shear pins 114 to relieve the pressure to outside of the isolated volume 87 to the reserve volume 67, where the floating junk bonnet 60 can react to the pressure increase through expanding volume upwards. At this point, the system equalizes and returns to its original position due to the compression spring 118.
Once the setting ball B has been expelled, the system reverts to where the over-pressure venting valve 110 closes, the actuator piston 84 is pushed back into place by the compression spring 86, the hydraulic setting piston 25 returns to an intermediate position determined by the location of the slip lock dogs, and any fluid draw into the volume 87 from the spring 86 pushing the actuator piston 84 comes from the balancing check valve 100.
In a debris environment, the expelling pressure of the ball B from the seat 82 can be as much as 2800 psi resulting in 10.3 ksi in intensified pressure to the hydraulic setting piston 25 of the liner hanger 20. This event would activate the over-pressure venting valve 110 to protect the liner hanger from over pressure. Further details are disclosed below with reference to
In final stages of operation, cementation darts (not shown) are dropped, and a packer of the liner hanger system is set as normal. The running tool 50 can then be retrieved. As shown in
As shown in
During setting operations, an alternative operation can be performed when the slips 22 fail to set due to debris when shearing the actuator piston 84. As noted previously with reference to
Once the actuator piston 84 shears the pins 88b, the fluid volume of the tool chamber 87 is transferred to the hanger's hydraulic chamber 29. Again, the transfer of input pressure to output pressure can be controlled by controlling the application of the tubing pressure, such as in stepped increments. The tubing pressure is increased to the predetermined pressure (2100 psi), such as in 200 psi increments from 1300 psi, until the liner hanger 20 takes hang weight. The hydraulic setting piston 25 travels a distance d3 to achieve slip contact with the casing 12.
At the increase (2100 psi) tubing pressure, the intensifier pressure provided to the hydraulic setting piston 25 is intensified (e.g., to 7700 psi). The slips 22 should be able to handle the hang weight. The reasons for the slips 22 not taking a load may be because debris is preventing the hydraulic setting piston 25 from moving. If the slips 22 are not taking load and are not setting, then the tubing pressure may be relieved back to zero in this alternative operation. In relieving the pressure, the ball B is not expelled from the expandable seat 82. The actuator piston 84 is reset by the compression spring 86 to refill the tool volume 87 with charging fluid from the balancing check valve 100.
The refilling of the actuator piston's charging volume 87 allows for the full charging of the hydraulic chamber 29 of the liner hanger 20 to maximize the pressure delivered to setting the slips 22. Once the actuator piston 84 returns to its initial position, tubing pressure may again be applied to the increased pressure (e.g., 2100 to 2200-psi in 200-psi increments). The travel of the actuator piston 84 will be much less than the initial movement where fluid transfer must occur to shift the hydraulic setting piston 25. During the second pressure up to the increased tubing pressure 2100-2200-psi, the intensified pressure delivered to the hydraulic setting piston 25 will immediately hit an elevated pressure (e.g., 8100-psi). This cycling of the setting volume 87 may happen as many times as needed to drive the slips into place.
Once the expelling pressure of 2300-2500-psi with a maximum of 9200-psi intensified pressure to the hydraulic setting piston 25 is delivered, the setting ball B may be expelled from the seat 82. Again, this pressure is expected to be a safe burst load to the liner hanger 20.
Once the setting ball B has been expelled, the system reverts to where the over-pressure venting valve 110 closes, the actuator piston 84 is pushed back into place by the rectangular wire compression spring 86, the hydraulic setting piston 25 returns to an intermediate position determined by the location of the slip lock dogs, and any fluid draw from the spring 29 pushing the sleeve 84 comes from the pressure balance check valve 10. With this stage completed, operations can then follow other steps as normal.
When performing the setting stages, it is possible that too much pressure is applied by the setting tool 50 to the hydraulic setting piston 25 of the liner hanger 20. The over-pressure venting assembly 110 of the tool 50 can prevent over-pressure. As shown in
The venting valve 110 includes a port 113a in the tool body 56 that is openable to communicate the tool volume 87 outside the tool body 56 to the reserve volume 67 contained by the bonnet 60. The port 113a has a shearable pin 114, and the venting valve 110 include a piston 116 disposed in fluid communication between the tool volume 87 and tubing pressure in the liner hanger (via an opening 113b). The piston 116 is movable to shear the shear pin 114 from the port 113a in response to the intensified pressure in the tool volume 87 exceeding the predetermined threshold. The piston 116 can move in a piston chamber 112 disposed in communication between the tool volume 87 and the port 113a. The piston 116 is movable in the piston chamber 112 relative to the shearable pin 114 in response to a pressure differential. The piston 116 in a first condition is disengaged with shearable pin 114 and prevents fluid communication from the tool volume 87 to the port 113a. As shown in
As shown, the piston 116 can include a cylindrical body disposed in the piston chamber 102, and inner and outer annular seals 117a-b disposed on the cylindrical body of the piston 116 can seal with the piston chamber 102. A biasing element 118 disposed in the piston chamber can bias the piston 116 against the pressure in the tool volume 87 so that the piston 116 is disengaged from the char pin 114. When retrieving the setting tool 50, the piston 116 and the port 113a of the venting valve 110 can absorb changes in pressure. In necessary, a secondary venting system can be used in which the piston 84 can move further uphole to increase the tool volume 87. This is described below with reference to
When performing the setting operations, it is also possible that the setting tool 50 needs to be retrieved without the liner hanger 20 having been set. As shown in
To pull the setting tool 50 and liner hanger 20, an internal over-pressure mechanism can relieve the internal pressure of the tool volume 87 to prevent setting the slips 22. As the system is pulled out of the borehole, the hydrostatic pressure decreases while the internal pressure of the tool volume 87 from the hydrostatic pressure at setting depth remains captured in the setting tool 50.
To relieve that trapped pressure, the actuator piston 84 includes another temporary connection (e.g., shear pins) 88a with the tool bore 58. The temporary connection 88a has a connected state configured to prevent an increase in the tool volume 87. In response to a predetermined force, however, the temporary connection 88a has an unconnected state so the actuator piston 84 is able to move upward and so the tool volume 87 is allowed to increase.
As shown in
In particular, the trapped pressure in the tool volume 87 acts against the shear pins 88a as the setting tool 50 and liner hanger 20 are retrieved. Eventually, the increased pressure shears these pins 88a to allow the tool volume 87 to increase. In turn, the increased tool volume 87 prevents the deployment of the slips 22 upon system retrieval by relieving the trapped hydrostatic pressure within the pack-off assembly 90 as the system is tripped back to the surface. The compensation is intended to prevent a threshold pressure (1000-psi) from being delivered to the hydraulic setting piston 25 of the liner hanger 20. As the external hydrostatic pressure is reduced when the system is brought to the surface, the trapped internal volume 87 and pressure in the tool 50 can be relieved via the floating piston 116 of the primary venting valve 110. Because the floating piston 116 references external hydrostatic pressure, the piston 116 expands in response to the differential created from the trapped volume/pressure internally. This system is expected to dissipate/absorb 16,000 psi.
The foregoing description of preferred and other embodiments is not intended to limit or restrict the scope or applicability of the inventive concepts conceived of by the Applicants. It will be appreciated with the benefit of the present disclosure that features described above in accordance with any embodiment or aspect of the disclosed subject matter can be utilized, either alone or in combination, with any other described feature, in any other embodiment or aspect of the disclosed subject matter.
In exchange for disclosing the inventive concepts contained herein, the Applicants desire all patent rights afforded by the appended claims. Therefore, it is intended that the appended claims include all modifications and alterations to the full extent that they come within the scope of the following claims or the equivalents thereof.
This is a continuation of U.S. application Ser. No. 17/386,177 filed Jul. 27, 2021, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 17386177 | Jul 2021 | US |
Child | 18225048 | US |