1. Field of the Invention
The present invention relates to disk drives and more specifically, to a disk clamp for a disk drive that reduces debris migration onto the disk surface.
2. Description of Related Art
Work stations, personal computers and laptop computers require disk drives that provide a large amount of data storage within a minimal physical area. A disk drive typically includes one or more hard disks that are rotated at a constant high speed by a spindle motor. Generally, disk drives operate by positioning a transducer or read/write head over respective tracks on the disks. The information is written to and read from tracks on the disks through the use of an actuator assembly which rotates during a seek operation. The actuator is coupled to control electronics which control the positioning of the actuator and the read/write functions of the transducer. A typical actuator assembly includes a plurality of actuator arms which extend towards the disks with one or more flexures extending from each of the actuator arms. Mounted at the distal ends of each of the flexures is a head which acts as an air bearing enabling the head to fly in close proximity above the corresponding surface of the associated disk. The demand for increasing density of information stored on these disks is becoming greater and greater for a multitude of reasons. The increase of multi-user and multi-tasking operating system work stations which provide an operating environment requiring the transfer of large amounts of data to or from the hard disks, large application programs, the popularity of notebook and laptop computers and the continuing trend toward higher performance microprocessors all contribute to this end. The structural designs of these systems are also continually shrinking, requiring hard disk drives having high capacity storage capability while occupying a minimal amount of space within the system.
In order to accommodate these demands, there is a need for smaller hard disk drives which have increased storage capacity. To read this more densely stored information, engineers have decreased the gap fly height between the heads and the disks. Reducing the gap fly height leads to increased contact between a head and the data portion of the disk during operation of the disk drive. Nevertheless, there has been an industry wide push to reduce the height at which transducers are maintained over the disk surface without actually contacting the disk surface.
When a transducer flies over a rotating disk, the flying height tends to fluctuate slightly above and below a normal flying height because the disk surface itself is not flat. At lower flying heights the variation in the fly height may cause the transducer to contact the disk surface. This intermittent contact, if repeated, can damage the transducer or the disk and may cause drive failures.
In conventional disk drives, a stack of disks is provided on a cylindrical hub of a spindle motor. A disk clamp is provided on top of the stack of disks on the hub. The clamp has a larger radius than that of the hub so that the outer diameter of the clamp is in contact with the top disk. A plurality of screws, or a single screw, fit through holes located in the disk clamp. These screws (screw) are threaded into bores in the hub. When a screw is tightened, the force applied to the midsection of the disk clamp is transferred to the outer circumference of the disk clamp which contacts the disk surface. This force secures the disks to the spindle motor hub. The disks must be secured under considerable force in order to prevent any slippage of one or more disks in the presence of mechanical shocks. Even very slight slippage of a disk within a drive could result in mechanical misalignment of the transducer which could result in data transfer errors or failure.
The assembly of the disk clamp over the disk stack tends to generate minute particles which tend to disburse on the surface of the disks themselves. These small particles contribute to transducer contact with the disk surface, culminating in head crashes. The more fastening screws utilized to secure the disk clamp to the spindle motor, the more opportunity there is for the generation of these minute particles.
Accordingly, there is a need for a disk clamp that prevents dispersal of particles generated during assembly of the disk stack. The present invention provides a solution to this problem.
The generation of debris particles during assembly of a disk pack in a disk drive is considerably ameliorated by trapping these particles in a moat formed into the disk clamp surrounding the fastening hole. The moat is covered by the head of the screw fastening the disk clamp to the motor hub. The moat keeps the debris generated during torque-down of the screw on the inside of the moat, between the moat and fastening hole. Various moat designs have been found to be effective. Besides a circular moat, a spike trench moat having trenches angled toward the fastening hole, or a spiral moat are effective in retaining debris under the head of the screw. Another preferred method of retaining debris under the head of the fastening screw biases the area surrounding the fastening hole (the midsection) at to a negative angle towards the fastening hole of the disk clamp. This negative angle of the midsection forces particles generated during assembly inward, toward the fastening hole, trapping the particles under the head of the fastening screw.
The exact nature of this invention, as well as the objects and advantages thereof, will become readily apparent from consideration of the following specification, in conjunction with the accompanying drawings, in which like reference numerals designate like parts throughout the figures thereof and wherein:
During a seek operation, for example, the track position of the head 15 is moved across the surface of the disk 13. The head 15 is connected to the actuator arm 17 by a flexure 51.
The hard disk 13 may be a single disk or a stack of disks. The hard disk 13 is connected to a spindle motor (not shown) by a disk clamp 25. According to the present invention, the disk clamp attaches the hard disk 13 to the hub of the spindle motor by a screw 29. A plurality of holes 27 are located in the disk clamp 25 circumferentially spaced about the fastening screw 29.
The disk clamp 25 affixes the hard disk 13 to the hub of the motor by the force exerted by the fastening screw 29. During operation of the disk drive 11, the hard disk 13 is rotated by the motor, and the actuator arm 17 moves the transducer 15 across the surface of the hard disk 13 transferring data between the transducer 15 and the hard disk 13.
Referring to
The disk pack assembly shown in
It should be kept in mind that multiple circumferentially spaced fastener holes 45 may be utilized to match up with multiple fastener bores 30 in the hub head 37. The disk clamp 25 is preferably made of stainless steel, although it could be made of aluminum or materials or alloys having similar desired characteristics.
Fastening screw 29 extends through the fastener hole 45 of the disk clamp 25 and into the fastener bore 30 in the hub 35. The fastening screw 29 engages the hub 35 and draws the central midsection 43 of the disk clamp 25 downward beyond its normal resting position, thereby creating stress and a constant downward pressure at the rim 49. The rim 49 in turn applies a downward pressure on the upper surface 31 of disk 13, thereby holding the disk 13 securely in place on the hub 35.
The moat 55 has a width measured at its mouth and a depth measured from the surface of disk clamp 25 to the deepest part of the moat. The moat preferably ranges in depth from 0.00068 inches to 0.00184 inches. The moat preferably varies in width from 0.00200 inches to 0.00427 inches.
The size of the moat must not be so large that it structurally impairs the disk clamp at this fastening point. Yet, the moat should be large enough to perform its function of maintaining debris formed as a result of tightening the screw 29 down over the surface of the disk clamp 25 in the area of the fastening hole 45 between the fastening hole and the moat trapped under the head of the bolt 29.
Considerable experimentation by the inventors with the disk clamp utilizing the moat as described above, surprisingly revealed that debris within the disk drive on the surface of the hard disks was reduced while debris between the moat 35 and the edge of the disk clamp hole 45 was increased.
Referring now to
The diameter of the outermost portion of the spiral moat, the spike trenches, and the circumferential moat, described above, is always less than the head diameter of the fastening screw.
Standard practice in the prior art is to bias this midsection 87 so that when the head of the fastening screw 29 compresses the midsection 87 of the disk clamp to the hub 35, the midsection 87 will flatten.
Offset angles are also used in other parts of a disk clamp. As taught in U.S. Pat. No. 7,209,320, the outside diameter of the disk clamp, at the disk to hub contact area has an offset angle that slopes downward from an inside to outside of the disk clamp contact point. The application of pressure during clamping will thus provide a more flat uniform contact area along the clamp surface. The prior art does not contemplate biasing the midsection of the disk clamp as proposed by the present invention or even recognize the reasons for doing so.
Contrary to this general wisdom, the present invention biases the midsection 87 around fastening hole 45 of the disk clamp 25 in a negative downward direction between 0 and −3.5 degrees. This negative angle is more clearly shown in
Experimentation by the inventors has found that considerably more particles are trapped under the head of the fastening screw 29 when the midsection 87 of the disk clamp is biased at a negative angle than as compared to a disk clamp that is biased positively in an upward direction, or a disk clamp that is flat.
It should be understood that the foregoing disclosure describes only the preferred embodiments of the invention. Various modifications may be made therein without departing from the spirit and scope of the invention as set forth in the claims to provide a disk clamp that traps debris particles generated during assembly of the disk pack in a disk drive. The particles are trapped underneath the head of the fastening screw.
This application is a divisional of application Ser. No. 13/445,726 filed Apr. 12, 2012 for Debris Reducing Disk Clamp For Disk Drives.
Number | Name | Date | Kind |
---|---|---|---|
5392178 | Nishio et al. | Feb 1995 | A |
5517374 | Katakura et al. | May 1996 | A |
5528434 | Bronshvatch et al. | Jun 1996 | A |
5615067 | Jabbari et al. | Mar 1997 | A |
5668427 | Morita | Sep 1997 | A |
5912784 | Bronshvatch et al. | Jun 1999 | A |
5943184 | Kelsic et al. | Aug 1999 | A |
6462903 | Yamada et al. | Oct 2002 | B1 |
6703584 | Church et al. | Mar 2004 | B2 |
6822826 | Choo et al. | Nov 2004 | B2 |
7027261 | Momoi | Apr 2006 | B2 |
7209320 | Woods et al. | Apr 2007 | B1 |
7215509 | Ng | May 2007 | B2 |
7826173 | Lee | Nov 2010 | B2 |
8321884 | Suzuki | Nov 2012 | B2 |
8675306 | Sutton et al. | Mar 2014 | B2 |
20050099723 | Momoi | May 2005 | A1 |
Number | Date | Country |
---|---|---|
2008077807 | Apr 2008 | JP |
2009076117 | Apr 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20140139950 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13445726 | Apr 2012 | US |
Child | 14165164 | US |