Embodiments relate to a crimp die for connecting a core of a conductor to an electrical connector assembly. Furthermore, embodiments relate to a method of connecting a core of a conductor to an electrical connector assembly.
High voltage transmission conductors may include strands of high strength steel surrounded by multiple strands of aluminum wire. The steel strands are the principle load bearing component holding up the wire, while the softer, more elastic aluminum strands include the majority of the electrical power transport component. Many variations of transmission wire operating at between approximately 115 kV to 800 kV involve this design concept and have these two components.
In order to mechanically secure a high voltage transmission conductor to an electrical connector assembly used in the transmission of power, crimping dies and/or other compression tools are used. Compression tools may include a diehead assembly that develops substantial crimping force. Compression tools may be operated using hydraulic, electric, pneumatic, or manual power.
To form an electro-mechanical connection between the high voltage transmission conductor and the electrical connector, single stage and two stage crimping operations may be performed. During a single stage crimping operation, a conductor wire is initially stripped of any insulation, at least at the ends, and inserted into an electrical connector. The electrical connector is assembled and then placed into the diehead assembly. The diehead assembly includes a pair of jaws that retain crimping dies designed to apply a crimping force to the electrical connector. Upon actuation of the compression tool, a moveable crimping die compresses and deforms the connector assembly, thus securing it to the conductor wire. After crimping is complete, the tool is disengaged by retracting the moveable die.
During a two stage crimping operation, aluminum strands surrounding a core of a conductor wire are first cut back to expose the conductive core that includes the principal load bearing portion of the conductor wire. The exposed core is inserted into a steel tube of an electrical connector, and the electrical connector is placed into the diehead assembly to be crimped, thus deforming the steel tube and mechanically securing it to the conductive core. Next, the aluminum strands, which include the majority of the electrical power transport component of the conductor wire, are also crimped by the diehead assembly or a similar crimping assembly to form an electrical connection with an encasing aluminum tube. This crimping process generally requires that the conductive core be able to tolerate a certain amount of radial compression force at its surface without suffering damage that could potentially decrease its transmission efficiency.
More recently, a composite core cable (for example, an Aluminum Conductor Composite Core (ACCC) cable) having a light-weight advanced composite core wrapped by aluminum conductor wires has emerged as a substitute for the steel support stranding in high voltage transmission conductors. The composite core's lighter weight, smaller size, and enhanced strength and other performance advantages over a traditional steel core allows a composite core cable to increase the current carrying capacity over existing transmission and distribution cables and virtually eliminate high-temperature sag.
However, the outer surface of the composite core is difficult to mechanically connect to a compression tube of an electrical connector assembly. The outer surface of the composite core is sensitive, such that a scratch (for example, transverse scratches and cracks) on the outer surface can lead to a fracture of the composite core. Due to the sensitivity of the composite core, composite core conductors are generally connected with a physical connection (for example, a collet and housing, a wedge connector, etc.) rather than crimped. Accordingly, a need exists for a crimp die that minimizes deformation/ovalization of an inserted electrical connector containing a composite core conductor so that damage to the outer surface of the composite core may be decreased or essentially eliminated.
One embodiment discloses a compression die configured to crimp a composite core. The compression die includes an outer body having a tool engaging surface, and an inner body coupled to the outer body. The inner body has a crimping area, wherein the crimping area of the inner body includes ten planar surfaces. Each of the ten planar surfaces are positioned at an angle with respect to an adjacent planar surface such that the combination of the ten planar surfaces form a decagon shaped channel.
Another embodiment discloses a method of crimping a composite core using a compression die. The method includes inserting the composite core into a decagon shaped channel of the compression die, and applying a radial force towards a center of the decagon shaped channel. The decagon shaped channel includes ten planar surfaces. The radial force is applied until an outer circumference of the composite core fully engages a surface area of each of the ten planar surfaces.
Other aspects of the application will become apparent by consideration of the detailed description and accompanying drawings.
The aspects and features of various exemplary embodiments will be more apparent from the description of those exemplary embodiments taken with reference to the accompanying drawings, in which:
Before any embodiments of the application are explained in detail, it is to be understood that the application is not limited to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The application is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
Use of “including” and “comprising” and variations thereof as used herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Use of “consisting of” and variations thereof as used herein is meant to encompass only the items listed thereafter and equivalents thereof. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings.
Also, the functionality described herein as being performed by one component may be performed by multiple components in a distributed manner. Likewise, functionality performed by multiple components may be consolidated and performed by a single component. Similarly, a component described as performing particular functionality may also perform additional functionality not described herein. For example, a device or structure that is “configured” in a certain way is configured in at least that way but may also be configured in ways that are not listed.
As described herein, terms such as “front,” “rear,” “side,” “top,” “bottom,” “above,” “below,” “upwardly,” and “downwardly” are intended to facilitate the description of the electrical receptacle of the application, and are not intended to limit the structure of the application to any particular position or orientation.
Exemplary embodiments of devices consistent with the present application include one or more of the novel mechanical and/or electrical features described in detail below. Such features may include an outer body having a tool engaging surface and an inner body coupled to the outer body, the inner body having a crimping area. In exemplary embodiments of the present application, various features of the crimping area will be described. The novel mechanical and/or electrical features detailed herein efficiently minimize deformation/ovalization of an inserted composite core during a crimping process such that damage to the outer surface of the crimped composite core may be decreased or essentially eliminated. Although the application will be described with reference to the exemplary embodiments shown in the figures, it should be understood that the application can be embodied in many alternate forms of embodiments. In addition, any suitable size, shape, or type of elements or materials could be used. Furthermore, the exemplary embodiments detailed herein may be used for all compression applications (for example, aluminum, steel, or other metals not exhaustively detailed herein).
Two conventional compression die designs for crimping a conducting core are shown in
Referring to
Referring to
Referring to
Each planar surface 315a-j has a length of 330, which may vary for each planar surface 315a-j and not exhaustively detailed herein. The decagon crimp die 300 may have an inner radius of 335 and an inner diameter 340 such that a circumference of the decagon crimp die 300 is less than a circumference of the electrical connector 130 being crimped. This allows a radial compression force to be applied by the planar surfaces 315a-j of the decagon crimp die 300 to the electrical connector 130 and inserted core 135, thereby forming the necessary connections during the crimping process.
The decagon crimping area 310 includes a plurality of corners 345 formed at the intersections of each pair of adjacent planar surfaces 315a-j. During an initial stage of the crimping process shown in
Although disclosed as being a decagon-shaped compression die having ten sides, in other embodiments, the body 300 may have more than ten planar surface, each being positioned at an angle with respect to an adjacent planar surface. In yet other embodiments, the body 300 may have less than ten planar surface, each being positioned at an angle with respect to an adjacent planar surface.
All combinations of embodiments and variations of design are not exhaustively described in detail herein. Said combinations and variations are understood by those skilled in the art as not deviating from the teachings of the present application.
The application claims priority to U.S. Provisional Patent Application 62/654,624, filed Apr. 9, 2019, the entire contents of which are hereby incorporated.
Number | Name | Date | Kind |
---|---|---|---|
4027519 | Bachle | Jun 1977 | A |
20010002508 | Yamakawa | Jun 2001 | A1 |
20030088962 | Goop | May 2003 | A1 |
20040200060 | Shutts et al. | Oct 2004 | A1 |
20110168428 | Shibuya | Jul 2011 | A1 |
20120067863 | Suzuki | Mar 2012 | A1 |
20130252459 | Tanaka | Sep 2013 | A1 |
20140262497 | De France | Sep 2014 | A1 |
20140342890 | Gilbreath | Nov 2014 | A1 |
20160104994 | Cramer | Apr 2016 | A1 |
20160301174 | De France | Oct 2016 | A1 |
20170087620 | Goff et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
1610185 | Apr 2005 | CN |
1921238 | Feb 2007 | CN |
101779014 | Jul 2010 | CN |
102027648 | Apr 2011 | CN |
107680738 | Feb 2018 | CN |
2991496 | Dec 2013 | FR |
2009197714 | Sep 2009 | JP |
Entry |
---|
PCT/US2019/026499 International Search Report and Written Opinion dated Jun. 14, 2019 (17 pages). |
European Patent Application No. 19785066.2 supplementary European search report and European search opinion dated Dec. 2, 2021. |
Chinese Patent Application No. 201980028244.1 First Office Action Issued by the China National Intellectual Property Administration dated Dec. 3, 2021 (and translation). |
Number | Date | Country | |
---|---|---|---|
20190312398 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
62654624 | Apr 2018 | US |