The present invention relates to a decanter centrifuge for separating a first substance and a second substance with different densities. The decanter centrifuge comprising includes a bowl rotatable around a horizontal axis of rotation in a direction of rotation. The axis of rotation extending extends in a longitudinal direction of the bowl. A radial direction extends perpendicular to the longitudinal direction. A base plate is provided at one longitudinal end of the bowl. The base plate has an internal side and an external side, and an outlet opening is provided in the base plate for discharge of one of the substances. The outlet opening extends through a first angular interval relative to the axis of rotation. The decanter centrifuge includes a slide valve body adapted for covering an adjustable part of the outlet opening to delimit an effective area of the outlet opening. The outlet opening includes an edge that is inclined.
A decanter centrifuge generally has fixed weir edges and thus a fixed level of the one substance to be discharged (in the following liquid, which is normally the case) in the bowl of the decanter centrifuge. The position of the weir edge is generally determined either by the radial position of the outlet opening in the base plate of the decanter centrifuge, or by the position in which an external weir edge is mounted fixedly on the base plate of the decanter centrifuge, generally such that it covers a part of the outlet opening. Such a decanter centrifuge is e.g. known from JP 11-179236.
Thus the liquid level in the bowl of a known decanter centrifuge is normally determined by the position of the weir edge and cannot be changed, except by unduly complex procedures.
It is one object of the present invention to provide a decanter centrifuge that eliminates or reduces the problem mentioned above.
According to a first aspect of the invention this object is achieved by providing a decanter centrifuge of the art mentioned in the first paragraph where the slide valve body includes a first edge extending in the radial direction. The edge delimits the effective area of the outlet opening when the slide valve body is in a position covering an adjustable part of said outlet opening. The outlet opening is radially away from the axis of rotation and is delimited by a second edge. The second edge has in at least a major part of the first angular interval in a radial plane perpendicular to the axis of rotation an inclination relative to the radial direction of at least 60°, preferably at least 70°, more preferably at least 75°, said second edge constituting a weir edge.
Thereby it becomes possible to adjust the effective area of the outlet opening that is covered and thereby to adjust the liquid level in the bowl of the decanter centrifuge, and a simple but effectively working slide valve body for adjusting the liquid level in the bowl of the decanter centrifuge is provided for.
According to a preferred embodiment of the invention said slide valve body is provided for rotation around the axis of rotation, thereby providing for a decanter centrifuge with a slide valve body being particularly simple to adjust.
According to a preferred embodiment of the invention the decanter centrifuge comprises a level sensor in the bowl, thereby providing for the possibility of measuring the liquid level within the bowl at any time before, during or after operation and regardless of the construction of weir edges and/or devices provided for energy recovery purposes.
According to a preferred embodiment of the invention the slide valve body is provided adjacent the plate at the internal side of the base plate, thereby providing for a particularly well functioning and easy to operate slide valve body and thus the decanter centrifuge.
According to an embodiment of the invention the slide valve body comprises an edge extending in a direction, which with respect to a circumferential direction comprises an inclination of less than 30°, said edge constituting an adjustable weir edge when said slide valve body is in a position covering an adjustable part of said outlet opening.
According to a preferred embodiment of the invention the decanter centrifuge comprises a wall projecting from said external side of said base plate for guiding the substance discharged from said outlet opening in a direction opposite the direction of rotation of the bowl to recover kinetic energy from the substance, thereby combining the above advantages with the benefits of energy recovery.
According to a further embodiment of the invention the decanter centrifuge, the wall is extending from the vicinity of the outlet opening towards a rim of the base plate, said wall extending through a second angular interval adjacent the first angular interval, said second angular interval being at least 30°, preferably at least 45°, more preferably at least 60°, and said wall having in a radial plane perpendicular to the axis of rotation an inclination relative to the radial direction of at least 60°, preferably at least 70°, more preferably at least 75°, and the outlet opening is radially away from the axis of rotation delimited by a second edge, the wall and the second edge having in at least a major part of the first angular interval in a radial plane perpendicular to the axis of rotation an inclination relative to the radial direction of at least 60°, preferably at least 70°, more preferably at least 75°, said second edge constituting a weir edge when said outlet opening is uncovered. In this way a decanter centrifuge combining the above advantages with a particularly advantageous energy recovering structure is provided.
According to a preferred embodiment of the invention the outlet opening is delimited by a circumferential edge comprising three parts, a first part constituting the second edge and having relative to the axis of rotation a proximal end and a distal end, a second part extending from the distal end of the first part towards the axis of rotation and a third part connecting the first part and the second part, the slide valve body comprises an opening delimited by a circumferential edge comprising three sections, a first section extending in a direction, which with respect to a circumferential direction comprises an inclination of less than 30°, preferably less than 20°, more preferably less than 15°, said first section having relative to the axis of rotation a proximal end and a distal end, a second section extending from the distal end of the first edge towards the axis of rotation and a third section connecting the first section and the second section, and the slide valve body is provided for rotation around the axis of rotation. Thereby is provided for a decanter centrifuge by which the abovementioned advantages are obtained in a particularly simple way.
According to a preferred embodiment of the invention the decanter centrifuge comprises a stop means adapted for delimiting the rotation around the axis of rotation of said slide valve body.
Such a stop means provides for a slide valve body that may be limited in rotation to cover a desired range of positions and that may provide for a marking of extreme positions of the slide valve body, e.g. fully closed and fully opened opening. Also, such a stop may provide for elimination of any possible disadvantages connected with positions outside the chosen range. For instance a stop may provide for avoiding rotating the slide valve body to far. For instance when desiring fully open outlet openings rotating the slide valve body too far may result in inadvertently still covering part of the outlet opening.
According to a preferred embodiment of the invention the base plate comprises a plurality of, preferably three, outlet openings, and said slide valve body comprises a plurality of, preferably three, corresponding openings, thereby providing for the possibility of adjusting the liquid level at more than one outlet opening simultaneously.
According to a preferred embodiment of the invention the decanter centrifuge comprises a drive for sliding, especially rotating, the slide valve body, thereby providing for automatic and continuous adjustment of the liquid level in the bowl and/or of the weir edge, even during operation of the decanter centrifuge.
According to a preferred embodiment of the invention the slide valve body is a one piece body, thereby providing for simultaneous adjustment of the liquid level in the bowl and/or of the weir edge with respect to several outlet openings.
The invention will now be described in further detail based on a non-limiting exemplary embodiment, and with reference to the drawings. In the drawings,
For the sake of simplicity directions “up” and “down” are used herein as referring to a radial direction towards the axis 5 of rotation and away from the axis 5 of rotation, respectively.
The bowl 2 comprises a base plate 6 provided at one longitudinal end of the bowl 2, which base plate 6 has an internal side 7 and an external side 8. The base plate 6 is provided with a number of liquid phase outlet openings 9. Furthermore the bowl 2 is at an end opposite to the base plate 6 provided with solid phase discharge openings 10.
Further the screw conveyor 3 comprises inlet openings 11 for feeding e.g. a slurry to the decanter centrifuge 1, the slurry comprising a light or liquid phase 12 and a heavy or solid phase 13. During rotation of the decanter centrifuge 1 as previously described, separation of the liquid 12 and solid 13 phases is obtained. The liquid phase 12 is discharged through the outlet openings 9 in the base plate 6, while the screw conveyor 3 transports the solid phase 13 towards the solid phase discharge openings 10 through which the solid phase 13 is eventually discharged.
The weir edge 22 is radially away from the axis of rotation 5 forming a delimitation of the outlet opening 9, the weir edge 22 extending through the first angular interval 25 and having in the first angular interval 25 in a radial plane perpendicular to the axis of rotation 5 an inclination relative to the radial direction of about 82°. However, the said inclination of the weir edge 22 may in other embodiments take other smaller or larger values.
On the base plate 6 is provided a slide valve body 40 in one piece comprising three openings 45 corresponding in shape and orientation to the outlet openings 9. Alternatively there may be provided a separate slide valve body for each outlet opening in the base plate 6.
The slide valve body is in
Furthermore, the slide valve body 40 comprises a level sensor comprising two sensor elements 42a, 42b. In this embodiment the sensor elements 42a, 42b are RFID sensor elements, and are adapted for monitoring (i.e. measuring and communicating to an external device or the above mentioned adjustment means) the liquid level in the bowl 2 of the decanter centrifuge 1. Such sensor elements are in principle capacitive elements sensing a change of the liquid level by a change in the dielectric value between the capacitor plates. The sensor elements 42a, 42b are connected to a coil 43 that is concentric with the axis of rotation 5 (
In the embodiment shown, the slide valve body 40 is provided on the internal side of the base plate 6. However, the slide valve body 40 may in principle also be mounted on the external side, i.e. opposite the internal side, of the base plate, e.g. between the base plate and an external liquid phase discharge member mounted on the base plate 6 for the purpose of energy recovery. In case the slide valve body 40 is mounted on the external side of the base plate 6 it is, however, preferable if the sensor elements 42a, 42b are still mounted internally in the bowl 2 of the decanter centrifuge 1 to ensure correct measurement of the liquid level.
Since the size and shape of the openings 45 of the slide valve body 40 are substantially identical to the size and shape of the outlet openings 9, the openings 45 of the slide valve body 40 comprise edges parallel to the weir edges 22 of the outlet openings 9. Rotating the slide valve body 40 from the neutral position in the opposite direction compared to the situation in
The decanter centrifuge discharge member 20 and the base plate 6 comprise a plurality of outlet openings 9. In the embodiment shown in
As previously mentioned, each outlet opening 9 is delimited by a circumferential edge comprising three parts 22, 23, 24. The third part 24 extends in the embodiment shown along a drawing of a circle on the base plate 6.
The weir edge 22 is radially away from the axis of rotation 5 forming a delimitation of the outlet opening 9, the weir edge 22 extending through the first angular interval 25 and having in the first angular interval 25 in a radial plane perpendicular to the axis of rotation 5 an inclination relative to the radial direction of about 82°, the first angular interval 25 having an extension of about 60 to 65°. It is noted that in this embodiment the general shape of the outlet opening 9 remains uncritical as long as the weir edge 22 is provided in the first angular interval 25 in a radial plane perpendicular to the axis of rotation 5 with an inclination relative to the radial direction preferably being at least 60°.
Furthermore the decanter centrifuge discharge member 20 comprises adjacent each outlet opening 9 a wall 21 extending in a direction opposite to the direction of rotation denoted by an arrow 27 through the first angular interval 25 along the weir edge 22 with substantially the same inclination relative to the radial direction as the weir edge 22. The transition from weir edge 22 to wall 21 is preferably substantially smooth.
The wall 21 further extends through the second angular interval 26 towards the rim 29 of the base plate 6 with an inclination relative to the radial direction increasing towards the rim 29. In the embodiments shown the wall 21 has a total angular extension of approximately 180°, thus ending adjacent the rim 29 at the far end 39 of the wall 21 opposite the outlet opening 9. At the rim 29, the inclination of the wall 21 relative to the radial direction has increased from the initial about 82° to about 88° to 90°. Both the angular extension and inclination relative to the radial direction of the wall 21 and the weir edge 22 of the outlet opening 9 may take other values than stated above. However, as a rule of thumb the longer the angular extension of the wall 21 the more efficient the energy recovery obtained. Preferably the angular extension of the wall 21 through the second angular interval 26 is at least 30°.
The wall 21 further comprises a raised part 30, whereby the wall 21 is provided with the shape of an open channel, as will be described in detail below.
At the far end 39 of the wall 21 the decanter centrifuge discharge member 20 comprises a discharge area 38, the liquid phase leaving the wall over the discharge area 38 in a direction substantially opposite the direction of rotation denoted by arrow 27.
The perspective view of
Furthermore, it can be seen that the second part 23 of the circumferential edge of the outlet opening 9 may be provided with an inclination with respect to a direction parallel with the axis of rotation 5 and pointing in a direction opposite the direction of rotation (arrow 27). A transition 37 from the outlet opening 9 to the wall 21 is preferably flush to provide a smooth, lossless flow from the outlet 9 onto the wall 21, but a small step to a larger radial distance from the axis of rotation may be present in the transition 37 from the outlet 9 to the wall 21.
Turning to
It should be noted that the above description of preferred embodiments is merely an example, and that the skilled person would know that numerous variations are possible without departing from the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2008 01846 | Dec 2008 | DK | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2009/055926 | 12/23/2009 | WO | 00 | 9/23/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/076750 | 7/8/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3580492 | Schnittger et al. | May 1971 | A |
4334647 | Taylor | Jun 1982 | A |
4556873 | Yamada et al. | Dec 1985 | A |
4575370 | LaMontagne | Mar 1986 | A |
4764163 | Caldwell | Aug 1988 | A |
4950219 | Luchetta | Aug 1990 | A |
5217428 | Schlip et al. | Jun 1993 | A |
5653674 | Leung | Aug 1997 | A |
5685819 | Nishida et al. | Nov 1997 | A |
5948271 | Wardwell et al. | Sep 1999 | A |
8845506 | Walraven et al. | Sep 2014 | B2 |
20040072667 | Leung et al. | Apr 2004 | A1 |
20110143906 | Geehan et al. | Jun 2011 | A1 |
20120021889 | Eiken | Jan 2012 | A1 |
20120028782 | Eiken | Feb 2012 | A1 |
20140235423 | Pasol et al. | Aug 2014 | A1 |
20140274651 | Geehan et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
200982796 | Nov 2007 | CN |
10021642 | Nov 2001 | DE |
1588769 | Oct 2005 | EP |
2233258 | Sep 1991 | GB |
11179236 | Jun 1999 | JP |
11-197547 | Jul 1999 | JP |
11-197548 | Jul 1999 | JP |
9427726 | Dec 1994 | WO |
2008138345 | Nov 2008 | WO |
Entry |
---|
International Search Report; International Application No. PCT/IB2009/055926, Date Mailed May 12, 2010. |
Number | Date | Country | |
---|---|---|---|
20120021889 A1 | Jan 2012 | US |