The present invention relates to retrieval systems and more specifically, to a device and system for lifting and/or moving objects that cannot be gripped and lifted safely and reliably by readily available, conventional means.
It is common to store decaying radioactive waste in vertical concrete cylindrical storage containers called tile holes. Within these tile holes are waste packages, which are formed in part by plastic and metal waste containers containing various levels of decayed radioactive wastes. These waste packages were originally loaded into the tile holes by a wire rope leader attached to the waste package. After each waste package was lowered into the tile hole, the wire leader was cut and the remaining length of wire remained attached to the waste package.
The tile holes are considered to be a temporary storage location. At some point the waste packages are to be retrieved, repackaged and put into a long term storage facility. Over time the containers have become degraded, with the plastic material of the waste containers being irradiated and becoming fragile, while the metal containers may have suffered from corrosion. Due to the degraded nature of the waste containers, retrieving these poses a significant safety risk as there is danger of the waste containers breaking apart.
Previous attempts made at retrieving decayed waste packages from tile holes have revealed that the existing retrieval tooling is inadequate. The waste container integrity after a number of years of storage introduced significant risk of failure and contamination if the waste container was damaged during the retrieval process. The method of retrieval currently available is to simply hook onto the wire that is attached to the waste packages and they are lifted out one at a time, using a crane. In a June 2010 retrieval campaign, two waste packages were successfully retrieved in this fashion. The operation was stopped when a leader detached from the third waste package, which prevented safe retrieval of the waste package using existing tooling. One of the waste packages retrieved from this tile hole was examined in one of Chalk River Laboratories hot cell facilities to evaluate the structural integrity of the plastic container.
The waste container shattered and broke apart when handled by manipulators, indicating that the waste containers had degraded over time.
It is not acceptable to have a retrieval system which may allow waste packages to fail and potentially release radioactive waste. There is therefore a need for an improved method and technology to lift waste packages safely from tile holes.
It is an object of the invention to provide an improved method and system to lift waste packages from tile holes.
A retrieval tool has been designed and developed that comprises air bladders that are inflated to clamp around the periphery of a waste package without creating pressure points. There is also a safety backup system that deploys a support platform below the waste package once partial lifting has begun. Other features of the retrieval tool include spring loaded fingers to move the waste package from the walls of the tile hole, guiding the waste package into the retrieval tool. The spring loaded fingers were found to be effective for a specific waste package form, but may equally be a tapered leading edge for differing packages. The system also has a number of other advantageous features that include the release and activation mechanisms of the backup safety system.
The heart of the retrieval tool comprises a sheet metal cylinder fitted with air bladders (wedges) that fits into the tile hole and has sufficient clearance inside to accommodate the waste package to be gripped. The air wedges are filled with air from a supply source, to a pressure sufficient to grip the waste container. In a recent demonstration on actual degraded waste packages, a pressure of 2.1 PSIG safely gripped these straight-walled containers weighing up to 50 Kg.
A backup safety system was also incorporated into the retrieval tool, comprising vertical safety rods that allow safety bar arms to be rotated under the load to provide support to the bottom of the waste package. The safety bar arms are curved such that when the safety bar arms are in the open or stowed position they take the form of the sheet metal cylinder and remain out of the way whilst the waste package is entering into the retrieval tool.
This retrieval tool provides the first practical method for large scale retrievals of degraded and fragile decayed waste packages from temporary storage tile holes.
There may be other applications that require a tool to provide limited loading when lifting containers, packages or anything that may require gentle and even pressure during lifting.
The functionality of this tool was tested in a November 2011 retrieval campaign. The November 2011 retrievals retrieved a total of four waste packages, and included a waste package with a failed lift cable identified in the June 2010 retrieval campaign. It was a very successful test, given that the lid of the last waste package lifted was observed to be broken within the tile hole, with a brittle failure similar to that of the container previously examined in the Chalk River Laboratories facilities. All four waste packages were retrieved without incident or further damage to the waste containers. The November 2011 campaign demonstrated that degraded waste packages can be safely gripped and retrieved from tile holes, and that the system of the invention is a viable option for the relocation of waste packages to alternate engineered storage locations.
Other systems, methods, features and advantages of the invention will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the following claims.
These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings wherein:
As explained above, recent attempts at retrieving decayed waste packages from tile holes have revealed that the existing retrieval tooling is inadequate. The waste container integrity after a number of years of storage introduced significant risk of failure and contamination if the waste container was damaged during the retrieval process. The current method of retrieval is to simply hook onto the wire leader that is attached to the waste packages and they are lifted out one at a time. Since some of the waste containers have degraded over time the risk of breaking the waste containers during retrieval is high.
A retrieval tool has been developed to address the problems in the art, employing six inflatable air wedges equally spaced inside the body of the retrieval tool. Any practical number of air wedges could be used, though for purposes similar to the one described, between 3 and 8 air wedges would generally be used. The tool body is in the form of a stainless steel cylinder that has been designed to fit between the tile hole internal diameter and the outside diameter of the waste package inside the tile hole. The air wedges are inflated to a low pressure (2.1 psig, for example) that is intended to provide a generally uniform pressure onto the outside of the waste packages to minimize the gripping force required to lift the waste packages. This will minimize the risk of damaging the decayed waste containers.
Also included in the design of the retrieval tool is a back-up system using “safety bars”. There are six safety bars that fit between the air wedges, and are fabricated from steel bars oriented vertically. Again, any practical number of safety bars could be used, though for purposes similar to the one described, between 3 and 8 safety bars would generally be used. The lower end of each bar is fitted with a horizontal arm and onto each horizontal arm is mounted spring steel “fingers” or other suitable leading edge. Both the horizontal arm and the “fingers” are curved to match the profile of the retrieval tool. When the horizontal arms are in the stowed or open position, the fingers form a tapered lead-in to help guide the waste package into the retrieval tool. Once the air wedges are pressurized, the captured waste package is lifted a short distance, and the horizontal arms are dropped downwards and then rotated to the closed position. When the horizontal arms are in the deployed or closed position they form a partial platform under the waste package, preventing large pieces of material, or the entire package, from falling due to the collapse of the waste container or failure of the air wedges.
Another aspect of the retrieval system is the addition of a containment control bag specifically designed to be hooked onto the retrieval tool, to enclose the waste package and its contents when transferring the waste package from the tile hole across the ground to its designated overpackage.
Prototype tools were built to verify and demonstrate the use of a pneumatic gripping system to lift waste packages from tile holes. As shown in the successful retrieval of the waste package during a test, the retrieval tool provides a gentle means of gripping degraded and brittle waste containers without further damage to that waste container. Other observations include:
Two primary prototype retrieval tools were developed: a Mark I tool and a later Mark II tool, both of which were built and tested. From observations made at the Mark I tool demonstration, there were a number of operating and design requirements to be included as part of the Design Inputs for the Mark II tool. The key inputs that were documented are as follows:
Thus, the following list of design inputs was developed:
These issues were addressed in developing the embodiment described herein.
This section describes the proof of concept retrieval tool features and its principal of operation.
The general assembly of the retrieval tool 10 can be seen in
A back-up feature is the use of a partial platform that can be positioned below the waste package being retrieved. Providing such a platform presented a design challenge since the partial platform had to allow the waste package to pass through it and into the stainless steel cylinder 12 as the retrieval tool 10 is being lowered. This requirement was met by using six rotatable “safety bars” 22. The lower part of each safety bar has a 90° horizontal arm 24 welded to it. The safety bar horizontal arms 24 are arcuately-shaped so that when retracted (in the “open” position) the safety bar horizontal arms 24 align with the leading peripheral edge of the stainless-steel cylinder 12, allowing the waste package to enter the retrieval tool 10.
The safety bars 22 are connected to a disc assembly 26 (a cam) that is located above the stainless steel cylinder 12. This disc assembly 26 is connected to a square hollow tube 28 that extends to the top of the retrieval tool 10. Inside the square tube 28 is the round lift tube 14 that connects to the stainless steel cylinder 12 and also to the top of the retrieval tool 10. It is the round lift tube 14 which bears the load of the system. The round lift tube 14 and square tube 28 can rotate relative to each other. When the square tube 28 is rotated, it turns the disc assembly 26 with respect to the stainless steel lower cylinder 12. This in turn rotates the safety bar arms 24 towards the centre of the stainless steel cylinder 12 providing a platform in case the waste package or parts of the waste package fall from the inside of the retrieval tool 10. Inside the round lift tube 14 are the pneumatic lines 30 connecting the inflatable air wedges 18 to compressor and vacuum system 32, and also wires connecting a video camera with integral LED lighting 34, and a radiation detector 36. The electronic data for radiation detection and camera footage is captured on a laptop computer, tablet computer or similar device.
Referring to
As shown in
As shown in the schematic diagram of
The general arrangement of the latest version of the retrieval tool 10 and major sub-assemblies are shown in
As shown in
The six rotatable safety bars 22 pass through the lift tube spider 82 welded to the top of the stainless steel cylinder 12, the upper ends of the rotatable safety bars 22 being connected to the actuator disk 26. As noted above, the actuator disk 26 can move between an upper position in which the safety bar horizontal arms 24 are recessed within the stainless steel cylinder 12, and a lower position in which the safety bar horizontal arms 24 drop below the bottom of the stainless steel cylinder 12. The actuator disk 26 is held in the upper position by means of the latch 84 shown in
As shown in
The lock plate 98 is a stainless steel plate with two holes through which the lock bar 102 may be inserted. This allows the rotational position of the actuator disk 26 to be fixed in one of two positions. This in turn, fixes the safety bar horizontal arms 24 in either the stowed or deployed position. The lock plate 98 is mounted to the lift tube spider 82 with threaded hex standoffs (2″ long×10-32 UNF threads, 18-8 stainless steel McMaster-Carr p/n 91115a417 or equal, and 10-32 UNF×⅜″ long socket button head cap screws, to meet ANSI b18.3 and ASTM f835).
The stop plate 100 is a stainless steel plate which rests on the top of the waste package after the retrieval tool 10 is lowered into position. The stop plate 100 is mounted to the lift tube spider 82 with ¼-20 UNC×5″ long threaded stud, 18-8 stainless steel, McMaster-Carr p/n 95412a562 or equal, and ¼-20 UNC hex nuts, 18-8 stainless steel, to AISI b18.22 and ASTM f594.
The camera mounting plate 102 is a stainless steel plate which is mounted to the lift tube spider 82, again, with threaded rod and hex nuts. Any suitable video camera 34 may be used, but in the prototype, Micro Video Products model number mvc2000wp-led, was used, with a 100′ cable and the focus distance set at 17″. A computer tablet may be used to operate this fixed focus camera. The camera was set up to give the clearest picture from the tip of the safety bars. It was used as a reference to ensure that the waste package was not slipping in the retrieval tool by observing any changes in the image. No slippage was observed in any of the retrievals.
The details of the actuator disk 26 construction are shown in
As shown in
The actuator disk assembly also includes a steel eyebolt 122 with a shoulder for lifting the assembly (¼″-20 thread, 500 lb working load min 1″-thread length).
The main square tube 28 is fabricated from stainless steel sheet, type 304L, 20 ga, 2b finish, material per ASTM a240. It has a number of brackets 132 welded along its length to guide the lock rod 130. Each lock rod lift bracket 132 has a pair of rod clamps to guide the lock rod 130. One or more clamp-on stainless steel shaft collars (¼″ two-piece clamp-on stainless steel shaft collar McMaster-Carr p/n 6436k32 or equal) may be fastened to the lock rod 130 to limit its range of longitudinal movement within the guides.
Thus, the lock rod 130 slides vertically through holes in the actuator disk assembly 26 shown in
A detail of the load limiter assembly 16 is shown in
In this assembly four pneumatic cylinder tie rods 142 (forming part of Motions Controls LLC 2½″ bore×12″ stroke cylinder, p/n d49senc s112 ra1 or equal) and pneumatic cylinder tie rod nuts 144 (forming part of Motions Controls LLC 2½″ bore×12″ stroke cylinder, p/n d49senc s112 ra1 or equal) fasten together the upper end cap 146 and lower end cap 148 (pneumatic cylinder end cap assembly, Motions Controls LLC 2½″ bore×12″ stroke cylinder, p/n d49senc s112 ra1 or equal).
A pneumatic cylinder piston and rod assembly 150 (forming part of Motions Controls LLC 2½″ bore×12″ stroke cylinder, p/n d49senc s112 ra1 or equal) is housed within a pneumatic cylinder barrel 152 (forming part of Motions Controls LLC 2½″ bore×12″ stroke cylinder, p/n d49senc s112 ra1 or equal). The pneumatic cylinder barrel 152 also houses three standard music wire compression springs 154 (1.937 OD×4.5″ free length 89.2 lb force at 2.788″ compressed height, k=52.1 lb/ln, Associated Spring Raymond p/n c1937-192-4500-m), which are seated against load limiter end spring cups 156 at the upper and lower end, and are divided by two load limiter center spring cups 158 within the pneumatic cylinder barrel 152.
Prior to the retrieval tool 10 being presented and lowered into the tile hole, via a crane, there are two operations that were deemed to be required. The first requirement is to place a contamination control bag 170 around the protruding tile hole outside diameter.
The other operation is to hook the wire leader attached to the waste package to be retrieved, from inside the tile hole and to thread it through the top of the stainless steel cylinder 12 of the retrieval tool 10. The wire leader hook 180 shown in
Before lowering the retrieval tool 10 into the tile hole the actuator disc assembly 26 is set to its raised position and the safety bars 22 are locked into their “open” position. The radial positions of the outer square tube 28 relative to the inner round tube 14 are marked on the retrieval tool 10 as “open” and “closed” as shown by
When the retrieval tool 10 is lowered into the tile hole it will eventually come to rest via the stop plate 100 located on the inside of the retrieval tool 10. To avoid having the whole weight of the retrieval tool 10 bearing down onto the top of the waste package to be retrieved, a load limiter 16 containing a reaction spring was incorporated near to the top of the retrieval tool 10 positioned close to the lifting hook 140 to remove the full weight of the retrieval tool 10 from crushing the waste packages within the tile hole. The point at which the retrieval tool 10 makes contact with the top of the waste package to be retrieved is determined with the aid of the video camera 34. The video camera 34 sits in the middle of the stainless steel cylinder 12 of the retrieval tool 10 and points in the vertically downward direction, sitting just above the stop plate 100. By using the live video recording the point in time at which the descent of the retrieval tool 10 stops can be observed. This is when the retrieval tool stop plate 100 makes contact with the waste package.
Prior to lowering the retrieval tool 10 over a package, the compressor and vacuum system 32 is switched on to deflate the inflatable air wedges 18 to provide maximum clearance between the retrieval tool 10 and the waste package. At the point in which the retrieval tool 10 has reached its appropriate engagement distance into the tile hole, the inflatable air wedges 18 are inflated by actuating the valves shown in
When the retrieval tool 10 is raised near to the surface, the contamination control bag 170 is hooked onto the retrieval tool 10 with a hand tool, and two cinch cords 176 are pulled in opposite directions to close the bottom of the contamination control bag 170 which is then tied in place. The waste package within the retrieval tool 10 is then transferred with the contamination control bag 170 still hooked to the retrieval tool 10 and is placed into an overpack container for further disposal. In case the wire leader has to be severed inside the tile hole the cutting tool 186 shown in
Performance parameters for the described Mark II retrieval tool are as follows:
A number of commissioning tests were carried out. One of the commissioning tests included the ability of the air wedges to support a full load. A successful test was carried out and documented. This test assisted in setting the working pressure of the air wedges, set at 2.1 psig, and provided a significant safety factor for subsequent demonstrations and future development testing.
The first meeting to demonstrate the Mark II retrieval tooling took place in Chalk River Laboratories B456 facility on 2011 Sep. 28. From the initial demonstration, a draft Operating Instruction was compiled and used for a number of subsequent demonstrations and training sessions led by the operations team that also involved riggers and crane operators. The feedback from all participants assisted in developing the Operating Instruction for the next phases of training and testing.
The next phase of testing was carried out on a new tile hole using inactive packages on two separate days 2011 Sep. 22 and 29. When the retrieval tool was initially placed into the tile hole aperture it was noted there was not a significant amount of clearance between the outer part of the retrieval tool and the inside of the tile hole. With the aid of some rotation and shaking, the retrieval tool dropped into the tile hole and once past the entrance descended with ease. It was later noted that the entrance to the tile hole appeared to be reduced compared to the general diameter of the tile hole.
There are up to nine packages contained within a tile hole and the designated numbering system is that package #1 is at the bottom and #9 is at the top of the tile hole. Packages #8 and #9 were removed with no unusual events and the decontamination control bag worked as expected.
However, a problem did occur when retrieving waste package #7. It was observed that the retrieval tool would not drop sufficiently over waste package #7. Two likely reasons for this included:
On 2011 Oct. 19, a series of five tiles holes located in a different array than that of the planned retrievals were opened and measured, the tile holes being found to have a narrower diameter than the design specification of the retrieval tool. Despite the discrepancy, the functionality of the retrieval tool was still found to be effective. The top of these tile holes ranged from 14.44″ diameter to 14.75″ diameter (below the minimum tolerance of 14.75″). The tool was then modified by grinding the heads of the screws on the periphery of the retrieval tool body, and the modified tool was then tried in each of the five tile holes. The tool entered three of the five tile holes without difficulty including the initial test hole, and was stopped halfway down one of the tile holes by a projecting lump of concrete spatter.
It should be noted that the overriding objective was to validate the proof-of-concept tooling. The heart of the retrieval tooling is the application of inflatable surfaces to limit the radial forces acting on the waste containers and this aspect worked well. The issue of fitting the retrieval tool inside the tile hole can in part be accommodated by reducing the outside diameter of the retrieval tool if the retrieval tool is needed for future retrievals.
The two main issues from field trials were:
As noted above, the principles of the invention may be applied to various types of waste packages and tile hole arrangements. In this regard, a Mark III retrieval tool was developed to accommodate a slightly different, and more durable, type of waste package. Specifically, the Mark III design addresses a scenario where:
This scenario allowed the number of air wedges and safety bars to be reduced. It also allowed changes to be made to the opening into the retrieval tool, and the deflation system for the inflatable air wedges. These changes simplified the design of the retrieval tool and reduced the cost of fabrication.
As shown in
The issue of how much of the stainless steel cylinder 12 surface to cover with inflatable air wedges 18 is a matter of balancing the fragility of the waste package with the desire to reduce complexity. At one extreme a small number of inflatable air wedges 18 would result in a small number of higher pressure, discrete pressure points, while at the other extreme, a large coverage area of inflatable air wedges 18 would result in lower pressure, uniform loading. The Mark II was successful since it applied this uniform pressure, allowing the circular cross section of the waste package to act in like a masonry arch. All elements of the waste package were in uniform compression, so they did not fail.
The Mark III scenario allows the luxury of a waste package which would allow discrete pressure points. Although the inflatable air wedges 18 in the Mark III design place compression forces at more discrete points, enough friction is established to lift the waste package without damaging it.
Generally, the retrieval tool would be designed with a correlation between the number of inflatable air wedges 18 and the number of rotatable safety bars 22. Typically, the same number of each would be used so that they do not interfere with one another, though one could use twice as many air wedges as safety rods, or vice versa. For example, one could place two inflatable air wedges between each safety rod.
In the Mark III design, the triangular shaped metal fingers 20 were not used as it was found that using a stainless steel cylinder 12 with a tapered leading edge was sufficient and more practical. Since the waste packages are more robust for the Mark III retrieval tool, it was acceptable to use a greater force rather than finesse to get the retrieval tool over the waste package Eliminating the triangular shaped metal fingers 20 reduces complexity, and makes the tool itself more robust.
As shown in
Finally, the use of a vacuum to collapse the inflatable air wedges was eliminated from the Mark III design in favor of a spring-loaded air wedge mounting design. As shown in
Many variations to the described system are possible. Examples of variations include:
Other changes and variations also follow logically from the description herein, particularly to accommodate the design of specific tile holes and/or waste packages.
One or more currently preferred embodiments have been described by way of example. It will be apparent to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as defined in the claims.
All citations are hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2772752 | Mar 2012 | CA | national |
Number | Date | Country | |
---|---|---|---|
Parent | 14388534 | Sep 2014 | US |
Child | 16444081 | US |