This disclosure relates to decentralized cargo delivery and markets thereof.
Transportation systems require a central repository and central orchestration to operate. For example, a taxi service may receive a pickup request from a central server or server cluster configured to organize transportation. Central authorities may require undesirable maintenance and upkeep that original equipment manufacturers and other transportation providers avoid.
A vehicle includes a controller. The controller is configured to receive a transaction defining an order for a predetermined unit of cargo space of the vehicle and being recorded in a blockchain, containing a ledger describing availability of the cargo space, validated by nodes of a decentralized peer network such that the blockchain is common to the nodes. The controller is further configured to execute commands to travel to a pickup location upon confirmation of the transaction to the decentralized peer network.
A vehicle includes a controller configured to receive a transaction defining an order for a predetermined unit of cargo space of the vehicle and being recorded in a blockchain, containing a ledger describing availability of the cargo space, validated by nodes of a decentralized peer network such that the blockchain is common to the nodes. The controller is further configured to reserve the cargo space for goods related to the order upon confirmation of the transaction to the decentralized peer network.
A method by a controller includes receiving a transaction defining an order for a predetermined unit of cargo space of a vehicle and being recorded in a blockchain, containing a ledger describing availability of the cargo space, validated by nodes of a decentralized peer network such that the blockchain is common to the nodes. The method further includes executing commands to travel to a pickup location upon confirmation of the transaction to the decentralized peer network.
Embodiments of the present disclosure are described herein. It is to be understood, however, that the disclosed embodiments are merely examples and other embodiments may take various and alternative forms. The figures are not necessarily to scale; some features could be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention. As those of ordinary skill in the art will understand, various features illustrated and described with reference to any one of the figures may be combined with features illustrated in one or more other figures to produce embodiments that are not explicitly illustrated or described. The combinations of features illustrated provide representative embodiments for typical applications. Various combinations and modifications of the features consistent with the teachings of this disclosure, however, could be desired for particular applications or implementations.
Decentralized transactions through blockchain technology enables vehicle cargo holds to be made available for sale without management and upkeep by a central authority. Indeed, an online marketplace for transactions provides users with the ability to purchase cargo space of vehicles already en route. For example, an autonomous vehicle may be taxiing passengers from one location to the next and driving near a cargo pickup location. The vehicle's route may also traverse past a delivery location for the cargo. Such route information may be made available to an online marketplace along with cargo hold availability information to enable users to bid on the available cargo hold space. Accepted bids may be sent to a decentralized transaction register operating on vehicles subscribed to the service. When a vehicle recognizes that its cargo space has been purchased, the vehicle may update itinerary and route information in accordance with the transaction. Without requiring a central authority, vehicles may transact to loan out predetermined units of cargo.
The vehicle 102 may include various types of automobile, crossover utility vehicle (CUV), sport utility vehicle (SUV), truck, recreational vehicle (RV), boat, plane, drone, or other mobile machine for transporting people or goods. In many cases, the vehicle 102 may be powered by an internal combustion engine. As another possibility, the vehicle 102 may be a hybrid electric vehicle (HEV) powered by both an internal combustion engine and one or more electric motors, such as a series hybrid electric vehicle (SHEV), a parallel hybrid electrical vehicle (PHEV), or a parallel/series hybrid electric vehicle (PSHEV). As the type and configuration of vehicle 102 may vary, the capabilities of the vehicle 102 may correspondingly vary. As some other possibilities, vehicles 102 may have different capabilities with respect to passenger capacity, towing ability and capacity, and storage volume.
The VCS 106 may be configured to support voice command and BLUETOOTH interfaces with the driver and driver carry-on devices, receive user input via various buttons or other controls, and provide vehicle status information to a driver or other vehicle 102 occupants. An example VCS 106 may be the SYNC® system provided by FORD MOTOR COMPANY of Dearborn, Mich.
The VCS 106 may further include various types of computing apparatus in support of performance of the functions of the VCS 106 described herein. In an example, the VCS 106 may include one or more processors configured to execute computer instructions, and a storage medium on which the computer-executable instructions and/or data may be maintained. A computer-readable storage medium (also referred to as a processor-readable medium or storage) includes any non-transitory (e.g., tangible) medium that participates in providing data (e.g., instructions) that may be read by a computer (e.g., by the processor(s)). In general, a processor receives instructions and/or data, e.g., from the storage, etc., to a memory and executes the instructions using the data, thereby performing one or more processes, including one or more of the processes described herein. Computer-executable instructions may be compiled or interpreted from computer programs created using a variety of programming languages and/or technologies, including, without limitation, and either alone or in combination, Java, C, C++, C#, Fortran, Pascal, Visual Basic, Python, Java Script, Perl, PL/SQL, etc.
The VCS 106 may be configured to communicate with TCU 120A. The TCU 120A may include a plurality of modems 122 capable of packet-switch or circuit-switched signaling. The TCU 120A may control the operation of the modems 122 such that a suitable communication path is used. The modems may be configured to communicate over a variety of communications paths 130. The paths may be configured with circuit-switched, packet-switched, signaling, or combination thereof. Packet-switched communication paths may be Internet Protocol (IP)-based or use packet-based switching to transfer information. For example, the packet-switched communication may be long-term evolution (LTE) communications. In some circumstances the circuit-switched communication path may be SIGTRAN or another implement, carrying circuit-switched signaling information over IP. The underlying signaling information is, however, still formatted under the circuit-switched protocol.
The VCS 106 may also receive input from human-machine interface (HMI) controls 108 configured to provide for occupant interaction with the vehicle 102. For instance, the VCS 106 may interface with one or more buttons or other HMI controls 108 configured to invoke functions on the VCS 106 (e.g., steering wheel audio buttons, a push-to-talk button, instrument panel controls, etc.). The VCS 106 may also drive or otherwise communicate with one or more displays 110 configured to provide visual output to vehicle occupants, e.g., by way of a video controller. In some cases, the display 110 may be a touch screen further configured to receive user touch input via the video controller, while in other cases the display 110 may be a display only, without touch input capabilities. In an example, the display 110 may be a head unit display included in a center console area of the vehicle 102 cabin. In another example, the display 110 may be a screen of a gauge cluster of the vehicle 102.
The VCS 106 may be further configured to communicate with other components of the vehicle 102 via one or more in-vehicle networks 112 or vehicle buses 112. The in-vehicle networks 112 may include one or more of a vehicle controller area network (CAN), an Ethernet network, and a media oriented system transfer (MOST), as some examples. The in-vehicle networks 112 may allow the VCS 106 to communicate with other vehicle 102 systems, such as a vehicle modem of the TCU 120A (which may not be present in some configurations), a global positioning system (GPS) module 120B configured to provide current vehicle 102 location and heading information, and various other vehicle ECUs configured to cooperate with the VCS 106. As some non-limiting possibilities, the vehicle ECUs may include a powertrain control module (PCM) 120C configured to provide control of engine operating components (e.g., idle control components, fuel delivery components, emissions control components, etc.) and monitoring of engine operating components (e.g., status of engine diagnostic codes); a body control module (BCM) 120D configured to manage various power control functions such as exterior lighting, interior lighting, keyless entry, vehicle door locking and unlocking, remote start, and point of access status verification (e.g., closure status of the hood, doors and/or trunk of the vehicle 102); a radio transceiver module (RCM) 120E configured to communicate with key fobs or other local vehicle 102 devices including mobile phones and nomadic devices; a climate control management (CCM) 120F module configured to provide control and monitoring of heating and cooling system components (e.g., compressor clutch and blower fan control, temperature sensor information, etc.); and a battery control module (BACM) 120G configured to monitor the state of charge or other parameters of the battery of the vehicle 102.
In an example, the VCS 106 may be configured to access the communications features of the TCU 120A by communicating with the TCU 120A over a vehicle bus 112. As some examples, the vehicle bus 112 may include a controller area network (CAN) bus, an Ethernet bus, or a MOST bus. In other examples, the VCS 106 may communicate with the server 150 via a server modem 152 using the communications services of the modems 122. The server 150 may include a datastore or database repository including access keys and pre-shared symmetric keys for all of the manufactures vehicles. The server 150 may include multiple access keys and symmetric keys for vehicle 102. The server 150 may associate one access key with a plurality of pre-shared symmetric keys via key identifiers. The key identifiers may be defined by manufacturer makes and models. The server 150 may receive the access keys or pre-shared keys from the vehicle 102 during manufacture or designate access keys and symmetric keys during manufacture or during use of the vehicle 102.
The system 100 includes additional vehicles 140, 142. The additional vehicles 140, 142 provide a decentralized network 132 of nodes for validating a blockchain of transactions as shown in
Referring to
As shown in
Referring to
In step 408, the vehicle 102 may recognize that a transaction defining an order related to its vehicle through digital signatures is stored within the blockchain 300. Upon recognition, the vehicle 102 waits for confirmation of the transaction 210 from the decentralized network that the transaction 210 is valid. This validation may require waiting for a sufficient number of additional blocks 302 to be added such that the transaction 210 corresponding to the vehicle 102 is within the valid chain of blocks 302 after a fork. In step 412, the vehicle 102 reserves a predetermined unit 172 of cargo space 170. The reservation may lock the predetermined unit 172. The vehicle 102 may lock the cargo hold 160 in step 414 to ensure the predetermined unit 172 is not accessed. In step 416, the vehicle 102 may execute commands to travel to the pickup location 204. The autonomous vehicle commands may include retrieving information from the GPS receiver 120B and other vehicle systems. The commands are executed until the vehicle 102 determines it has arrived at the pickup location 204 in step 418. At the pickup location 204 the vehicle 102 opens the cargo hold 160 in step 420. In step 422, the vehicle 102 unlocks the predetermined unit 172 of cargo space 170. After receiving the cargo in step 424, the vehicle 102 locks the cargo hold 160 and the predetermined unit 172. The vehicle 102 then executes commands in step 428 to reach the delivery location 206. After arriving at the delivery location 206 in step 430 the vehicle opens the cargo hold 160 in step 432 and the predetermine unit 172 in step 424. After the cargo is retrieved in step 436, the vehicle 102 continues to the destination 208.
The words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the disclosure. As previously described, the features of various embodiments may be combined to form further embodiments of the invention that may not be explicitly described or illustrated. While various embodiments could have been described as providing advantages or being preferred over other embodiments or prior art implementations with respect to one or more desired characteristics, those of ordinary skill in the art recognize that one or more features or characteristics may be compromised to achieve desired overall system attributes, which depend on the specific application and implementation. These attributes may include, but are not limited to cost, strength, durability, life cycle cost, marketability, appearance, packaging, size, serviceability, weight, manufacturability, ease of assembly, etc. As such, embodiments described as less desirable than other embodiments or prior art implementations with respect to one or more characteristics are not outside the scope of the disclosure and may be desirable for particular applications.