The present invention relates to a decentralised patient management system. The invention also relates to a method of evaluating the efficacy of therapeutic intervention in a patient by assessment of different steady state visually evoked potentials.
U.S. Pat. Nos. 4,955,388 and 5,331,969 (the contents of which are hereby incorporated herein by reference) disclose techniques for obtaining a steady state visually evoked potential (SSVEP) from a patient. These patents disclose the use of Fourier analysis in order to rapidly obtain the SSVEP's and changes thereto. It has now been appreciated that those techniques can be utilised to monitor the efficacy of treatment of patients. In one embodiment patients are located at one or more remote sites and the SSVEP signals are sent to a central analysis site for processing. The central analysis site reports back to the remote site where the medical practitioner, psychiatrist or the like can receive a report on the likely suitability of a particular treatment for the patient. By using standard communications techniques and the Internet the remote sites can be established with relatively inexpensive hardware and software, but have access to the more sophisticated analysis system located at the central analysis site.
In another embodiment, the efficacy of a therapeutic intervention or treatment can be made by assessing the differences between SSVEP's of a patient before and during the application of a treatment or intervention.
According to the present invention there is provided a system for evaluating the efficacy of therapeutic treatments of patients located at remote sites, the system including:
The invention also provides a method of evaluating the efficacy of therapeutic intervention in a patient including the steps of recording a first steady state visually evoked potential (SSVEP) from the patient while undertaking a first cognitive task, carrying out a therapeutic intervention or treatment on the patient, recording a second steady state visually evoked potential (SSVEP) from the patient while undergoing a second cognitive task, assessing the efficacy of the therapeutic intervention on the basis of differences between the first and second SSVEP's.
Preferably the first and second cognitive tasks are similar or the same.
Preferably the therapeutic intervention or treatment is for the purpose of treating neuropsychiatric disorders.
Preferably the step of carrying out the therapeutic intervention includes the step of administering a test dose of a psychotropic medication.
The psychotropic medication may comprise all chemical compounds or combination of chemical compounds used in the treatment of psychiatric, psychological, behavioural, educational or neurological disorders.
Preferably the step of assessing the efficacy includes the steps of detecting changes associated with therapeutic intervention in the SSVEP amplitude and/or phase topography and/or inter-electrode SSVEP coherence.
The invention also provides a method of evaluating the efficacy of therapeutic treatments of patients located at remote sites, the method including the steps of:
Preferably the first and second signals are steady state visually evoked potentials (SSVEP's).
The invention also provides a system for evaluating the efficacy of therapeutic treatments of patients located at remote sites, the system including:
The invention also provides a method of evaluating the efficacy of therapeutic intervention in a patient including the steps of:
The invention also provides a test site for evaluation of the efficacy of a therapeutic treatment of a patient, the test site including:
The invention also provides a method of evaluating the efficacy of therapeutic treatments of a patient located at a test site, the method including the steps of:
The invention will now be further described with reference to the accompanying drawings, in which:
The central analysis site 4 is shown in more detail in FIG. 2. It comprises a central computer network 16 which is coupled for two-way communication to the link 12. The network 16 preferably comprises an array of computers which are linked together to achieve the computing power necessary to process multimedia material as well as analysing the large amount of EEG data from patents at the remote sites. Additionally, the network includes appropriate hardware and software to handle various forms of the cognitive tasks to be presented to patients. The cognitive tasks are selected to probe various aspects of brain function such as attention, recognition memory, working memory, cognitive flexibility, perceptual-motor function, the perception of emotion and the experience of emotion.
The network 16 is coupled to output devices 18 such as printers and/or video recorders or the like. The network 16 may be coupled to a number of input devices 24 such as video and/or audio input devices for receiving material to be presented to patients. The computer network 16 may be coupled to an archival mass storage system 26 for electronic storage of inputs and signals received from the remote sites. The central analysis site may include various output devices 28 including a printer, video recorder for producing video output.
The computer network 16 includes programs which utilise Fourier analysis to produce the changes in steady state response of the brain of a patient when the time varying cognitive task stimulus is presented to the patient. These techniques are disclosed in the aforementioned United States patents and therefore need not be described in detail. Alternatively, analog or hybrid circuitry may be provided at the central analysis site for detection of the required signals, again in accordance with the principles disclosed in the aforementioned patents.
In summary, the central analysis site 4 performs a number of functions including:
The remote sites 6 would normally be an appropriate medical establishment such as a hospital, clinic, psychiatrist's room or general practitioner's room. The electrical brain activity of the patient is recorded at the site and signals representative of this activity together with appropriate information on the cognitive task will be transferred to a central analysis site 4 via the Internet (or some other appropriate medium). The central analysis site 4 analyses the brain electrical activity and generates topographic maps of SSVEP amplitude and phase.
A typical session may involve testing a prospective patient's response to an anxiolytic (anxiety reducing) agent. The patient will undertake a cognitive task and steady state probe topography (SSPT) recording prior to and a predetermined time, say two hours, after the administration of a test does of the proposed medication. Brain activity before and after drug administration are compared and the clinician is advised from reports from the central analysis site 4 as to whether the patient is likely to benefit from long term administration of the medication and the possibility of side-effects.
Patient progress may also be monitored during a course of the drug with the SSPT methodology and decisions on variations in dosage levels as well as discontinuation of treatment may be made more efficiently.
A typical medical consultation utilising the system of the invention typically includes the following steps:
A similar approach could be used for ongoing monitoring of patient treatment.
The central analysis site 4 may utilise communication software and appropriate communications hardware to receive data from the remote sites 6 such as packages which are commercially available and therefore need not be described in detail. An example would be WS FTP32 or Cute FTP.
Brain electrical activity together with specific timing information on events in the test material is uploaded from the various test sites 6 as explained in more detail below.
A typical test site 6 is shown in more detail in FIG. 3. The test site 6 typically includes a computer 30 coupled to a monitor 32 or television set, keyboard 34 and mouse 36 or other pointing device. The computer 30 is coupled to the Internet 10 by means of the modem 14, as shown. The test site 6 includes the helmet 38 or other multi-electrode system which is arranged to pickup electrical brain activity of the patient 40, the helmet or other multi-electrode system being coupled to the computer 30 by means of a control and interface circuit 42.
The computer 30 preferably comprises a network computer or PC or the like which includes an additional, dedicated bard drive 44 which is used exclusively for the invention. The software required for display of test material to the patient 40 and for controlling transmission of brain activity signals to the central analysis site 4 is preferably stored on the dedicated hard drive 44.
The helmet 38 includes a plurality of electrodes which can pickup brain activity of the patient 40. The helmet 38 includes a visor 46 through which the patient 40 can view the test material displayed on the monitor 32. The visor 46, however, provides for the display of a continuous-background flicker to the peripheral vision of the patient.
Signals representing electrical brain activity are detected by and recorded in the interface circuit 42. Generally speaking, the interface circuit 42 is arranged to filter and amplify the signals and then digitise and store the signals in an encrypted format.
The luminance output of LED devices is not linear with respect to the applied voltage. Accordingly, in accordance with the invention, circuitry is provided to control the LED outputs so as to be linear. This is accomplished by using a feedback circuit 60 as shown in FIG. 11. The circuit 60 includes a phototransistor 61 coupled to the negative input of an operational amplifier 62. The phototransistor 61 is arranged to receive output from one or other of the LED arrays 54 and 56 or a further LED device connected thereto. The circuit 60 provides feedback for an LED drive circuit 64, as shown in FIG. 4. One circuit realisation for the LED drive circuit 64 is shown in FIG. 13. The drive circuit 64 includes an input 66 which receives input signals from a microprocessor controller 68 via a digital to analog converter 69. The input signals are amplified in amplifier stages 70, 72 and 74, the feedback circuit 60 provides negative feedback for the stages 72 and 74, as shown. The LED drive circuit 64 thus is able to produce a linear luminance output from the LED arrays 54 and 56, over a reasonable range of voltages applied to the input 66. This is graphically illustrated in
The digital to analog converter 69 will produce the sinusoidal waveform when the microprocessor controller 68 sends the sine wave data held in a sine look-up table LUT stored in read only memory 100. A software counter will be used as a pointer to the sine wave LUT used to construct the sine wave. The output frequency of the waveform generator will be equal to the interrupting clock frequency divided by the number of digitised points 256 in the sine wave LUT incorporated in the program. The total harmonic distortion for a 256 point sine wave will be 0.71%. The reconstructed sine waves are then low-pass filtered by a suitable filter circuit provided in the LED drive circuit 64 to reduce the quantisation in the digitised waveforms and so reduce the total harmonic distortion.
The helmet 38 may be similar in appearance to a bicycle helmet and is used to house electrodes 82 for sensing brain electrical activity (EEG) and preferably has a single cable 84 connected to the rear of the helmet and extends to the circuit 42. The electrodes 82 are buffered by very high impedance unity gain amplifiers 86, as shown in FIG. 4. The electrodes are located at predetermined positions in the helmet or other multi-electrode system.
Each of the amplifiers 86 provides a unity gain (non-inverting) with very low input bias current (1 nA), very low noise (0.23 uV) and additional gain is provided by very high input impedance (400 Gohm) amplifiers 87. Electrode impedance may be estimated by injecting a very small current at the electrode site through a large resistance. The electrode impedance can then be estimated as it will form one arm of a potential divider. The outputs from the amplifiers 86 are coupled to sample and hold circuits 88 via filter circuits 90 which provide band pass filtering. The band limited instrumentation amplifier will be followed by more gain and a very steep high cut-off switched filter. The switched filter will feed a two stage high cut filter (used to remove and clock feed through from the switched filter) then to the sample and hold circuits 88. The outputs of the sample and hold circuits 88 are connected to an analog multiplexer 91 and 16 bit analog to digital converter 92. The recorded EEG will normally be digitised to 16 bit accuracy. A 16 bit dynamic range means that the analog front-end gain can be fixed at a predetermined value for typical patients. As the analog multiplexer 91 is fed by individual sample and hold circuits 88 (one per EEG channel) no data time skewing will occur. All EEG data and other relevant timing information will be stored in the hard drive 44. The computer then uploads this data to the central analysis site 4.
In order to maximise patient comfort, the brightness of the visual flicker is preferably slowly increased to its final value over a period of minutes.
The visor may include a light detector 48 for detecting ambient light levels, the detector 48 being coupled to an ambient light level detector circuit 43, an example of which is shown in FIG. 12. The circuit 43 converts the ambient light level to a voltage signal which is coupled by an amplifier, low pass filter 93, and sample and hold circuit 95 to the multiplexor 91, as shown in FIG. 4. Voltage signals from the phototransistor 43 pass through the convertor 92 and are inputted to the microprocessor 68. The voltage drive from the phototransistor 43 is linearly proportional to the ambient light brightness. This voltage will be measured by software in the microprocessor to give a brightness value. If the brightness value is too high, ambient light levels are too high and a message will be generated to advise the clinician to reduce the ambient light levels.
The microprocessor 68 also controls the acquisition of data by signalling the analog to digital converter 92 to measure the current EEG value at an electrode 82, as determined by the microprocessor. This data will be stored in the S-RAM 94. The microprocessor with the front-end amplifiers preferably include several high accuracy 32 bit counter/timers capture circuits 102. These 32 bit counter/timers capture circuits 102 generate the timing signals for data acquisition, visual flicker frequency as well as specific events in the material being presented to the patient. Such events may include the beginning and end of task sequences as well as the timing of specific events. The timing data held in counters 102 can be captured when signalled by the above mentioned events. The captured timing data can be stored along with the recorded EEG data in the hard drive 44 and for later transmission and analysis. Software at test site may also detect any possible development of photo-epilepsy by monitoring the amplitude of the EEG at the flicker stimulus frequency. In the event of any photo-epilepsy being detected, the flicker stimulus will be discontinued and the test terminated.
At the end of data acquisition, the data is encrypted and transferred to the central analysis site 4.
Cognitive tasks can be presented at the test site by using in-house software such as “PIPSCRIPT” or commercial software such as CANTAB or Ulead Media Studio. It will be appreciated by those skilled in the art that commercially available software packages can be utilised to perform the file storage and transfer functions required in carrying out the techniques of the invention. Standard Internet communication software such as WS FTP32 or Cute FTP can be used to download multimedia files. These files can be compressed and encrypted using software such as WINZIP. Transfer of encrypted brain activity data can be transferred to the central analysis site 4 via FTP.
The CPU 16 may comprise a Silicon Graphics workstation or WINTEL based system. A high security computer network fire-wall can be installed to reduce the risks of malicious hacking in accordance with known practice.
Preferably the material which constitutes the cognitive task as well as brain electrical activity is held in the storage device 26 for ongoing access. Also, archival storage may be provided and a very high capacity tape system (at least 10,000 gigabyte) is preferred. Archiving may be done using Digital Video Disk (DVD) media.
Software in the CPU 16 calculates Steady State Visually Evoked Potential (SSVEP) amplitude and phase for each stimulus cycle. The SSVEPC refers to the mean coherence over the entire duration of a cognitive task while the ER-SSVEPC refers to the changes in coherence over the duration of a typical trial in a cognitive task. Calculation accomplished used Fourier techniques using equations 1.0 and 1.1.
Calculation of SSVEP Fourier components where an and bn are the cosine and sine Fourier coefficients respectively. n represents the nth stimulus cycle, S is the number of samples per stimulus cycle (16), Δτ is the time interval between samples, T is the period of one cycle and f(nT+iΔτ) is the EEG signal.
Calculation of SSVEP amplitude and phase where an and bn are the cosine and sine Fourier coefficients respectively. Amplitude and phase components can be calculated using either single cycle Fourier coefficients or coefficients that have been calculated by integrating across multiple cycles.
In addition to SSVEP amplitude and phase changes associated with the therapeutic intervention, it is also possible to determine the therapeutic intervention induced changes in the relationship between the SSVEP at different electrodes by measuring the coherence. The coherence is similar to the correlation coefficient expressed as a function of frequency.
Two types of coherence functions are calculated from the SSVEP sine and cosine Fourier coefficients while patients undertake the cognitive task. One will be termed the SSVEP Coherence (SSVEPC) and the other, Event Related SSYEP Coherence (ER-SSVEPC).
SSVEPC
The SSVEP sine and cosine coefficients can be expressed as complex numbers
Cn=(an,bn) 1.2
where an and bn have been previously defined.
The nomenclature is generalised to take into account multiple tasks and multiple electrodes.
Cg,e,n=(ag,e,n,bg,e,n) 1.3
where
Relevant functions can be defined by the following equations:
γg,e1,e2=Hg,e1,e2/Tg,e1,e2 1.4
and
The SSVEPC coherence is then given by
γ2g,e1,e2=|Hg,e1,e2|2/T2g,e1,e2 1.7
And the phase of the SSVEPC is given by
ERSSVEP-C
In this case, the coherence across trials in a particular task are calculated. This yields coherence as a function of time. We generalise the nomenclature to take into account multiple tasks and multiple electrodes.
Cg,d,e,n=(ag,d,e,n,bg,d,e,n) 1.9
where
Relevant functions can be defined by the following equations:
γg,e1,e2,n=Hg,e1,e2,n/Tg,e1,e2,n 1.10
and
The SSVEPC is then given by
γ2g,e1,e2,n=|Hg,e1,e2,n|2/T2g,e1,e2,n 1.13
And the phase of the SSVEPC is given by
The step of assessing the efficacy includes the steps of detecting changes associated with therapeutic intervention in the SSVEP amplitude and/or phase topography.
Precise timing on the various events is supplied by the encrypted data file uploaded from patients.
Information about brain activity and brain speed of processing is preferably available for each of the recording sites. Preferably there are about sixty-four scalp recording sites.
The CPU 16 may also run software for producing written reports outlining the response of the patient's brain to the test therapeutical treatment. The clinician administering the test treatment can then decide on the suitability of continued administration of the therapeutical treatment for the particular patient.
In summary, SSPT is to be used to evaluate therapeutic intervention in patients suffering from a wide range of neuropsychiatric disorders including, but not limited to, disorders of mood, anxiety disorders, neurodegenerative disorders (e.g. Alzheimer's dementia), disorders of attention, cognition and impulse control. Patients will be required to perform a number of specified cognitive tasks before and after therapeutic intervention. The steady state visually evoked potential (SSVEP) will be recorded from (typically) 64 scalp sites while patients undertake the cognitive tasks.
Changes in the SSVEP amplitude and phase topography are used to ascertain the effectiveness of the therapeutic intervention. For example, the short term (2 hours) response to a dose of psychotropic medication (eg a neurostimulant or an antidepressant) may be used to predict the long term responsiveness to such medication. The clinician may then use the SSPT technology to select the most effective medication regimen (such as selection of drug, dosage and optimum treatment duration).
An example of the invention will now be briefly described with reference to
Children diagnosed with ADHD were tested to examine the effects of stimulant medication (methylphenidate or Ritalin) on the amplitude and phase of the steady state visually evoked potential (SSVEP). The children performed two cognitive tasks before the stimulant medication was administered and then repeat the tasks one hour after stimulant medication was administered.
The first task was a low demand vigilance task where the patients were required to press a micro switch on the predictable appearance of the number “5” in the repeated sequence “1, 2, 3, 4, 5”. The second task was known as the A-X version of the Continuous Performance Task (CPT A-X). In this more demanding task, patients were required to press a micro switch on the appearance of the letter “X” if and only if it has been preceded by the letter “A”.
More particularly,
In contrast,
In summary, the spatial distribution shown in
Many modifications will be apparent to those skilled in the art without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
PP3547 | May 1998 | AU | national |
This application is a 371 filing of PCT/AU99/00365, filed May 14, 1999.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTAU99/00365 | 5/14/1999 | WO | 00 | 1/19/2001 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO9959469 | 11/25/1999 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2860627 | Harden | Nov 1958 | A |
3087487 | Clynes | Apr 1963 | A |
3498287 | Ertl | Mar 1970 | A |
3513834 | Suzuki et al. | May 1970 | A |
3689135 | Young et al. | Sep 1972 | A |
3809069 | Bennett | May 1974 | A |
3855998 | Hidalgo-Briceno | Dec 1974 | A |
3880144 | Coursin et al. | Apr 1975 | A |
3892227 | Coursin et al. | Jul 1975 | A |
3901215 | John | Aug 1975 | A |
3998213 | Price | Dec 1976 | A |
4083365 | Yancey | Apr 1978 | A |
4094307 | Young, Jr. | Jun 1978 | A |
4140997 | Brady | Feb 1979 | A |
4201224 | John | May 1980 | A |
4216781 | John | Aug 1980 | A |
4244376 | Fisher et al. | Jan 1981 | A |
4304242 | Siarkiewicz et al. | Dec 1981 | A |
4407299 | Culver | Oct 1983 | A |
4421122 | Duffy | Dec 1983 | A |
4462411 | Rickards | Jul 1984 | A |
4493327 | Bergelson et al. | Jan 1985 | A |
4493539 | Cannon, Jr. | Jan 1985 | A |
4537198 | Corbett | Aug 1985 | A |
4566464 | Piccone et al. | Jan 1986 | A |
4570640 | Barsa | Feb 1986 | A |
4610259 | Cohen et al. | Sep 1986 | A |
4632122 | Johansson et al. | Dec 1986 | A |
4632126 | Aguilar | Dec 1986 | A |
4649482 | Raviv et al. | Mar 1987 | A |
4665499 | Zacharski et al. | May 1987 | A |
4676611 | Nelson et al. | Jun 1987 | A |
4744029 | Raviv et al. | May 1988 | A |
4794533 | Cohen | Dec 1988 | A |
4832480 | Kornacker et al. | May 1989 | A |
4861154 | Sherwin et al. | Aug 1989 | A |
4862359 | Trivedi et al. | Aug 1989 | A |
4869264 | Silberstein | Sep 1989 | A |
4878498 | Abrams et al. | Nov 1989 | A |
4892106 | Gleeson, III | Jan 1990 | A |
4913160 | John | Apr 1990 | A |
4932416 | Rosenfeld | Jun 1990 | A |
4955388 | Silberstein | Sep 1990 | A |
4955938 | Romer et al. | Sep 1990 | A |
4974602 | Abraham-Fuchs et al. | Dec 1990 | A |
4977896 | Robinson et al. | Dec 1990 | A |
5331969 | Silberstein | Jul 1994 | A |
5357427 | Langen et al. | Oct 1994 | A |
5730146 | Itil et al. | Mar 1998 | A |
6035230 | Kang et al. | Mar 2000 | A |
6052619 | John | Apr 2000 | A |
Number | Date | Country |
---|---|---|
2604889 | Apr 1988 | FR |
WO 87 00745 | Feb 1987 | WO |